1
|
Begolli R, Patouna A, Vardakas P, Xagara A, Apostolou K, Kouretas D, Giakountis A. Deciphering the Landscape of GATA-Mediated Transcriptional Regulation in Gastric Cancer. Antioxidants (Basel) 2024; 13:1267. [PMID: 39456519 PMCID: PMC11504088 DOI: 10.3390/antiox13101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Gastric cancer (GC) is an asymptomatic malignancy in early stages, with an invasive and cost-ineffective diagnostic toolbox that contributes to severe global mortality rates on an annual basis. Ectopic expression of the lineage survival transcription factors (LS-TFs) GATA4 and 6 promotes stomach oncogenesis. However, LS-TFs also govern important physiological roles, hindering their direct therapeutic targeting. Therefore, their downstream target genes are particularly interesting for developing cancer-specific molecular biomarkers or therapeutic agents. In this work, we couple inducible knockdown systems with chromatin immunoprecipitation and RNA-seq to thoroughly detect and characterize direct targets of GATA-mediated transcriptional regulation in gastric cancer cells. Our experimental and computational strategy provides evidence that both factors regulate the expression of several coding and non-coding RNAs that in turn mediate for their cancer-promoting phenotypes, including but not limited to cell cycle, apoptosis, ferroptosis, and oxidative stress response. Finally, the diagnostic and prognostic potential of four metagene signatures consisting of selected GATA4/6 target transcripts is evaluated in a multi-cancer panel of ~7000 biopsies from nineteen tumor types, revealing elevated specificity for gastrointestinal tumors. In conclusion, our integrated strategy uncovers the landscape of GATA-mediated coding and non-coding transcriptional regulation, providing insights regarding their molecular and clinical function in gastric cancer.
Collapse
Affiliation(s)
- Rodiola Begolli
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Anastasia Patouna
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Periklis Vardakas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Mezourlo, 41110 Larissa, Greece
| | - Kleanthi Apostolou
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Antonis Giakountis
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
2
|
Gao K, Chen Y, Wang P, Chang W, Cao B, Luo L. GATA4: Regulation of expression and functions in goat granulosa cells. Domest Anim Endocrinol 2024; 89:106859. [PMID: 38810369 DOI: 10.1016/j.domaniend.2024.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
GATA4 plays a pivotal role in the reproductive processes of mammals. However, the research on GATA4 in goat ovary is limited. This study aimed to study the expression and function of GATA4 in goat ovary. Utilizing real-time PCR and western blot analysis, we studied the expression and regulatory mechanisms of GATA4 in goat ovary and granulosa cells (GCs). We found that GATA4 was expressed in all follicle types in the goat ovary, with significantly higher levels in GCs of larger follicles (>3 mm) compared to those in smaller follicles (<3 mm). Additionally, we demonstrated that human chorionic gonadotrophin (hCG) induced GATA4 mRNA expression via the activation of PKA, MEK, p38 MAPK, PKC, and PI3K pathways in vitro. Our study also showed that hCG suppressed the levels of miR-200b and miR-429, which in turn directly target GATA4, thereby modulating the basal and hCG-induced expression of GATA4. Functionally, we examined the effect of siRNA-mediated GATA4 knockdown on cell proliferation and hormone secretion in goat GCs. Our results revealed that knockdown of GATA4, miR-200b, and miR-429 suppressed cell proliferation. Moreover, knockdown of GATA4 decreased estradiol and progesterone production by inhibiting the promoter activities of CYP11A1, CYP19A1, HSD3B, and StAR. Collectively, our findings suggest a critical involvement of GATA4 in regulating goat GC survival and steroidogenesis.
Collapse
Affiliation(s)
- Kexin Gao
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Yeda Chen
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wenlin Chang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liqiong Luo
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China.
