1
|
Sutanto H, Elisa E, Rachma B, Fetarayani D. Gut Microbiome Modulation in Allergy Treatment: The Role of Fecal Microbiota Transplantation. Am J Med 2025; 138:769-777.e3. [PMID: 39855612 DOI: 10.1016/j.amjmed.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
The prevalence of allergic diseases has been rising, paralleling lifestyle changes and environmental exposures that have altered human microbiome composition. This review article examines the intricate relationship between the gut microbiome and allergic diseases, emphasizing the potential of fecal microbiota transplantation as a promising novel treatment approach. It explains how reduced microbial exposure in modern societies contributes to immune dysregulation and the increasing incidence of allergies. The discussion also addresses immune homeostasis and its modulation by the gut microbiome, highlighting the shift from eubiosis to dysbiosis in allergic conditions. Furthermore, this article reviews existing studies and emerging research on the role of fecal microbiota transplantation in restoring microbial balance, providing insights into its mechanisms, efficacy, and safety.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Elisa Elisa
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Betty Rachma
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Fetarayani
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia; Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
2
|
Hu DX, Lu CM, Si XY, Wu QT, Wu LH, Zhong HJ, He XX. Effects of gastrointestinal symptoms on the efficacy of washed microbiota transplantation in patients with autism. Front Pediatr 2025; 13:1528167. [PMID: 40017709 PMCID: PMC11865235 DOI: 10.3389/fped.2025.1528167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Objective Washed microbiota transplantation (WMT) has emerged as a promising therapeutic strategy for autism spectrum disorder (ASD), though the factors that influence its efficacy remain poorly understood. This study explores the impact of gastrointestinal (GI) symptoms on the effectiveness of WMT in ASD. Methods Clinical data encompassing ASD symptoms, GI disturbances, and sleep disorders were collected from patients with ASD undergoing WMT. The therapeutic impact of WMT and the contributing factors to its efficacy were assessed. Results WMT significantly reduced scores on the Aberrant Behavior Checklist (ABC), Childhood Autism Rating Scale (CARS), and Sleep Disturbance Scale for Children (SDSC), alongside a significant reduction in the incidence of constipation, abnormal stool forms, and diarrhea (all p < 0.05). After six courses of WMT, substantial reductions were observed in ABC, CARS, and SDSC scores, with increased treatment courses correlating with greater improvement (p < 0.05). Multiple linear regression analysis revealed that WMT efficacy was enhanced in patients with pre-existing GI symptoms (diarrhea: β = 0.119, p < 0.001; abnormal stool form: β = 0.201, p < 0.001) and those receiving a higher number of treatment courses (β = 0.116, p < 0.001). Additionally, the analysis indicated that treatment outcomes were more favorable in patients who had not undergone adjunct interventions (β = -0.041, p = 0.002), had a longer disease duration (β = 0.168, p = 0.007), and exhibited more severe disease symptoms (β = 0.125, p < 0.001). Conclusion WMT significantly alleviates both ASD and GI symptoms, along with sleep disturbances, in affected individuals. Six treatment courses resulted in notable improvement, with increased course numbers further improving therapeutic outcomes. Furthermore, pre-treatment GI symptoms, such as diarrhea and abnormal stool forms, may influence the effectiveness of WMT. Notably, patients who did not receive additional interventions, had a prolonged disease duration, and presented with more severe symptoms experienced markedly improved treatment responses.
