1
|
Larsen PP, Dinet V, Delcourt C, Helmer C, Linard M. Could Infectious Agents Play a Role in the Onset of Age-related Macular Degeneration? A Scoping Review. OPHTHALMOLOGY SCIENCE 2025; 5:100668. [PMID: 39906411 PMCID: PMC11791433 DOI: 10.1016/j.xops.2024.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025]
Abstract
Topic This scoping review aims to summarize the current state of knowledge on the potential involvement of infections in age-related macular degeneration (AMD). Clinical relevance Age-related macular degeneration is a multifactorial disease and the leading cause of vision loss among older adults in developed countries. Clarifying whether certain infections participate in its onset or progression seems essential, given the potential implications for treatment and prevention. Methods Using the PubMed database, we searched for articles in English, published until June 1, 2023, whose title and/or abstract contained terms related to AMD and infections. All types of study design, infectious agents, AMD diagnostic methods, and AMD stages were considered. Articles dealing with the oral and gut microbiota were not included but we provide a brief summary of high-quality literature reviews recently published on the subject. Results Two investigators independently screened the 868 articles obtained by our algorithm and the reference lists of selected studies. In total, 40 articles were included, among which 30 on human data, 9 animal studies, 6 in vitro experiments, and 1 hypothesis paper (sometimes with several data types in the same article). Of these, 27 studies were published after 2010, highlighting a growing interest in recent years. A wide range of infectious agents has been investigated, including various microbiota (nasal, pharyngeal), 8 bacteria, 6 viral species, and 1 yeast. Among them, most have been investigated anecdotally. Only Chlamydia pneumoniae, Cytomegalovirus, and hepatitis B virus received more attention with 17, 6, and 4 studies, respectively. Numerous potential pathophysiological mechanisms have been discussed, including (1) an indirect role of infectious agents (i.e. a role of infections located distant from the eye, mainly through their interactions with the immune system) and (2) a direct role of some infectious agents implying potential infection of various cells types within AMD-related tissues. Conclusions Overall, this review highlights the diversity of possible interactions between infectious agents and AMD and suggests avenues of research to enrich the data currently available, which provide an insufficient level of evidence to conclude whether or not infectious agents are involved in this pathology. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Petra P. Larsen
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | - Virginie Dinet
- INSERM, Biologie des Maladies Cardiovasculaires, U1034, University of Bordeaux, Pessac, France
| | - Cécile Delcourt
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | | | - Morgane Linard
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| |
Collapse
|
2
|
Haghshenas L, Banihashemi S, Malekzadegan Y, Catanzaro R, Moghadam Ahmadi A, Marotta F. Microbiome as an endocrine organ and its relationship with eye diseases: Effective factors and new targeted approaches. World J Gastrointest Pathophysiol 2024; 15:96446. [PMID: 39355345 PMCID: PMC11440246 DOI: 10.4291/wjgp.v15.i5.96446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Microbiome is an endocrine organ that refers to both the complicated biological system of microbial species that colonize our bodies and their genomes and surroundings. Recent studies confirm the connection between the microbiome and eye diseases, which are involved in the pathogenesis of eye diseases, including age-related macular disorders, diabetic retinopathy, glaucoma, retinitis pigmentosa, dry eye, and uveitis. The aim of this review is to investigate the microbiome in relation to eye health. First, a brief introduction of the characteristics of the gut microorganisms terms of composition and work, the role of dysbiosis, the gut microbiome and the eye microbiome in the progression of eye illnesses are highlighted, then the relationship among the microbiome and the function of the immune system and eye diseases, the role of inflammation and aging and the immune system, It has been reviewed and finally, the control and treatment goals of microbiome and eye diseases, the role of food factors and supplements, biotherapy and antibiotics in relation to microbiome and eye health have been reviewed.
Collapse
Affiliation(s)
- Leila Haghshenas
- Department of Clinical Bioinformatics, Harvard Medical School, Boston, MA 02115, United States
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham NG1 4FQ, United Kingdom
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh 3919676651, Iran
| | - Roberto Catanzaro
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Catania, Italy
| | - Amir Moghadam Ahmadi
- Department of Neuroimmunology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Francesco Marotta
- Department of Human Nutrition and Food Sciences, Texas Women University, Milano 20154, Italy
| |
Collapse
|
3
|
Evsikova MM, Radtsig EY, Gurov AV. [On the issue of the etiology of acute inflammatory pathology of the pharynx in children]. Vestn Otorinolaringol 2024; 89:10-15. [PMID: 39545755 DOI: 10.17116/otorino20248905110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To compare the microbiota of the oropharynx in healthy children and children with acute tonsillitis and pharyngitis. MATERIAL AND METHODS The study included two groups of patients (139 people) aged from 1 year to 17 years inclusive. The main group consisted of children with acute tonsillitis and acute pharyngitis (111 patients, average age 7±4 years), the control group consisted of 28 healthy children (average age 7±6 years) without signs of upper respiratory tract infection. All patients were examined and material was taken from the mucous membrane of the posterior pharyngeal wall and palatine tonsils, the samples obtained were subjected to bacteriological examination to isolate a pure culture and identify bacterial microorganisms and virological examination by polymerase chain reaction in order to isolate a number of typical respiratory viruses and herpes viruses. RESULTS It was found that viral-bacterial associations predominate (66.7%) in patients with acute tonsillitis and pharyngitis (32% in healthy volunteers). The detection rates of typical respiratory viruses and herpes viruses in patients with acute tonsillitis and pharyngitis are comparable (44% and 40.5%, respectively). Streptococcus pyogenes (beta-hemolytic streptococcus group A, 6.3%), as well as Streptococcus pneumoniae, Moraxella catarrhalis, Klebsiella pneumoniae and Pseudomonas aeruginosa were detected only in patients with acute tonsillitis. Other microorganisms were isolated both in healthy patients and in children with acute tonsillitis and pharyngitis, but in the presence of inflammatory changes in the pharynx, the concentration of microorganisms was slightly higher than in a healthy state, which is especially significant for Staphylococcus aureus. In patients without signs of inflammation, typical respiratory viruses (rhinovirus, 14%) and herpes viruses (with a predominance of type 6 herpes virus - 28%) were also found in a percentage comparable to that of patients with acute tonsillitis and pharyngitis. CONCLUSION The etiology of acute tonsillitis and pharyngitis in children is dominated by viral-bacterial associations, while rhinovirus (34%) and herpes virus type 6 (28%) are among the viruses. The detection rate of Streptococcus pyogenes in patients with acute tonsillitis was 6.3%. Typical respiratory viruses and herpes viruses can be found on the mucous membrane of the oropharynx and outside the phenomena of inflammation. This once again proves the importance of comparing the clinical manifestations observed in a patient and data on the structure of the microbiota of a particular locus, including to address the need for systemic or local antimicrobial therapy.