| |
Collapse
|
3
|
Mazziotta C, Badiale G, Cervellera CF, Morciano G, Di Mauro G, Touzé A, Pinton P, Tognon M, Martini F, Rotondo JC. All-trans retinoic acid exhibits anti-proliferative and differentiating activity in Merkel cell carcinoma cells via retinoid pathway modulation. J Eur Acad Dermatol Venereol 2024; 38:1419-1431. [PMID: 38450801 DOI: 10.1111/jdv.19933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The limited therapies available for treating Merkel cell carcinoma (MCC), a highly aggressive skin neoplasm, still pose clinical challenges, and novel treatments are required. Targeting retinoid signalling with retinoids, such as all-trans retinoic acid (ATRA), is a promising and clinically useful antitumor approach. ATRA drives tumour cell differentiation by modulating retinoid signalling, leading to anti-proliferative and pro-apoptotic effects. Although retinoid signalling is dysregulated in MCC, ATRA activity in this tumour is unknown. This study aimed to evaluate the impact of ATRA on the pathological phenotype of MCC cells. METHODS The effect of ATRA was tested in various Merkel cell polyomavirus-positive and polyomavirus-negative MCC cell lines in terms of cell proliferation, viability, migration and clonogenic abilities. In addition, cell cycle, apoptosis/cell death and the retinoid gene signature were evaluated upon ATRA treatments. RESULTS ATRA efficiently impaired MCC cell proliferation and viability in MCC cells. A strong effect in reducing cell migration and clonogenicity was determined in ATRA-treated cells. Moreover, ATRA resulted as strongly effective in arresting cell cycle and inducing apoptosis/cell death in all tested MCC cells. Enrichment analyses indicated that ATRA was effective in modulating the retinoid gene signature in MCC cells to promote cell differentiation pathways, which led to anti-proliferative and pro-apoptotic/cell death effects. CONCLUSIONS These results underline the potential of retinoid-based therapy for MCC management and might open the way to novel experimental approaches with other retinoids and/or combinatorial treatments.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Giulia Di Mauro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Antoine Touzé
- Biologie des infections à Polyomavirus team, UMR INRA ISP 1282, University of Tours, Tours, France
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Joo S, Fang S. Bile Acids and Gastric Intestinal Metaplasia: Exploring a New Feedback Loop. Gut Liver 2024; 18:365-367. [PMID: 38742404 PMCID: PMC11096909 DOI: 10.5009/gnl240187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Affiliation(s)
- Seyeon Joo
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Yang Y, Song S, Li S, Kang J, Li Y, Zhao N, Ye D, Qin F, Du Y, Sun J, Yu T, Wu H. GATA4 regulates the transcription of MMP9 to suppress the invasion and migration of breast cancer cells via HDAC1-mediated p65 deacetylation. Cell Death Dis 2024; 15:289. [PMID: 38653973 PMCID: PMC11039647 DOI: 10.1038/s41419-024-06656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
GATA-binding protein 4 (GATA4) is recognized for its significant roles in embryogenesis and various cancers. Through bioinformatics and clinical data, it appears that GATA4 plays a role in breast cancer development. Yet, the specific roles and mechanisms of GATA4 in breast cancer progression remain elusive. In this study, we identify GATA4 as a tumor suppressor in the invasion and migration of breast cancer. Functionally, GATA4 significantly reduces the transcription of MMP9. On a mechanistic level, GATA4 diminishes MMP9 transcription by interacting with p65 at the NF-κB binding site on the MMP9 promoter. Additionally, GATA4 promotes the recruitment of HDAC1, amplifying the bond between p65 and HDAC1. This leads to decreased acetylation of p65, thus inhibiting p65's transcriptional activity on the MMP9 promoter. Moreover, GATA4 hampers the metastasis of breast cancer in vivo mouse model. In summary, our research unveils a novel mechanism wherein GATA4 curtails breast cancer cell metastasis by downregulating MMP9 expression, suggesting a potential therapeutic avenue for breast cancer metastasis.
Collapse
Affiliation(s)
- Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Shuangshuang Song
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Jie Kang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Yulin Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Nannan Zhao
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Dongman Ye
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Fengying Qin
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Yixin Du
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Jing Sun
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Tao Yu
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
6
|
Mejia Peña C, Skipper TA, Hsu J, Schechter I, Ghosh D, Dawson MR. Metronomic and single high-dose paclitaxel treatments produce distinct heterogenous chemoresistant cancer cell populations. Sci Rep 2023; 13:19232. [PMID: 37932310 PMCID: PMC10628134 DOI: 10.1038/s41598-023-46055-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
More than 75% of epithelial ovarian cancer (EOC) patients experience disease recurrence after initial treatment, highlighting our incomplete understanding of how chemoresistant populations evolve over the course of EOC progression post chemotherapy treatment. Here, we show how two paclitaxel (PTX) treatment methods- a single high dose and a weekly metronomic dose for four weeks, generate unique chemoresistant populations. Using mechanically relevant alginate microspheres and a combination of transcript profiling and heterogeneity analyses, we found that these PTX-treatment regimens produce distinct and resilient subpopulations that differ in metabolic reprogramming signatures, acquisition of resistance to PTX and anoikis, and the enrichment for cancer stem cells (CSCs) and polyploid giant cancer cells (PGCCs) with the ability to replenish bulk populations. We investigated the longevity of these metabolic reprogramming events using untargeted metabolomics and found that metabolites associated with stemness and therapy-induced senescence were uniquely abundant in populations enriched for CSCs and PGCCs. Predictive network analysis revealed that antioxidative mechanisms were likely to be differentially active dependent on both time and exposure to PTX. Our results illustrate how current standard chemotherapies contribute to the development of chemoresistant EOC subpopulations by either selecting for intrinsically resistant subpopulations or promoting the evolution of resistance mechanisms. Additionally, our work describes the unique phenotypic signatures in each of these distinct resistant subpopulations and thus highlights potential vulnerabilities that can be exploited for more effective treatment.