Collapse
Affiliation(s)
- Dong-Xia Hu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Cai-Mei Lu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Yu Si
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing-Ting Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Hao Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hao-Jie Zhong
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Sharma A, Kapur S, Kancharla P, Yang T. Sex differences in gut microbiota, hypertension, and cardiovascular risk. Eur J Pharmacol 2025; 987:177183. [PMID: 39647571 PMCID: PMC11714433 DOI: 10.1016/j.ejphar.2024.177183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The intricate ecosystem of the gut microbiome exhibits sex-specific differences, influencing the susceptibility to cardiovascular diseases (CVD). Imbalance within the gut microbiome compromises the gut barrier, activates inflammatory pathways, and alters the production of metabolites, all of which initiate chronic diseases including CVD. In particular, the interplay between lifestyle choices, hormonal changes, and metabolic byproducts uniquely affects sex-specific gut microbiomes, potentially shaping the risk profiles for hypertension and CVD differently in men and women. Understanding the gut microbiome's role in CVD risk offers informative reasoning behind the importance of developing tailored preventative strategies based on sex-specific differences in CVD risk. Furthermore, insight into the differential impact of social determinants and biological factors on CVD susceptibility emphasizes the necessity for more nuanced approaches. This review also outlines specific dietary interventions that may enhance gut microbiome health, offering a glimpse into potential therapeutic avenues for reducing CVD risk that require greater awareness. Imbalance in natural gut microbiomes may explain etiologies of chronic diseases; we advocate for future application to alter the gut microbiome as possible treatment of the aforementioned diseases. This review mentions the idea of altering the gut microbiome through interventions such as fecal microbiota transplantation (FMT), a major application of microbiome-based therapy that is first-line for Clostridium difficile infections and patient-specific probiotics highlights more innovative approaches to hypertension and CVD prevention. Through increased analysis of gut microbiota compositions along with patient-centric probiotics and microbiome transfers, this review advocates for future preventative strategies for hypertension.
Collapse
Affiliation(s)
- Anish Sharma
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Sahil Kapur
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Priyal Kancharla
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA.
| |
Collapse
|
4
|
Putumbaka S, Schut GJ, Thorgersen MP, Poole FL, Shao N, Rodionov DA, Adams MWW. Tungsten is utilized for lactate consumption and SCFA production by a dominant human gut microbe Eubacterium limosum. Proc Natl Acad Sci U S A 2025; 122:e2411809121. [PMID: 39793044 PMCID: PMC11725836 DOI: 10.1073/pnas.2411809121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025] Open
Abstract
Eubacterium limosum is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by E. limosum has not been explored. We show that E. limosum growing on lactate takes up added tungstate rather than molybdate and produces the SCFAs acetate and butyrate, but not propionate. The genes encoding an electron bifurcating, tungsten-containing oxidoreductase (WOR1) and a tungsten-containing formate dehydrogenase (FDH), along with an electron bifurcating lactate dehydrogenase (LCT), lactate permease, and enzymes of the propanediol pathway, are all up-regulated on lactate compared to growth on glucose. Lactate metabolism is controlled by a GntR-family repressor (LctR) and two global regulators, Rex and CcpA, where Rex in part controls W storage and tungstopyranopterin (Tuco) biosynthesis. Tuco-dependent riboswitches, along with CcpA, also control two iron transporters, consistent with the increased iron demand for many iron-containing enzymes, including WOR1 and FDH, involved in SCFA production. From intracellular aldehyde concentrations and the substrate specificity of WOR1, we propose that WOR1 is involved in detoxifying acetaldehyde produced during lactate degradation. Lactate to SCFA conversion by E. limosum is clearly highly tungstocentric and tungsten might be an overlooked micronutrient in the human microbiome and in overall human health.
