1
|
Vunduk J, Đurović S, Kostić M, Dimitrijević M, Blagojević S, Radić D, Svirčev Z. The application of laccase-rich extract of spent mushroom substrates for removing lignin from jute fabric waste: a dual management approach. Sci Rep 2025; 15:12598. [PMID: 40221565 PMCID: PMC11993609 DOI: 10.1038/s41598-025-96177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Spent mushroom substrate (SMS) represents a growing waste from the mushroom cultivation sector due to increased popularity worldwide. SMS is rich in lignocellulolytic enzymes, allowing it to be recycled. Further, these enzymes can be applied to the sustainable use of natural fibers like jute, which need lengthy and expensive chemical processing methods. The study explored the dual sustainable management of two waste materials, SMS and jute fabric. SMS was examined as a source of lignin-degrading enzyme laccase to delignify jute and allow it to be processed sustainably. Response surface methodology (RSM) was applied to simultaneously optimize the extraction of laccase from various mushroom species SMS. Temperature, time of extraction, and pH were the independent variables evaluated in RSM. The most active enzyme was laccase from Pleurotus ostreatus SMS (P-SMS). RMS-based optimization of extraction enabled 1.47-fold increase in laccase activity. P-SMS laccase was partially purified, and its activity's optimal conditions (pH and temperature) were assessed. Jute fabric was treated with the extracted laccase under mild conditions (40˚C and pH 4.5), enabling the removal of 61.1% of the lignin, providing a softer and lighter appearance with an improvement in the wetting time confirmed by ATR-FTIR and polarized light microscopy. This work demonstrated the applicability of SMS-derived laccase extraction, using mild conditions to delignify jute fabric waste in an environmentally friendly way, thus creating a sustainable chain of waste processing steps.
Collapse
Affiliation(s)
- Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158, Belgrade, Serbia.
| | - Saša Đurović
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158, Belgrade, Serbia
- Graduate School of Biotechnology and Food Industries, Peter the Great Saint-Petersburg Polytechnic University, Polytechnicheskaya Street, 29, 195251, Saint-Petersburg, Russia
| | - Mirjana Kostić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11020, Belgrade, Serbia
| | - Marija Dimitrijević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11020, Belgrade, Serbia
| | - Stevan Blagojević
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158, Belgrade, Serbia
| | - Danka Radić
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158, Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
- Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
2
|
Yang P, Ma X, Zhang Y, Sun Y, Yu H, Han J, Ma M, Wan L, Cheng F. Multiomic Analysis Provided Insights into the Responses of Carbon Sources by Wood-Rotting Fungi Daldinia carpinicola. J Fungi (Basel) 2025; 11:115. [PMID: 39997409 PMCID: PMC11856974 DOI: 10.3390/jof11020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Daldinia carpinicola is a newly identified species of wood-rotting fungi, with substantial aspects of its biology and ecological function yet to be clarified. A Nanopore third-generation sequencer was employed for de novo genome assembly to examine the genetic characteristics. The genome consisted of 35.93 Mb in 46 contigs with a scaffold N50 of 4.384 Mb. Glycoside hydrolases and activities enzymes accounted for a large proportion of the 522 identified carbohydrate-active enzymes (CAZymes), suggesting a strong wood degradation ability. Phylogenetic and comparative analysis revealed a close evolutionary relationship between D. carpinicola and D. bambusicola. D. carpinicola and Hypoxylon fragiforme exhibited significant collinear inter-species genome alignment. Based on transcriptome and metabolomic analyses, D. carpinicola showed a greater ability to utilize sucrose over sawdust as a carbon source, enhancing its growth by activating glycolysis/gluconeogenesis and the citrate cycle. However, compared with sucrose, sawdust as a carbon source activated D. carpinicola amino acid biosynthesis and the production of various secondary metabolites, including diterpenoid, indole alkaloid, folate, porphyrin, and biotin metabolism. The study establishes a theoretical basis for research and applications in biological processes, demonstrating a strategy to modulate the production of secondary metabolites by altering its carbon sources in D. carpinicola.
Collapse
Affiliation(s)
- Peng Yang
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Science, Jinan 250100, China; (P.Y.); (J.H.)
- Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xingchi Ma
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.M.); (Y.Z.); (Y.S.); (M.M.)
| | - Yu Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.M.); (Y.Z.); (Y.S.); (M.M.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yanan Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.M.); (Y.Z.); (Y.S.); (M.M.)
| | - Hao Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China;
| | - Jiandong Han
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Science, Jinan 250100, China; (P.Y.); (J.H.)
- Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Meng Ma
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.M.); (Y.Z.); (Y.S.); (M.M.)
| | - Luzhang Wan
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Science, Jinan 250100, China; (P.Y.); (J.H.)
- Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Fansheng Cheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.M.); (Y.Z.); (Y.S.); (M.M.)
- Shandong Province Key Laboratory of Applied Mycology, Qingdao 266109, China
| |
Collapse
|
3
|
Katnic SP, Gupta RK. From biofilms to biocatalysts: Innovations in plastic biodegradation for environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124192. [PMID: 39842313 DOI: 10.1016/j.jenvman.2025.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The increase in plastic waste has evolved into a severe environmental crisis, which requires innovative recycling technologies to repurpose used plastic with adequate environmental protection. This review highlights the urgent need for innovative approaches to the treatment and degradation of post-use plastics. It investigates the promising role of biofilms in the biodegradation of polymers, especially for polymers such as polyethylene terephthalate (PET), polyurethane (PU), and polyethylene (PE). By examining biofilms, researchers can determine key enzymes involved in polymer degradation and improve their efficiency through genetic engineering. In addition, the review explores in detail the structure and development of biofilms on polymeric surfaces, elucidating the role of specific microbial strains necessary for biofilm formation and maintenance. Techniques for identifying enzymes within biofilms and improving their degradation ability are also discussed. The review concludes with recent discoveries in enzyme isolation and the key role of biofilms in the degradation and recycling of major plastic pollutants such as PET, PU, and PE. These findings highlight the potential of biofilm-derived enzymes to promote sustainable polymer recycling.
Collapse
Affiliation(s)
- Slavica Porobic Katnic
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA; University of Belgrade, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, 11000, Serbia
| | - Ram K Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA.
| |
Collapse
|
4
|
Steinbach RM, Whitner S, Amend AS. Marine fungi degrade plastic and can be conditioned to do it faster. Mycologia 2025; 117:1-8. [PMID: 39636713 PMCID: PMC11710987 DOI: 10.1080/00275514.2024.2422598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Plastics are a prevalent and persistent pollutant in the environment. As plastic production increases, finding ways to degrade these recalcitrant polymers is paramount. Many terrestrial fungi, across the kingdom, degrade various types of plastic. Plastics are the fastest-growing habitat in the oceans, and we hypothesized that fungi isolated from the ocean would demonstrate high success rates in degrading polyurethane (PU). To test this, visual degradation assays were performed by inoculating 1% PU medium with 68 different fungal strains cultured from marine habitats. The area of clearance of the fungus was measured periodically, to determine a relative degradation rate. Of the 68 fungal strains, 42 demonstrated the ability to degrade PU. We conditioned the nine fastest PU degraders through serial inoculations into liquid media with increasing concentrations of PU, starting at 1% and going up to 12%. The growth rates of the original and conditioned fungi were then compared in new inoculation trials, and results show that three of the nine conditioned fungi demonstrate higher PU degradation rates than their unconditioned counterparts. Marine fungi, coupled with conditioning, show promise for developing novel mycoremediation technologies.
Collapse
Affiliation(s)
- Ronja M. Steinbach
- Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822
| | - Syrena Whitner
- Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822
| | - Anthony S. Amend
- Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822
| |
Collapse
|
5
|
Kumar A, Lakhawat SS, Singh K, Kumar V, Verma KS, Dwivedi UK, Kothari SL, Malik N, Sharma PK. Metagenomic analysis of soil from landfill site reveals a diverse microbial community involved in plastic degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135804. [PMID: 39276741 DOI: 10.1016/j.jhazmat.2024.135804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
In this study, we have investigated microbial communities structure and function using high throughput amplicon sequencing and whole metagenomic sequencing of DNA extracted from different depths of a plastic-laden landfill site. With diverse taxonomic groups inhabiting the plastic-rich soil, our study demonstrates the remarkable adaptability of microbes to use this new substrate as a carbon source. FTIR spectroscopic analysis of soil indicated degradation of plastic as perceived from the carbonyl index of 0.16, 0.72, and 0.44 at 0.6, 0.9 and 1.2 m depth, respectively. Similarly, water contact angles of 108.7 degree, 99.7 degree, 62.7 degree, and 77.8 degree of plastic pieces collected at 0.3, 0.6, 0.9, and 1.2 m depths respectively showed increased wettability and hydrophilicity of the plastic. Amplicon analysis of 16S and 18 S rRNA revealed a high abundance of several plastic-degrading bacterial groups, including Pseudomonas, Rhizobiales, Micrococcaceae, Chaetomium, Methylocaldum, Micromonosporaceae, Rhodothermaceae and fungi, including Trichoderma, Aspergillus, Candida at 0.9 m. The co-existence of specific microbial groups at different depths of landfill site indicates importance of bacterial and fungal interactions for plastic. Whole metagenome analysis of soil sample at 0.9 m depth revealed a high abundance of genes encoding enzymes that participate in the biodegradation of PVC, polyethylene, PET, and polyurethane. Curation of the pathways related to the degradation of these materials provided a blueprint for plastic biodegradation in this ecosystem. Altogether, our study has highlighted the importance of microbial cooperation for the biodegradation of pollutants. Our metagenome-based investigation supports the current perception that consortia of fungi-bacteria are preferable to axenic cultures for effective bioremediation of the environment.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University Chandigarh, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | | | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India; Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
6
|
Raczyńska A, Góra A, André I. An overview on polyurethane-degrading enzymes. Biotechnol Adv 2024; 77:108439. [PMID: 39241969 DOI: 10.1016/j.biotechadv.2024.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Polyurethanes (PUR) are durable synthetic polymers widely used in various industries, contributing significantly to global plastic consumption. PUR pose unique challenges in terms of degradability and recyclability, as they are characterised by intricate compositions and diverse formulations. Additives and proprietary structures used in commercial PUR formulations further complicate recycling efforts, making the effective management of PUR waste a daunting task. In this review, we delve into the complex challenge of enzymatic degradation of PUR, focusing on the structural and functional attributes of both enzymes and PUR. We also present documented native enzymes with reported efficacy in hydrolysing specific bonds within PUR, analysis of these enzyme structures, reaction mechanisms, substrate specificity, and binding site architecture. Furthermore, we propose essential features for the future redesign of enzymes to optimise PUR biodegradation efficiency. By outlining prospective research directions aimed at advancing the field of enzymatic biodegradation of PUR, we aim to contribute to the development of sustainable solutions for managing PUR waste and reducing environmental pollution.
