1
|
Cinca-Morros S, Garcia-Rey S, Álvarez-Herms J, Basabe-Desmonts L, Benito-Lopez F. A physiological perspective of the relevance of sweat biomarkers and their detection by wearable microfluidic technology: A review. Anal Chim Acta 2024; 1327:342988. [PMID: 39266058 DOI: 10.1016/j.aca.2024.342988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 09/14/2024]
Abstract
The great majority of published microfluidic wearable platforms for sweat sensing focus on the development of the technology to fabricate the device, the integration of sensing materials and actuators and the fluidics of sweat within the device. However, very few papers have discussed the physiological relevance of the metabolites measured using these novel approaches. In fact, some of the analytes present in sweat, which serve as biomarkers in blood, do not show a correlation with blood levels. This discrepancy can be attributed to factors such as contamination during measurements, the metabolism of sweat glands, or challenges in obtaining significant samples. The objective of this review is to present a critical and meaningful insight into the real applicability and potential use of wearable technology for improving health and sport performance. It also discusses the current limitations and future challenges of microfluidics, aiming to provide accurate information about the actual needs in this field. This work is expected to contribute to the future development of more suitable wearable microfluidic technology for health and sports science monitoring, using sweat as the biofluid for analysis.
Collapse
Affiliation(s)
- Sergi Cinca-Morros
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain; Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| | - Sandra Garcia-Rey
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain; Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jesús Álvarez-Herms
- Research Group in Sports Genomics, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain; PHYMOlab Research & Exercise Performance, Segovia, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013 Bilbao, Spain.
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain.
| |
Collapse
|
2
|
Davis N, Heikenfeld J, Milla C, Javey A. The challenges and promise of sweat sensing. Nat Biotechnol 2024; 42:860-871. [PMID: 38212492 DOI: 10.1038/s41587-023-02059-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024]
Abstract
The potential of monitoring biomarkers in sweat for health-related applications has spurred rapid growth in the field of wearable sweat sensors over the past decade. Some of the key challenges have been addressed, including measuring sweat-secretion rate and collecting sufficient sample volumes for real-time, continuous molecular analysis without intense exercise. However, except for assessment of cystic fibrosis and regional nerve function, the ability to accurately measure analytes of interest and their physiological relevance to health metrics remain to be determined. Although sweat is not a crystal ball into every aspect of human health, we expect sweat measurements to continue making inroads into niche applications involving active sweating, such as hydration monitoring for athletes and physical laborers and later for medical and casual health monitoring of relevant drugs and hormones.
Collapse
Affiliation(s)
- Noelle Davis
- Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Carlos Milla
- The Stanford Cystic Fibrosis Center, Center for Excellence in Pulmonary Biology, Stanford School of Medicine, Palo Alto, CA, USA.
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
3
|
Zhyvolozhnyi A, Samoylenko A, Bart G, Kaisanlahti A, Hekkala J, Makieieva O, Pratiwi F, Miinalainen I, Kaakinen M, Bergman U, Singh P, Nurmi T, Khosrowbadi E, Abdelrady E, Kellokumpu S, Kosamo S, Reunanen J, Röning J, Hiltunen J, Vainio SJ. Enrichment of sweat-derived extracellular vesicles of human and bacterial origin for biomarker identification. Nanotheranostics 2024; 8:48-63. [PMID: 38164498 PMCID: PMC10750121 DOI: 10.7150/ntno.87822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024] Open
Abstract
Sweat contains biomarkers for real-time non-invasive health monitoring, but only a few relevant analytes are currently used in clinical practice. In the present study, we investigated whether sweat-derived extracellular vesicles (EVs) can be used as a source of potential protein biomarkers of human and bacterial origin. Methods: By using ExoView platform, electron microscopy, nanoparticle tracking analysis and Western blotting we characterized EVs in the sweat of eight volunteers performing rigorous exercise. We compared the presence of EV markers as well as general protein composition of total sweat, EV-enriched sweat and sweat samples collected in alginate skin patches. Results: We identified 1209 unique human proteins in EV-enriched sweat, of which approximately 20% were present in every individual sample investigated. Sweat derived EVs shared 846 human proteins (70%) with total sweat, while 368 proteins (30%) were captured by medical grade alginate skin patch and such EVs contained the typical exosome marker CD63. The majority of identified proteins are known to be carried by EVs found in other biofluids, mostly urine. Besides human proteins, EV-enriched sweat samples contained 1594 proteins of bacterial origin. Bacterial protein profiles in EV-enriched sweat were characterized by high interindividual variability, that reflected differences in total sweat composition. Alginate-based sweat patch accumulated only 5% proteins of bacterial origin. Conclusion: We showed that sweat-derived EVs provide a rich source of potential biomarkers of human and bacterial origin. Use of commercially available alginate skin patches selectively enrich for human derived material with very little microbial material collected.
Collapse
Affiliation(s)
- Artem Zhyvolozhnyi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Anatoliy Samoylenko
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Geneviève Bart
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Anna Kaisanlahti
- Faculty of Medicine, Biocenter of Oulu, University of Oulu, Finland
| | - Jenni Hekkala
- Faculty of Medicine, Biocenter of Oulu, University of Oulu, Finland
| | - Olha Makieieva
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Feby Pratiwi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Ilkka Miinalainen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Mika Kaakinen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Ulrich Bergman
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Prateek Singh
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Tuomas Nurmi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Elham Khosrowbadi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Eslam Abdelrady
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Susanna Kosamo
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Justus Reunanen
- Faculty of Medicine, Biocenter of Oulu, University of Oulu, Finland
| | - Juha Röning
- Department of Computer Science and Engineering, University of Oulu, Finland
| | | | - Seppo J. Vainio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Tu J, Min J, Song Y, Xu C, Li J, Moore J, Hanson J, Hu E, Parimon T, Wang TY, Davoodi E, Chou TF, Chen P, Hsu JJ, Rossiter HB, Gao W. A wireless patch for the monitoring of C-reactive protein in sweat. Nat Biomed Eng 2023; 7:1293-1306. [PMID: 37349389 PMCID: PMC10592261 DOI: 10.1038/s41551-023-01059-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
The quantification of protein biomarkers in blood at picomolar-level sensitivity requires labour-intensive incubation and washing steps. Sensing proteins in sweat, which would allow for point-of-care monitoring, is hindered by the typically large interpersonal and intrapersonal variations in its composition. Here we report the design and performance of a wearable and wireless patch for the real-time electrochemical detection of the inflammatory biomarker C-reactive (CRP) protein in sweat. The device integrates iontophoretic sweat extraction, microfluidic channels for sweat sampling and for reagent routing and replacement, and a graphene-based sensor array for quantifying CRP (via an electrode functionalized with anti-CRP capture antibodies-conjugated gold nanoparticles), ionic strength, pH and temperature for the real-time calibration of the CRP sensor. In patients with chronic obstructive pulmonary disease, with active or past infections or who had heart failure, the elevated concentrations of CRP measured via the patch correlated well with the protein's levels in serum. Wearable biosensors for the real-time sensitive analysis of inflammatory proteins in sweat may facilitate the management of chronic diseases.
Collapse
Affiliation(s)
- Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jeff Moore
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Justin Hanson
- Division of Cardiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Erin Hu
- Division of Cardiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Tanyalak Parimon
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ting-Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Elham Davoodi
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Peter Chen
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey J Hsu
- Division of Cardiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry B Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
5
|
Qiao X, Cai Y, Kong Z, Xu Z, Luo X. A Wearable Electrochemical Sensor Based on Anti-Fouling and Self-Healing Polypeptide Complex Hydrogels for Sweat Monitoring. ACS Sens 2023; 8:2834-2842. [PMID: 37470172 DOI: 10.1021/acssensors.3c00778] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Although continuous monitoring of constituents in complex sweat is crucial for noninvasive physiological evaluation, biofouling on the sweat sensor surface and inadequate flexible self-healing materials restrict its applications. Herein, a fully self-healing and strong anti-biofouling polypeptide complex hydrogel (AuNPs/MoS2/Pep hydrogel) with excellent electrochemical performances was created. The anti-fouling electrochemical sweat sensor was fabricated based on the AuNPs/MoS2/Pep hydrogel to address these issues. It was found that the polypeptide hydrogel was designed to form a network structure and carried abundant hydrophilic groups, resulting in a AuNPs/MoS2/Pep hydrogel with superior anti-biofouling properties in sweat for 30 min and even long-term stability in undiluted human sweat. In addition, SEM, TEM, UV, XPS, and infrared spectrogram demonstrated that the binding force of π-π stacking force between MoS2 and naphthalene groups in the designed peptide endowed the polypeptide complex hydrogel with an excellent self-healing property. Furthermore, the polypeptide complex hydrogel preserved wearable device function of continuously monitoring uric acid (UA) and ascorbic acid (AA) in sweat in situ. This novel fabricated sweat sensor with high anti-biofouling ability, excellent self-healing property, and sensitive and selective analytical capability describes a new opportunity for health monitoring in situ.