Collapse
Affiliation(s)
- M M Evsikova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E Yu Radtsig
- Pirogov Russian National Research Medical University, Moscow, Russia
- Morozovskaya Children's City Clinical Hospital, Moscow, Russia
| | - A V Gurov
- Pirogov Russian National Research Medical University, Moscow, Russia
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| |
Collapse
|
4
|
Wang Y, Lê Cao KA. PLSDA-batch: a multivariate framework to correct for batch effects in microbiome data. Brief Bioinform 2023; 24:bbac622. [PMID: 36653900 PMCID: PMC10025448 DOI: 10.1093/bib/bbac622] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/20/2023] Open
Abstract
Microbial communities are highly dynamic and sensitive to changes in the environment. Thus, microbiome data are highly susceptible to batch effects, defined as sources of unwanted variation that are not related to and obscure any factors of interest. Existing batch effect correction methods have been primarily developed for gene expression data. As such, they do not consider the inherent characteristics of microbiome data, including zero inflation, overdispersion and correlation between variables. We introduce new multivariate and non-parametric batch effect correction methods based on Partial Least Squares Discriminant Analysis (PLSDA). PLSDA-batch first estimates treatment and batch variation with latent components, then subtracts batch-associated components from the data. The resulting batch-effect-corrected data can then be input in any downstream statistical analysis. Two variants are proposed to handle unbalanced batch x treatment designs and to avoid overfitting when estimating the components via variable selection. We compare our approaches with popular methods managing batch effects, namely, removeBatchEffect, ComBat and Surrogate Variable Analysis, in simulated and three case studies using various visual and numerical assessments. We show that our three methods lead to competitive performance in removing batch variation while preserving treatment variation, especially for unbalanced batch $\times $ treatment designs. Our downstream analyses show selections of biologically relevant taxa. This work demonstrates that batch effect correction methods can improve microbiome research outputs. Reproducible code and vignettes are available on GitHub.
Collapse
Affiliation(s)
- Yiwen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 97 Buxin Rd, Shenzhen, 518000, Guangdong, China
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, 30 Royal Parade, Melbourne, 3052, VIC, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, 30 Royal Parade, Melbourne, 3052, VIC, Australia
| |
Collapse
|
5
|
Microbiota Phenotype Promotes Anastomotic Leakage in a Model of Rats with Ischemic Colon Resection. Microorganisms 2023; 11:microorganisms11030680. [PMID: 36985253 PMCID: PMC10054737 DOI: 10.3390/microorganisms11030680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Anastomotic leakage (AL) is a major cause of morbidity and mortality after colorectal surgery, but the mechanism behind this complication is still not fully understood. Despite the advances in surgical techniques and perioperative care, the complication rates have remained steady. Recently, it has been suggested that colon microbiota may be involved in the development of complications after colorectal surgery. The aim of this study was to evaluate the association of gut microbiota in the development of colorectal AL and their possible virulence strategies to better understand the phenomenon. Using 16S rRNA sequencing of samples collected on the day of surgery and the sixth day following surgery, we analyzed the changes in tissue-associated microbiota at anastomotic sites created in a model of rats with ischemic colon resection. We discovered a trend for lower microbial diversity in the AL group compared to non-leak anastomosis (NLA). There were no differences in relative abundance in the different types of microbial respiration between these groups and the high abundance of the facultative anaerobic Gemella palaticanis is a marker species that stands out as a distinctive feature.
Collapse
|
6
|
Gupta N, Yadav VK, Gacem A, Al-Dossari M, Yadav KK, Abd El-Gawaad NS, Ben Khedher N, Choudhary N, Kumar P, Cavalu S. Deleterious Effect of Air Pollution on Human Microbial Community and Bacterial Flora: A Short Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315494. [PMID: 36497569 PMCID: PMC9738139 DOI: 10.3390/ijerph192315494] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 05/10/2023]
Abstract
A balanced microbiota composition is requisite for normal physiological functions of the human body. However, several environmental factors such as air pollutants may perturb the human microbiota composition. It is noticeable that currently around 99% of the world's population is breathing polluted air. Air pollution's debilitating health impacts have been studied scrupulously, including in the human gut microbiota. Nevertheless, air pollution's impact on other microbiotas of the human body is less understood so far. In the present review, the authors have summarized and discussed recent studies' outcomes related to air pollution-driven microbiotas' dysbiosis (including oral, nasal, respiratory, gut, skin, and thyroid microbiotas) and its potential multi-organ health risks.