Collapse
Affiliation(s)
- Carolina Mejia Peña
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Thomas A Skipper
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Jeffrey Hsu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Ilexa Schechter
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Deepraj Ghosh
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Michelle R Dawson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
7
|
Xu H, Xiao L, Chen Y, Liu Y, Zhang Y, Gao Y, Man S, Yan N, Zhang M. Effect of CDK7 inhibitor on MYCN-amplified retinoblastoma. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194964. [PMID: 37536559 DOI: 10.1016/j.bbagrm.2023.194964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Retinoblastoma (RB) is a common malignancy that primarily affects pediatric populations. Although a well-known cause of RB is RB1 mutation, MYCN amplification can also lead to the disease, which is a poor prognosis factor. Studies conducted in various tumor types have shown that MYCN inhibition is an effective approach to impede tumor growth. Various indirect approaches have been developed to overcome the difficulty of directly targeting MYCN, such as modulating the super enhancer (SE) upstream of MYCN. The drug used in this study to treat MYCN-amplified RB was THZ1, a CDK7 inhibitor that can effectively suppress transcription by interfering with the activity of SEs. The study findings confirmed the anticancer activity of THZ1 against RB in both in vitro and in vivo experiments. Therapy with THZ1 was found to affect numerous genes in RB according to the RNA-seq analysis. Moreover, the gene expression changes induced by THZ1 treatment were enriched in ribosome, endocytosis, cell cycle, apoptosis, etc. Furthermore, the combined analysis of ChIP-Seq and RNA-seq data suggested a potential role of SEs in regulating the expression of critical transcription factors, such as MYCN, OTX2, and SOX4. Moreover, ChIP-qPCR experiments were conducted to confirm the interaction between MYCN and SEs. In conclusion, THZ1 caused substantial changes in gene transcription in RB, resulting in inhibited cell proliferation, interference with the cell cycle, and increased apoptosis. The efficacy of THZ1 is positively correlated with the degree of MYCN amplification and is likely exerted by interfering with MYCN upstream SEs.
Collapse
Affiliation(s)
- Hanyue Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yilin Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yifan Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yuzhu Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Shulei Man
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
8
|
Wang K, Chen Z, Qiao X, Zheng J. LncRNA NORAD regulates the mechanism of the miR-532-3p/Nectin-4 axis in pancreatic cancer cell proliferation and angiogenesis. Toxicol Res (Camb) 2023; 12:425-432. [PMID: 37397924 PMCID: PMC10311138 DOI: 10.1093/toxres/tfad026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 03/30/2023] [Indexed: 07/04/2023] Open
Abstract
Backgound Pancreatic cancer (PC) is one of the deadliest cancers worldwide, and cell proliferation and angiogenesis play an important role in its occurrence and development. High levels of lncRNANORAD have been detected in many tumors, including PC, yet the effect and mechanism of lncRNA NORAD on PC cell angiogenesis are unexplored. Methods qRT.PCR was applied to quantify lncRNA NORAD and miR-532-3p expression in PC cells, and a dual luciferase reporter gene was used to verify the targeting effects of NORAD, miR-532-3p and Nectin-4. Then, we regulated NORAD and miR-532-3p expression in PC cells and detected their effects on PC cell proliferation and angiogenesis using cloning experiments and HUVEC tube formation experiments. Results LncRNA NORAD was upregulated and miR-532-3p was downregulated in PC cells compared with normal cells. Knockdown of NORAD inhibited PC cell proliferation and angiogenesis. LncRNA NORAD and miR-532-3p competitively bound to promote the expression of the miR-532-3p target gene Nectin-4, thereby promoting proliferation and angiogenesis of PC cells in vitro. Conclusion LncRNA NORAD promotes the proliferation and angiogenesis of PC cells by regulating the miR-532-3p/Nectin-4 axis, which may be a potential biological target in the diagnosis and treatment of clinical PC.
Collapse
Affiliation(s)
- Kaiqiong Wang
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Zhiju Chen
- Department of Gastrointestinal Surgery, Hainan Provincial People’s Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Xin Qiao
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| |
Collapse
|
9
|
Trąbska-Kluch B, Braun M, Orzechowska M, Paszek S, Zuchowska A, Sołek J, Kluska A, Fijuth J, Jesionek-Kupnicka D, Zawlik I. Potential Prognostic Value of GATA4 Depends on the p53 Expression in Primary Glioblastoma Patients. Genes (Basel) 2023; 14:1146. [PMID: 37372326 DOI: 10.3390/genes14061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Primary glioblastoma is characterized by an extremely poor prognosis. The promoter methylation of GATA4 leads to the loss of its expression in many cancer types. The formation of high-grade astrocytomas can be promoted by the concurrent loss of TP53 and GATA4 in normal human astrocytes. Nevertheless, the impact of GATA4 alterations with linkage to TP53 changes in gliomagenesis is poorly understood. This study aimed to evaluate GATA4 protein expression, GATA4 promoter methylation, p53 expression, TP53 promoter methylation, and mutation status in patients with primary glioblastoma and to assess the possible prognostic impact of these alterations on overall survival. MATERIALS AND METHODS Thirty-one patients with primary glioblastoma were included. GATA4 and p53 expressions were determined immunohistochemically, and GATA4 and TP53 promoter methylations were analyzed via methylation-specific PCR. TP53 mutations were investigated via Sanger sequencing. RESULTS The prognostic value of GATA4 depends on p53 expression. Patients without GATA4 protein expression were more frequently negative for TP53 mutations and had better prognoses than the GATA4 positive patients. In patients positive for GATA4 protein expression, p53 expression was associated with the worst outcome. However, in patients positive for p53 expression, the loss of GATA4 protein expression seemed to be associated with improved prognosis. GATA4 promoter methylation was not associated with a lack of GATA4 protein expression. CONCLUSIONS Our data indicate that there is a possibility that GATA4 could function as a prognostic factor in glioblastoma patients, but in connection with p53 expression. A lack of GATA4 expression is not dependent on GATA4 promoter methylation. GATA4 alone has no influence on survival time in glioblastoma patients.