Collapse
Affiliation(s)
- Xiujuan Qiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yuchen Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhaoyang Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhenying Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Shajari S, Salahandish R, Zare A, Hassani M, Moossavi S, Munro E, Rashid R, Rosenegger D, Bains JS, Sanati Nezhad A. MicroSweat: A Wearable Microfluidic Patch for Noninvasive and Reliable Sweat Collection Enables Human Stress Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204171. [PMID: 36461733 PMCID: PMC9982588 DOI: 10.1002/advs.202204171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Indexed: 05/13/2023]
Abstract
Stress affects cognition, behavior, and physiology, leading to lasting physical and mental illness. The ability to detect and measure stress, however, is poor. Increased circulating cortisol during stress is mirrored by cortisol release from sweat glands, providing an opportunity to use it as an external biomarker for monitoring internal emotional state. Despite the attempts at using wearable sensors for monitoring sweat cortisol, there is a lack of reliable wearable sweat collection devices that preserve the concentration and integrity of sweat biomolecules corresponding to stress levels. Here, a flexible, self-powered, evaporation-free, bubble-free, surfactant-free, and scalable capillary microfluidic device, MicroSweat, is fabricated to reliably collect human sweat from different body locations. Cortisol levels are detected corresponding to severe stress ranging from 25 to 125 ng mL-1 averaged across multiple body regions and 100-1000 ng mL-1 from the axilla. A positive nonlinear correlation exists between cortisol concentration and stress levels quantified using the perceived stress scale (PSS). Moreover, owing to the sweat variation in response to environmental effects and physiological differences, the longitudinal and personalized profile of sweat cortisol is acquired, for the first time, for various body locations. The obtained sweat cortisol data is crucial for analyzing human stress in personalized and clinical healthcare sectors.
Collapse
Affiliation(s)
- Shaghayegh Shajari
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- StressynomicsHotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Azam Zare
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Mohsen Hassani
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Shirin Moossavi
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Physiology and PharmacologyUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- International Microbiome CentreCumming School of MedicineHealth Sciences CentreUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Emily Munro
- Department of Chemical and Petroleum EngineeringUniversity of CalgaryCalgaryAlbertaT2N1 N4Canada
| | - Ruba Rashid
- Department of Civil EngineeringUniversity of CalgaryCalgaryAlbertaT2N1 N4Canada
| | | | - Jaideep S. Bains
- StressynomicsHotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Amir Sanati Nezhad
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| |
Collapse
|
7
|
Cornet M, Nguyen‐Khoa T, Kelly‐Aubert M, Jung V, Chedevergne F, Le Bourgeois M, Aoust L, Roger K, Guerrera CI, Sermet‐Gaudelus I. Proteomic profiling of sweat in patients with cystic fibrosis provides new insights into epidermal homoeostasis. SKIN HEALTH AND DISEASE 2023; 3:e161. [PMID: 36751320 PMCID: PMC9892418 DOI: 10.1002/ski2.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND A high proportion of patients with Cystic Fibrosis (CF) also present the rare skin disease aquagenic palmoplantar keratoderma. A possible link between this condition and absence of a functional CF Transmembrane conductance Regulator protein in the sweat acinus and collecting duct remains unknown. METHODS In-depth characterization of sweat proteome profiles was performed in 25 CF patients compared to 12 healthy controls. A 20 μL sweat sample was collected after pilocarpine iontophoresis and liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomic analysis was performed. RESULTS Sweat proteome profile of CF patients was significantly different from that of healthy subjects with 57 differentially expressed proteins. Cystic Fibrosis sweat proteome was characterized by an increase in 25 proteins including proteases (Kallikrein 7 and 13, Phospholipase B domain containing 1, Cathepsin A L2 and B, Lysosomal Pro-X carboxypeptidase); proinflammatory proteins (Annexin A2, Chitinase-3-like protein 1); cytochrome c and transglutaminases. Thirty-two proteins were downregulated in CF sweat including proteases (Elastase 2), antioxidative protein FAM129 B; membrane-bound transporter SLC6A14 and regulator protein Sodium-hydrogen antiporter 3 regulator 1. CONCLUSION This study is the first to report in-depth characterization of endogenous peptides in CF sweat and could help understand the complex physiology of the sweat gland. The proteome profile highlights the unbalanced proteolytic and proinflammatory activity of sweat in CF. These results also suggest a defect in pathways involved in skin barrier integrity in CF patients. Sweat proteome profile could prove to be a useful tool in the context of personalized medicine in CF.
Collapse
Affiliation(s)
- Matthieu Cornet
- Institut Necker Enfants MaladesINSERM U1151ParisFrance
- Center for Computational BiologyMines ParisTechPSL Research UniversityParisFrance
- Institut CurieParisFrance
- INSERM U900ParisFrance
| | - Thao Nguyen‐Khoa
- Institut Necker Enfants MaladesINSERM U1151ParisFrance
- Laboratory of BiochemistryHôpital Universitaire Necker Enfants Malades AP‐HP CentreParisFrance
| | - Mairead Kelly‐Aubert
- Institut Necker Enfants MaladesINSERM U1151ParisFrance
- Université Paris CitéParisFrance
| | - Vincent Jung
- Proteomics Platform NeckerUniversité Paris CitéStructure Fédérative de Recherche Necker (SFR Necker, INSERM US24/CNRS UAR3633)ParisFrance
| | - Frédérique Chedevergne
- Centre de Référence Maladies RaresMucoviscidose et Maladies ApparentéesHôpital Necker Enfants Malades AP‐HP Centre Paris CitéParisFrance
- European Respiratory NetworkERN LungFrankfurtGermany
| | - Muriel Le Bourgeois
- Centre de Référence Maladies RaresMucoviscidose et Maladies ApparentéesHôpital Necker Enfants Malades AP‐HP Centre Paris CitéParisFrance
- European Respiratory NetworkERN LungFrankfurtGermany
| | - Laura Aoust
- Centre de Référence Maladies RaresMucoviscidose et Maladies ApparentéesHôpital Necker Enfants Malades AP‐HP Centre Paris CitéParisFrance
- European Respiratory NetworkERN LungFrankfurtGermany
| | - Kévin Roger
- Proteomics Platform NeckerUniversité Paris CitéStructure Fédérative de Recherche Necker (SFR Necker, INSERM US24/CNRS UAR3633)ParisFrance
| | - Chiara Ida Guerrera
- Proteomics Platform NeckerUniversité Paris CitéStructure Fédérative de Recherche Necker (SFR Necker, INSERM US24/CNRS UAR3633)ParisFrance
| | - Isabelle Sermet‐Gaudelus
- Institut Necker Enfants MaladesINSERM U1151ParisFrance
- Université Paris CitéParisFrance
- Centre de Référence Maladies RaresMucoviscidose et Maladies ApparentéesHôpital Necker Enfants Malades AP‐HP Centre Paris CitéParisFrance
- European Respiratory NetworkERN LungFrankfurtGermany
| |
Collapse
|
8
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
9
|
Wang X, He A, Yu B, Zhang L, Pang W, Zhang H, Niu P. Uncovering the Sweat Biofouling Components and Distributions in Electrochemical Sensors. Anal Chem 2022; 94:14402-14409. [PMID: 36197729 DOI: 10.1021/acs.analchem.2c03158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interest is growing in the creation of wearable sweat sensors for continuous, low-cost, and noninvasive health diagnosis at the molecular level. The biofouling phenomenon leads to degradation of sweat sensors' performance over time, further limiting the successive monitoring of human health status. However, to date, the mechanism of sweat fouling is still unclear, with the inability to provide effective guidance on antifouling strategies. This study clarifies chemical compositions in sweat fouling and fouling distributions on the surface of sensors. Gold film electrodes were prepared on glass and poly(ethylene terephthalate) (PET) substrates and contaminated by human facial sweat (from eccrine sweat glands and apocrine sweat glands) and palm sweat (only from eccrine sweat glands). A scanning electron microscope (SEM), an optical microscope (OM), and an atomic force microscope (AFM) were employed to study the surface morphology of biofouling electrodes. The existence of sweat fouling was characterized by AFM adhesion force, a Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectra (XPS). FTIR along with XPS was adopted to analyze the biofouling components, and differential reflectance spectroscopy (DRS) was undertaken to observe the distribution of biofouling on the surface of the electrodes. As a result, we found that neither skin cell pieces nor recognized protein adsorption is the dominant source of biofouling, but the lipids in sweat form an inhomogeneous fouling layer on the electrode surface to reduce the electrochemical reactivity of sensors. This study provides deeper insights into sweat biofouling components and distributions and points out the right direction for resolving the problem of limited continuity in wearable sweat sensors.