Collapse
Affiliation(s)
- Saisuki Putumbaka
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| | - Gerrit J. Schut
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| | - Michael P. Thorgersen
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| | - Farris L. Poole
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| | - Nana Shao
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| | | | - Michael W. W. Adams
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| |
Collapse
|
5
|
Thorndal C, Kragsnaes MS, Nilsson AC, Holm DK, dePont Christensen R, Ellingsen T, Kjeldsen J, Bjørsum-Meyer T. Safety and efficacy of faecal microbiota transplantation in patients with acute uncomplicated diverticulitis: study protocol for a randomised placebo-controlled trial. Therap Adv Gastroenterol 2025; 18:17562848241309868. [PMID: 39758967 PMCID: PMC11694295 DOI: 10.1177/17562848241309868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Background Little is known about the involvement of gut microbiota in the disease course of diverticulitis and the potential benefits of manipulating the gut milieu. We propose to conduct a randomised placebo-controlled feasibility trial of faecal microbiota transplantation (FMT) given as capsules to patients with acute uncomplicated diverticulitis. Objectives The objective is primarily to investigate the feasibility of clinical safety, explore efficacy associated with FMT in this patient population, and examine changes in patient-reported quality of life and the composition and function of the gut microbiota. Design Study protocol for a randomised placebo-controlled trial. Methods and analysis Participants with acute, uncomplicated diverticulitis, as confirmed by computed tomography (CT) scan, will be recruited from Odense University Hospital (Denmark) and randomly assigned to either the intervention group or the control group. The intervention group will consist of 20 patients who receive encapsulated FMT. The control group will also consist of 20 patients, receiving placebo capsules. Primary safety endpoint: Patient safety is monitored by (a) the number of re-admissions and (b) the number of adverse events within 3 months of FMT/placebo; Primary efficacy endpoint: Reduction in the proportion of patients treated with antibiotics within 3 months following FMT/placebo; Secondary outcome: Change from baseline to 3 months in the GI-QLI questionnaire. Results will be analysed using an intention-to-treat approach. Adverse events or unintended consequences will be reported. Ethics and discussion This is the first study to investigate the safety and efficacy of FMT in patients with acute uncomplicated diverticulitis. The project has the potential to broaden the knowledge and literature on the role of the intestinal microbiota in diverticulitis, and we believe it will elevate our understanding of cause and effect. Trial registration Informed consent is obtained from all participants. The study is approved by the regional ethics committee (ref. S-20230023) and the Danish Data Protection Agency (ref. 24/2435). The trial was registered on clinicaltrials.gov (NCT06254625) on 10th February 2024.
Collapse
Affiliation(s)
- Camilla Thorndal
- Department of Surgery, Odense University Hospital, Baagøes Alle 15, Odense 5000, Denmark
| | - Maja Skov Kragsnaes
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | | | | | - Rene dePont Christensen
- Research Unit of General Practice, Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Torkell Ellingsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Jens Kjeldsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Medical Gastrointestinal Diseases, Odense University Hospital, Odense, Denmark
| | - Thomas Bjørsum-Meyer
- Department of Surgery, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Minagar A, Jabbour R. The Human Gut Microbiota: A Dynamic Biologic Factory. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025; 189:91-106. [PMID: 38337077 DOI: 10.1007/10_2023_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The human body constitutes a living environment for trillions of microorganisms, which establish the microbiome and, the largest population among them, reside within the gastrointestinal tract, establishing the gut microbiota. The term "gut microbiota" refers to a set of many microorganisms [mainly bacteria], which live symbiotically within the human host. The term "microbiome" means the collective genomic content of these microorganisms. The number of bacterial cells within the gut microbiota exceeds the host's cells; collectively and their genes quantitatively surpass the host's genes. Immense scientific research into the nature and function of the gut microbiota is unraveling its roles in certain human health activities such as metabolic, physiology, and immune activities and also in pathologic states and diseases. Interestingly, the microbiota, a dynamic ecosystem, inhabits a particular environment such as the human mouth or gut. Human microbiota can evolve and even adapt to the host's unique features such as eating habits, genetic makeup, underlying diseases, and even personalized habits. In the past decade, biologists and bioinformaticians have concentrated their research effort on the potential roles of the gut microbiome in the development of human diseases, particularly immune-mediated diseases and colorectal cancer, and have initiated the assessment of the impact of the gut microbiome on the host genome. In the present chapter, we focus on the biological features of gut microbiota, its physiology as a biological factory, and its impacts on the host's health and disease status.
Collapse
Affiliation(s)
- Alireza Minagar
- Department of Biotechnology (Bioinformatics), University of Maryland Global Campus, Adelphi, MD, USA
| | - Rabih Jabbour
- University of Maryland Global Campus, Largo, MD, USA
| |
Collapse
|
7
|
Retraction: Fecal microbiota transplantation for treatment of recurrent C. difficile infection: An updated randomized controlled trial meta-analysis. PLoS One 2024; 19:e0316040. [PMID: 39671402 PMCID: PMC11642955 DOI: 10.1371/journal.pone.0316040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
|
8
|
Lee JY, Kim Y, Kim J, Kim JK. Fecal Microbiota Transplantation: Indications, Methods, and Challenges. J Microbiol 2024; 62:1057-1074. [PMID: 39557804 DOI: 10.1007/s12275-024-00184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
Over the past two decades, as the importance of gut microbiota to human health has become widely known, attempts have been made to treat diseases by correcting dysbiosis of gut microbiota through fecal microbiota transplantation (FMT). Apart from current knowledge of gut microbiota, FMT to treat disease has a long history, from the treatment of food poisoning in the fourth century to the treatment of Clostridioides difficile infections in the twentieth century. In 2013, FMT was recognized as a standard treatment for recurrent C. difficile because it consistently showed high efficacy. Though recurrent C. difficile is the only disease internationally recognized for FMT efficacy, FMT has been tested for other diseases and shown some promising preliminary results. Different FMT methods have been developed using various formulations and administration routes. Despite advances in FMT, some issues remain to be resolved, such as donor screening, manufacturing protocols, and unknown components in the fecal microbiota. In this review, we discuss the mechanisms, clinical indications, methods, and challenges of current FMT. We also discuss the development of alternative therapies to overcome the challenges of FMT.