Collapse
Affiliation(s)
- Nishant Gupta
- Department of Medical Research & Development, River Engineering, Toy City, Ecotech-III, Greater Noida 201305, India
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science & Technology, Lakshmangarh, Sikar 332311, India
- Correspondence: (V.K.Y.); (S.C.)
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria
| | - M. Al-Dossari
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad 462044, India
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Nidhal Ben Khedher
- Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il 81451, Saudi Arabia
- Laboratory of Thermal and Energy Systems Studies, National School of Engineering of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Nisha Choudhary
- Department of Environmental Sciences, School of Sciences, P P Savani University, Surat 394125, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (V.K.Y.); (S.C.)
| |
Collapse
|
7
|
Fehér J, Élő Á, István L, Nagy ZZ, Radák Z, Scuderi G, Artico M, Kovács I. Microbiota mitochondria disorders as hubs for early age-related macular degeneration. GeroScience 2022; 44:2623-2653. [PMID: 35978068 PMCID: PMC9385247 DOI: 10.1007/s11357-022-00620-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/01/2022] [Indexed: 01/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease affecting the central area (macula lutea) of the retina. Research on the pathogenic mechanism of AMD showed complex cellular contribution governed by such risk factors as aging, genetic predisposition, diet, and lifestyle. Recent studies suggested that microbiota is a transducer and a modifier of risk factors for neurodegenerative diseases, and mitochondria may be one of the intracellular targets of microbial signaling molecules. This review explores studies supporting a new concept on the contribution of microbiota-mitochondria disorders to AMD. We discuss metabolic, vascular, immune, and neuronal mechanism in AMD as well as key alterations of photoreceptor cells, retinal pigment epithelium (RPE), Bruch's membrane, choriocapillaris endothelial, immune, and neuronal cells. Special attention was paid to alterations of mitochondria contact sites (MCSs), an organelle network of mitochondria, endoplasmic reticulum, lipid droplets (LDs), and peroxisomes being documented based on our own electron microscopic findings from surgically removed human eyes. Morphometry of Bruch's membrane lipids and proteoglycans has also been performed in early AMD and aged controls. Microbial metabolites (short-chain fatty acids, polyphenols, and secondary bile acids) and microbial compounds (lipopolysaccharide, peptidoglycan, and bacterial DNA)-now called postbiotics-in addition to local effects on resident microbiota and mucous membrane, regulate systemic metabolic, vascular, immune, and neuronal mechanisms in normal conditions and in various common diseases. We also discuss their antioxidant, anti-inflammatory, and metabolic effects as well as experimental and clinical observations on regulating the main processes of photoreceptor renewal, mitophagy, and autophagy in early AMD. These findings support an emerging concept that microbiota-mitochondria disorders may be a crucial pathogenic mechanism of early AMD; and similarly, to other age-related neurodegenerative diseases, new treatment approaches should be targeted at these disorders.
Collapse
Affiliation(s)
- János Fehér
- PRIMAVERA Program, Nutripharma Hungaria Ltd., Budapest, Hungary
| | - Ágnes Élő
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lilla István
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zsolt Radák
- grid.472475.70000 0000 9243 1481Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Gianluca Scuderi
- grid.7841.aOphthalmology Unit, NESMOS Department, Sant’Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Artico
- grid.417007.5Department of Sensory Organs, “Sapienza” University of Rome, Roma, Italy
| | - Illés Kovács
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary ,grid.5386.8000000041936877XDepartment of Ophthalmology, Weill Cornell Medical College, New York City, NY USA
| |
Collapse
|
8
|
Arjunan P, Swaminathan R. Do Oral Pathogens Inhabit the Eye and Play a Role in Ocular Diseases? J Clin Med 2022; 11:2938. [PMID: 35629064 PMCID: PMC9146391 DOI: 10.3390/jcm11102938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Fascinatingly, the immune-privileged healthy eye has a small unique population of microbiota. The human microbiome project led to continuing interest in the ocular microbiome. Typically, ocular microflorae are commensals of low diversity that colonize the external and internal sites of the eye, without instigating any disorders. Ocular commensals modulate immunity and optimally regulate host defense against pathogenic invasion, both on the ocular surface and neuroretina. Yet, any alteration in this symbiotic relationship culminates in the perturbation of ocular homeostasis and shifts the equilibrium toward local or systemic inflammation and, in turn, impaired visual function. A compositional variation in the ocular microbiota is associated with surface disorders such as keratitis, blepharitis, and conjunctivitis. Nevertheless, innovative studies now implicate non-ocular microbial dysbiosis in glaucoma, age-related macular degeneration (AMD), uveitis, and diabetic retinopathy. Accordingly, prompt identification of the extra-ocular etiology and a methodical understanding of the mechanisms of invasion and host-microbial interaction is of paramount importance for preventative and therapeutic interventions for vision-threatening conditions. This review article aims to explore the current literature evidence to better comprehend the role of oral pathogens in the etiopathogenesis of ocular diseases, specifically AMD.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Radhika Swaminathan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
9
|
Singh N, Haider NB. Microbiota, Microbiome, and Retinal Diseases. Int Ophthalmol Clin 2022; 62:197-214. [PMID: 35325919 DOI: 10.1097/iio.0000000000000418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Ma Y, Ding X, Shao M, Qiu Y, Li S, Cao W, Xu G. Association of Serum Complement C1q and C3 Level with Age-Related Macular Degeneration in Women. J Inflamm Res 2022; 15:285-294. [PMID: 35058703 PMCID: PMC8765539 DOI: 10.2147/jir.s348539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/25/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate the association between serum complement components and age-related macular degeneration (AMD). PATIENTS AND METHODS A total of 118 AMD patients and age- and sex-matched 106 control subjects were included. Demographic data and the level of serum complement component (C)1q, C3 and C4 were evaluated. Based on sex, the subjects were stratified into male and female subgroups. RESULTS The level of C1q (226.31±45.33mg/dL) was significantly higher and C3 (121.14±15.76mg/dL) was significantly lower than that in control group (200.03±38.54mg/dL) (128.42±19.81mg/dL) in the female AMD patients (p = 0.005, p = 0.045). Logistic regression showed that increased C1q (OR = 1.132, p = 0.016) and decreased C3 (OR = 0.960, p = 0.048) were independent risk factors for female AMD patients. No statistical significance was observed in the male. CONCLUSION Increased C1q and decreased C3 were associated with increased risk of AMD, suggesting that the complement classical pathway probably be involved in AMD, especially in female.