Collapse
Affiliation(s)
- Berenika Trąbska-Kluch
- Department of Teleradiotherapy, Copernicus Memorial Hospital, 93-513 Lodz, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Magdalena Orzechowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 93-513 Lodz, Poland
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Alina Zuchowska
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Julia Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Adam Kluska
- Brachytherapy Department, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Jacek Fijuth
- Department of Teleradiotherapy, Copernicus Memorial Hospital, 93-513 Lodz, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | | | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
10
|
de Andrés MP, Jackson RJ, Felipe I, Zagorac S, Pilarsky C, Schlitter AM, Martinez de Villareal J, Jang GH, Costello E, Gallinger S, Ghaneh P, Greenhalf W, Knösel T, Palmer DH, Ruemmele P, Weichert W, Buechler M, Hackert T, Neoptolemos JP, Notta F, Malats N, Martinelli P, Real FX. GATA4 and GATA6 loss-of-expression is associated with extinction of the classical programme and poor outcome in pancreatic ductal adenocarcinoma. Gut 2023; 72:535-548. [PMID: 36109153 DOI: 10.1136/gutjnl-2021-325803] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/05/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE GATA6 is a key regulator of the classical phenotype in pancreatic ductal adenocarcinoma (PDAC). Low GATA6 expression associates with poor patient outcome. GATA4 is the second most expressed GATA factor in the pancreas. We assessed whether, and how, GATA4 contributes to PDAC phenotype and analysed the association of expression with outcome and response to chemotherapy. DESIGN We analysed PDAC transcriptomic data, stratifying cases according to GATA4 and GATA6 expression and identified differentially expressed genes and pathways. The genome-wide distribution of GATA4 was assessed, as well as the effects of GATA4 knockdown. A multicentre tissue microarray study to assess GATA4 and GATA6 expression in samples (n=745) from patients with resectable was performed. GATA4 and GATA6 levels were dichotomised into high/low categorical variables; association with outcome was assessed using univariable and multivariable Cox regression models. RESULTS GATA4 messenger RNA is enriched in classical, compared with basal-like tumours. We classified samples in 4 groups as high/low for GATA4 and GATA6. Reduced expression of GATA4 had a minor transcriptional impact but low expression of GATA4 enhanced the effects of GATA6 low expression. GATA4 and GATA6 display a partially overlapping genome-wide distribution, mainly at promoters. Reduced expression of both proteins in tumours was associated with the worst patient survival. GATA4 and GATA6 expression significantly decreased in metastases and negatively correlated with basal markers. CONCLUSIONS GATA4 and GATA6 cooperate to maintain the classical phenotype. Our findings provide compelling rationale to assess their expression as biomarkers of poor prognosis and therapeutic response.
Collapse
Affiliation(s)
- Mónica P de Andrés
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Richard J Jackson
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Irene Felipe
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Sladjana Zagorac
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | | | - Anna Melissa Schlitter
- Institute of Pathology, School of Medicine, Technische Universitat Munchen, Munchen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jaime Martinez de Villareal
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Steve Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University, Toronto, Ontario, Canada
- Health Network, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel H Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Petra Ruemmele
- Pathologisches Institute, Erlangen University Hospital, Erlangen, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technische Universitat Munchen, Munchen, Germany
| | - Markus Buechler
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - John P Neoptolemos
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Núria Malats
- CIBERONC, Madrid, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Paola Martinelli
- Institute of Cancer Research, Clinic for Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Francisco X Real
- Departament de Medicina i Ciències de la Vida, Universitt Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
11
|
The Relationship between the Expression of GATA4 and GATA6 with the Clinical Characteristics and Prognosis of Resectable Pancreatic Adenocarcinoma. Biomedicines 2023; 11:biomedicines11020252. [PMID: 36830789 PMCID: PMC9953151 DOI: 10.3390/biomedicines11020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
GATA4 and GATA6 are transcription factors involved in the differentiation and development of PDAC. GATA6 expression is related to the classic molecular subtype, while its absence is related to the basal-like molecular subtype. The aim was to determine the clinical utility of IHC determination of GATA4 and GATA6 in a series of patients with resected PDAC. GATA4 and GATA6 expression was studied by IHC in TMA samples of normal tissue, PanIN, tumor tissue and lymph node metastases from a series of 89 patients with resected PDAC. Its relationship with clinicopathologic variables and the outcome was investigated. Seventy-two (81%) tumors were GATA6+ and 37 (42%) were GATA4+. While GATA4 expression was reduced during tumor progression, GATA6 expression remained highly conserved, except in lymph node metastases. All patients with early stages and well-differentiated tumors were GATA6+. The absence of GATA4 expression was related to smoking. Patients with GATA4+ or GATA6+ tumors had significantly lower Ca 19.9 levels. The expression of GATA4 and GATA6 was related to DFS, being more favorable in the GATA4+/GATA6+ group. The determination of the expression of GATA4 and GATA6 by IHC is feasible and provides complementary clinical and prognostic information that can help improve the stratification of patients with PDAC.