Collapse
Affiliation(s)
- Xiaohe Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Anwei He
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Bo Yu
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Liang Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Haolong Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Pengfei Niu
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Gotsmy M, Brunmair J, Büschl C, Gerner C, Zanghellini J. Probabilistic quotient's work and pharmacokinetics' contribution: countering size effect in metabolic time series measurements. BMC Bioinformatics 2022; 23:379. [PMID: 36114458 PMCID: PMC9482228 DOI: 10.1186/s12859-022-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Metabolomic time course analyses of biofluids are highly relevant for clinical diagnostics. However, many sampling methods suffer from unknown sample sizes, commonly known as size effects. This prevents absolute quantification of biomarkers. Recently, several mathematical post acquisition normalization methods have been developed to overcome these problems either by exploiting already known pharmacokinetic information or by statistical means. Here we present an improved normalization method, MIX, that combines the advantages of both approaches. It couples two normalization terms, one based on a pharmacokinetic model (PKM) and the other representing a popular statistical approach, probabilistic quotient normalization (PQN), in a single model. To test the performance of MIX, we generated synthetic data closely resembling real finger sweat metabolome measurements. We show that MIX normalization successfully tackles key weaknesses of the individual strategies: it (i) reduces the risk of overfitting with PKM, and (ii), contrary to PQN, it allows to compute sample volumes. Finally, we validate MIX by using real finger sweat as well as blood plasma metabolome data and demonstrate that MIX allows to better and more robustly correct for size effects. In conclusion, the MIX method improves the reliability and robustness of quantitative biomarker detection in finger sweat and other biofluids, paving the way for biomarker discovery and hypothesis generation from metabolomic time course data.
Collapse
Affiliation(s)
- Mathias Gotsmy
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Vienna, Austria
| | - Julia Brunmair
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christoph Büschl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Sweat Proteomics in Cystic Fibrosis: Discovering Companion Biomarkers for Precision Medicine and Therapeutic Development. Cells 2022; 11:cells11152358. [PMID: 35954202 PMCID: PMC9367602 DOI: 10.3390/cells11152358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
In clinical routine, the diagnosis of cystic fibrosis (CF) is still challenging regardless of international consensus on diagnosis guidelines and tests. For decades, the classical Gibson and Cooke test measuring sweat chloride concentration has been a keystone, yet, it may provide normal or equivocal results. As of now, despite the combination of sweat testing, CFTR genotyping, and CFTR functional testing, a small fraction (1–2%) of inconclusive diagnoses are reported and justifies the search for new CF biomarkers. More importantly, in the context of precision medicine, with a view to early diagnosis, better prognosis, appropriate clinical follow-up, and new therapeutic development, discovering companion biomarkers of CF severity and phenotypic rescue are of utmost interest. To date, previous sweat proteomic studies have already documented disease-specific variations of sweat proteins (e.g., in schizophrenia and tuberculosis). In the current study, sweat samples from 28 healthy control subjects and 14 patients with CF were analyzed by nanoUHPLC-Q-Orbitrap-based shotgun proteomics, to look for CF-associated changes in sweat protein composition and abundance. A total of 1057 proteins were identified and quantified at an individual level, by a shotgun label-free approach. Notwithstanding similar proteome composition, enrichment, and functional annotations, control and CF samples featured distinct quantitative proteome profiles significantly correlated with CF, accounting for the respective inter-individual variabilities of control and CF sweat. All in all: (i) 402 sweat proteins were differentially abundant between controls and patients with CF, (ii) 68 proteins varied in abundance between F508del homozygous patients and patients with another genotype, (iii) 71 proteins were differentially abundant according to the pancreatic function, and iv) 54 proteins changed in abundance depending on the lung function. The functional annotation of pathophysiological biomarkers highlighted eccrine gland cell perturbations in: (i) protein biosynthesis and trafficking, (ii) CFTR proteostasis and membrane stability, and (iii) cell-cell adherence, membrane integrity, and cytoskeleton crosstalk. Cytoskeleton-related biomarkers were of utmost interest because of the consistency between variations observed here in CF sweat and variations previously documented in other CF tissues. From a clinical stance, nine candidate biomarkers of CF diagnosis (CUTA, ARG1, EZR, AGA, FLNA, MAN1A1, MIA3, LFNG, SIAE) and seven candidate biomarkers of CF severity (ARG1, GPT, MDH2, EML4 (F508del homozygous), MGAT1 (pancreatic insufficiency), IGJ, TOLLIP (lung function impairment)) were deemed suitable for further verification.
Collapse
|
12
|
Garzarelli V, Ferrara F, Primiceri E, Chiriacò MS. Biofluids manipulation methods for liquid biopsy in minimally-invasive assays. MethodsX 2022; 9:101759. [PMID: 35774416 PMCID: PMC9237943 DOI: 10.1016/j.mex.2022.101759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
The Liquid Biopsy (LB) is an opportunity for non-invasive diagnosis and prognosis of various diseases. To date, it isn't possible to consider that tissue biopsy can represent a pathology entirety. Then, body fluids are rich in a large number and variety of biomarkers and they can provide information about several diseases.Recently, other biological fluids, easy to be collected are rising for their significant content of biomarkers and for the possibility to collect and manipulate them without the intervention of medical staff. The management of biological fluids requires suitable storage methods. Temperature, storage time and physical stresses due to sample handling can lead to chemical and physical changes that may induce sample degradation and incorrect analysis. The reliability of a diagnostic or screening test depends on its sensitivity and specificity. As the liquid biopsy is a 'snapshot' of a pathophysiological condition, it is crucial that its components do not degrade due to the improper handling of the body fluid. In this review, some handling methods of Saliva, Urine, Stool, Seminal Fluid, Tears and Sweat samples will be described, as well as protocols to facilitate the analysis of metabolites, nucleic acids, proteins and Extracellular Vesicles (EVs) from those unusual body fluids.
Collapse
Affiliation(s)
- Valeria Garzarelli
- University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy.,CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Francesco Ferrara
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.,STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | | |
Collapse
|
13
|
Salatiello S, Spinelli M, Cassiano C, Amoresano A, Marini F, Cinti S. Sweat urea bioassay based on degradation of Prussian Blue as the sensing architecture. Anal Chim Acta 2022; 1210:339882. [DOI: 10.1016/j.aca.2022.339882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022]
|
14
|
Nunes MJ, Moura JJG, Noronha JP, Branco LC, Samhan-Arias A, Sousa JP, Rouco C, Cordas CM. Evaluation of Sweat-Sampling Procedures for Human Stress-Biomarker Detection. ANALYTICA 2022; 3:178-194. [DOI: 10.3390/analytica3020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Sweat is a potential biological fluid for the non-invasive analytical assessment of diverse molecules, including biomarkers. Notwithstanding, the sampling methodology is critical, and it must be assessed prior to using sweat for clinical diagnosis. In the current work, the analytical methodology was further developed taking into account the sampling step, in view of the identification and level variations of sweat components that have potential to be stress biomarkers using separation by liquid chromatography and detection by tandem mass spectrometry, in order to attain a screening profile of 26 molecules in just one stage. As such, the molecule identification was used as a test for the evaluation of the sampling procedures, including the location on the body, using patches for long-term sampling and vials for direct sampling, through a qualitative approach. From this evaluation it was possible to conclude that the sampling may be performed on the chest or back skin. Additionally, possible interference was evaluated. The long-term sampling with patches can be used under both rest and exercise conditions with variation of the detected molecule’s levels. The direct sampling, using vials, has the advantage of not having interferences but the disadvantage of only being effective after exercise in order to have enough sample for sweat analysis.