Collapse
Affiliation(s)
- Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland; Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex, France; Faculty of Chemistry, Silesian University of Technology, ul. Strzody 9, 44-100 Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex, France.
| |
Collapse
|
7
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Zeghal E, Vaksmaa A, van Bleijswijk J, Niemann H. Environmental factors control microbial colonization of plastics in the North Sea. MARINE POLLUTION BULLETIN 2024; 208:116964. [PMID: 39342912 DOI: 10.1016/j.marpolbul.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Large quantities of plastic enter the oceans each year providing extensive attachment surfaces for marine microbes yet understanding their interactions and colonization of plastic debris remains limited. We investigated microbial colonization of various plastic types (polyethylene, polystyrene, polyethylene-terephthalate, and nylon) in ex-situ incubation experiments. Plastic films, both UV-pretreated and untreated, were exposed to seawater from a coastal and an offshore location in the North Sea. 16S rRNA amplicon sequencing was employed to assess microbial community structures after 5, 10, 30, and 45 days of incubation. Our findings show the significant influence of time, seawater origin and plastic type on microbial community succession. We also identified several genera associated with hydrocarbon or plastic degradation potential as well as genera selecting for specific plastics such as Ketobacter and Microbacterium. Our results highlight potential role of microorganisms in plastic biodegradation and support the idea that microbial colonizers on marine plastics debris seemingly select distinct substrate types.
Collapse
Affiliation(s)
- Emna Zeghal
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands.
| | - Annika Vaksmaa
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands
| | - Judith van Bleijswijk
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands
| | - Helge Niemann
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands; Faculty of Geosciences, Utrecht University, the Netherlands
| |
Collapse
|
9
|
dos Santos A, da Costa CHS, Silva PHA, Skaf MS, Lameira J. Exploring the Reaction Mechanism of Polyethylene Terephthalate Biodegradation through QM/MM Approach. J Phys Chem B 2024; 128:7486-7499. [PMID: 39072475 PMCID: PMC11317977 DOI: 10.1021/acs.jpcb.4c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
The enzyme PETase fromIdeonella sakaiensis (IsPETase) strain 201-F6 can catalyze the hydrolysis of polyethylene terephthalate (PET), mainly converting it into mono(2-hydroxyethyl) terephthalic acid (MHET). In this study, we used quantum mechanics/molecular mechanics (QM/MM) simulations to explore the molecular details of the catalytic reaction mechanism of IsPETase in the formation of MHET. The QM region was described with AM1d/PhoT and M06-2X/6-31+G(d,p) potential. QM/MM simulations unveil the complete enzymatic PET hydrolysis mechanism and identify two possible reaction pathways for acylation and deacylation steps. The barrier obtained at M06-2X/6-31+G(d,p)/MM potential for the deacylation step corresponds to 20.4 kcal/mol, aligning with the experimental value of 18 kcal/mol. Our findings indicate that deacylation is the rate-limiting step of the process. Furthermore, per-residue interaction energy contributions revealed unfavorable contributions to the transition state of amino acids located at positions 200-230, suggesting potential sites for targeted mutations. These results can contribute to the development of more active and selective enzymes for PET depolymerization.
Collapse
Affiliation(s)
- Alberto
M. dos Santos
- Institute
of Chemistry and Centre for Computer in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, Sao Paulo, Brazil
| | - Clauber H. S. da Costa
- Institute
of Chemistry and Centre for Computer in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, Sao Paulo, Brazil
| | - Pedro H. A. Silva
- Institute
of Biological Sciences, Federal University
of Para, 66075-110 Belem, Para, Brazil
| | - Munir S. Skaf
- Institute
of Chemistry and Centre for Computer in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, Sao Paulo, Brazil
| | - Jerônimo Lameira
- Institute
of Biological Sciences, Federal University
of Para, 66075-110 Belem, Para, Brazil
| |
Collapse
|
10
|
Magaña-Montiel N, Muriel-Millán LF, Pardo-López L. XTT assay for detection of bacterial metabolic activity in water-based polyester polyurethane. PLoS One 2024; 19:e0303210. [PMID: 38843174 PMCID: PMC11156301 DOI: 10.1371/journal.pone.0303210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/21/2024] [Indexed: 06/09/2024] Open
Abstract
Cellular metabolic activity can be detected by tetrazolium-based colorimetric assays, which rely on dehydrogenase enzymes from living cells to reduce tetrazolium compounds into colored formazan products. Although these methods have been used in different fields of microbiology, their application to the detection of bacteria with plastic-degrading activity has not been well documented. Here, we report a microplate-adapted method for the detection of bacteria metabolically active on the commercial polyester polyurethane (PU) Impranil®DLN using the tetrazolium salt 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT). Bacterial cells that are active on PU reduce XTT to a water-soluble orange dye, which can be quantitatively measured using a microplate reader. We used the Pseudomonas putida KT2440 strain as a study model. Its metabolic activity on Impranil detected by our novel method was further verified by Fourier-transform infrared spectroscopy (FTIR) analyses. Measurements of the absorbance of reduced XTT at 470 nm in microplate wells were not affected by the colloidal properties of Impranil or cell density. In summary, we provide here an easy and high-throughput method for screening bacteria active on PU that can be adapted to other plastic substrates.
Collapse
Affiliation(s)
- Nallely Magaña-Montiel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Cuernavaca, Morelos, México
| | | | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Cuernavaca, Morelos, México
| |
Collapse
|
11
|
Khatua S, Simal-Gandara J, Acharya K. Myco-remediation of plastic pollution: current knowledge and future prospects. Biodegradation 2024; 35:249-279. [PMID: 37665521 PMCID: PMC10950981 DOI: 10.1007/s10532-023-10053-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
To date, enumerable fungi have been reported to participate in the biodegradation of several notorious plastic materials following their isolation from soil of plastic-dumping sites, marine water, waste of mulch films, landfills, plant parts and gut of wax moth. The general mechanism begins with formation of hydrophobin and biofilm proceding to secretion of specific plastic degarding enzymes (peroxidase, hydrolase, protease and urease), penetration of three dimensional substrates and mineralization of plastic polymers into harmless products. As a result, several synthetic polymers including polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyurethane and/or bio-degradable plastics have been validated to deteriorate within months through the action of a wide variety of fungal strains predominantly Ascomycota (Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium spp.). Understanding the potential and mode of operation of these organisms is thus of prime importance inspiring us to furnish an up to date view on all the presently known fungal strains claimed to mitigate the plastic waste problem. Future research henceforth needs to be directed towards metagenomic approach to distinguish polymer degrading microbial diversity followed by bio-augmentation to build fascinating future of waste disposal.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004, Ourense, Spain.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
12
|
Vesamäki JS, Laine MB, Nissinen R, Taipale SJ. Plastic and terrestrial organic matter degradation by the humic lake microbiome continues throughout the seasons. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13302. [PMID: 38852938 PMCID: PMC11162827 DOI: 10.1111/1758-2229.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Boreal freshwaters go through four seasons, however, studies about the decomposition of terrestrial and plastic compounds often focus only on summer. We compared microbial decomposition of 13C-polyethylene, 13C-polystyrene, and 13C-plant litter (Typha latifolia) by determining the biochemical fate of the substrate carbon and identified the microbial decomposer taxa in humic lake waters in four seasons. For the first time, the annual decomposition rate including separated seasonal variation was calculated for microplastics and plant litter in the freshwater system. Polyethylene decomposition was not detected, whereas polystyrene and plant litter were degraded in all seasons. In winter, decomposition rates of polystyrene and plant litter were fivefold and fourfold slower than in summer, respectively. Carbon from each substrate was mainly respired in all seasons. Plant litter was utilized efficiently by various microbial groups, whereas polystyrene decomposition was limited to Alpha- and Gammaproteobacteria. The decomposition was not restricted only to the growth season, highlighting that the decomposition of both labile organic matter and extremely recalcitrant microplastics continues throughout the seasons.
Collapse
Affiliation(s)
- Jussi S. Vesamäki
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Miikka B. Laine
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Riitta Nissinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Sami J. Taipale
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
13
|
Sathiyabama M, Boomija RV, Sathiyamoorthy T, Mathivanan N, Balaji R. Mycodegradation of low-density polyethylene by Cladosporium sphaerospermum, isolated from platisphere. Sci Rep 2024; 14:8351. [PMID: 38594512 PMCID: PMC11004025 DOI: 10.1038/s41598-024-59032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Plastic accumulation is a severe threat to the environment due to its resistivity to thermal, mechanical and biological processes. In recent years, microbial degradation of plastic waste disposal is of interest because of its eco-friendly nature. In this study, a total of 33 fungi were isolated from the plastisphere and out of which 28 fungal species showed halo zone of clearance in agarized LDPE media. The fungus showing highest zone of clearance was further used to evaluate its degradation potential. Based on morphological and molecular technique, the fungus was identified as Cladosporium sphaerospermum. The biodegradation of LDPE by C. sphaerospermum was evaluated by various methods. The exposure of LDPE with C. sphaerospermum resulted in weight loss (15.23%) in seven days, higher reduction rate (0.0224/day) and lower half-life (30.93 days). FTIR analysis showed changes in functional group and increased carbonyl index in LDPE treated with C. sphaerospermum. SEMimages evidenced the formation of pits, surface aberrations and grooves on the LDPE film treated with the fungus whereas the untreated control LDPE film showed no change. AFM analysis confirmed the surface changes and roughness in fungus treated LDPE film. This might be due to the extracellular lignolytic enzymes secreted by C. sphaerospermum grown on LDPE. The degradation of polyethylene by Short chain alkanes such as dodecane, hexasiloxane and silane were identified in the extract of fungus incubated with LDPE film through GC-MS analysis which might be due to the degradation of LDPE film by C. sphaerospermum. This was the first report on the LDPE degradation by C. sphaerospermum in very short duration which enables green scavenging of plastic wastes.