Collapse
Affiliation(s)
- Yingbo Ma
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xueqing Ding
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yichao Qiu
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Shengjie Li
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, People's Republic of China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Lima-Fontes M, Meira L, Barata P, Falcão M, Carneiro Â. Gut microbiota and age-related macular degeneration: A growing partnership. Surv Ophthalmol 2021; 67:883-891. [PMID: 34843745 DOI: 10.1016/j.survophthal.2021.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe, irreversible vision impairment in developed countries, and its prevalence is rising all over the world, increasing sharply with age. AMD represents an acquired degeneration of the retina that causes significant central visual impairment through a combination of noneovascular and neovascular derangement. The main risk factors for the development of advanced AMD are increasing age, genetic factors, and cigarette smoking; however, the exact pathophysiology of AMD is yet relatively poorly understood. In recent years, the gut microbiota has been intensively studied and linked to several pathologic processes, including ocular diseases. In this sense, the aim of this review is to gather published evidence about the relationship between gut microbiota and AMD.
Collapse
Affiliation(s)
- Mário Lima-Fontes
- Department of Ophthalmology, Centro Hospitalar Universitário São João, Porto, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal.
| | - Luís Meira
- Faculty of Medicine, University of Porto, Portugal
| | - Pedro Barata
- I3S: Institute for Research and Innovation in Health, University of Porto, Portugal; Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
| | - Manuel Falcão
- Department of Ophthalmology, Centro Hospitalar Universitário São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| | - Ângela Carneiro
- Department of Ophthalmology, Centro Hospitalar Universitário São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
12
|
Lay C, Chu CW, Purbojati RW, Acerbi E, Drautz-Moses DI, de Sessions PF, Jie S, Ho E, Kok YJ, Bi X, Chen S, Mak SY, Chua MC, Goh AEN, Chiang WC, Rao R, Chaithongwongwatthana S, Khemapech N, Chongsrisawat V, Martin R, Roeselers G, Ho YS, Hibberd ML, Schuster SC, Knol J. A synbiotic intervention modulates meta-omics signatures of gut redox potential and acidity in elective caesarean born infants. BMC Microbiol 2021; 21:191. [PMID: 34172012 PMCID: PMC8229302 DOI: 10.1186/s12866-021-02230-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The compromised gut microbiome that results from C-section birth has been hypothesized as a risk factor for the development of non-communicable diseases (NCD). In a double-blind randomized controlled study, 153 infants born by elective C-section received an infant formula supplemented with either synbiotic, prebiotics, or unsupplemented from birth until 4 months old. Vaginally born infants were included as a reference group. Stool samples were collected from day 3 till week 22. Multi-omics were deployed to investigate the impact of mode of delivery and nutrition on the development of the infant gut microbiome, and uncover putative biological mechanisms underlying the role of a compromised microbiome as a risk factor for NCD. RESULTS As early as day 3, infants born vaginally presented a hypoxic and acidic gut environment characterized by an enrichment of strict anaerobes (Bifidobacteriaceae). Infants born by C-section presented the hallmark of a compromised microbiome driven by an enrichment of Enterobacteriaceae. This was associated with meta-omics signatures characteristic of a microbiome adapted to a more oxygen-rich gut environment, enriched with genes associated with reactive oxygen species metabolism and lipopolysaccharide biosynthesis, and depleted in genes involved in the metabolism of milk carbohydrates. The synbiotic formula modulated expression of microbial genes involved in (oligo)saccharide metabolism, which emulates the eco-physiological gut environment observed in vaginally born infants. The resulting hypoxic and acidic milieu prevented the establishment of a compromised microbiome. CONCLUSIONS This study deciphers the putative functional hallmarks of a compromised microbiome acquired during C-section birth, and the impact of nutrition that may counteract disturbed microbiome development. TRIAL REGISTRATION The study was registered in the Dutch Trial Register (Number: 2838 ) on 4th April 2011.
Collapse
Affiliation(s)
| | | | - Rikky Wenang Purbojati
- Singapore Centre For Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Enzo Acerbi
- Danone Nutricia Research, Singapore, Singapore
| | - Daniela I Drautz-Moses
- Singapore Centre For Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | | | - Song Jie
- Genome Institute of Singapore, Singapore, Singapore
| | - Eliza Ho
- Genome Institute of Singapore, Singapore, Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Shuwen Chen
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Shi Ya Mak
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Mei Chien Chua
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Anne E N Goh
- KK Women's and Children's Hospital, Singapore, Singapore
| | | | - Rajeshwar Rao
- KK Women's and Children's Hospital, Singapore, Singapore
| | | | - Nipon Khemapech
- King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Voranush Chongsrisawat
- King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rocio Martin
- Danone Nutricia Research, Utrecht, The Netherlands
| | | | - Ying Swan Ho
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Martin L Hibberd
- Genome Institute of Singapore, Singapore, Singapore
- London School of Hygiene and Tropical Medicine, London, UK
| | - Stephan C Schuster
- Singapore Centre For Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Jan Knol
- Danone Nutricia Research, Utrecht, The Netherlands.
- Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Kutsyr O, Maestre-Carballa L, Lluesma-Gomez M, Martinez-Garcia M, Cuenca N, Lax P. Retinitis pigmentosa is associated with shifts in the gut microbiome. Sci Rep 2021; 11:6692. [PMID: 33758301 PMCID: PMC7988170 DOI: 10.1038/s41598-021-86052-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is known to influence the pathogenesis and progression of neurodegenerative diseases. However, there has been relatively little focus upon the implications of the gut microbiome in retinal diseases such as retinitis pigmentosa (RP). Here, we investigated changes in gut microbiome composition linked to RP, by assessing both retinal degeneration and gut microbiome in the rd10 mouse model of RP as compared to control C57BL/6J mice. In rd10 mice, retinal responsiveness to flashlight stimuli and visual acuity were deteriorated with respect to observed in age-matched control mice. This functional decline in dystrophic animals was accompanied by photoreceptor loss, morphologic anomalies in photoreceptor cells and retinal reactive gliosis. Furthermore, 16S rRNA gene amplicon sequencing data showed a microbial gut dysbiosis with differences in alpha and beta diversity at the genera, species and amplicon sequence variants (ASV) levels between dystrophic and control mice. Remarkably, four fairly common ASV in healthy gut microbiome belonging to Rikenella spp., Muribaculaceace spp., Prevotellaceae UCG-001 spp., and Bacilli spp. were absent in the gut microbiome of retinal disease mice, while Bacteroides caecimuris was significantly enriched in mice with RP. The results indicate that retinal degenerative changes in RP are linked to relevant gut microbiome changes. The findings suggest that microbiome shifting could be considered as potential biomarker and therapeutic target for retinal degenerative diseases.
Collapse
Affiliation(s)
- Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Lucía Maestre-Carballa
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Mónica Lluesma-Gomez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Institute Ramón Margalef, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.
| |
Collapse
|
14
|
Exacerbation of AMD Phenotype in Lasered CNV Murine Model by Dysbiotic Oral Pathogens. Antioxidants (Basel) 2021; 10:antiox10020309. [PMID: 33670526 PMCID: PMC7922506 DOI: 10.3390/antiox10020309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence underscores an association between age-related macular degeneration (AMD) and periodontal disease (PD), yet the biological basis of this linkage and the specific role of oral dysbiosis caused by PD in AMD pathophysiology remains unclear. Furthermore, a simple reproducible model that emulates characteristics of both AMD and PD has been lacking. Hence, we established a novel AMD+PD murine model to decipher the potential role of oral infection (ligature-enhanced) with the keystone periodontal pathogen Porphyromonas gingivalis, in the progression of neovasculogenesis in a laser-induced choroidal-neovascularization (Li-CNV) mouse retina. By a combination of fundus photography, optical coherence tomography, and fluorescein angiography, we documented inflammatory drusen-like lesions, reduced retinal thickness, and increased vascular leakage in AMD+PD mice retinae. H&E further confirmed a significant reduction of retinal thickness and subretinal drusen-like deposits. Immunofluorescence microscopy revealed significant induction of choroidal/retinal vasculogenesis in AMD+PD mice. qPCR identified increased expression of oxidative-stress, angiogenesis, pro-inflammatory mediators, whereas antioxidants and anti-inflammatory genes in AMD+PD mice retinae were notably decreased. Through qPCR, we detected Pg and its fimbrial 16s-RrNA gene expression in the AMD+PD mice retinae. To sum-up, this is the first in vivo study signifying a role of periodontal infection in augmentation of AMD phenotype, with the aid of a pioneering AMD+PD murine model established in our laboratory.
Collapse
|
15
|
Zisimopoulos A, Klavdianou O, Theodossiadis P, Chatziralli I. The Role of the Microbiome in Age-Related Macular Degeneration: A Review of the Literature. Ophthalmologica 2021; 244:173-178. [PMID: 33550293 DOI: 10.1159/000515026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/03/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a progressive, multifactorial, degenerative disease and the leading cause of severe visual loss in the elderly population. The exact pathogenesis of AMD remains elusive, being the combination of genetic, environmental, metabolic, and functional processes. A better understanding of the disease's pathophysiology can lead to new treatment targets. The human microbiome seems to be a potential therapeutic pathway for AMD, as it has been recently proven to play a role in its pathogenesis. SUMMARY This review sheds light on the association between the microbiome and AMD. Key Messages: The current evidence based on the existing literature shows that there are differences in taxonomical and functional profiles in the human microbiome between patients with AMD and controls, suggesting that the microbiome is implicated in AMD onset and progression, being a link between AMD and nutrition/diet. Additionally, specific bacterial classes have been proposed as potential biomarkers for AMD diagnosis. Further randomized clinical studies with a large sample are needed to elucidate the role of the microbiome in AMD and to draw more solid conclusions.
Collapse
Affiliation(s)
| | - Olga Klavdianou
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Theodossiadis
- 2nd Department of Ophthalmology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Irini Chatziralli
- 2nd Department of Ophthalmology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece,
| |
Collapse
|
16
|
Li JJ, Yi S, Wei L. Ocular Microbiota and Intraocular Inflammation. Front Immunol 2020; 11:609765. [PMID: 33424865 PMCID: PMC7786018 DOI: 10.3389/fimmu.2020.609765] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The term ocular microbiota refers to all types of commensal and pathogenic microorganisms present on or in the eye. The ocular surface is continuously exposed to the environment and harbors various commensals. Commensal microbes have been demonstrated to regulate host metabolism, development of immune system, and host defense against pathogen invasion. An unbalanced microbiota could lead to pathogenic microbial overgrowth and cause local or systemic inflammation. The specific antigens that irritate the deleterious immune responses in various inflammatory eye diseases remain obscure, while recent evidence implies a microbial etiology of these illnesses. The purpose of this review is to provide an overview of the literature on ocular microbiota and the role of commensal microbes in several eye diseases. In addition, this review will also discuss the interaction between microbial pathogens and host factors involved in intraocular inflammation, and evaluate therapeutic potential of targeting ocular microbiota to treat intraocular inflammation.