Collapse
Affiliation(s)
- Maria João Nunes
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João Paulo Noronha
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Luís Cobra Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Alejandro Samhan-Arias
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - João P. Sousa
- CINAMIL, Academia Militar, Rua Gomes Freire, 1150-244 Lisboa, Portugal
| | - Carlos Rouco
- CINAMIL, Academia Militar, Rua Gomes Freire, 1150-244 Lisboa, Portugal
| | - Cristina M. Cordas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
15
|
Pérez D, Orozco J. Wearable electrochemical biosensors to measure biomarkers with complex blood-to-sweat partition such as proteins and hormones. Mikrochim Acta 2022; 189:127. [PMID: 35233646 PMCID: PMC8886869 DOI: 10.1007/s00604-022-05228-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
Smart electronic devices based on micro-controllers, also referred to as fashion electronics, have raised wearable technology. These devices may process physiological information to facilitate the wearer's immediate biofeedback in close contact with the body surface. Standard market wearable devices detect observable features as gestures or skin conductivity. In contrast, the technology based on electrochemical biosensors requires a biomarker in close contact with both a biorecognition element and an electrode surface, where electron transfer phenomena occur. The noninvasiveness is pivotal for wearable technology; thus, one of the most common target tissues for real-time monitoring is the skin. Noninvasive biosensors formats may not be available for all analytes, such as several proteins and hormones, especially when devices are installed cutaneously to measure in the sweat. Processes like cutaneous transcytosis, the paracellular cell–cell unions, or even reuptake highly regulate the solutes content of the sweat. This review discusses recent advances on wearable devices based on electrochemical biosensors for biomarkers with a complex blood-to-sweat partition like proteins and some hormones, considering the commented release regulation mechanisms to the sweat. It highlights the challenges of wearable epidermal biosensors (WEBs) design and the possible solutions. Finally, it charts the path of future developments in the WEBs arena in converging/emerging digital technologies.
Collapse
Affiliation(s)
- David Pérez
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67, Nº 52-20, 050010, Medellín, Colombia.
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67, Nº 52-20, 050010, Medellín, Colombia.
| |
Collapse
|
16
|
Lemonakis N, Mougios V, Halabalaki M, Dagla I, Tsarbopoulos A, Skaltsounis AL, Gikas E. Effect of Supplementation with Olive Leaf Extract Enriched with Oleuropein on the Metabolome and Redox Status of Athletes’ Blood and Urine—A Metabolomic Approach. Metabolites 2022; 12:metabo12020195. [PMID: 35208268 PMCID: PMC8878006 DOI: 10.3390/metabo12020195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023] Open
Abstract
Oleuropein (OE) is a secoiridoid glycoside occurring mostly in the Oleaceae family and presenting several pharmacological properties, including hypolipidemic and antioxidant properties. Based on these, several dietary supplements containing olive leaf extracts enriched with OE are commercially available in many countries. The current study aimed to examine the effect of supplementation with such an extract on the serum and urine metabolome of young healthy male athletes. For this purpose, applying a randomized, balanced, double-blind study, nine young, healthy males (physical education students) received either a commercially prepared extract or placebo for one week, followed by a two-week washout period; then, they were subsequently dosed with the alternate scheme (crossover design). Urine and serum samples were analyzed using UHPLC-HRMS, followed by evaluation with several multivariate methods of data analysis. The data were interpreted using a multilevel metabolomic approach (multilevel-sPLSDA) as it was found to be the most efficient approach for the study design. Metabolic pathway analysis of the most affected metabolites revealed that tryptophan and acylcarnitine’s biochemistries were most influenced. Furthermore, several metabolites connected to indole metabolism were detected, which may indicate enhanced serotonin turnover. Phenylethylamine and related metabolites, as well as estrone, were connected to enhanced performance. In addition, possible changes to the lipidemic profile and the blood and urine redox statuses were investigated.
Collapse
Affiliation(s)
- Nikolaos Lemonakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 157 71 Athens, Greece; (N.L.); (M.H.); (A.-L.S.)
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 157 71 Athens, Greece; (N.L.); (M.H.); (A.-L.S.)
| | - Ioanna Dagla
- The Goulandris Natural History Museum, Bioanalytical Laboratory, GAIA Research Center, 145 62 Kifissia, Greece; (I.D.); (A.T.)
| | - Anthony Tsarbopoulos
- The Goulandris Natural History Museum, Bioanalytical Laboratory, GAIA Research Center, 145 62 Kifissia, Greece; (I.D.); (A.T.)
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 157 71 Athens, Greece; (N.L.); (M.H.); (A.-L.S.)
| | - Evagelos Gikas
- Laboratory of Analytical Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 157 71 Athens, Greece
- Correspondence: ; Tel.: +30-210-727-4850
| |
Collapse
|
17
|
Khoramipour K, Sandbakk Ø, Keshteli AH, Gaeini AA, Wishart DS, Chamari K. Metabolomics in Exercise and Sports: A Systematic Review. Sports Med 2021; 52:547-583. [PMID: 34716906 DOI: 10.1007/s40279-021-01582-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metabolomics is a field of omics science that involves the comprehensive measurement of small metabolites in biological samples. It is increasingly being used to study exercise physiology and exercise-associated metabolism. However, the field of exercise metabolomics has not been extensively reviewed or assessed. OBJECTIVE This review on exercise metabolomics has three aims: (1) to provide an introduction to the general workflow and the different metabolomics technologies used to conduct exercise metabolomics studies; (2) to provide a systematic overview of published exercise metabolomics studies and their findings; and (3) to discuss future perspectives in the field of exercise metabolomics. METHODS We searched electronic databases including Google Scholar, Science Direct, PubMed, Scopus, Web of Science, and the SpringerLink academic journal database between January 1st 2000 and September 30th 2020. RESULTS Based on our detailed analysis of the field, exercise metabolomics studies fall into five major categories: (1) exercise nutrition metabolism; (2) exercise metabolism; (3) sport metabolism; (4) clinical exercise metabolism; and (5) metabolome comparisons. Exercise metabolism is the most popular category. The most common biological samples used in exercise metabolomics studies are blood and urine. Only a small minority of exercise metabolomics studies employ targeted or quantitative techniques, while most studies used untargeted metabolomics techniques. In addition, mass spectrometry was the most commonly used platform in exercise metabolomics studies, identified in approximately 54% of all published studies. Our data indicate that biomarkers or biomarker panels were identified in 34% of published exercise metabolomics studies. CONCLUSION Overall, there is an increasing trend towards better designed, more clinical, mass spectrometry-based metabolomics studies involving larger numbers of participants/patients and larger numbers of metabolites being identified.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, Medical Faculty, Kerman University of Medical Sciences, Blvd. 22 Bahman, Kerman, Iran.
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Abbas Ali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Computing Science, University of Alberta, AB, T6G 2E9, Edmonton, Canada
| | - Karim Chamari
- ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
18
|
Burat B, Reynaerts A, Baiwir D, Fléron M, Eppe G, Leal T, Mazzucchelli G. Characterization of the Human Eccrine Sweat Proteome-A Focus on the Biological Variability of Individual Sweat Protein Profiles. Int J Mol Sci 2021; 22:ijms221910871. [PMID: 34639210 PMCID: PMC8509809 DOI: 10.3390/ijms221910871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The potential of eccrine sweat as a bio-fluid of interest for diagnosis and personalized therapy has not yet been fully evaluated, due to the lack of in-depth sweat characterization studies. Thanks to recent developments in omics, together with the availability of accredited sweat collection methods, the analysis of human sweat may now be envisioned as a standardized, non-invasive test for individualized monitoring and personalized medicine. Here, we characterized individual sweat samples, collected from 28 healthy adult volunteers under the most standardized sampling methodology, by applying optimized shotgun proteomics. The thorough characterization of the sweat proteome allowed the identification of 983 unique proteins from which 344 were identified across all samples. Annotation-wise, the study of the sweat proteome unveiled the over-representation of newly addressed actin dynamics, oxidative stress and proteasome-related functions, in addition to well-described proteolysis and anti-microbial immunity. The sweat proteome composition correlated with the inter-individual variability of sweat secretion parameters. In addition, both gender-exclusive proteins and gender-specific protein abundances were highlighted, despite the high similarity between human female and male sweat proteomes. In conclusion, standardized sample collection coupled with optimized shotgun proteomics significantly improved the depth of sweat proteome coverage, far beyond previous similar studies. The identified proteins were involved in many diverse biological processes and molecular functions, indicating the potential of this bio-fluid as a valuable biological matrix for further studies. Addressing sweat variability, our results prove the proteomic profiling of sweat to be a promising bio-fluid analysis for individualized, non-invasive monitoring and personalized medicine.