Collapse
|
12
|
Lin S, Qin HZ, Li ZY, Zhu H, Long L, Xu LB. Gallic acid suppresses the progression of triple-negative breast cancer HCC1806 cells via modulating PI3K/AKT/EGFR and MAPK signaling pathways. Front Pharmacol 2022; 13:1049117. [PMID: 36523491 PMCID: PMC9744937 DOI: 10.3389/fphar.2022.1049117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/15/2022] [Indexed: 11/04/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a severe threat to women's health because of its aggressive nature, early age of onset, and high recurrence rate. Therefore, in this study, we aimed to evaluate the anti-tumor effects of Gallic acid (GA) on the TNBC HCC1806 cells in vitro. The cell proliferation was detected by MTT and plate clone formation assays, cell apoptosis, cell cycle, and mitochondrial membrane potential (MMP) were analyzed by flow cytometry and Hoechst 33258 staining assays, and the intracellular reactive oxygen species (ROS) accumulation were also investigated. Real-Time PCR and western blot were examined to explore the mechanism of action. The results indicated that GA suppressed HCC1806 cells proliferation and promoted HCC1806 cells apoptosis. Meanwhile, GA treatment changed the morphology of the HCC1806 cells. In addition, GA blocked the HCC1806 cells cycle in the S phase, and it induced cells apoptosis accompanied by ROS accumulation and MMP depolarization. Real-Time PCR results suggested that GA increased Bax, Caspase-3, Caspase-9, P53, JINK and P38 mRNA expression, and decreased Bcl-2, PI3K, AKT and EGFR mRNA expression. Western blotting results suggested that GA increased Bax, cleaved-Caspase-3, cleaved-Caspase-9, P53, P-ERK1/2, P-JNK, P-P38 proteins expression, and decreased Bcl-2, P-PI3K, P-AKT, P-EGFR proteins expression. Furthermore, molecular docking suggested that GA has the high affinity for PI3K, AKT, EGFR, ERK1/2, JNK, and P38. In conclusion, GA could suppress HCC1806 cells proliferation and promote HCC1806 cells apoptosis through the mitochondrial apoptosis pathway and induces ROS generation which further inhibits PI3K/AKT/EGFR and activates MAPK signaling pathways. Our study will provide some new references for using GA in the treatment of TNBC.
Collapse
Affiliation(s)
- Si Lin
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hui-Zhen Qin
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Ze-Yu Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hua Zhu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Li Long
- Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Li-Ba Xu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
13
|
Chijimatsu R, Kobayashi S, Takeda Y, Kitakaze M, Tatekawa S, Arao Y, Nakayama M, Tachibana N, Saito T, Ennishi D, Tomida S, Sasaki K, Yamada D, Tomimaru Y, Takahashi H, Okuzaki D, Motooka D, Ohshiro T, Taniguchi M, Suzuki Y, Ogawa K, Mori M, Doki Y, Eguchi H, Ishii H. Establishment of a reference single-cell RNA sequencing dataset for human pancreatic adenocarcinoma. iScience 2022; 25:104659. [PMID: 35847558 PMCID: PMC9283889 DOI: 10.1016/j.isci.2022.104659] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/14/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Single-cell RNA sequencing (scRNAseq) has been used to assess the intra-tumor heterogeneity and microenvironment of pancreatic ductal adenocarcinoma (PDAC). However, previous knowledge is not fully universalized. Here, we built a single cell atlas of PDAC from six datasets containing over 70 samples and >130,000 cells, and demonstrated its application to the reanalysis of the previous bulk transcriptomic cohorts and inferring cell-cell communications. The cell decomposition of bulk transcriptomics using scRNAseq data showed the cellular heterogeneity of PDAC; moreover, high levels of tumor cells and fibroblasts were indicative of poor-prognosis. Refined tumor subtypes signature indicated the tumor cell dynamics in intra-tumor and their specific regulatory network. We further identified functionally distinct tumor clusters that had close interaction with fibroblast subtypes via different signaling pathways dependent on subtypes. Our analysis provided a reference dataset for PDAC and showed its utility in research on the microenvironment of intra-tumor heterogeneity.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shogo Kobayashi
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Yu Takeda
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Masatoshi Kitakaze
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Mika Nakayama
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Naohiro Tachibana
- Department of Orthopaedic Surgery, Section of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Section of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuki Sasaki
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahito Ohshiro
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Masateru Taniguchi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 272-8562, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