Collapse
Affiliation(s)
- Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Sanjun Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Arjunan P. Eye on the Enigmatic Link: Dysbiotic Oral Pathogens in Ocular Diseases; The Flip Side. Int Rev Immunol 2020; 40:409-432. [PMID: 33179994 DOI: 10.1080/08830185.2020.1845330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouth and associated structures were regarded as separate entities from the rest of the body. However, there is a paradigm shift in this conception and oral health is now considered as a fundamental part of overall well-being. In recent years, the subject of oral-foci of infection has attained a resurgence in terms of systemic morbidities while limited observations denote the implication of chronic oral inflammation in the pathogenesis of eye diseases. Hitherto, there is a paucity for mechanistic insights underlying the reported link between periodontal disease (PD) and ocular comorbidities. In light of prevailing scientific evidence, this review article will focus on the understudied theme, that is, the impact of oral dysbiosis in the induction and/or progression of inflammatory eye diseases like diabetic retinopathy, scleritis, uveitis, glaucoma, age-related macular degeneration (AMD). Furthermore, the plausible mechanisms by which periodontal microbiota may trigger immune dysfunction in the Oro-optic-network and promote the development of PD-associated AMD have been discussed.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| |
Collapse
|
18
|
Invasion of Human Retinal Pigment Epithelial Cells by Porphyromonas gingivalis leading to Vacuolar/Cytosolic localization and Autophagy dysfunction In-Vitro. Sci Rep 2020; 10:7468. [PMID: 32366945 PMCID: PMC7198524 DOI: 10.1038/s41598-020-64449-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiological studies link Periodontal disease(PD) to age-related macular degeneration (AMD). We documented earlier that Porphyromonas gingivalis(Pg), keystone oral-pathobiont, causative of PD, efficiently invades human gingival epithelial and blood-dendritic cells. Here, we investigated the ability of dysbiotic Pg-strains to invade human-retinal pigment epithelial cells(ARPE-19), their survival, intracellular localization, and the pathological effects, as dysfunction of RPEs leads to AMD. We show that live, but not heat-killed Pg-strains adhere to and invade ARPEs. This involves early adhesion to ARPE cell membrane, internalization and localization of Pg within single-membrane vacuoles or cytosol, with some nuclear localization apparent. No degradation of Pg or localization inside double-membrane autophagosomes was evident, with dividing Pg suggesting a metabolically active state during invasion. We found significant downregulation of autophagy-related genes particularly, autophagosome complex. Antibiotic protection-based recovery assay further confirmed distinct processes of adhesion, invasion and amplification of Pg within ARPE cells. This is the first study to demonstrate invasion of human-RPEs, begin to characterize intracellular localization and survival of Pg within these cells. Collectively, invasion of RPE by Pg and its prolonged survival by autophagy evasion within these cells suggest a strong rationale for studying the link between oral infection and AMD pathogenesis in individuals with periodontitis.
Collapse
|
19
|
Gil-Martínez M, Santos-Ramos P, Fernández-Rodríguez M, Abraldes MJ, Rodríguez-Cid MJ, Santiago-Varela M, Fernández-Ferreiro A, Gómez-Ulla F. Pharmacological Advances in the Treatment of Age-related Macular Degeneration. Curr Med Chem 2020; 27:583-598. [PMID: 31362645 DOI: 10.2174/0929867326666190726121711] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration is an acquired degenerative disease that is responsible for severe loss of vision in elderly people. There are two types: dry age-related macular degeneration and wet age-related macular degeneration. Its treatment has been improved and tries to be tailored in the future. The aim of this review is to summarize the pharmacological advances in the treatment of age-related macular degeneration. Regarding dry AMD, there is no effective treatment to reduce its progression. However, some molecules such as lampalizumab and eculizumab were under investigation, although they have shown low efficacy. Herein, in an attempt to prevent dry AMD progression, the most important studies suggested increasing the antioxidants intake and quitting the smoke habit. On the other hand, wet AMD has more developed treatment. Nowadays, the gold standard treatment is anti-VEGF injections. However, more effective molecules are currently under investigation. There are different molecules under research for dry AMD and wet AMD. This fact could help us treat our patients with more effective and lasting drugs but more clinical trials and safety studies are required in order to achieve an optimal treatment.
Collapse
Affiliation(s)
- María Gil-Martínez
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain.,Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain
| | - Paz Santos-Ramos
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain
| | - Maribel Fernández-Rodríguez
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain.,Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain.,Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maximino J Abraldes
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain.,Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain.,Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria José Rodríguez-Cid
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain.,Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Santiago-Varela
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department and Pharmacology Group, Univ Hospital of Santiago de Compostela (SERGAS) and Health Research Intitute (IDIS), Santiago de Compostela, Spain
| | - Francisco Gómez-Ulla
- Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain.,Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
20
|
Nayyar A, Gindina S, Barron A, Hu Y, Danias J. Do epigenetic changes caused by commensal microbiota contribute to development of ocular disease? A review of evidence. Hum Genomics 2020; 14:11. [PMID: 32169120 PMCID: PMC7071564 DOI: 10.1186/s40246-020-00257-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
There is evidence that genetic polymorphisms and environmentally induced epigenetic changes play an important role in modifying disease risk. The commensal microbiota has the ability to affect the cellular environment throughout the body without requiring direct contact; for example, through the generation of a pro-inflammatory state. In this review, we discuss evidence that dysbiosis in intestinal, pharyngeal, oral, and ocular microbiome can lead to epigenetic reprogramming and inflammation making the host more susceptible to ocular disease such as autoimmune uveitis, age-related macular degeneration, and open angle glaucoma. Several mechanisms of action have been proposed to explain how changes to commensal microbiota contribute to these diseases. This is an evolving field that has potentially significant implications in the management of these conditions especially from a public health perspective.