Collapse
Affiliation(s)
- Bastien Burat
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
- Correspondence: (B.B.); (G.M.); Tel.: +32-(0)-4-366-34-11; Fax: +32-(0)-4-366-43-8 (G.M.)
| | - Audrey Reynaerts
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, B-1200 Brussels, Belgium; (A.R.); (T.L.)
| | - Dominique Baiwir
- GIGA Proteomics Facility, Liège Université, B-4000 Liège, Belgium; (D.B.); (M.F.)
| | - Maximilien Fléron
- GIGA Proteomics Facility, Liège Université, B-4000 Liège, Belgium; (D.B.); (M.F.)
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
| | - Teresinha Leal
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, B-1200 Brussels, Belgium; (A.R.); (T.L.)
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
- Correspondence: (B.B.); (G.M.); Tel.: +32-(0)-4-366-34-11; Fax: +32-(0)-4-366-43-8 (G.M.)
| |
Collapse
|
19
|
Poitras T, Piragasam RS, Joy T, Jackson J, Chandrasekhar A, Fahlman R, Zochodne DW. Major urinary protein excreted in rodent hindpaw sweat. J Anat 2021; 239:529-535. [PMID: 33686663 PMCID: PMC8273588 DOI: 10.1111/joa.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Alternative roles for sweat production beyond thermoregulation, considered less frequently, include chemical signaling. We identified the presence of a well-established rodent urinary pheromone, major urinary protein (MUP) in sweat ductules of the footpad dermal skin of mice. A hindpaw sweat proteomic analysis in hindpaw sweat samples collected in rats and generated by unmyelinated axon activation, identified seven lipocalin family members including MUP and 19 additional unique proteins. Behavioural responses to sniffing male mouse foot protein lysates suggested avoidance in a subset of male mice, but were not definitive. Rodent hindpaw sweat glands secrete a repertoire of proteins that include MUPs known to have roles in olfactory communication.
Collapse
Affiliation(s)
- Trevor Poitras
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | | | - Twinkle Joy
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Jesse Jackson
- Department of Physiology and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Ambika Chandrasekhar
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Richard Fahlman
- Department of BiochemistryUniversity of AlbertaEdmontonABCanada
| | - Douglas W. Zochodne
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
20
|
Sweat metabolome and proteome: Recent trends in analytical advances and potential biological functions. J Proteomics 2021; 246:104310. [PMID: 34198014 DOI: 10.1016/j.jprot.2021.104310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Metabolome and proteome profiling of biofluids, e.g., urine, plasma, has generated vast and ever-increasing amounts of knowledge over the last few decades. Paradoxically, omics analyses of sweat, one of the most readily available human biofluids, have lagged behind. This review capitalizes on the current knowledge and state of the art analytical advances of sweat metabolomics and proteomics. Moreover, current applications of sweat omics such as the discovery of disease biomarkers and monitoring athletic performance are also presented in this review. Another area of emerging knowledge that has been highlighted herein lies in the role of skin host-microbiome interactions in shaping the sweat metabolite-protein profiles. Discussion of future research directions describes the need to have a better grasp of sweat chemicals and to better understand how they function as aided by advances in omics tools. Overall, the role of sweat as an information-rich biofluid that could complement the exploration of the skin metabolome/proteome is emphasized.
Collapse
|
21
|
Molecular Portrait of an Athlete. Diagnostics (Basel) 2021; 11:diagnostics11061095. [PMID: 34203902 PMCID: PMC8232626 DOI: 10.3390/diagnostics11061095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 01/15/2023] Open
Abstract
Sequencing of the human genome and further developments in "omics" technologies have opened up new possibilities in the study of molecular mechanisms underlying athletic performance. It is expected that molecular markers associated with the development and manifestation of physical qualities (speed, strength, endurance, agility, and flexibility) can be successfully used in the selection systems in sports. This includes the choice of sports specialization, optimization of the training process, and assessment of the current functional state of an athlete (such as overtraining). This review summarizes and analyzes the genomic, proteomic, and metabolomic studies conducted in the field of sports medicine.
Collapse
|
22
|
Bennet D, Khorsandian Y, Pelusi J, Mirabella A, Pirrotte P, Zenhausern F. Molecular and physical technologies for monitoring fluid and electrolyte imbalance: A focus on cancer population. Clin Transl Med 2021; 11:e461. [PMID: 34185420 PMCID: PMC8214861 DOI: 10.1002/ctm2.461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 12/23/2022] Open
Abstract
Several clinical examinations have shown the essential impact of monitoring (de)hydration (fluid and electrolyte imbalance) in cancer patients. There are multiple risk factors associated with (de)hydration, including aging, excessive or lack of fluid consumption in sports, alcohol consumption, hot weather, diabetes insipidus, vomiting, diarrhea, cancer, radiation, chemotherapy, and use of diuretics. Fluid and electrolyte imbalance mainly involves alterations in the levels of sodium, potassium, calcium, and magnesium in extracellular fluids. Hyponatremia is a common condition among individuals with cancer (62% of cases), along with hypokalemia (40%), hypophosphatemia (32%), hypomagnesemia (17%), hypocalcemia (12%), and hypernatremia (1-5%). Lack of hydration and monitoring of hydration status can lead to severe complications, such as nausea/vomiting, diarrhea, fatigue, seizures, cell swelling or shrinking, kidney failure, shock, coma, and even death. This article aims to review the current (de)hydration (fluid and electrolyte imbalance) monitoring technologies focusing on cancer. First, we discuss the physiological and pathophysiological implications of fluid and electrolyte imbalance in cancer patients. Second, we explore the different molecular and physical monitoring methods used to measure fluid and electrolyte imbalance and the measurement challenges in diverse populations. Hydration status is assessed in various indices; plasma, sweat, tear, saliva, urine, body mass, interstitial fluid, and skin-integration techniques have been extensively investigated. No unified (de)hydration (fluid and electrolyte imbalance) monitoring technology exists for different populations (including sports, elderly, children, and cancer). Establishing novel methods and technologies to facilitate and unify measurements of hydration status represents an excellent opportunity to develop impactful new approaches for patient care.
Collapse
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and MedicineThe University of ArizonaCollege of MedicinePhoenixUSA
| | - Yasaman Khorsandian
- Center for Applied NanoBioscience and MedicineThe University of ArizonaCollege of MedicinePhoenixUSA
| | | | | | - Patrick Pirrotte
- Collaborative Center for Translational Mass SpectrometryTranslational Genomics Research InstitutePhoenixUSA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and MedicineThe University of ArizonaCollege of MedicinePhoenixUSA
- HonorHealth Research InstituteScottsdaleUSA
- Collaborative Center for Translational Mass SpectrometryTranslational Genomics Research InstitutePhoenixUSA
| |
Collapse
|
23
|
Harshman SW, Browder AB, Davidson CN, Pitsch RL, Strayer KE, Schaeublin NM, Phelps MS, O'Connor ML, Mackowski NS, Barrett KN, Eckerle JJ, Strang AJ, Martin JA. The Impact of Nutritional Supplementation on Sweat Metabolomic Content: A Proof-of-Concept Study. Front Chem 2021; 9:659583. [PMID: 34026725 PMCID: PMC8138560 DOI: 10.3389/fchem.2021.659583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
Sweat is emerging as a prominent biosource for real-time human performance monitoring applications. Although promising, sources of variability must be identified to truly utilize sweat for biomarker applications. In this proof-of-concept study, a targeted metabolomics method was applied to sweat collected from the forearms of participants in a 12-week exercise program who ingested either low or high nutritional supplementation twice daily. The data establish the use of dried powder mass as a method for metabolomic data normalization from sweat samples. Additionally, the results support the hypothesis that ingestion of regular nutritional supplementation semi-quantitatively impact the sweat metabolome. For example, a receiver operating characteristic (ROC) curve of relative normalized metabolite quantities show an area under the curve of 0.82 suggesting the sweat metabolome can moderately predict if an individual is taking nutritional supplementation. Finally, a significant correlation between physical performance and the sweat metabolome are established. For instance, the data illustrate that by utilizing multiple linear regression modeling approaches, sweat metabolite quantities can predict VO2 max (p = 0.0346), peak lower body Windage (p = 0.0112), and abdominal circumference (p = 0.0425). The results illustrate the need to account for dietary nutrition in biomarker discovery applications involving sweat as a biosource.