- Tokai University Graduate School of Medicine, Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yuichiro Doki
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Lv X, Xiang X, Wu Y, Liu Y, Xu R, Xiang Q, Lai G. GATA binding protein 4 promotes the expression and transcription of hepatitis B virus by facilitating hepatocyte nuclear factor 4 alpha in vitro. Virol J 2021; 18:196. [PMID: 34583732 PMCID: PMC8479913 DOI: 10.1186/s12985-021-01668-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background GATA binding protein 4 (GATA4) has been reported as a potential target of gene therapy for hepatocellular carcinoma (HCC). It is well known that the main cause of HCC is the chronic infection of hepatitis B virus (HBV). However, whether the effect of GATA4 on HBV has not yet been reported. Methods In this study, the regulation of GATA4 on HBV was analyzed in vitro. In turn, the effect of HBV on GATA4 was also observed in vitro, in vivo, and clinical HCC patients. Subsequently, we analyzed whether the effect of GATA4 on HBV was related to hepatocyte nuclear factor 4 alpha (HNF4α) in vitro. Results The results showed that GATA4 significantly promoted the secretion of HBV surface antigen (HBsAg) and HBV e antigen in the cell culture medium, improved the replication of HBV genomic DNA, and increased the level of HBV 3.5 kb pre-genomic RNA and HBV total RNA (P < 0.05). Moreover, it was showed that HBV had no significant effect on GATA4 in vitro and in vivo (P > 0.05). At the same time, GATA4 expression was decreased in 78.9% (15/19) of HCC patients regardless of the HBV and HBsAg status. Among them, there were 76.9% (10/13) in HBV-associated patients with HCC (HBV-HCC), and 83.3% (5/6) in non-HBV-HCC patients. In addition, the expression of HNF4α was also up-regulated or down-regulated accordingly when stimulating or interfering with the expression of GATA4. Furthermore, stimulating the expression of HNF4α could only alleviate the HBsAg level and HBV transcription levels, but had no significant effect on GATA4. Conclusions In summary, this study found that GATA4 has a positive effect on HBV, and the potential pathway may be related to another transcription factor HNF4α that regulates HBV.
Collapse
Affiliation(s)
- Xiaoqin Lv
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xia Xiang
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Wu
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 40010, China
| | - Yang Liu
- LuXian No. 2 High School, Sichuan, 646100, China
| | - Ruqing Xu
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Xiang
- Molecular Oncology and Epigenetics Laboratory of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guoqi Lai
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
15
|
Gong C, Fan Y, Zhou X, Lai S, Wang L, Liu J. Comprehensive Analysis of Expression and Prognostic Value of GATAs in Lung Cancer. J Cancer 2021; 12:3862-3876. [PMID: 34093794 PMCID: PMC8176258 DOI: 10.7150/jca.52623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
GATAs are a family of transcription factors that play sophisticated and extensive roles in cell fate transitions and tissue morphogenesis during embryonic development. Emerging evidence indicate that GATAs are involved in tumorigenesis of lung cancer (LC). However, the distinct roles, diverse expression patterns and prognostic values of six GATA family members in LC have yet to be elucidated. In the present study, the diverse expression patterns, prognostic values, genetic mutations, protein-protein interaction(PPI) networks of GATAs, Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway in LC patients were analyzed using a serious of databases, including ONCOMINE database, Cancer Cell Line Encyclopedia database, the Human Protein Atlas, the Gene Expression Profiling Interactive Analysis database, the Kaplan-Meier plotter, cBioPortal, String database and database Database for Annotation, Visualization, and Integrated Discovery. The mRNA expression levels of GATA1/2/4/5/6 were downregulated, while GATA3 showed abnormal expressions of up-regulation and down-regulation in patients with LC. Aberrant GATAs mRNA expression was connected with prognosis. Furthermore, genetic alterations mainly appeared in GATA4. Gene Ontology enrichment and network analysis demonstrated that GATAs and their 50 interactors were primarily associated with positive regulation of transcription from RNA polymerase II promoter, transcription factor complex, transcription factor binding Jak-STAT signaling pathway. This comprehensive bioinformatic analysis demonstrated that GATA1/2/3/4/6 may be new prognosis factors, and GATA2/5/6 may be potential targets for personalized therapy for patients with LC, but further studies are requisite to analyze the mechanism of their carcinogenicity and investigate novel drug treatment. Finally, these findings would conduce to a better understanding of the unique roles of GATAs in LC.