Collapse
Affiliation(s)
- M Sathiyabama
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| | - R V Boomija
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - T Sathiyamoorthy
- CAS in Botany, University of Madras, Chennai, Tamil Nadu, 600025, India
| | - N Mathivanan
- CAS in Botany, University of Madras, Chennai, Tamil Nadu, 600025, India
| | - R Balaji
- CAS in Botany, University of Madras, Chennai, Tamil Nadu, 600025, India
| |
Collapse
|
14
|
Frey B, Aiesi M, Rast BM, Rüthi J, Julmi J, Stierli B, Qi W, Brunner I. Searching for new plastic-degrading enzymes from the plastisphere of alpine soils using a metagenomic mining approach. PLoS One 2024; 19:e0300503. [PMID: 38578779 PMCID: PMC10997104 DOI: 10.1371/journal.pone.0300503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024] Open
Abstract
Plastic materials, including microplastics, accumulate in all types of ecosystems, even in remote and cold environments such as the European Alps. This pollution poses a risk for the environment and humans and needs to be addressed. Using shotgun DNA metagenomics of soils collected in the eastern Swiss Alps at about 3,000 m a.s.l., we identified genes and their proteins that potentially can degrade plastics. We screened the metagenomes of the plastisphere and the bulk soil with a differential abundance analysis, conducted similarity-based screening with specific databases dedicated to putative plastic-degrading genes, and selected those genes with a high probability of signal peptides for extracellular export and a high confidence for functional domains. This procedure resulted in a final list of nine candidate genes. The lengths of the predicted proteins were between 425 and 845 amino acids, and the predicted genera producing these proteins belonged mainly to Caballeronia and Bradyrhizobium. We applied functional validation, using heterologous expression followed by enzymatic assays of the supernatant. Five of the nine proteins tested showed significantly increased activities when we used an esterase assay, and one of these five proteins from candidate genes, a hydrolase-type esterase, clearly had the highest activity, by more than double. We performed the fluorescence assays for plastic degradation of the plastic types BI-OPL and ecovio® only with proteins from the five candidate genes that were positively active in the esterase assay, but like the negative controls, these did not show any significantly increased activity. In contrast, the activity of the positive control, which contained a PLA-degrading gene insert known from the literature, was more than 20 times higher than that of the negative controls. These findings suggest that in silico screening followed by functional validation is suitable for finding new plastic-degrading enzymes. Although we only found one new esterase enzyme, our approach has the potential to be applied to any type of soil and to plastics in various ecosystems to search rapidly and efficiently for new plastic-degrading enzymes.
Collapse
Affiliation(s)
- Beat Frey
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Margherita Aiesi
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Facoltà de Science Agrarie e Alimentari, University Degli Studi di Milano, Milano, Italy
| | - Basil M. Rast
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Joel Rüthi
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jérôme Julmi
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics SIB, Geneva, Switzerland
| | - Ivano Brunner
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
15
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
16
|
Rohrbach S, Gkoutselis G, Mauel A, Telli N, Senker J, Ho A, Rambold G, Horn MA. Setting new standards: Multiphasic analysis of microplastic mineralization by fungi. CHEMOSPHERE 2024; 349:141025. [PMID: 38142885 DOI: 10.1016/j.chemosphere.2023.141025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/25/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Plastic materials provide numerous benefits. However, properties such as durability and resistance to degradation that make plastic attractive for variable applications likewise foster accumulation in the environment. Fragmentation of plastics leads to the formation of potentially hazardous microplastic, of which a considerable amount derives from polystyrene. Here, we investigated the biodegradation of polystyrene by the tropical sooty mold fungus Capnodium coffeae in different experimental setups. Growth of C. coffeae was stimulated significantly when cultured in presence of plastic polymers rather than in its absence. Stable isotope tracing using 13C-enriched polystyrene particles combined with cavity ring-down spectroscopy showed that the fungus mineralized polystyrene traces. However, phospholipid fatty acid stable isotope probing indicated only marginal assimilation of polystyrene-13C by C. coffeae in liquid cultures. NMR spectroscopic analysis of residual styrene contents prior to and after incubation revealed negligible changes in concentration. Thus, this study suggests a plastiphilic life style of C. coffeae despite minor usage of plastic as a carbon source and the general capability of sooty mold fungi to stimulate polystyrene mineralization, and proposes new standards to identify and unambiguously demonstrate plastic degrading capabilities of microbes.
Collapse
Affiliation(s)
- Stephan Rohrbach
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany
| | | | - Anika Mauel
- Inorganic Chemistry III and Northern Bavarian NMR Centre University of Bayreuth, 95440 Bayreuth, Germany
| | - Nihal Telli
- Department of Mycology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Jürgen Senker
- Inorganic Chemistry III and Northern Bavarian NMR Centre University of Bayreuth, 95440 Bayreuth, Germany
| | - Adrian Ho
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany
| | - Gerhard Rambold
- Department of Mycology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany.
| |
Collapse
|
17
|
Buhari SB, Nezhad NG, Normi YM, Shariff FM, Leow TC. Insight on recently discovered PET polyester-degrading enzymes, thermostability and activity analyses. 3 Biotech 2024; 14:31. [PMID: 38178895 PMCID: PMC10761646 DOI: 10.1007/s13205-023-03882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
The flexibility and the low production costs offered by plastics have made them crucial to society. Unfortunately, due to their resistance to biological degradation, plastics remain in the environment for an extended period of time, posing a growing risk to life on earth. Synthetic treatments of plastic waste damage the environment and may cause damage to human health. Bacterial and fungal isolates have been reported to degrade plastic polymers in a logistic safe approach with the help of their microbial cell enzymes. Recently, the bacterial strain Ideonella sakaiensis (201-F6) was discovered to break down and assimilate polyethylene terephthalate (PET) plastic via metabolic processes at 30 °C to 37 °C. PETase and MHETase enzymes help the bacterium to accomplish such tremendous action at lower temperatures than previously discovered enzymes. In addition to functioning at low temperatures, the noble bacterium's enzymes have amazing qualities over pH and PET plastic degradation, including a shorter period of degradation. It has been proven that using the enzyme PETase, this bacterium hydrolyzes the ester linkages of PET plastic, resulting in production of terephthalic acid (TPA), nontoxic compound and mono-2-hydroxyethyl (MHET), along with further depolymerization of MHET to release ethylene glycogen (EG) and terephthalic acid (TPA) by the second enzyme MHETase. Enzymatic plastic degradation has been proposed as an environmentally friendly and long-term solution to plastic waste in the environment. As a result, this review focuses on the enzymes involved in hydrolyzing PET plastic polymers, as well as some of the other microorganisms involved in plastic degradation.
Collapse
Affiliation(s)
- Sunusi Bataiya Buhari
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Yahaya M. Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| |
Collapse
|
18
|
Janakiev T, Milošević Đ, Petrović M, Miljković J, Stanković N, Zdravković DS, Dimkić I. Chironomus riparius Larval Gut Bacteriobiota and Its Potential in Microplastic Degradation. MICROBIAL ECOLOGY 2023; 86:1909-1922. [PMID: 36806012 DOI: 10.1007/s00248-023-02199-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Chironomus riparius are sediment-dwelling invertebrates in freshwater ecosystems and are used as indicators of environmental pollution. Their habitat is threatened by high levels of contaminants such as microplastics and organic matter. A promising strategy for the eco-friendly degradation of pollutants is the use of bacteria and their enzymatic activity. The aim of this study was to characterize for the first time bacteriobiota associated with the gut of C. riparius larvae from nature and laboratory samples, to compare it with sediment and food as potential sources of gut microbiota, and to assess its ability to degrade cellulose, proteins, and three different types of microplastics (polyethylene, polyvinyl chloride, and polyamide). The metabarcoding approach highlighted Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota as most abundant in both gut samples. Culturable microbiota analysis revealed Metabacillus idriensis, Peribacillus simplex, Neobacillus cucumis, Bacillus thuringiensis/toyonensis, and Fictibacillus phosphorivorans as five common species for nature and laboratory samples. Two P. simplex and one P. frigoritolerans isolates showed the ability for intensive growth on polyethylene, polyvinyl chloride, and polyamide. Both cellulolytic and proteolytic activity was observed for Paenibacillus xylanexedens and P. amylolyticus isolates. The characterized strains are promising candidates for the development of environmentally friendly strategies to degrade organic pollution and microplastics in freshwater ecosystems.
Collapse
Affiliation(s)
- Tamara Janakiev
- Biochemistry and Molecular Biology, University of Belgrade Faculty of Biology, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Đurađ Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Serbia
| | - Marija Petrović
- Biochemistry and Molecular Biology, University of Belgrade Faculty of Biology, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Jelena Miljković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Serbia
| | - Nikola Stanković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Serbia
| | - Dimitrija Savić Zdravković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Serbia
| | - Ivica Dimkić
- Biochemistry and Molecular Biology, University of Belgrade Faculty of Biology, Studentski Trg 16, 11158, Belgrade, Serbia.
| |
Collapse
|
19
|
Champramary S, Indic B, Szűcs A, Tyagi C, Languar O, Hasan KMF, Szekeres A, Vágvölgyi C, Kredics L, Sipos G. The mycoremediation potential of the armillarioids: a comparative genomics analysis. Front Bioeng Biotechnol 2023; 11:1189640. [PMID: 37662429 PMCID: PMC10470841 DOI: 10.3389/fbioe.2023.1189640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Genes involved in mycoremediation were identified by comparative genomics analysis in 10 armillarioid species and selected groups of white-rot Basidiomycota (14) and soft-rot Ascomycota (12) species to confine the distinctive bioremediation capabilities of the armillarioids. The genomes were explored using phylogenetic principal component analysis (pPCA), searching for genes already documented in a biocatalysis/biodegradation database. The results underlined a distinct, increased potential of aromatics-degrading genes/enzymes in armillarioids, with particular emphasis on a high copy number and diverse spectrum of benzoate 4-monooxygenase [EC:1.14.14.92] homologs. In addition, other enzymes involved in the degradation of various monocyclic aromatics were more abundant in the armillarioids than in the other white-rot basidiomycetes, and enzymes involved in the degradation of polycyclic aromatic hydrocarbons (PAHs) were more prevailing in armillarioids and other white-rot species than in soft-rot Ascomycetes. Transcriptome profiling of A. ostoyae and A. borealis isolates confirmed that several genes involved in the degradation of benzoates and other monocyclic aromatics were distinctively expressed in the wood-invading fungal mycelia. Data were consistent with armillarioid species offering a more powerful potential in degrading aromatics. Our results provide a reliable, practical solution for screening the likely fungal candidates for their full biodegradation potential, applicability, and possible specialization based on their genomics data.
Collapse
Affiliation(s)
- Simang Champramary
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Boris Indic
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Attila Szűcs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Omar Languar
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - K. M. Faridul Hasan
- Fibre and Nanotechnology Program, Faculty of Wood Engineering and Creative Industries, University of Sopron, Sopron, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| |
Collapse
|
20
|
Barili S, Bernetti A, Sannino C, Montegiove N, Calzoni E, Cesaretti A, Pinchuk I, Pezzolla D, Turchetti B, Buzzini P, Emiliani C, Gigliotti G. Impact of PVC microplastics on soil chemical and microbiological parameters. ENVIRONMENTAL RESEARCH 2023; 229:115891. [PMID: 37059323 DOI: 10.1016/j.envres.2023.115891] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) are emerging pollutants whose occurrence is a global problem in natural ecosystems including soil. Among MPs, polyvinyl chloride (PVC) is a well-known polymer with remarkable resistance to degradation, and because its recalcitrant nature serious environmental concerns are created during manufacturing and waste disposal. The effect of PVC (0.021% w/w) on chemical and microbial parameters of an agricultural soil was tested by a microcosm experiment at different incubation times (from 3 to 360 days). Among chemical parameters, soil CO2 emission, fluorescein diacetate (FDA) activity, total organic C (TOC), total N, water extractable organic C (WEOC), water extractable N (WEN) and SUVA254 were considered, while the structure of soil microbial communities was studied at different taxonomic levels (phylum and genus) by sequencing bacterial 16S and fungal ITS2 rDNA (Illumina MiSeq). Although some fluctuations were found, chemical and microbiological parameters exhibited some significant trends. Significant (p < 0.05) variations of soil CO2 emission, FDA hydrolysis, TOC, WEOC and WEN were found in PVC-treated soils over different incubation times. Considering the structure of soil microbial communities, the presence of PVC significantly (p < 0.05) affected the abundances of specific bacterial and fungal taxa: Candidatus_Saccharibacteria, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroides among bacteria, and Basidiomycota, Mortierellomycota and Ascomycota among fungi. After one year of experiment, a reduction of the number and the dimensions of PVC was detected supposing a possible role of microorganisms on PVC degradation. The abundance of both bacterial and fungal taxa at phylum and genus level was also affected by PVC, suggesting that the impact of this polymer could be taxa-dependent.