Collapse
Affiliation(s)
- Sean W Harshman
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, Wright-Patterson AFB, Dayton, OH, United States
| | - Andrew B Browder
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, Wright-Patterson AFB, Dayton, OH, United States
| | - Christina N Davidson
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, Wright-Patterson AFB, Dayton, OH, United States
| | - Rhonda L Pitsch
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, Wright-Patterson AFB, Dayton, OH, United States
| | - Kraig E Strayer
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, Wright-Patterson AFB, Dayton, OH, United States
| | - Nicole M Schaeublin
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, Wright-Patterson AFB, Dayton, OH, United States
| | - Mandy S Phelps
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, Wright-Patterson AFB, Dayton, OH, United States
| | - Maegan L O'Connor
- InfoSciTex Corp., Air Force Research Laboratory, 711th Human Performance Wing/RHBCN, Wright-Patterson AFB, Dayton, OH, United States
| | - Nicholas S Mackowski
- InfoSciTex Corp., Air Force Research Laboratory, 711th Human Performance Wing/RHBCN, Wright-Patterson AFB, Dayton, OH, United States
| | - Kristyn N Barrett
- InfoSciTex Corp., Air Force Research Laboratory, 711th Human Performance Wing/RHBCN, Wright-Patterson AFB, Dayton, OH, United States
| | - Jason J Eckerle
- InfoSciTex Corp., Air Force Research Laboratory, 711th Human Performance Wing/RHBCN, Wright-Patterson AFB, Dayton, OH, United States
| | - Adam J Strang
- Air Force Research Laboratory, 711th Human Performance Wing/RHBCN, Wright-Patterson AFB, Dayton, OH, United States
| | - Jennifer A Martin
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, Wright-Patterson AFB, Dayton, OH, United States
| |
Collapse
|
24
|
Roussey G, Bernard T, Fontanari P, Louis J. Heat acclimation training with intermittent and self-regulated intensity may be used as an alternative to traditional steady state and power-regulated intensity in endurance cyclists. J Therm Biol 2021; 98:102935. [PMID: 34016357 DOI: 10.1016/j.jtherbio.2021.102935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
The study aimed to determine the effects of self-regulated and variable intensities sustained during short-term heat acclimation training on cycling performance. Seventeen competitive-level male athletes performed a 20-km cycling time trial before (TT-PRE), immediately after (TT-POST1) and one week after (TT-POST2) a 5-day acclimation training program, including either RPE-regulated intermittent (HA-HIT, N = 9) or fixed and low-intensity (HA-LOW, N = 8) training sessions in the heat (39 °C; 40% relative humidity). Total training volume was 23% lower in HA-HIT compared to HA-LOW. Physiological responses were evaluated during a 40-min fixed-RPE cycling exercise performed before (HST-PRE) and immediately after (HST-POST) heat acclimation. All participants in HA-LOW group tended to improve mean power output from TT-PRE to TT-POST1 (+8.1 ± 5.2%; ES = 0.55 ± 0.23), as well as eight of the nine athletes in HA-HIT group (+4.3 ± 2.0%; ES = 0.29 ± 0.31) without difference between groups, but TT-POST2 results showed that improvements were dissipated one week after. Similar improvements in thermal sensation and lower elevations of core temperature in HST-POST following HA-LOW and HA-HIT training protocols suggest that high intensity and RPE regulated bouts could be an efficient strategy for short term heat acclimation protocols, for example prior to the competition. Furthermore, the modest impact of lowered thermal sensation on cycling performance confirms that perceptual responses of acclimated athletes are dissociated from physiological stress when exercising in the heat.
Collapse
Affiliation(s)
- Gilles Roussey
- Laboratoire Motricité Humaine, Education, Sport, Santé (LAMHESS), Université Côte d'Azur, Nice, France
| | - Thierry Bernard
- Laboratoire Motricité Humaine, Education, Sport, Santé (LAMHESS), Université Côte d'Azur, Nice, France
| | - Pierre Fontanari
- Laboratoire Motricité Humaine, Education, Sport, Santé (LAMHESS), Université Côte d'Azur, Nice, France
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, Byrom Street, L3 3AF, United Kingdom.
| |
Collapse
|
25
|
Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology. Metabolites 2021; 11:metabo11030151. [PMID: 33799958 PMCID: PMC8001908 DOI: 10.3390/metabo11030151] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Dynamic changes in circulating and tissue metabolites and lipids occur in response to exercise-induced cellular and whole-body energy demands to maintain metabolic homeostasis. The metabolome and lipidome in a given biological system provides a molecular snapshot of these rapid and complex metabolic perturbations. The application of metabolomics and lipidomics to map the metabolic responses to an acute bout of aerobic/endurance or resistance exercise has dramatically expanded over the past decade thanks to major analytical advancements, with most exercise-related studies to date focused on analyzing human biofluids and tissues. Experimental and analytical considerations, as well as complementary studies using animal model systems, are warranted to help overcome challenges associated with large human interindividual variability and decipher the breadth of molecular mechanisms underlying the metabolic health-promoting effects of exercise. In this review, we provide a guide for exercise researchers regarding analytical techniques and experimental workflows commonly used in metabolomics and lipidomics. Furthermore, we discuss advancements in human and mammalian exercise research utilizing metabolomic and lipidomic approaches in the last decade, as well as highlight key technical considerations and remaining knowledge gaps to continue expanding the molecular landscape of exercise biology.
Collapse
|
26
|
Harshman SW, Strayer KE, Davidson CN, Pitsch RL, Narayanan L, Scott AM, Schaeublin NM, Wiens TL, Phelps MS, O'Connor ML, Mackowski NS, Barrett KN, Leyh SM, Eckerle JJ, Strang AJ, Martin JA. Rate normalization for sweat metabolomics biomarker discovery. Talanta 2020; 223:121797. [PMID: 33303130 DOI: 10.1016/j.talanta.2020.121797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023]
Abstract
As the demand for real-time exercise performance feedback increases, excreted sweat has become a biosource of interest for continuous human performance assessment. For sweat to truly fulfill this requirement, analyte concentrations must be normalized to adequately assess day-to-day differences within and among individuals. In this manuscript, data are presented highlighting the use of accurate localized sweat rate as a means for ion and global metabolomic data normalization. The results illustrate large sweat rate variability among individuals over the course of two distinct exercises protocols. Furthermore, the data show sweat rate is not symmetrical at similar locations among right and left forearms of individuals (p = 0.0007). Sweat ion conductivity analysis suggest overall sweat rate normalization reduces variability collectively among ion values and participants with principal component analysis showing 77.8% of variation in the data set attributable to sweat rate normalization. Global metabolomic analysis of sweat illustrated overall rate normalization increases the variability among test subjects with 72.7% of the variation explained by sweat rate normalization. Finally, overall rate normalized metabolomic features of sweat significantly correlated (ρ ≥ 0.7, ρ ≤ -0.7) with measured performance metrics of the individual, establishing the potential for sweat to be used as a biosource for performance monitoring. Collectively, these data illustrate the importance of accurate localized sweat rate determination, for analyte data normalization, in support for the use of sweat in biomarker discovery efforts to predict human performance.