Collapse
Affiliation(s)
- Chengwu Gong
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yun Fan
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xueliang Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Songqing Lai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lijun Wang
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jichun Liu
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
16
|
Jiang W, Chen C, Huang L, Shen J, Yang L. GATA4 Regulates Inflammation-Driven Pancreatic Ductal Adenocarcinoma Progression. Front Cell Dev Biol 2021; 9:640391. [PMID: 33996796 PMCID: PMC8117218 DOI: 10.3389/fcell.2021.640391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Cancer-associated inflammation is a key molecular feature in the progression of pancreatic ductal adenocarcinoma (PDAC). GATA4 is a transcription factor that participates in the regulation and normal development of several endoderm- and mesoderm-derived tissues such as the pancreas. However, it remains unclear whether GATA4 is involved in the inflammation-driven development of pancreatic cancer. Here, we employed quantitative reverse transcription PCR, immunohistochemistry, and differential expression analysis to investigate the association between GATA4 and inflammation-driven PDAC. We found that overexpression of GATA4 in pancreatic tumor tissue was accompanied by increased levels of inflammatory macrophages. We used macrophage-conditioned medium to validate inflammation models following treatment with varying concentrations of lipopolysaccharide and determined whether GATA4-dependent inflammatory stimuli affected pancreatic cancer cell invasion and growth in vitro. Nude mouse models of dibutyltin dichloride-induced chronic pancreatitis with orthotopic tumor xenografts were used to evaluate the effect of the inflammatory microenvironment on GATA4 expression in vivo. Our findings indicate that overexpression of GATA4 dramatically aggravated inflammatory stimuli-induced pancreatic cancer cell invasion and growth via NF-κB and STAT3 signaling, whereas silencing of GATA4 attenuated invasion and growth. Overall, our findings suggest that inflammation-driven cancer progression is dependent on GATA4 expression and is mediated through the STAT3 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Listik E, Horst B, Choi AS, Lee NY, Győrffy B, Mythreye K. A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors. PLoS One 2021; 16:e0249558. [PMID: 33819300 PMCID: PMC8021191 DOI: 10.1371/journal.pone.0249558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibins and activins are dimeric ligands belonging to the TGFβ superfamily with emergent roles in cancer. Inhibins contain an α-subunit (INHA) and a β-subunit (either INHBA or INHBB), while activins are mainly homodimers of either βA (INHBA) or βB (INHBB) subunits. Inhibins are biomarkers in a subset of cancers and utilize the coreceptors betaglycan (TGFBR3) and endoglin (ENG) for physiological or pathological outcomes. Given the array of prior reports on inhibin, activin and the coreceptors in cancer, this study aims to provide a comprehensive analysis, assessing their functional prognostic potential in cancer using a bioinformatics approach. We identify cancer cell lines and cancer types most dependent and impacted, which included p53 mutated breast and ovarian cancers and lung adenocarcinomas. Moreover, INHA itself was dependent on TGFBR3 and ENG/CD105 in multiple cancer types. INHA, INHBA, TGFBR3, and ENG also predicted patients' response to anthracycline and taxane therapy in luminal A breast cancers. We also obtained a gene signature model that could accurately classify 96.7% of the cases based on outcomes. Lastly, we cross-compared gene correlations revealing INHA dependency to TGFBR3 or ENG influencing different pathways themselves. These results suggest that inhibins are particularly important in a subset of cancers depending on the coreceptor TGFBR3 and ENG and are of substantial prognostic value, thereby warranting further investigation.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ben Horst
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alex Seok Choi
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nam. Y. Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Balázs Győrffy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
18
|
Su W, Zhu S, Chen K, Yang H, Tian M, Fu Q, Shi G, Feng S, Ren D, Jin X, Yang C. Overexpressed WDR3 induces the activation of Hippo pathway by interacting with GATA4 in pancreatic cancer. J Exp Clin Cancer Res 2021; 40:88. [PMID: 33648545 PMCID: PMC7923337 DOI: 10.1186/s13046-021-01879-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/14/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND WD repeat domain 3 (WDR3) is involved in a variety of cellular processes including gene regulation, cell cycle progression, signal transduction and apoptosis. However, the biological role of WDR3 in pancreatic cancer and the associated mechanism remains unclear. We seek to explore the immune-independent functions and relevant mechanism for WDR3 in pancreatic cancer. METHODS The GEPIA web tool was searched, and IHC assays were conducted to determine the mRNA and protein expression levels of WDR3 in pancreatic cancer patients. MTS, colony formation, and transwell assays were conducted to determine the biological role of WDR3 in human cancer. Western blot analysis, RT-qPCR, and immunohistochemistry were used to detect the expression of specific genes. An immunoprecipitation assay was used to explore protein-protein interactions. RESULTS Our study proved that overexpressed WDR3 was correlated with poor survival in pancreatic cancer and that WDR3 silencing significantly inhibited the proliferation, invasion, and tumor growth of pancreatic cancer. Furthermore, WDR3 activated the Hippo signaling pathway by inducing yes association protein 1 (YAP1) expression, and the combination of WDR3 silencing and administration of the YAP1 inhibitor TED-347 had a synergistic inhibitory effect on the progression of pancreatic cancer. Finally, the upregulation of YAP1 expression induced by WDR3 was dependent on an interaction with GATA binding protein 4 (GATA4), the transcription factor of YAP1, which interaction induced the nuclear translocation of GATA4 in pancreatic cancer cells. CONCLUSIONS We identified a novel mechanism by which WDR3 plays a critical role in promoting pancreatic cancer progression by activating the Hippo signaling pathway through the interaction with GATA4. Therefore, WDR3 is potentially a therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Wenjie Su