Collapse
Affiliation(s)
- Sofia Barili
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Alessandro Bernetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy.
| | - Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Irina Pinchuk
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Daniela Pezzolla
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Giovanni Gigliotti
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| |
Collapse
|
21
|
Vaksmaa A, Polerecky L, Dombrowski N, Kienhuis MVM, Posthuma I, Gerritse J, Boekhout T, Niemann H. Polyethylene degradation and assimilation by the marine yeast Rhodotorula mucilaginosa. ISME COMMUNICATIONS 2023; 3:68. [PMID: 37423910 PMCID: PMC10330194 DOI: 10.1038/s43705-023-00267-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023]
Abstract
Ocean plastic pollution is a severe environmental problem but most of the plastic that has been released to the ocean since the 1950s is unaccounted for. Although fungal degradation of marine plastics has been suggested as a potential sink mechanism, unambiguous proof of plastic degradation by marine fungi, or other microbes, is scarce. Here we applied stable isotope tracing assays with 13C-labeled polyethylene to measure biodegradation rates and to trace the incorporation of plastic-derived carbon into individual cells of the yeast Rhodotorula mucilaginosa, which we isolated from the marine environment. 13C accumulation in the CO2 pool during 5-day incubation experiments with R. mucilaginosa and UV-irradiated 13C-labeled polyethylene as a sole energy and carbon source translated to degradation rates of 3.8% yr-1 of the initially added substrate. Furthermore, nanoSIMS measurements revealed substantial incorporation of polyethylene-derived carbon into fungal biomass. Our results demonstrate the potential of R. mucilaginosa to mineralize and assimilate carbon from plastics and suggest that fungal plastic degradation may be an important sink for polyethylene litter in the marine environment.
Collapse
Affiliation(s)
- Annika Vaksmaa
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands.
| | - Lubos Polerecky
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Michiel V M Kienhuis
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Ilsa Posthuma
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Jan Gerritse
- Deltares, Unit Subsurface and Groundwater Systems, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Chigwada AD, Ogola HJO, Tekere M. Multivariate analysis of enriched landfill soil consortia provide insight on the community structural perturbation and functioning during low-density polyethylene degradation. Microbiol Res 2023; 274:127425. [PMID: 37348445 DOI: 10.1016/j.micres.2023.127425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Plastic-enriched sites like landfills have immense potential for discovery of microbial consortia that can efficiently degrade plastics. In this study, we used a combination of culture enrichment, high-throughput PacBio sequencing of 16 S rRNA and the ITS gene, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) to examine the compositional and diversity perturbations of bacterial and fungal consortia from landfill soils and their impact on low-density polyethylene (LDPE) film biodegradation over a 90-day period. Results showed that enrichment cultures effectively utilized LDPE as a carbon source for cellular growth, resulting in significant weight reduction (22.4% and 55.6%) in the films. SEM analysis revealed marked changes in the micrometric surface characteristics (cracks, fissures, and erosion) and biofilm formation in LDPE films. FTIR analyses suggested structural and functional group modification related to C-H (2831-2943 cm⁻¹), and CH₂ (1400 cm⁻¹) stretching, CO and CC (680-950 cm⁻¹) scission, and CO incorporation (3320-3500 cm⁻¹) into the carbon backbone, indicative of LDPE polymer biodegradation. Enrichment cultures had lower diversity and richness of microbial taxa compared to soil samples, with LDPE as a carbon source having a direct influence on the structure and functioning of the microbial consortia. A total of 26 bacterial and 12 fungal OTU exhibiting high relative abundance and significant associations (IndVal > 0.7, q < 0.05) were identified in the enrichment culture. Bacterial taxa such as unclassified Parvibaculum FJ375498, Achromobacter xylosoxidans, unclassified Chitinophagaceae PAC002331, unclassified Paludisphaera and unclassified Comamonas JX898122, and six fungal species (Galactomyces candidus, Trichosporon chiropterorum, Aspergillus fumigatus, Penicillium chalabudae, Talaromyces thailandensis, and Penicillium citreosulfuratum) were identified as the putative LDPE degraders in the enrichment microbial consortium cultures. PICRUSt2 metagenomic functional profiling of taxonomic bacterial taxa abundances in both landfill soil and enrichment microbial consortia also revealed differential enrichment of energy production, stress tolerance, surface attachment and motility pathways, and xenobiotic degrading enzymes important for biofilm formation and hydrolytic/oxidative LDPE biodegradation. The findings shed light on the composition and structural changes in landfill soil microbial consortia during enrichment with LDPE as a carbon source and suggest novel LDPE-degrading bacterial and fungal taxa that could be explored for management of polyethylene pollution.
Collapse
Affiliation(s)
- Aubrey Dickson Chigwada
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa
| | - Henry Joseph Oduor Ogola
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa.
| |
Collapse
|
23
|
Marín A, Feijoo P, de Llanos R, Carbonetto B, González-Torres P, Tena-Medialdea J, García-March JR, Gámez-Pérez J, Cabedo L. Microbiological Characterization of the Biofilms Colonizing Bioplastics in Natural Marine Conditions: A Comparison between PHBV and PLA. Microorganisms 2023; 11:1461. [PMID: 37374962 DOI: 10.3390/microorganisms11061461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Biodegradable polymers offer a potential solution to marine pollution caused by plastic waste. The marine biofilms that formed on the surfaces of poly(lactide acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were studied. Bioplastics were exposed for 6 months to marine conditions in the Mediterranean Sea, and the biofilms that formed on their surfaces were assessed. The presence of specific PLA and PHBV degraders was also studied. PHBV showed extensive areas with microbial accumulations and this led to higher microbial surface densities than PLA (4.75 vs. 5.16 log CFU/cm2). Both polymers' surfaces showed a wide variety of microbial structures, including bacteria, fungi, unicellular algae and choanoflagellates. A high bacterial diversity was observed, with differences between the two polymers, particularly at the phylum level, with over 70% of bacteria affiliated to three phyla. Differences in metagenome functions were also detected, revealing a higher presence of proteins involved in PHBV biodegradation in PHBV biofilms. Four bacterial isolates belonging to the Proteobacteria class were identified as PHBV degraders, demonstrating the presence of species involved in the biodegradation of this polymer in seawater. No PLA degraders were detected, confirming its low biodegradability in marine environments. This was a pilot study to establish a baseline for further studies aimed at comprehending the marine biodegradation of biopolymers.
Collapse
Affiliation(s)
- Anna Marín
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Patricia Feijoo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Rosa de Llanos
- MicroBIO, Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Belén Carbonetto
- Microomics Systems S.L., IIB Sant Pau, C/Sant Quintí, 77-79, 08041 Barcelona, Spain
| | | | - José Tena-Medialdea
- IMEDMAR-UCV Institute of Environment and Marine Science Research, Universidad Católica de Valencia, Av. del Port, 15, 03710 Calpe, Spain
| | - José R García-March
- IMEDMAR-UCV Institute of Environment and Marine Science Research, Universidad Católica de Valencia, Av. del Port, 15, 03710 Calpe, Spain
| | - José Gámez-Pérez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| |
Collapse
|
24
|
Rüthi J, Cerri M, Brunner I, Stierli B, Sander M, Frey B. Discovery of plastic-degrading microbial strains isolated from the alpine and Arctic terrestrial plastisphere. Front Microbiol 2023; 14:1178474. [PMID: 37234546 PMCID: PMC10206078 DOI: 10.3389/fmicb.2023.1178474] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/28/2023] Open
Abstract
Increasing plastic production and the release of some plastic in to the environment highlight the need for circular plastic economy. Microorganisms have a great potential to enable a more sustainable plastic economy by biodegradation and enzymatic recycling of polymers. Temperature is a crucial parameter affecting biodegradation rates, but so far microbial plastic degradation has mostly been studied at temperatures above 20°C. Here, we isolated 34 cold-adapted microbial strains from the plastisphere using plastics buried in alpine and Arctic soils during laboratory incubations as well as plastics collected directly from Arctic terrestrial environments. We tested their ability to degrade, at 15°C, conventional polyethylene (PE) and the biodegradable plastics polyester-polyurethane (PUR; Impranil®); ecovio® and BI-OPL, two commercial plastic films made of polybutylene adipate-co-terephthalate (PBAT) and polylactic acid (PLA); pure PBAT; and pure PLA. Agar clearing tests indicated that 19 strains had the ability to degrade the dispersed PUR. Weight-loss analysis showed degradation of the polyester plastic films ecovio® and BI-OPL by 12 and 5 strains, respectively, whereas no strain was able to break down PE. NMR analysis revealed significant mass reduction of the PBAT and PLA components in the biodegradable plastic films by 8 and 7 strains, respectively. Co-hydrolysis experiments with a polymer-embedded fluorogenic probe revealed the potential of many strains to depolymerize PBAT. Neodevriesia and Lachnellula strains were able to degrade all the tested biodegradable plastic materials, making these strains especially promising for future applications. Further, the composition of the culturing medium strongly affected the microbial plastic degradation, with different strains having different optimal conditions. In our study we discovered many novel microbial taxa with the ability to break down biodegradable plastic films, dispersed PUR, and PBAT, providing a strong foundation to underline the role of biodegradable polymers in a circular plastic economy.
Collapse
Affiliation(s)
- Joel Rüthi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Mattia Cerri
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Ivano Brunner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
25
|
Masigol H, Grossart HP, Taheri SR, Mostowfizadeh-Ghalamfarsa R, Pourmoghaddam MJ, Bouket AC, Khodaparast SA. Utilization of Low Molecular Weight Carbon Sources by Fungi and Saprolegniales: Implications for Their Ecology and Taxonomy. Microorganisms 2023; 11:microorganisms11030782. [PMID: 36985355 PMCID: PMC10052706 DOI: 10.3390/microorganisms11030782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Contributions of fungal and oomycete communities to freshwater carbon cycling have received increasing attention in the past years. It has been shown that fungi and oomycetes constitute key players in the organic matter cycling of freshwater ecosystems. Therefore, studying their interactions with dissolved organic matter is crucial for understanding the aquatic carbon cycle. Therefore, we studied the consumption rates of various carbon sources using 17 fungal and 8 oomycete strains recovered from various freshwater ecosystems using EcoPlate™ and FF MicroPlate™ approaches. Furthermore, phylogenetic relationships between strains were determined via single and multigene phylogenetic analyses of the internal transcribed spacer regions. Our results indicated that the studied fungal and oomycete strains could be distinguished based on their carbon utilization patterns, as indicated by their phylogenetic distance. Thereby, some carbon sources had a higher discriminative strength to categorize the studied strains and thus were applied in a polyphasic approach. We concluded that studying the catabolic potential enables a better understanding of taxonomic relationships and ecological roles of fungal vs. oomycete strains.