Collapse
Affiliation(s)
- Sean W Harshman
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH, 45433, USA.
| | - Kraig E Strayer
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH, 45433, USA
| | - Christina N Davidson
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH, 45433, USA
| | - Rhonda L Pitsch
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, Wright- Patterson AFB, OH, 45433, USA
| | - Latha Narayanan
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, Wright- Patterson AFB, OH, 45433, USA
| | - Alexander M Scott
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH, 45433, USA
| | - Nicole M Schaeublin
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH, 45433, USA
| | - Taylor L Wiens
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH, 45433, USA
| | - Mandy S Phelps
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH, 45433, USA
| | - Maegan L O'Connor
- InfoSciTex Corp., Air Force Research Laboratory, 711th Human Performance Wing/RHBCN, Wright-Patterson AFB, OH, 45433, USA
| | - Nicholas S Mackowski
- InfoSciTex Corp., Air Force Research Laboratory, 711th Human Performance Wing/RHBCN, Wright-Patterson AFB, OH, 45433, USA
| | - Kristyn N Barrett
- InfoSciTex Corp., Air Force Research Laboratory, 711th Human Performance Wing/RHBCN, Wright-Patterson AFB, OH, 45433, USA
| | - Samantha M Leyh
- Oak Ridge Institute of Science & Education, Air Force Research Laboratory, 711th Human Performance Wing/RHBCN, Wright-Patterson AFB, OH, 45433, USA
| | - Jason J Eckerle
- InfoSciTex Corp., Air Force Research Laboratory, 711th Human Performance Wing/RHBCN, Wright-Patterson AFB, OH, 45433, USA
| | - Adam J Strang
- Air Force Research Laboratory, 711th Human Performance Wing/RHBCN, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH, 45433, USA
| | - Jennifer A Martin
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBF, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH, 45433, USA
| |
Collapse
|
27
|
Hauke A, Oertel S, Knoke L, Fein V, Maier C, Brinkmann F, Jank MPM. Screen-Printed Sensor for Low-Cost Chloride Analysis in Sweat for Rapid Diagnosis and Monitoring of Cystic Fibrosis. BIOSENSORS-BASEL 2020; 10:bios10090123. [PMID: 32933070 PMCID: PMC7558764 DOI: 10.3390/bios10090123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Analysis of sweat chloride levels in cystic fibrosis (CF) patients is essential not only for diagnosis but also for the monitoring of therapeutic responses to new drugs, such as cystic fibrosis transmembrane conductance regulator (CFTR) modulators and potentiators. Using iontophoresis as the gold standard can cause complications like burns, is uncomfortable, and requires repetitive hospital visits, which can be particularly problematic during a pandemic, where distancing and hygiene requirements are increased; therefore, it is necessary to develop fast and simple measures for the diagnosis and monitoring of CF. A screen-printed, low-cost chloride sensor was developed to remotely monitor CF patients. Using potentiometric measurements, the performance of the sensor was tested. It showed good sensitivity and a detection limit of 2.7 × 10-5 mol/L, which covered more than the complete concentration range of interest for CF diagnosis. Due to its fast response of 30 s, it competes well with standard sensor systems. It also offers significantly reduced costs and can be used as a portable device. The analysis of real sweat samples from healthy subjects, as well as CF patients, demonstrates a proper distinction using the screen-printed sensor. This approach presents an attractive remote measurement alternative for fast, simple, and low-cost CF diagnosis and monitoring.
Collapse
Affiliation(s)
- Alicia Hauke
- Fraunhofer Institute for Integrated Systems and Device Technology, 91058 Erlangen, Germany; (S.O.); (M.P.M.J.)
- Correspondence:
| | - Susanne Oertel
- Fraunhofer Institute for Integrated Systems and Device Technology, 91058 Erlangen, Germany; (S.O.); (M.P.M.J.)
| | - Leona Knoke
- Department of Paediatric Pneumology, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (L.K.); (V.F.); (C.M.); (F.B.)
| | - Vanessa Fein
- Department of Paediatric Pneumology, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (L.K.); (V.F.); (C.M.); (F.B.)
| | - Christoph Maier
- Department of Paediatric Pneumology, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (L.K.); (V.F.); (C.M.); (F.B.)
| | - Folke Brinkmann
- Department of Paediatric Pneumology, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (L.K.); (V.F.); (C.M.); (F.B.)
| | - Michael P. M. Jank
- Fraunhofer Institute for Integrated Systems and Device Technology, 91058 Erlangen, Germany; (S.O.); (M.P.M.J.)
| |
Collapse
|
28
|
Monnerat G, Sánchez CAR, Santos CGM, Paulucio D, Velasque R, Evaristo GPC, Evaristo JAM, Nogueira FCS, Domont GB, Serrato M, Lima AS, Bishop D, Campos de Carvalho AC, Pompeu FAMS. Different Signatures of High Cardiorespiratory Capacity Revealed With Metabolomic Profiling in Elite Athletes. Int J Sports Physiol Perform 2020; 15:1156-1167. [PMID: 32335533 DOI: 10.1123/ijspp.2019-0267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE High cardiorespiratory capacity is a key determinant of human performance and life expectancy; however, the underlying mechanisms are not fully understood. The objective of this pilot study was to investigate biochemical signatures of endurance-performance athletes using high-resolution nontargeted metabolomics. METHODS Elite long-distance runners with similar training and anthropometrical records were studied. After athletes' maximal oxygen consumption (V˙O2max) was measured, they were divided into 2 groups: low V˙O2max (<65 mL·kg-1·min-1, n = 7) and high V˙O2max (>75 mL·kg-1·min-1, n = 7). Plasma was collected under basal conditions after 12 hours of fasting and after a maximal exercise test (nonfasted) and analyzed by high-resolution LC-MS. Multivariate and univariate statistics were applied. RESULTS A total of 167 compounds were putatively identified with an LC-MS-based metabolomics pipeline. Partial least-squares discriminant analysis showed a clear separation between groups. Significant variations in metabolites highlighted group differences in diverse metabolic pathways, including lipids, vitamins, amino acids, purine, histidine, xenobiotics, and others, either under basal condition or after the maximal exercise test. CONCLUSIONS Taken together, the metabolic alterations revealed in the study affect cellular energy use and availability, oxidative stress management, muscle damage, central nervous system signaling metabolites, nutrients, and compound bioavailability, providing new insights into metabolic alterations associated with exercise and cardiorespiratory fitness levels in trained athletes.
Collapse
|
29
|
Karvinen S, Sievänen T, Karppinen JE, Hautasaari P, Bart G, Samoylenko A, Vainio SJ, Ahtiainen JP, Laakkonen EK, Kujala UM. MicroRNAs in Extracellular Vesicles in Sweat Change in Response to Endurance Exercise. Front Physiol 2020; 11:676. [PMID: 32760282 PMCID: PMC7373804 DOI: 10.3389/fphys.2020.00676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
Background To date, microRNAs (miRs) carried in extracellular vesicles (EVs) in response to exercise have been studied in blood but not in non-invasively collectable body fluids. In the present study, we examined whether six exercise-responsive miRs, miRs-21, -26, -126, -146, -221, and -222, respond to acute endurance exercise stimuli of different intensities in sweat. Methods We investigated the response of miRs isolated from sweat and serum EVs to three endurance exercise protocols: (1) maximal aerobic capacity (VO2 max ), (2) anaerobic threshold (AnaT), and (3) aerobic threshold (AerT) tests. Sauna bathing was used as a control test to induce sweating through increased body temperature in the absence of exercise. All protocols were performed by the same subjects (n = 8, three males and five females). The occurrence of different miR carriers in sweat and serum was investigated via EV markers (CD9, CD63, and TSG101), an miR-carrier protein (AGO2), and an HDL-particle marker (APOA1) with Western blot. Correlations between miRs in sweat and serum (post-sample) were examined. Results Of the studied miR carrier markers, sweat EV fractions expressed CD63 and, very weakly, APOA1, while the serum EV fraction expressed all the studied markers. In sweat EVs, miR-21 level increased after AerT and miR-26 after all the endurance exercise tests compared with the Sauna (p < 0.050). miR-146 after AnaT correlated to sweat and serum EV samples (r = 0.881, p = 0.004). Conclusion Our preliminary study is the first to show that, in addition to serum, sweat EVs carry miRs. Interestingly, we observed that miRs-21 and -26 in sweat EVs respond to endurance exercise of different intensities. Our data further confirmed that miR responses to endurance exercise in sweat and serum were triggered by exercise and not by increased body temperature. Our results highlight that sweat possesses a unique miR carrier content that should be taken into account when planning analyses from sweat as a substitute for serum.