Collapse
Affiliation(s)
- Ashima Nayyar
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Sofya Gindina
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Arturo Barron
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Yan Hu
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - John Danias
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA.
- Department of Ophthalmology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA.
| |
Collapse
|
21
|
Rullo J, Far PM, Quinn M, Sharma N, Bae S, Irrcher I, Sharma S. Local oral and nasal microbiome diversity in age-related macular degeneration. Sci Rep 2020; 10:3862. [PMID: 32123200 PMCID: PMC7052252 DOI: 10.1038/s41598-020-60674-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/11/2020] [Indexed: 11/15/2022] Open
Abstract
Age-related macular degeneration (AMD) is a chronic degenerative disease of the retina. Recent reports have highlighted the potential role of mucosal surface microbes in the pathogenesis of AMD. In this case-control study, the composition of the nasal and oral microbiota in newly diagnosed neovascular age-related macular degeneration cases (6 male, 7 female) was compared to controls without retinal diseases (2 male, 3 female). PCR amplification of 16S rRNA genes was performed with universal primers amplifying the V4 variable region (515F-806R). Distinct microbial community characterization was achieved using Principal Coordinates Analysis (PCoA) of the Bray-Curtis index with comparative analysis between cases and controls performed within QIIME 2. Sequencing of all cases and controls revealed clear separation with strong beta diversity between oral and nasal microbial communities (p < 0.001). Microbial composition differed between cases and controls in both oral and nasal samples. The top three oral microbes identified as different compared to controls included Burkholderiales (7.41 log2fold change, p = 3.29E-05), Actinomyceataceae (6.22 log2fold change, p = 3.73E-06) and Gemella (5.28 log2fold change, p = 0.0002). The top three nasal microbes identified as different compared to controls included Rothia (13.6 log2fold change, p = 3.63E-18), Actinobacteria (10.29 log2fold change, p = 9.81E-10) and Propionibacteriales (8.73 log2fold change, p = 6.74E-09). These relative shifts in communities of bacteria detected in newly diagnosed neovascular AMD patients may suggest additional mechanistic links in disease pathogenesis.
Collapse
Affiliation(s)
- Jacob Rullo
- Queen's University, Kingston Health Sciences Center, Department of Ophthalmology, 166 Brock Street, Kingston, Ontario, K7L 5G2, Canada.
| | - Parsa Mehraban Far
- Queen's University, Kingston Health Sciences Center, Department of Ophthalmology, 166 Brock Street, Kingston, Ontario, K7L 5G2, Canada
| | - Matthew Quinn
- Queen's University, Kingston Health Sciences Center, Department of Ophthalmology, 166 Brock Street, Kingston, Ontario, K7L 5G2, Canada
| | - Neel Sharma
- Queen's University, Kingston Health Sciences Center, Department of Ophthalmology, 166 Brock Street, Kingston, Ontario, K7L 5G2, Canada
| | - Steven Bae
- Queen's University, Kingston Health Sciences Center, Department of Ophthalmology, 166 Brock Street, Kingston, Ontario, K7L 5G2, Canada
| | - Isabella Irrcher
- Queen's University, Kingston Health Sciences Center, Department of Ophthalmology, 166 Brock Street, Kingston, Ontario, K7L 5G2, Canada
| | - Sanjay Sharma
- Queen's University, Kingston Health Sciences Center, Department of Ophthalmology, 166 Brock Street, Kingston, Ontario, K7L 5G2, Canada
| |
Collapse
|
22
|
Wang Y, LêCao KA. Managing batch effects in microbiome data. Brief Bioinform 2019; 21:1954-1970. [PMID: 31776547 DOI: 10.1093/bib/bbz105] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Microbial communities have been increasingly studied in recent years to investigate their role in ecological habitats. However, microbiome studies are difficult to reproduce or replicate as they may suffer from confounding factors that are unavoidable in practice and originate from biological, technical or computational sources. In this review, we define batch effects as unwanted variation introduced by confounding factors that are not related to any factors of interest. Computational and analytical methods are required to remove or account for batch effects. However, inherent microbiome data characteristics (e.g. sparse, compositional and multivariate) challenge the development and application of batch effect adjustment methods to either account or correct for batch effects. We present commonly encountered sources of batch effects that we illustrate in several case studies. We discuss the limitations of current methods, which often have assumptions that are not met due to the peculiarities of microbiome data. We provide practical guidelines for assessing the efficiency of the methods based on visual and numerical outputs and a thorough tutorial to reproduce the analyses conducted in this review.