Collapse
Affiliation(s)
- Hossein Masigol
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (H.M.); (S.R.T.)
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran; (M.J.P.); (S.A.K.)
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (H.M.); (S.R.T.)
- Institute for Biochemistry and Biology, Potsdam University, 14469 Potsdam, Germany
- Correspondence: ; Tel.: +49-(0)-3308269991
| | - Seyedeh Roksana Taheri
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (H.M.); (S.R.T.)
| | | | - Mohammad Javad Pourmoghaddam
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran; (M.J.P.); (S.A.K.)
| | - Ali Chenari Bouket
- East Azarbaijan Agricultural and Natural Resources Research and Education Centre, Plant Protection Research Department, Agricultural Research, Education and Extension Organization (AREEO), Tabriz 5355179854, Iran;
| | - Seyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran; (M.J.P.); (S.A.K.)
| |
Collapse
|
26
|
Di Napoli M, Silvestri B, Castagliuolo G, Carpentieri A, Luciani G, Di Maro A, Sorbo S, Pezzella A, Zanfardino A, Varcamonti M. High density polyethylene (HDPE) biodegradation by the fungus Cladosporium halotolerans. FEMS Microbiol Ecol 2023; 99:6881716. [PMID: 36478021 DOI: 10.1093/femsec/fiac148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Polyethylene (PE) is high molecular weight synthetic polymer, very hydrofobic and hardly biodegradable. To increase polyethylene bio-degradability it is very important to find microorganisms that improve the PE hydrophilic level and/or reduce the length of its polymeric chain by oxidation. In this study, we isolated Cladosporium halotolerans, a fungal species, from the gastric system of Galleria mellonella larvae. Here, we show that C. halotolerans grows in the presence of PE polymer, it is able to interact with plastic material through its hyphae and secretes enzymes involved in PE degradation.
Collapse
Affiliation(s)
- Michela Di Napoli
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Brigida Silvestri
- Department of Chemical, University of Naples Federico II, Materials and Production Engineering, Via Cintia, 80126 Naples, Italy
| | - Giusy Castagliuolo
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Giuseppina Luciani
- Department of Chemical, University of Naples Federico II, Materials and Production Engineering, Via Cintia, 80126 Naples, Italy
| | - Antimo Di Maro
- Department of Environmental, University of Campania 'Luigi Vanvitelli', Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Via Vivaldi, 81100 Caserta, Italy
| | - Sergio Sorbo
- University of Naples Federico II, CeSMA, Via Cintia, 80126 Naples, Italy
| | - Alessandro Pezzella
- Department of Physics "Ettore Pancini", University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
27
|
Lou H, Fu R, Long T, Fan B, Guo C, Li L, Zhang J, Zhang G. Biodegradation of polyethylene by Meyerozyma guilliermondii and Serratia marcescens isolated from the gut of waxworms (larvae of Plodia interpunctella). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158604. [PMID: 36089048 DOI: 10.1016/j.scitotenv.2022.158604] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/15/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The widespread use of polyethylene (PE) causes a large amount of indigestible plastic waste. Waxworms (the larvae of Plodia interpunctella) can eat PE, but the degradation principle of PE under the action of intestinal microorganisms is still unclear, especially the insufficient research on key degradable PE strains. In this study, we fed waxworms with PE. Two strains with high PE degradation efficiency were isolated and purified, and the effects of single and microbial consortia on PE degradation were evaluated by water contact angle (WCA), FTIR, GC-MS, SEM and RT-qPCR. The results showed that Meyerozyma guilliermondii ZJC1 (MgZJC1) and Serratia marcescens ZJC2 (SmZJC2) could degrade PE. However, the degradation efficiency of the microbial consortium was higher, and the weight loss rate of PE was 15.87 %. In addition, the PE degradation products of MgZJC1 were C9H10O, C20H15NO, C28H44O3 and C16H32O2, and the PE degradation products of SmZJC2 were C16H18O, C14H18N2O7 and C31H48O6. The PE degradation products of the microbial consortium were C11H24, C19H10O, C15H32, C14H30, C16H34, C25H52 and C27H56. RT-qPCR results showed that SmZJC2 promoted PE degradation by upregulating the expression of multiple genes, such as multicopper oxidase genes (PiSm-CueO). MgZJC1 responded to carbon deficiency by upregulating the expression of multiple genes, such as key enzyme genes in the tricarboxylic acid (TCA) cycle. This study can be used to develop an efficient microbial consortium for PE degradation and provide a basis for the reuse of PE waste. It can also provide a research basis for the joint degradation of PE by microbial consortia composed of bacteria and fungi.
Collapse
Affiliation(s)
- Hu Lou
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Rao Fu
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Tianyi Long
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Baozhen Fan
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chao Guo
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin 150040, China
| | - Jie Zhang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
28
|
Kim SH, Lee JW, Kim JS, Lee W, Park MS, Lim YW. Plastic-inhabiting fungi in marine environments and PCL degradation activity. Antonie Van Leeuwenhoek 2022; 115:1379-1392. [PMID: 36239838 PMCID: PMC9675664 DOI: 10.1007/s10482-022-01782-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022]
Abstract
Plastic waste has a negative impact on marine ecosystems and the quantity of this source of anthropogenic pollution continues to increase. Several studies have investigated plastic biodegradation using various microorganisms. In this study, we isolated fungi from polyethylene terephthalate (PET) waste on Korean seacoasts and evaluated their ability to degrade plastic by comparing the diameters of the clear zones they formed on polycaprolactone (PCL) agar. We isolated 262 strains from 47 plastic waste sources and identified 108 fungal species via molecular methods. The PCL agar assay revealed that 87 species presented with varying degrees of PCL degradation capacity. Among them, certain fungal species were strong PCL degraders. The present study demonstrated the possibility that some fungi inhabiting plastic could potentially degrade it in the marine environment. We believe that the discoveries made herein lay theoretical and practical foundations for the development of novel bioremediation systems for marine plastispheres and help mitigate the environmental pollution issues related to plastic wastes.
Collapse
Affiliation(s)
- Sung Hyun Kim
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Won Lee
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Seon Kim
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wonjun Lee
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myung Soo Park
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Crops and Forestry, Korea National College of Agriculture and Fisheries, Jeonju, 54874, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Vesamäki JS, Nissinen R, Kainz MJ, Pilecky M, Tiirola M, Taipale SJ. Decomposition rate and biochemical fate of carbon from natural polymers and microplastics in boreal lakes. Front Microbiol 2022; 13:1041242. [PMID: 36425032 PMCID: PMC9679218 DOI: 10.3389/fmicb.2022.1041242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2023] Open
Abstract
Microbial mineralization of organic compounds is essential for carbon recycling in food webs. Microbes can decompose terrestrial recalcitrant and semi-recalcitrant polymers such as lignin and cellulose, which are precursors for humus formation. In addition to naturally occurring recalcitrant substrates, microplastics have been found in various aquatic environments. However, microbial utilization of lignin, hemicellulose, and microplastics as carbon sources in freshwaters and their biochemical fate and mineralization rate in freshwaters is poorly understood. To fill this knowledge gap, we investigated the biochemical fate and mineralization rates of several natural and synthetic polymer-derived carbon in clear and humic lake waters. We used stable isotope analysis to unravel the decomposition processes of different 13C-labeled substrates [polyethylene, polypropylene, polystyrene, lignin/hemicellulose, and leaves (Fagus sylvatica)]. We also used compound-specific isotope analysis and molecular biology to identify microbes associated with used substrates. Leaves and hemicellulose were rapidly decomposed compared to microplastics which were degraded slowly or below detection level. Furthermore, aromatic polystyrene was decomposed faster than aliphatic polyethylene and polypropylene. The major biochemical fate of decomposed substrate carbon was in microbial biomass. Bacteria were the main decomposers of all studied substrates, whereas fungal contribution was poor. Bacteria from the family Burkholderiaceae were identified as potential leaf and polystyrene decomposers, whereas polypropylene and polyethylene were not decomposed.
Collapse
Affiliation(s)
- Jussi S. Vesamäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Riitta Nissinen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Martin J. Kainz
- WasserCluster Lunz—Biological Station, Donau-Universität Krems, Lunz am See, Austria
| | - Matthias Pilecky
- WasserCluster Lunz—Biological Station, Donau-Universität Krems, Lunz am See, Austria
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sami J. Taipale
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
30
|
Myco-degradation of microplastics: an account of identified pathways and analytical methods for their determination. Biodegradation 2022; 33:529-556. [PMID: 36227389 DOI: 10.1007/s10532-022-10001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Abstract
Microplastics (MPs) have sparked widespread concern due to their non-degradable and persistent nature in ecosystems. Long-term exposure to microplastics can cause chronic toxicity, including impaired reproduction and malnutrition, threatening biota and humans. Microplastics can also cause ingestion, choking, and entanglement in aquatic populations. Thus, it is crucial to establish remarkably effective approaches to diminish MPs from the environment. In this regard, using fungi for microplastic degradation is beneficial owing to its diverse nature and effective enzymatic system. Extracellular and intracellular enzymes in fungi degrade the plastic polymers into monomers and produce carbon dioxide and water under aerobic conditions whereas methane under anaerobic conditions. Further, fungi also secrete hydrophobins (surface proteins) which serve as a crucial aid in the bioremediation process by promoting substrate mobility and bioavailability. Therefore, the present review provides insight into the mechanism and general pathway of fungal-mediated microplastic degradation. Additionally, analytical techniques for the monitoring of MPs degradation along with the roadblocks and future perspectives have also been discussed. However, more research is required to fully perceive the underlying process of microplastic biodegradation in the environment using fungus, to establish an effective and sustainable practice for its management.