Collapse
Affiliation(s)
- Sira Karvinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tero Sievänen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jari E Karppinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Pekka Hautasaari
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Geneviève Bart
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anatoliy Samoylenko
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Seppo J Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.,InfoTech Oulu, Borealis Biobank of Northern Finland, University Hospital, Oulu Center for Cell Matrix Research, Oulu, Finland
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eija K Laakkonen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
30
|
Carr AR, Patel YH, Neff CR, Charkhabi S, Kallmyer NE, Angus HF, Reuel NF. Sweat monitoring beneath garments using passive, wireless resonant sensors interfaced with laser-ablated microfluidics. NPJ Digit Med 2020; 3:62. [PMID: 32377573 PMCID: PMC7193562 DOI: 10.1038/s41746-020-0270-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
Sweat loss can help determine hydration status of individuals working in harsh conditions, which is especially relevant to those who wear thick personal protective equipment (PPE) such as firefighters. A wireless, passive, conformable sweat sensor sticker is described here that can be worn under and interrogated through thick clothing to simultaneously measure sweat loss volume and conductivity. The sticker consists of a laser-ablated, microfluidic channel and a resonant sensor transducer. The resonant sensor is wirelessly read with a handheld vector network analyzer coupled to two, co-planar, interrogation antennas that measure the transmission loss. A sweat proxy is used to fill the channels and it is determined that the sensor can orthogonally determine the sweat conductivity and volume filled in the channel via peak transmission loss magnitude and frequency respectively. A four-person study is then used to determine level of sensor variance caused by local tissue dielectric heterogeneity and sensor-reader orientation.
Collapse
Affiliation(s)
- Adam R. Carr
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Yash H. Patel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Charles R. Neff
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Sadaf Charkhabi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Nathaniel E. Kallmyer
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Hector F. Angus
- Department of Kinesiology, Iowa State University, Ames, IA USA
| | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| |
Collapse
|
31
|
Delgado-Povedano MM, Castillo-Peinado LS, Calderón-Santiago M, Luque de Castro MD, Priego-Capote F. Dry sweat as sample for metabolomics analysis. Talanta 2019; 208:120428. [PMID: 31816748 DOI: 10.1016/j.talanta.2019.120428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
Abstract
Sweat is gaining popularity in clinical metabolomics as this biofluid is non-invasively sampled and its composition is modified by several pathologies. There is a lack of standardized strategies for collection of human sweat. Most studies have been carried out with fresh sweat collected after stimulation. A promising and simple alternative is sampling dry sweat by a solid support impregnated with a suited solvent. This research was aimed at comparing the metabolomics coverage provided by dry sweat collected by two solid supports (gauzes and filter papers) impregnated with different solvents. The dissolved dry sweat was analyzed by a dual approach: gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among the tested sampling strategies, filter paper impregnated with 1:1 (v/v) ethanol‒phosphate buffer resulted the combination providing the highest metabolomics coverage (tentative identification of one hundred seventy-five compounds). Dry and fresh sweat were compared by using pools from the same individuals to evaluate compositional differences. Families of metabolites such as carnitines, sphingolipids and N-acyl-amino acids, among others, were exclusively identified in dry sweat. Comparison of both samples allowed concluding that dry sweat is better for analysis of low polar metabolites and fresh sweat is more suited for polar compounds. As most of the identified metabolites are involved in key biochemical pathways, this study opens interesting possibilities to the use of dry sweat as a source of metabolite markers for specific disorders. Sampling of dry sweat could provide a standardized approach for collection of this biofluid, thus overcoming the variability limitations of fresh sweat.
Collapse
Affiliation(s)
- M M Delgado-Povedano
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Nanochemistry Research Institute, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Spain
| | - L S Castillo-Peinado
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Nanochemistry Research Institute, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Spain
| | - M Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Nanochemistry Research Institute, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Spain
| | - M D Luque de Castro
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Nanochemistry Research Institute, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Spain.
| | - F Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Nanochemistry Research Institute, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
32
|
Harshman SW, Pitsch RL, Schaeublin NM, Smith ZK, Strayer KE, Phelps MS, Qualley AV, Cowan DW, Rose SD, O'Connor ML, Eckerle JJ, Das T, Barbey AK, Strang AJ, Martin JA. Metabolomic stability of exercise-induced sweat. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121763. [DOI: 10.1016/j.jchromb.2019.121763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/12/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022]
|
33
|
Baker LB. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature (Austin) 2019; 6:211-259. [PMID: 31608304 PMCID: PMC6773238 DOI: 10.1080/23328940.2019.1632145] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of this comprehensive review is to: 1) review the physiology of sweat gland function and mechanisms determining the amount and composition of sweat excreted onto the skin surface; 2) provide an overview of the well-established thermoregulatory functions and adaptive responses of the sweat gland; and 3) discuss the state of evidence for potential non-thermoregulatory roles of sweat in the maintenance and/or perturbation of human health. The role of sweating to eliminate waste products and toxicants seems to be minor compared with other avenues of excretion via the kidneys and gastrointestinal tract; as eccrine glands do not adapt to increase excretion rates either via concentrating sweat or increasing overall sweating rate. Studies suggesting a larger role of sweat glands in clearing waste products or toxicants from the body may be an artifact of methodological issues rather than evidence for selective transport. Furthermore, unlike the renal system, it seems that sweat glands do not conserve water loss or concentrate sweat fluid through vasopressin-mediated water reabsorption. Individuals with high NaCl concentrations in sweat (e.g. cystic fibrosis) have an increased risk of NaCl imbalances during prolonged periods of heavy sweating; however, sweat-induced deficiencies appear to be of minimal risk for trace minerals and vitamins. Additional research is needed to elucidate the potential role of eccrine sweating in skin hydration and microbial defense. Finally, the utility of sweat composition as a biomarker for human physiology is currently limited; as more research is needed to determine potential relations between sweat and blood solute concentrations.
Collapse
Affiliation(s)
- Lindsay B. Baker
- Gatorade Sports Science Institute, PepsiCo R&D Physiology and Life Sciences, Barrington, IL, USA
| |
Collapse
|
34
|
Guhl C, Birklein F, Hirsch S. Sweating disorders in mice with and without nerve lesions. Eur J Pain 2018; 23:835-842. [PMID: 30582875 DOI: 10.1002/ejp.1352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hypersensitivity and altered sweating are often present in neuropathy patients. Nerve lesions are known to produce sudomotor dysfunctions but also patients suffering from complex regional pain syndrome, CRPS1-a condition without a nerve lesion-present with sweating disorders. METHODS Using proton nuclear magnetic resonance of sweat water, we quantified sweat output of mice suffering from a nerve lesion or a bone fracture without nerve lesion and correlated their sweating with behavioural paw hypersensitivity accessed in von Frey testings, water applications and weight-bearing measured with an incapacitance metre. RESULTS Lesioned animals sweat less and are hypersensitive compared to healthy controls, as expected. Fractured animals on the injured side sweat less acutely after the injury but more in the chronic phase. They are hypersensitive acutely as well as chronically after the fracture. These findings resemble human bone trauma patients in the acute phase and CRPS patients in the chronic phase. CONCLUSIONS Sweating disorders are present both in neuropathic animals and in those with a bone fracture without nerve lesions, and autonomic dysfunctions might be considered as an important component in the aetiology of neuropathies. SIGNIFICANCE Sweat output changes in mice after bone trauma, potentially indicative of posttraumatic processes leading to CRPS in humans.
Collapse
Affiliation(s)
- Charlotte Guhl
- Klinik und Poliklinik für Neurologie, Unimedizin Mainz, Mainz, Germany
| | - Frank Birklein
- Klinik und Poliklinik für Neurologie, Unimedizin Mainz, Mainz, Germany
| | - Silke Hirsch
- Klinik und Poliklinik für Neurologie, Unimedizin Mainz, Mainz, Germany
| |
Collapse
|