Collapse
Affiliation(s)
- Jee Young Lee
- Department of Microbiology, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Yehwon Kim
- Department of Medicine, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Jiyoun Kim
- Department of Medicine, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Jiyeun Kate Kim
- Department of Microbiology, Kosin University College of Medicine, Busan, 49267, Republic of Korea.
| |
Collapse
|
9
|
Ebrahimi R, Farsi Y, Nejadghaderi SA. Fecal microbiota transplantation for glaucoma; a potential emerging treatment strategy. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100314. [PMID: 39726974 PMCID: PMC11670420 DOI: 10.1016/j.crmicr.2024.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Glaucoma is the primary cause of irreversible blindness globally. Different glaucoma subtypes are identified by their underlying mechanisms, and treatment options differ by its pathogenesis. Current management includes topical medications to lower intraocular pressure and surgical procedures like trabeculoplasty and glaucoma drainage implants. Fecal microbiota transplantation (FMT) is an almost effective and safe treatment option for recurrent Clostridium difficile infection. The relationship between bacterial populations, metabolites, and inflammatory pathways in retinal diseases indicates possible therapeutic strategies. Thus, incorporating host microbiota-based therapies could offer an additional treatment option for glaucoma patients. Here, we propose that combining FMT with standard glaucoma treatments may benefit those affected by this condition. Also, the potential safety, efficacy, cost-effectiveness and clinical applications are discussed.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Farsi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Tîrziu AT, Susan M, Susan R, Sonia T, Harich OO, Tudora A, Varga NI, Tiberiu-Liviu D, Avram CR, Boru C, Munteanu M, Horhat FG. From Gut to Eye: Exploring the Role of Microbiome Imbalance in Ocular Diseases. J Clin Med 2024; 13:5611. [PMID: 39337098 PMCID: PMC11432523 DOI: 10.3390/jcm13185611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The gut microbiome plays a crucial role in human health, and recent research has highlighted its potential impact on ocular health through the gut-eye axis. Dysbiosis, or an imbalance in the gut microbiota, has been implicated in various ocular diseases. Methods: A comprehensive literature search was conducted using relevant keywords in major electronic databases, prioritizing recent peer-reviewed articles published in English. Results: The gut microbiota influences ocular health through immune modulation, maintenance of the blood-retinal barrier, and production of beneficial metabolites. Dysbiosis can disrupt these mechanisms, contributing to ocular inflammation, tissue damage, and disease progression in conditions such as uveitis, age-related macular degeneration, diabetic retinopathy, dry eye disease, and glaucoma. Therapeutic modulation of the gut microbiome through probiotics, prebiotics, synbiotics, and fecal microbiota transplantation shows promise in preclinical and preliminary human studies. Conclusions: The gut-eye axis represents a dynamic and complex interplay between the gut microbiome and ocular health. Targeting the gut microbiome through innovative therapeutic strategies holds potential for improving the prevention and management of various ocular diseases.