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Shikai Zhu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Kai Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Hongji Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Mingwu Tian
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Qiang Fu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
- Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02148, USA
| | - Ganggang Shi
- Jack Bell Research Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shijian Feng
- Jack Bell Research Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Xin Jin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Chong Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
19
|
Zeng Y, Zou M, Liu Y, Que K, Wang Y, Liu C, Gong J, You Y. Keratin 17 Suppresses Cell Proliferation and Epithelial-Mesenchymal Transition in Pancreatic Cancer. Front Med (Lausanne) 2020; 7:572494. [PMID: 33324659 PMCID: PMC7726264 DOI: 10.3389/fmed.2020.572494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023] Open
Abstract
Keratin 17 (K17), a member of type I acidic epithelial keratin family, has been reported to be upregulated in many malignant tumors and to be involved in promoting the development of tumors. However, the precise role of K17 in progression of pancreatic cancer is still unknown. In this study, we found that K17 expression was highly expressed in pancreatic cancer tissues and cell lines and that upregulated expression was associated with the pathological grade and poor prognosis. K17 expression served as an independent predictor of pancreatic cancer survival. Meanwhile, we showed that knocking down K17 induced pancreatic cancer cell proliferation, colony formation and tumor growth in xenografts in mice. However, K17 upregulation inhibited pancreatic cancer cell proliferation and colony formation. Further mechanistic study revealed that K17 knockdown promoted cell cycle progression by upregulating CyclinD1 expression and repressed cell apoptosis. However, K17 upregulation suppressed cell cycle progression by decreasing CyclinD1 expression, and induced apoptosis by increasing the levels of cleaved Caspase3. In addition, K17 knockdown promoted pancreatic cancer cell migration and invasion, but K17 upregulation suppressed cell migration and invasion. Moreover, knocking down K17 promoted epithelial-mesenchymal transition (EMT) in pancreatic cancer cell by inhibiting E-cadherin expression and inducing Vimentin expression, and the effects of K17 upregulation were opposite to that of K17downregulation. Taken together, our findings suggest that K17 functions as a potential tumor suppressor, even though it is upregulated in pancreatic cancer.
Collapse
Affiliation(s)
- Yong Zeng
- Department of Emergency, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zou
- Department of Gastroenterology, West China Hospital of Sichuan University, Sichuan, China
| | - Yan Liu
- Department of Gastroenterology, The Fifth People's Hospital of Chengdu, Chengdu, China
| | - Keting Que
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunbing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changan Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianpin Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu You
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Medlej A, Mohammad Soltani B, Javad Mowla S, Hosseini S, Baharvand H. A novel miRNA located in the GATA4 gene regulates the expression of IGF-1R and AKT1/2 genes and controls cell proliferation. J Cell Biochem 2020; 121:3438-3450. [PMID: 31898360 DOI: 10.1002/jcb.29617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
GATA4 gene is a zinc-finger transcription factor known to be involved in cardiogenesis and the progression of different cancer types. Its diverse functions might be attributed to noncoding RNAs that could be embedded within its sequence. Here, we predicted a stable RNA stem-loop structure that is located in the second intron of the GATA4 gene. Available microRNA (miRNA) sequencing data and molecular genetics tools confirmed the identity of a mature miRNA (named GATA4-miR1) originating from the predicted stem-loop. In silico analysis predicted IGF-1R and AKT1/2 genes as potential targets for GATA4-miR1. Indeed, direct interactions between GATA4-miR1 and 3' untranslated regions sequences of IGF-1R and AKT1/2 genes were documented by dual luciferase assay. In addition, overexpression of GATA4-miR1 in SW480 cells resulted in the reduction of IGF-1R and AKT1/2 genes' expression, detected by reverse transcription quantitative (RT-q) polymerase chain reaction and Western blot analysis. This observation was consistent with a deduced negative correlation between the expression patterns of GATA4-miR1 and IGF-1R genes during cardiomyocyte differentiation. Moreover, overexpressing GATA4-miR1 in SW480 and PC3 cells resulted in a significant increase of the sub-G1 population in both cell lines, as detected by propidium iodide flow cytometry. Further analysis by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay indicated a reduction in the survival and proliferation rates of SW480 cells overexpressing GATA4-miR1, but no impact was observed on apoptosis progression, as indicated by Annexin-V flow cytometry. Overall, GATA4-miR1 represents a promising candidate for further research in the fields of cancer and cardiovascular therapeutics.
Collapse
Affiliation(s)
- Abdallah Medlej
- Faculty of Biological Sciences, Department of Molecular Genetics, Tarbiat Modares University, Tehran, Iran
| | - Bahram Mohammad Soltani
- Faculty of Biological Sciences, Department of Molecular Genetics, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Faculty of Biological Sciences, Department of Molecular Genetics, Tarbiat Modares University, Tehran, Iran
| | - Saeid Hosseini
- Heart Valve Disease Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
21
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|