Collapse
|
31
|
Liu J, Liu J, Xu B, Xu A, Cao S, Wei R, Zhou J, Jiang M, Dong W. Biodegradation of polyether-polyurethane foam in yellow mealworms (Tenebrio molitor) and effects on the gut microbiome. CHEMOSPHERE 2022; 304:135263. [PMID: 35697110 DOI: 10.1016/j.chemosphere.2022.135263] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/20/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Polyurethane (PU) is one of the mass-produced recalcitrant plastics with a high environmental resistance but extremely low biodegradability. Therefore, improperly disposed PU waste adds significantly to plastic pollution, which must be addressed immediately. In recent years, there has been an increasing number of reports on plastic biodegradation in insect larvae, especially those that can feed on polyethylene and polystyrene. This study revealed that yellow mealworm (Tenebrio molitor) larvae can chew and ingest polyether-PU foams efficiently, resulting in a significant mass loss of nearly 67% after 35 days at a similar survival rate compared to when fed on bran. However, polyether-PU fragments were found in the frass of T. molitor, indicating that polyether-PU biodegradation and bioconversion in intestinal tracts were not complete. The scission of ether and urethane bonds in the polyether-PU can be evidenced by comparing polymer fragments recovered from frass with the pristine ones using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Gel permeation chromatography suggested the release of low-molecular-weight oligomers as a result of the biodegradation, which also resulted in poor thermal stability of the polyether-PU foam as determined by thermogravimetric analysis. High-throughput sequencing of the gut microbiome revealed significant changes in the microbial community populations due to the polyether-PU diet, for example, an increase in the families Enterobacteriaceae and Streptococcaceae, suggesting that these microorganisms may contribute to the polyether-PU biodegradation.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Jingyuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Bin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Anming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Shixiang Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Ren Wei
- Junior Research Group Plastic Biodegradation, Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| |
Collapse
|
32
|
Cho JH, Jun NS, Park JM, Bang KI, Hong JW. Fungal Load of Groundwater Systems in Geographically Segregated Islands: A Step Forward in Fungal Control. MYCOBIOLOGY 2022; 50:345-356. [PMID: 36404906 PMCID: PMC9645270 DOI: 10.1080/12298093.2022.2123549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The fungal distribution, diversity, and load were analyzed in the geographically segregated island groundwater systems in Korea. A total of 79 fungal isolates were secured from seven islands and identified based on the internal transcribed spacer (ITS) sequences. They belonged to three phyla (Ascomycota, Basidiomycota, and Chlorophyta), five classes, sixteen orders, twenty-two families, and thirty-one genera. The dominant phylum was Ascomycota (91.1%), with most fungi belonging to the Cladosporium (21.5%), Aspergillus (15.2%), and Stachybotrys (8.9%) genera. Cladosporium showed higher dominance and diversity, being widely distributed throughout the geographically segregated groundwater systems. Based on the diversity indices, the genera richness (4.821) and diversity (2.550) were the highest in the groundwater system of the largest scale. As turbidity (0.064-0.462) increased, the overall fungal count increased and the residual chlorine (0.089-0.308) had low relevance compared with the total count and fungal diversity. Cladosporium showed normal mycelial growth in de-chlorinated sterilized samples. Overall, if turbidity increases under higher fungal diversity, bio-deterioration in groundwater-supplying facilities and public health problems could be intensified, regardless of chlorine treatment. In addition to fungal indicators and analyzing methods, physical hydrostatic treatment is necessary for monitoring and controlling fungal contamination.
Collapse
Affiliation(s)
- Joong Hee Cho
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Nam Soo Jun
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Jong Myong Park
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Ki In Bang
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, Republic of Korea
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
33
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
34
|
The Culturable Mycobiota of Sediments and Associated Microplastics: From a Harbor to a Marine Protected Area, a Comparative Study. J Fungi (Basel) 2022; 8:jof8090927. [PMID: 36135652 PMCID: PMC9501098 DOI: 10.3390/jof8090927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fungi are an essential component of marine ecosystems, although little is known about their global distribution and underwater diversity, especially in sediments. Microplastics (MPs) are widespread contaminants worldwide and threaten the organisms present in the oceans. In this study, we investigated the fungal abundance and diversity in sediments, as well as the MPs, of three sites with different anthropogenic impacts in the Mediterranean Sea: the harbor of Livorno, the marine protected area “Secche della Meloria”; and an intermediate point, respectively. A total of 1526 isolates were cultured and identified using a polyphasic approach. For many of the fungal species this is the first record in a marine environment. A comparison with the mycobiota associated with the sediments and MPs underlined a “substrate specificity”, highlighting the complexity of MP-associated fungal assemblages, potentially leading to altered microbial activities and hence changes in ecosystem functions. A further driving force that acts on the fungal communities associated with sediments and MPs is sampling sites with different anthropogenic impacts.
Collapse
|
35
|
A Review of the Fungi That Degrade Plastic. J Fungi (Basel) 2022; 8:jof8080772. [PMID: 35893140 PMCID: PMC9330918 DOI: 10.3390/jof8080772] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
Plastic has become established over the world as an essential basic need for our daily life. Current global plastic production exceeds 300 million tons annually. Plastics have many characteristics such as low production costs, inertness, relatively low weight, and durability. The primary disadvantage of plastics is their extremely slow natural degradation. The latter results in an accumulation of plastic waste in nature. The amount of plastic waste as of 2015 was 6300 million tons worldwide, and 79% of this was placed in landfills or left in the natural environment. Moreover, recent estimates report that 12,000 million tons of plastic waste will have been accumulated on the earth by 2050. Therefore, it is necessary to develop an effective plastic biodegradation process to accelerate the natural degradation rate of plastics. More than 400 microbes have been identified as capable of plastic degradation. This is the first paper of the series on plastic-degrading fungi. This paper provides a summary of the current global production of plastic and plastic waste accumulation in nature. A list is given of all the plastic-degrading fungi recorded thus far, based on the available literature, and comments are made relating to the major fungal groups. In addition, the phylogenetic relationships of plastic-degrading fungi were analyzed using a combined ITS, LSU, SSU, TEF, RPB1, and RPB2 dataset consisting of 395 strains. Our results confirm that plastic-degrading fungi are found in eleven classes in the fungal phyla Ascomycota (Dothideomycetes, Eurotiomycetes, Leotiomycetes, Saccharomycetes, and Sordariomycetes), Basidiomycota (Agaricomycetes, Microbotryomycetes, Tremellomycetes, Tritirachiomycetes, and Ustilaginomy-cetes), and Mucoromycota (Mucoromycetes). The taxonomic placement of plastic-degrading fungal taxa is briefly discussed. The Eurotiomycetes include the largest number of plastic degraders in the kingdom Fungi. The results presented herein are expected to influence the direction of future research on similar topics in order to find effective plastic-degrading fungi that can eliminate plastic wastes. The next publication of the series on plastic-degrading fungi will be focused on major metabolites, degradation pathways, and enzyme production in plastic degradation by fungi.
Collapse
|
36
|
Karthik R, Robin RS, Purvaja R, Karthikeyan V, Subbareddy B, Balachandar K, Hariharan G, Ganguly D, Samuel VD, Jinoj TPS, Ramesh R. Microplastic pollution in fragile coastal ecosystems with special reference to the X-Press Pearl maritime disaster, southeast coast of India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119297. [PMID: 35421552 DOI: 10.1016/j.envpol.2022.119297] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are a global environmental concern and pose a serious threat to marine ecosystems. This study aimed to determine the abundance and distribution of MPs in beach sediments (12 beaches), marine biota (6 beaches) and the influence of microbes on MPs degradation in eco-sensitive Palk Bay and Gulf of Mannar coast. The mean MP abundance 65.4 ± 39.8 particles/m2 in beach sediments; 0.19 ± 1.3 particles/individual fish and 0.22 ± 0.11 particles g-1 wet weight in barnacles. Polyethylene fragments (33.4%) and fibres (48%) were the most abundant MPs identified in sediments and finfish, respectively. Histopathological examination of fish has revealed health consequences such as respiratory system damage, epithelial degradation and enterocyte vacuolization. In addition, eight bacterial and seventeen fungal strains were isolated from the beached MPs. The results also indicated weathering of MPs due to microbial interactions. Model simulations helped in tracking the fate and transboundary landfall of spilled MPs across the Indian Ocean coastline after the X-Press Pearl disaster. Due to regional circulations induced by the monsoonal wind fields, a potential dispersal of pellets has occurred along the coast of Sri Lanka, but no landfall and ecological damage are predicted along the coast of India.
Collapse
Affiliation(s)
- R Karthik
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - V Karthikeyan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - B Subbareddy
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - K Balachandar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - G Hariharan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - D Ganguly
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - V D Samuel
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - T P S Jinoj
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India.
| |
Collapse
|
37
|
Khruengsai S, Sripahco T, Pripdeevech P. Biodegradation of Polyester Polyurethane by Embarria clematidis. Front Microbiol 2022; 13:874842. [PMID: 35774449 PMCID: PMC9237533 DOI: 10.3389/fmicb.2022.874842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Polyester urethanes (PUR) are widely used in industries and have led to a worldwide plastic waste problem. Thus, novel solutions for PUR degradation are required to reduce environmental pollution. This work investigates the PUR biodegradation efficiency of 33 fungal species using a polyester-polyurethane colloid branded Impranil DLN (Impranil) compared to Aspergillus niger, which served as the positive control. The biodegradation is evaluated based on its ability to clear Impranil in media. Eleven fungi can clear Impranil in both solid- and liquid-medium assays. The highest degradation was attributed to Embarria clematidis cultured with Impranil as a carbon source. The degradation was confirmed by the Sturm test, Fourier-transform infrared (FTIR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). From the Sturm test, CO2 at a concentration of 0.85 g/L was found in E. clematidis cultured with 150 mL of Impranil solution after a 2-week incubation period while the CO2 at a concentration of 0.53 g/L was detected from A. niger in the same conditions. The biodegradation was further confirmed by evaluating the clearance percentage of supernatant of E. clematidis and A. niger culturing with Impranil from the Sturm test. The clearance percentage of E. clematidis and A. niger supernatant was 88.84 and 48.97%, respectively. Moreover, the degradation of soft segment and breakdown of ester linkages were observed, as evidenced by the decrease of the carbonyl (1,715 cm-1) and N-H stretching (1,340 cm-1 and 1,020 cm-1) FTIR spectral peaks, respectively. GC-MS detected 3Z-heptenol, 5Z-octenol, 2E,4E-hexadienol acetate, and 3E,6Z-nonadienol as degradation products from the E. clematidis culture supernatant. This fungus was screened for its ability to produce extracellular esterase, protease, and urease enzymes. Extracellular esterase, very low urease, and no protease activities were detected in the culture supernatant of E. clematidis in the presence of Impranil. E. clematidis can degrade Impranil partially via hydrolysis of ester linkages by cell-bound esterases at a considerable rate without any prior treatment. This fungus not only degraded Impranil but also mineralized them into CO2 and H2O. E. clematidis can be applied in the process of biochemical depolymerization of PUR for the pure monomers recycling.