Collapse
Affiliation(s)
- Andreea-Talida Tîrziu
- Department of General Medicine, Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Monica Susan
- Centre for Preventive Medicine, Department of Internal Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Razvan Susan
- Centre for Preventive Medicine, Department of Family Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Tanasescu Sonia
- Department of Pediatrics, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Octavia Oana Harich
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Adelina Tudora
- Multidisciplinary Doctoral School, Vasile Goldis Western University of Arad, Strada Liviu Rebreanu 86, 310419 Arad, Romania
| | - Norberth-Istvan Varga
- Department of General Medicine, Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dragomir Tiberiu-Liviu
- Medical Semiology II Discipline, Internal Medicine Department, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Cecilia Roberta Avram
- Department of Residential Training and Post-University Courses, "Vasile Goldis" Western University, 310414 Arad, Romania
| | - Casiana Boru
- Department of Medicine, "Vasile Goldis" University of Medicine and Pharmacy, 310414 Arad, Romania
| | - Mihnea Munteanu
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
11
|
Nagesh VK, Tran HHV, Elias D, Kianifar Aguilar I, Sethi T, Menon A, Mansour C, Furman F, Tsotsos K, Subar T, Auda A, Sidiqui A, Lamar J, Wadhwani N, Dey S, Lo A, Atoot A, Weissman S, Sifuentes H, Bangolo AI. Therapeutics involved in managing initial and recurrent Clostridium difficile infection: An updated literature review. World J Gastrointest Pharmacol Ther 2024; 15:95467. [PMID: 39281262 PMCID: PMC11401021 DOI: 10.4292/wjgpt.v15.i5.95467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Clostridium difficile infection (CDI) has been increasing due to the effect of recurrent hospitalizations. The use of antibiotics has been shown to alter the gut microbiome and lead to CDIs. The treatment is limited to three major antibiotics; however, the incidence of recurrent CDIs has been increasing and drug resistance is a major concern. This aspect is a growing concern in modern medicine especially in the elderly population, critical care patients, and immunocompromised individuals who are at high risk of developing CDIs. Clostridium difficile can lead to various complications including septic shock and fulminant colitis that could prove to be lethal in these patients. Newer modalities of treatment have been developed including bezlotoxumab, a monoclonal antibody and fecal microbiota transplant. There have been studies showing asymptomatic carriers and drug resistance posing a major threat to the healthcare system. Newer treatment options are being studied to treat and prevent CDIs. This review will provide an insight into the current treatment modalities, prevention and newer modalities of treatment and challenges faced in the treatment of CDIs.
Collapse
Affiliation(s)
- Vignesh K Nagesh
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Daniel Elias
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tanni Sethi
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Charlene Mansour
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Florchi Furman
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Kylie Tsotsos
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Talia Subar
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Auda Auda
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aman Sidiqui
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Jevon Lamar
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nikita Wadhwani
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Abraham Lo
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Adam Atoot
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Humberto Sifuentes
- Department of Gastroenterology, Augusta University, Augusta, GA 30912, United States
| | - Ayrton I Bangolo
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
12
|
Jan T, Negi R, Sharma B, Kumar S, Singh S, Rai AK, Shreaz S, Rustagi S, Chaudhary N, Kaur T, Kour D, Sheikh MA, Kumar K, Yadav AN, Ahmed N. Next generation probiotics for human health: An emerging perspective. Heliyon 2024; 10:e35980. [PMID: 39229543 PMCID: PMC11369468 DOI: 10.1016/j.heliyon.2024.e35980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Over recent years, the scientific community has acknowledged the crucial role of certain microbial strains inhabiting the intestinal ecosystem in promoting human health, and participating in various beneficial functions for the host. These microorganisms are now referred to as next-generation probiotics and are currently considered as biotherapeutic products and food or nutraceutical supplements. However, the majority of next-generation probiotic candidates pose nutritional demands and exhibit high sensitivity towards aerobic conditions, leading to numerous technological hurdles in large-scale production. This underscores the need for the development of suitable delivery systems capable of enhancing the viability and functionality of these probiotic strains. Currently, potential candidates for next generation probiotics (NGP) are being sought among gut bacteria linked to health, which include strains from the genera Bacteroids, Faecalibacterium, Akkermansia and Clostridium. In contrast to Lactobacillus spp. and Bifidobacterium spp., NGP, particularly Bacteroids spp. and Clostridium spp., appear to exhibit greater ambiguity regarding their potential to induce infectious diseases. The present review provides a comprehensive overview of NGPs in terms of their health beneficial effects, regulation framework and risk assessment targeting relevant criteria for commercialization in food and pharmaceutical markets.