Collapse
Affiliation(s)
- Yiwen Wang
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Kim-Anh LêCao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|
23
|
Ho BSY, Ho EXP, Chu CW, Ramasamy S, Bigliardi-Qi M, de Sessions PF, Bigliardi PL. Microbiome in the hair follicle of androgenetic alopecia patients. PLoS One 2019; 14:e0216330. [PMID: 31050675 PMCID: PMC6499469 DOI: 10.1371/journal.pone.0216330] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/19/2019] [Indexed: 12/02/2022] Open
Abstract
Androgenetic alopecia is the most common form of hair loss in males. It is a multifactorial condition involving genetic predisposition and hormonal changes. The role of microflora during hair loss remains to be understood. We therefore analyzed the microbiome of hair follicles from hair loss patients and the healthy. Hair follicles were extracted from occipital and vertex region of hair loss patients and healthy volunteers and further dissected into middle and lower compartments. The microbiome was then characterized by 16S rRNA sequencing. Distinct microbial population were found in the middle and lower compartment of hair follicles. Middle hair compartment was predominated by Burkholderia spp. and less diverse; while higher bacterial diversity was observed in the lower hair portion. Occipital and vertex hair follicles did not show significant differences. In hair loss patients, miniaturized vertex hair houses elevated Propionibacterium acnes in the middle and lower compartments while non-miniaturized hair of other regions were comparable to the healthy. Increased abundance of P. acnes in miniaturized hair follicles could be associated to elevated immune response gene expression in the hair follicle.
Collapse
Affiliation(s)
- Bryan Siu-Yin Ho
- Experimental Dermatology Group, Institute of Medical Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Eliza Xin Pei Ho
- GERMS Platform for microbial genomics, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Collins Wenhan Chu
- GERMS Platform for microbial genomics, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Srinivas Ramasamy
- Experimental Dermatology Group, Institute of Medical Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Mei Bigliardi-Qi
- Experimental Dermatology Group, Institute of Medical Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Paola Florez de Sessions
- GERMS Platform for microbial genomics, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Paul Lorenz Bigliardi
- Experimental Dermatology Group, Institute of Medical Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- YLL School of Medicine, National University of Singapore and National University Hospital System NUHS, Singapore, Singapore
- * E-mail:
| |
Collapse
|
24
|
Koo SH, Chu CW, Khoo JJC, Cheong M, Soon GH, Ho EXP, Law NM, De Sessions PF, Fock KM, Ang TL, Lee EJD, Hsiang JC. A pilot study to examine the association between human gut microbiota and the host's central obesity. JGH OPEN 2019; 3:480-487. [PMID: 31832548 PMCID: PMC6891071 DOI: 10.1002/jgh3.12184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
Background and Aim Perturbance in the composition of human gut microbiota has been associated with metabolic disorders such as obesity, diabetes mellitus, and insulin resistance. The objectives of this study are to examine the effects of ethnicity, central obesity, and recorded dietary components on potentially influencing the human gut microbiome. We hypothesize that these factors have an influence on the composition of the gut microbiome. Methods Subjects of Chinese (n = 14), Malay (n = 10), and Indian (n = 11) ancestry, with a median age of 39 years (range: 22–70 years old), provided stool samples for gut microbiome profiling using 16S rRNA sequencing and completed a dietary questionnaire. The serum samples were assayed for a panel of biomarkers (interleukin‐6, tumor necrosis factor alpha, adiponectin, cleaved cytokeratin 18, lipopolysaccharide‐binding protein, and limulus amebocyte lysate). Central obesity was defined by waist circumference cut‐off values for Asians. Results There were no significant differences in Shannon alpha diversity for ethnicity and central obesity and no associations between levels of inflammatory cytokines and obesity. The relative abundances of Anaerofilum (P = 0.02), Gemellaceae (P = 0.02), Streptococcaceae (P = 0.03), and Rikenellaceae (P = 0.04) were significantly lower in the obese group. From principle coordinate analysis, the effects of the intake of fiber and fat/saturated fat were in contrast with each other, with clustering of obese individuals leaning toward fiber. Conclusion The study demonstrated that there were differences in the gut microbiome in obese individuals. Certain bacterial taxa were present in lower abundance in the group with central obesity. Fiber and fat/saturated fat diets were not the key determinants of central obesity.
Collapse
Affiliation(s)
- Seok Hwee Koo
- Clinical Trials and Research Unit Changi General Hospital Singapore Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Collins Wenhan Chu
- GERMS Platform, Genome Institute of Singapore Agency for Science, Technology and Research Singapore Singapore
| | | | - Magdalin Cheong
- Department of Dietetic and Food Services Changi General Hospital Singapore Singapore
| | - Gaik Hong Soon
- Clinical Trials and Research Unit Changi General Hospital Singapore Singapore
| | - Eliza Xin Pei Ho
- GERMS Platform, Genome Institute of Singapore Agency for Science, Technology and Research Singapore Singapore
| | - Ngai Moh Law
- Department of Gastroenterology and Hepatology Changi General Hospital Singapore Singapore
| | - Paola Florez De Sessions
- GERMS Platform, Genome Institute of Singapore Agency for Science, Technology and Research Singapore Singapore
| | - Kwong Ming Fock
- Department of Gastroenterology and Hepatology Changi General Hospital Singapore Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology Changi General Hospital Singapore Singapore
| | - Edmund Jon Deoon Lee
- Clinical Trials and Research Unit Changi General Hospital Singapore Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - John Chen Hsiang
- Department of Gastroenterology and Hepatology Changi General Hospital Singapore Singapore
| |
Collapse
|
25
|
Abstract
IMPACT STATEMENT This review describes a growing body of research on relationships between the microbiome and eye disease. Several groups have investigated the microbiota of the ocular surface; dysregulation of this delicate ecosystem has been associated with a variety of pro-inflammatory states. Other research has explored the effects of the gastrointestinal microbiota on ophthalmic diseases. Characterizing the ways these microbiotas influence ophthalmic homeostasis and pathogenesis may lead to research on new techniques for managing ophthalmic disease.
Collapse
Affiliation(s)
- Adam D Baim
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Asadolah Movahedan
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Asim V Farooq
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|