Collapse
Affiliation(s)
| | | | - Patcharee Pripdeevech
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai, Thailand
| |
Collapse
|
38
|
Delangiz N, Aliyar S, Pashapoor N, Nobaharan K, Asgari Lajayer B, Rodríguez-Couto S. Can polymer-degrading microorganisms solve the bottleneck of plastics' environmental challenges? CHEMOSPHERE 2022; 294:133709. [PMID: 35074325 DOI: 10.1016/j.chemosphere.2022.133709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/27/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Increasing world population and industrial activities have enhanced anthropogenic pollution, plastic pollution being especially alarming. So, plastics should be recycled and/or make them biodegradable. Chemical and physical remediating methods are usually energy consuming and costly. In addition, they are not ecofriendly and usually produce toxic byproducts. Bioremediation is a proper option as it is cost-efficient and environmentally friendly. Plastic production and consumption are increasing daily, and, as a consequence, more microorganisms are exposed to these nonbiodegradable polymers. Therefore, investigating new efficient microorganisms and increasing the knowledge about their biology can pave the way for efficient and feasible plastic bioremediation processes. In this sense, omics, systems biology and bioinformatics are three important fields to analyze the biodegradation pathways in microorganisms. Based on the above-mentioned technologies, researchers can engineer microorganisms with specific desired properties to make bioremediation more efficient.
Collapse
Affiliation(s)
- Nasser Delangiz
- Department of Plant Biotechnology and Breeding, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Sajad Aliyar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Neda Pashapoor
- Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
39
|
Srikanth M, Sandeep TSRS, Sucharitha K, Godi S. Biodegradation of plastic polymers by fungi: a brief review. BIORESOUR BIOPROCESS 2022; 9:42. [PMID: 38647755 PMCID: PMC10991219 DOI: 10.1186/s40643-022-00532-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
Plastic polymers are non-degradable solid wastes that have become a great threat to the whole world and degradation of these plastics would take a few decades. Compared with other degradation processes, the biodegradation process is the most effective and best way for plastic degradation due to its non-polluting mechanism, eco-friendly nature, and cost-effectiveness. Biodegradation of synthetic plastics is a very slow process that also involves environmental factors and the action of wild microbial species. In this plastic biodegradation, fungi play a pivotal role, it acts on plastics by secreting some degrading enzymes, i.e., cutinase`, lipase, and proteases, lignocellulolytic enzymes, and also the presence of some pro-oxidant ions can cause effective degradation. The oxidation or hydrolysis by the enzyme creates functional groups that improve the hydrophilicity of polymers, and consequently degrade the high molecular weight polymer into low molecular weight. This leads to the degradation of plastics within a few days. Some well-known species which show effective degradation on plastics are Aspergillus nidulans, Aspergillus flavus, Aspergillus glaucus, Aspergillus oryzae, Aspergillus nomius, Penicillium griseofulvum, Bjerkandera adusta, Phanerochaete chrysosporium, Cladosporium cladosporioides, etc., and some other saprotrophic fungi, such as Pleurotus abalones, Pleurotus ostreatus, Agaricus bisporus and Pleurotus eryngii which also helps in degradation of plastics by growing on them. Some studies say that the degradation of plastics was more effective when photodegradation and thermo-oxidative mechanisms involved with the biodegradation simultaneously can make the degradation faster and easier. This present review gives current knowledge regarding different species of fungi that are involved in the degradation of plastics by their different enzymatic mechanisms to degrade different forms of plastic polymers.
Collapse
Affiliation(s)
- Munuru Srikanth
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India
| | - T S R S Sandeep
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India.
| | - Kuvala Sucharitha
- Department of Biotechnology, Pydah Degree College, Affiliated to Andhra University, Visakhapatnam, India
| | - Sudhakar Godi
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India
| |
Collapse
|
40
|
Verschoor JA, Kusumawardhani H, Ram AFJ, de Winde JH. Toward Microbial Recycling and Upcycling of Plastics: Prospects and Challenges. Front Microbiol 2022; 13:821629. [PMID: 35401461 PMCID: PMC8985596 DOI: 10.3389/fmicb.2022.821629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Annually, 400 Mt of plastics are produced of which roughly 40% is discarded within a year. Current plastic waste management approaches focus on applying physical, thermal, and chemical treatments of plastic polymers. However, these methods have severe limitations leading to the loss of valuable materials and resources. Another major drawback is the rapid accumulation of plastics into the environment causing one of the biggest environmental threats of the twenty-first century. Therefore, to complement current plastic management approaches novel routes toward plastic degradation and upcycling need to be developed. Enzymatic degradation and conversion of plastics present a promising approach toward sustainable recycling of plastics and plastics building blocks. However, the quest for novel enzymes that efficiently operate in cost-effective, large-scale plastics degradation poses many challenges. To date, a wide range of experimental set-ups has been reported, in many cases lacking a detailed investigation of microbial species exhibiting plastics degrading properties as well as of their corresponding plastics degrading enzymes. The apparent lack of consistent approaches compromises the necessary discovery of a wide range of novel enzymes. In this review, we discuss prospects and possibilities for efficient enzymatic degradation, recycling, and upcycling of plastics, in correlation with their wide diversity and broad utilization. Current methods for the identification and optimization of plastics degrading enzymes are compared and discussed. We present a framework for a standardized workflow, allowing transparent discovery and optimization of novel enzymes for efficient and sustainable plastics degradation in the future.
Collapse
Affiliation(s)
- Jo-Anne Verschoor
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | | | - Arthur F. J. Ram
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Johannes H. de Winde
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
41
|
Tyagi P, Agate S, Velev OD, Lucia L, Pal L. A Critical Review of the Performance and Soil Biodegradability Profiles of Biobased Natural and Chemically Synthesized Polymers in Industrial Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2071-2095. [PMID: 35077140 DOI: 10.1021/acs.est.1c04710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review explores biobased polymers for industrial applications, their end fate, and most importantly, origin and key aspects enabling soil biodegradation. The physicochemical properties of biobased synthetic and natural polymers and the primary factors governing degradation are explored. Current and future biobased systems and factors allowing for equivalent comparisons of degradation and possible sources for engineering improved biodegradation are reviewed. Factors impacting ultraviolet (UV) stability of biopolymers have been described including methods to enhance photoresistance and impact on biodegradation. It discusses end-fate of biopolymers in soil and impact of residues on soil health. A limited number of studies examine side effects (e.g., microbial toxicity) from soil biodegradation of composites and biopolymers. Currently available standards for biodegradation and composting have been described with limitations and scope for improvements. Finally, design considerations and implications for sustainable polymers used, under consideration, and to be considered within the context of a rational biodegradable strategy are elaborated.
Collapse
Affiliation(s)
- Preeti Tyagi
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
- Global Breakthrough Packaging Group, Mars Wrigley, Chicago, Illinois 60642, United States
| | - Sachin Agate
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Lucian Lucia
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
42
|
Ebrahimbabaie P, Yousefi K, Pichtel J. Photocatalytic and biological technologies for elimination of microplastics in water: Current status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150603. [PMID: 34592303 DOI: 10.1016/j.scitotenv.2021.150603] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Water pollution by microplastics (MPs) has emerged as a significant environmental and public health concern. Several conventional technologies in drinking water and wastewater treatment facilities are capable of capturing a substantial portion of microplastics from surface water; however, only limited methods are available for actual destruction of microplastics. Rate of success is highly variable, and actual mechanisms which result in MP destruction are only partly known. Photocatalysis and microbial degradation technologies show promise at laboratory scale for the transformation of microplastics to water-soluble hydrocarbons, carbon dioxide and, in limited cases, useful fuels. Both photocatalytic and microbial technologies offer the potential for long-term water security and ecological stability and deserve further attention by scientists. Additional research is necessary, however, in identifying more effective semiconductors for photocatalysis, and optimal effective microbial consortia and environmental conditions to optimize microplastic biodegradation. Many more polymer types beyond polyethylene must be studied for degradation, and laboratory-scale research must be expanded to field-scale. This paper provides a comprehensive overview of processes and mechanisms for removing MPs by photocatalysis and microbial technologies. It provides useful data for research dedicated to improved removal of MPs from surface waters.
Collapse
Affiliation(s)
- Parisa Ebrahimbabaie
- Environment, Geology and Natural Resources, Ball State University, Muncie, IN 47306, USA.
| | - Kimiya Yousefi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman, Iran.
| | - John Pichtel
- Environment, Geology and Natural Resources, Ball State University, Muncie, IN 47306, USA.
| |
Collapse
|
43
|
Jin X, Dong J, Guo X, Ding M, Bao R, Luo Y. Current advances in polyurethane biodegradation. POLYM INT 2022. [DOI: 10.1002/pi.6360] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xuerui Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Jixin Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Xufan Guo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin China
| | - Rui Bao
- Center of Infectious Diseases, West China Hospital Sichuan University and Collaborative Innovation Center Chengdu China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Georgia Tech Shenzhen Institute Tianjin University Tangxing Road 133, Nanshan District Shenzhen 518071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin China
| |
Collapse
|
44
|
Sun Y, Hu J, Yusuf A, Wang Y, Jin H, Zhang X, Liu Y, Wang Y, Yang G, He J. A critical review on microbial degradation of petroleum-based plastics: quantitatively effects of chemical addition in cultivation media on biodegradation efficiency. Biodegradation 2022; 33:1-16. [PMID: 35025000 DOI: 10.1007/s10532-021-09969-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/12/2021] [Indexed: 01/19/2023]
Abstract
Petroleum-based plastics (PBP) with different properties have been developed to suit various needs of modern lives. Nevertheless, these well-developed properties also present the double-edged sword effect that significantly threatens the sustainability of the environment. This work focuses on the impact of microbial cultivating conditions (the elementary compositions and temperature) to provide insightful information for the process optimization of microbial degradation. The major elementary compositions in cultivation media and temperature from the literature were radically reviewed and assessed using the constructed supervised machine learning algorithm. Fifty-two literatures were collected as a training dataset to investigate the impact of major chemical elements and cultivation temperature upon PBP biodegradation. Among six singular parameters (NH4+, K+, PO43-, Mg2+, Ca2+, and temperature) and thirty corresponding binary parameters, four singular (NH4+, K+, PO43-, and Mg2+) and six binary parameters (NH4+/K+, NH4+/PO43-, NH4+/Ca2+, K+/PO43-, PO43-/Mg2+, Mg2+/Temp) were identified as statistically significant towards microbial degradation through analysis of variance (ANOVA). The binary effect (PO43-/Mg2+) is found to be the most statistically significant towards the microbial degradation of PBP. The concentration range, which locates at 0.1-0.6 g/L for Mg2+ and 0-2.8 g/L for PO43-, was identified to contribute to the maximum PBP biodegradation. Among all the investigated elements, Mg2+ is the only element that is statistically and significantly associated with the variations of cultivation temperature. The optimal preparation conditions within ± 20% uncertainties based upon the range of collected literature reports are recommended. Five representative cultivation elementary compositions (NH4+, K+, PO43-, Mg2+, and Ca2+) and temperature were reviewed from fifty two different literature reports to investigate their impacts on the microbial degradation of PBP using supervised machine learning algorithm. The optimal cultivation conditions based upon collected literature reports to achieve biodegradation over 80% were identified.