Collapse
Affiliation(s)
- Tawseefa Jan
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Sarvesh Rustagi
- Depratment of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nisha Chaudhary
- Depratment of Food Science and Technology, Agriculture University, Jodhpur, Rajasthan, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Mohd Aaqib Sheikh
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Krishan Kumar
- Department of Food Technology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| |
Collapse
|
13
|
Yamada CH, Ortis GB, Buso GM, Martins TC, Zequinao T, Telles JP, Wollmann LC, Montenegro CDO, Dantas LR, Cruz JW, Tuon FF. Validation of Lyophilized Human Fecal Microbiota for the Treatment of Clostridioides difficile Infection: A Pilot Study with Pharmacoeconomic Analysis of a Middle-Income Country-Promicrobioma Project. Microorganisms 2024; 12:1741. [PMID: 39203583 PMCID: PMC11356882 DOI: 10.3390/microorganisms12081741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Clostridioides difficile infection (CDI) represents a prevalent and potentially severe health concern linked to the usage of broad-spectrum antibiotics. The aim of this study was to evaluate a new lyophilized product based on human fecal microbiota for transplant, including cost-benefit analysis in the treatment of recurrent or refractory CDI. METHODS The product for fecal microbiota transplant was obtained from two donors. Microbiological, viability, and genomic analysis were evaluated. After validation, a clinical pilot study including recurrent or refractory CDI with 24 patients was performed. Clinical response and 4-week recurrence were the outcome. Cost-benefit analysis compared the fecal microbiota transplant with conventional retreatment with vancomycin or metronidazole. RESULTS The microbiota for transplant presented significant bacterial viability, with and adequate balance of Firmicutes and Bacteroidetes. The clinical response with the microbiota transplant was 92%. In financial terms, estimated expenditure for CDI solely related to recurrence, based on stochastic modeling, totals USD 222.8 million per year in Brazil. CONCLUSIONS The lyophilized human fecal microbiota for transplant is safe and can be an important step for a new product with low cost, even with genomic sequencing. Fecal microbiota transplantation emerges as a more cost-effective alternative compared to antimicrobials in the retreatment of CDI.
Collapse
Affiliation(s)
- Carolina Hikari Yamada
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (C.H.Y.); (G.B.O.); (T.C.M.); (T.Z.); (L.R.D.)
| | - Gabriel Burato Ortis
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (C.H.Y.); (G.B.O.); (T.C.M.); (T.Z.); (L.R.D.)
| | - Gustavo Martini Buso
- School of Business, Pontifical Catholic University of Paraná, Rua Imaculada Conceição 1155, Curitiba 80215-901, PR, Brazil; (G.M.B.); (J.W.C.)
| | - Thalissa Colodiano Martins
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (C.H.Y.); (G.B.O.); (T.C.M.); (T.Z.); (L.R.D.)
| | - Tiago Zequinao
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (C.H.Y.); (G.B.O.); (T.C.M.); (T.Z.); (L.R.D.)
| | - Joao Paulo Telles
- Hospital Universitário Evangélico Mackenzie, Curitiba 80730-150, PR, Brazil; (J.P.T.); (L.C.W.)
| | | | - Carolina de Oliveira Montenegro
- School of Business, Pontifical Catholic University of Paraná, Rua Imaculada Conceição 1155, Curitiba 80215-901, PR, Brazil; (G.M.B.); (J.W.C.)
| | - Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (C.H.Y.); (G.B.O.); (T.C.M.); (T.Z.); (L.R.D.)
| | - June Westarb Cruz
- School of Business, Pontifical Catholic University of Paraná, Rua Imaculada Conceição 1155, Curitiba 80215-901, PR, Brazil; (G.M.B.); (J.W.C.)