Collapse
Affiliation(s)
- Yong Sun
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo, Ningbo, 315100, China. .,School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Jing Hu
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo, Ningbo, 315100, China
| | - Abubakar Yusuf
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo, Ningbo, 315100, China
| | - Yixiao Wang
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo, Ningbo, 315100, China
| | - Huan Jin
- School of Computer Science, University of Nottingham Ningbo, Ningbo, 15100, China.
| | - Xiyue Zhang
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo, Ningbo, 315100, China
| | - Yiyang Liu
- Department of Chemistry, University College London (UCL), 20 Gordon Street, London, WC1H 0AJ, UK
| | - Yunshan Wang
- National Engineering Laboratory of Cleaner Hydrometallurgical Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Gang Yang
- National Engineering Laboratory of Cleaner Hydrometallurgical Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo, Ningbo, 315100, China. .,Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315021, China.
| |
Collapse
|
45
|
Weig AR, Löder MGJ, Ramsperger AFRM, Laforsch C. In situ Prokaryotic and Eukaryotic Communities on Microplastic Particles in a Small Headwater Stream in Germany. Front Microbiol 2021; 12:660024. [PMID: 34912303 PMCID: PMC8667586 DOI: 10.3389/fmicb.2021.660024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] Open
Abstract
The ubiquitous use of plastic products in our daily life is often accompanied by improper disposal. The first interactions of plastics with organisms in the environment occur by overgrowth or biofilm formation on the particle surface, which can facilitate the ingestion by animals. In order to elucidate the colonization of plastic particles by prokaryotic and eukaryotic microorganisms in situ, we investigated microbial communities in biofilms on four different polymer types and on mineral particles in a small headwater stream 500 m downstream of a wastewater treatment plant in Germany. Microplastic and mineral particles were exposed to the free-flowing water for 4 weeks in spring and in summer. The microbial composition of the developing biofilm was analyzed by 16S and 18S amplicon sequencing. Despite the expected seasonal differences in the microbial composition of pro- and eukaryotic communities, we repeatedly observed polymer type-specific differentiation in both seasons. The order of polymer type-specific prokaryotic and eukaryotic community distances calculated by Robust Aitchison principal component analysis (PCA) was the same in spring and summer samples. However, the magnitude of the distance differed considerably between polymer types. Prokaryotic communities on polyethylene particles exhibited the most considerable difference to other particles in summer, while eukaryotic communities on polypropylene particles showed the most considerable difference to other spring samples. The most contributing bacterial taxa to the polyethylene-specific differentiation belong to the Planctomycetales, Saccharimonadales, Bryobacterales, uncultured Acidiomicrobia, and Gemmatimonadales. The most remarkable differences in eukaryotic microorganism abundances could be observed in several distinct groups of Ciliophora (ciliates) and Chlorophytes (green algae). Prediction of community functions from taxonomic abundances revealed differences between spring and summer, and – to a lesser extent – also between polymer types and mineral surfaces. Our results show that different microplastic particles were colonized by different biofilm communities. These findings may be used for advanced experimental designs to investigate the role of microorganisms on the fate of microplastic particles in freshwater ecosystems.
Collapse
Affiliation(s)
- Alfons R Weig
- Genomics and Bioinformatics, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Martin G J Löder
- Animal Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Anja F R M Ramsperger
- Animal Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany.,Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
46
|
Borthakur D, Rani M, Das K, Shah MP, Sharma BK, Kumar A. Bioremediation: an alternative approach for detoxification of polymers from the contaminated environment. Lett Appl Microbiol 2021; 75:744-758. [PMID: 34825392 DOI: 10.1111/lam.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
The industries and metropolitan wastes produced by anthropogenic activities are of great concern for nature as it causes soil contamination and deteriorate the environment. Plastic utilization is rapidly enhancing globally with passing days that last for a more extended period in the environment due to slow decomposition and natural degradation. Excessive use of polymer has risked the life of both marine, freshwater and terrestrial organisms. Lack of proper waste management and inappropriate disposal leads to environmental threats. Bioremediation processes involve microbes such as fungi, bacteria, etc. which contribute a crucial role in the breakdown of plastics. Extremophiles secrete extremozymes that are functionally active in extreme conditions and are highly crucial for polymer disaggregation in those conditions.
Collapse
Affiliation(s)
- D Borthakur
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India.,Department of Life Sciences, Assam Don Bosco University, Tepesia, Assam, India
| | - M Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - K Das
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India
| | - M P Shah
- Enviro Technology Ltd., Ankleshwar, Gujarat, India
| | - B K Sharma
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India
| | - A Kumar
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India
| |
Collapse
|
47
|
Microencapsulation for Functional Textile Coatings with Emphasis on Biodegradability—A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11111371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The review provides an overview of research findings on microencapsulation for functional textile coatings. Methods for the preparation of microcapsules in textiles include in situ and interfacial polymerization, simple and complex coacervation, molecular inclusion and solvent evaporation from emulsions. Binders play a crucial role in coating formulations. Acrylic and polyurethane binders are commonly used in textile finishing, while organic acids and catalysts can be used for chemical grafting as crosslinkers between microcapsules and cotton fibres. Most of the conventional coating processes can be used for microcapsule-containing coatings, provided that the properties of the microcapsules are appropriate. There are standardised test methods available to evaluate the characteristics and washfastness of coated textiles. Among the functional textiles, the field of environmentally friendly biodegradable textiles with microcapsules is still at an early stage of development. So far, some physicochemical and physical microencapsulation methods using natural polymers or biodegradable synthetic polymers have been applied to produce environmentally friendly antimicrobial, anti-inflammatory or fragranced textiles. Standardised test methods for evaluating the biodegradability of textile materials are available. The stability of biodegradable microcapsules and the durability of coatings during the use and care of textiles still present several challenges that offer many opportunities for further research.
Collapse
|
48
|
Saravanan A, Kumar PS, Vo DVN, Jeevanantham S, Karishma S, Yaashikaa PR. A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126451. [PMID: 34174628 DOI: 10.1016/j.jhazmat.2021.126451] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 05/17/2023]
Abstract
Industrialization and other human anthropogenic activities cause serious threats to the environment. The toxic pollutants can cause detrimental diseases on diverse living beings in their respective ecosystems. Bioremediation is one of the efficient remediation methods in which the toxic pollutants are removed from the environment by the application of microorganisms or their biologically active products (enzymes). Typically, the microorganisms in the environment produce various enzymes to immobilize and degrade the toxic environmental pollutants by utilizing them as a substrate for their growth and development. Both the bacterial and fungal enzymes can degrade the toxic pollutants present in the environment and convert them into non-toxic forms through their catalytic reaction mechanism. Hydrolases, oxidoreductases, dehalogenases, oxygenases and transferases are the major classes of microbial enzymes responsible for the degradation of most of the toxic pollutants in the environment. Recently, there are different immobilizations and genetic engineering techniques have been developed to enhance enzyme efficiency and diminish the process cost for pollutant removal. This review focused on enzymatic removal of toxic pollutants such as heavy metals, dyes, plastics and pesticides in the environment. Current trends and further expansion for efficient removal of toxic pollutants through enzymatic degradation are also reviewed in detail.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
49
|
Ali SS, Elsamahy T, Al-Tohamy R, Zhu D, Mahmoud YAG, Koutra E, Metwally MA, Kornaros M, Sun J. Plastic wastes biodegradation: Mechanisms, challenges and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146590. [PMID: 34030345 DOI: 10.1016/j.scitotenv.2021.146590] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 05/21/2023]
Abstract
The growing accumulation of plastic wastes is one of the main environmental challenges currently faced by modern societies. These wastes are considered a serious global problem because of their effects on all forms of life. There is thus an urgent need to demonstrate effective eco-environmental techniques to overcome the hazardous environmental impacts of traditional disposal paths. However, our current knowledge on the prevailing mechanisms and the efficacy of synthetic plastics' biodegradation still appears limited. Under this scope, our review aims to comprehensively highlight the role of microbes, with special emphasis on algae, on the entire plastic biodegradation process focusing on the depolarization of various synthetic plastic types. Moreover, our review emphasizes on the ability of insects' gut microbial consortium to degrade synthetic plastic wastes. In this view, we discuss the schematic pathway of the biodegradation process of six types of synthetic plastics. These findings may contribute to establishing bio-upcycling processes of plastic wastes towards biosynthesis of valuable metabolic products. Finally, we discuss the challenges and opportunities for microbial valorization of degraded plastic wastes.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | | | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
50
|
Khruengsai S, Sripahco T, Pripdeevech P. Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand. J Fungi (Basel) 2021; 7:jof7080594. [PMID: 34436133 PMCID: PMC8396884 DOI: 10.3390/jof7080594] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Accumulated plastic waste in the environment is a serious problem that poses an ecological threat. Plastic waste has been reduced by initiating and applying different alternative methods from several perspectives, including fungal treatment. Biodegradation of 30 fungi from Thailand were screened in mineral salt medium agar containing low-density polyethylene (LDPE) films. Diaporthe italiana, Thyrostroma jaczewskii, Collectotrichum fructicola, and Stagonosporopsis citrulli were found to grow significantly by culturing with LDPE film as the only sole carbon source compared to those obtained from Aspergillus niger. These fungi were further cultured in mineral salt medium broth containing LDPE film as the sole carbon source for 90 days. The biodegradation ability of these fungi was evaluated from the amount of CO2 and enzyme production. Different amounts of CO2 were released from D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger culturing with LDPE film, ranging from 0.45 to 1.45, 0.36 to 1.22, 0.45 to 1.45, 0.33 to 1.26, and 0.37 to 1.27 g/L, respectively. These fungi were able to secrete a large amount of laccase enzyme compared to manganese peroxidase, and lignin peroxidase enzymes detected under the same conditions. The degradation of LDPE films by culturing with these fungi was further determined. LDPE films cultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger showed weight loss of 43.90%, 46.34%, 48.78%, 45.12%, and 28.78%, respectively. The tensile strength of LDPE films cultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger also reduced significantly by 1.56, 1.78, 0.43, 1.86, and 3.34 MPa, respectively. The results from Fourier transform infrared spectroscopy (FTIR) reveal an increasing carbonyl index in LDPE films culturing with these fungi, especially C. fructicola. Analysis of LDPE films using scanning electron microscopy (SEM) confirmed the biodegradation by the presence of morphological changes such as cracks, scions, and holes on the surface of the film. The volatile organic compounds (VOCs) emitted from LDPE films cultured with these fungi were analyzed by gas chromatography-mass spectrometry (GC-MS). VOCs such as 1,3-dimethoxy-benzene, 1,3-dimethoxy-5-(1-methylethyl)-benzene, and 1,1-dimethoxy-decane were detected among these fungi. Overall, these fungi have the ability to break down and consume the LDPE film. The fungus C. fructicola is a promising resource for the biodegradation of LDPE which may be further applied in plastic degradation systems based on fungi.
Collapse
Affiliation(s)
- Sarunpron Khruengsai
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.K.); (T.S.)
| | - Teerapong Sripahco
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.K.); (T.S.)
| | - Patcharee Pripdeevech
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.K.); (T.S.)
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence:
| |
Collapse
|