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (C.H.Y.); (G.B.O.); (T.C.M.); (T.Z.); (L.R.D.)
| |
Collapse
|
14
|
Zikou E, Koliaki C, Makrilakis K. The Role of Fecal Microbiota Transplantation (FMT) in the Management of Metabolic Diseases in Humans: A Narrative Review. Biomedicines 2024; 12:1871. [PMID: 39200335 PMCID: PMC11352194 DOI: 10.3390/biomedicines12081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The gut microbiota represents a complex ecosystem of trillions of microorganisms residing in the human gastrointestinal tract, which is known to interact with the host physiology and regulate multiple functions. Alterations in gut microbial composition, diversity, and function are referred to as dysbiosis. Dysbiosis has been associated with a variety of chronic diseases, including Clostridioides difficile infections, but also cardiometabolic diseases, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM). The implication of gut microbiota dysbiosis in the pathogenesis of both obesity and T2DM has paved the way to implementing novel therapeutic approaches for metabolic diseases through gut microbial reconfiguration. These interventions include probiotics, prebiotics, and synbiotics, while a more innovative approach has been fecal microbiota transplantation (FMT). FMT is a procedure that delivers healthy human donor stool to another individual through the gastrointestinal tract, aiming to restore gut microbiota balance. Several studies have investigated this approach as a potential tool to mitigate the adverse metabolic effects of gut microbiota aberrations associated with obesity and T2DM. The aim of the present review was to critically summarize the existing evidence regarding the clinical applications of FMT in the management of obesity and T2DM and provide an update on the potential of this method to remodel the entire host microbiota, leading thus to weight loss and sustained metabolic benefits. Safety issues, long-term efficacy, limitations, and pitfalls associated with FMT studies are further discussed, emphasizing the need for further research and standardization in certain methodological aspects in order to optimize metabolic outcomes.
Collapse
|
15
|
Mehta N, Goodenough D, Gupta NK, Thomas S, Mehta C, Prakash R, Woodworth MH, Kraft CS, Fridkin SK. Recurrent Clostridioides difficile Infection and Outcome of Fecal Microbiota Transplantation Use: A Population-Based Assessment. Open Forum Infect Dis 2024; 11:ofae309. [PMID: 38975247 PMCID: PMC11227225 DOI: 10.1093/ofid/ofae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Background Fecal microbiota transplantation (FMT) is recommended for the treatment of recurrent Clostridioides difficile infection (rCDI). In the current study, we evaluated rates of rCDI and subsequent FMT in a large metropolitan area. We compared demographic and clinical differences in FMT recipients and nonrecipients and quantified differences in outcomes based on treatment modality. Methods A retrospective community-wide cohort study was conducted using surveillance data from the Georgia Emerging Infections Program, the Georgia Discharge Data System, and locally maintained lists of FMTs completed across multiple institutions to evaluate all episodes of C. difficile infection (CDI) in this region between 2016 and 2019. Cases were limited to patients with rCDI and ≥1 documented hospitalization. A propensity-matched cohort was created to compare rates of recurrence and mortality among matched patients based on FMT receipt. Results A total of 3038 (22%) of 13 852 patients with CDI had rCDI during this period. In a propensity-matched cohort, patients who received an FMT had lower rates of rCDI (odds ratio, 0.6 [95% confidence interval, .38-.96) and a lower mortality rate (0.26 [.08-.82]). Of patients with rCDI, only 6% had received FMT. Recipients were more likely to be young, white, and female and less likely to have renal disease, diabetes, or liver disease, though these chronic illnesses were associated with higher rates of rCDI. Conclusions These data suggest FMT has been underused in a population-based assessment and that FMT substantially reduced risk of recurrence and death.
Collapse
Affiliation(s)
- Nirja Mehta
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia Emerging Infections Program, Decatur, Georgia, USA
| | - Dana Goodenough
- Georgia Emerging Infections Program, Decatur, Georgia, USA
- Atlanta Veterans’ Affairs Medical Center, Decatur, Georgia, USA
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nitin K Gupta
- Atlanta Gastroenterology Associates, Georgia, USA
- United Digestive, Atlanta, Georgia, USA
- Northside Hospital, Department of Gastroenterology, Atlanta, Georgia, USA
| | - Stepy Thomas
- Georgia Emerging Infections Program, Decatur, Georgia, USA
- Atlanta Veterans’ Affairs Medical Center, Decatur, Georgia, USA
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christina Mehta
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Radhika Prakash
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael H Woodworth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen S Kraft
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Scott K Fridkin
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia Emerging Infections Program, Decatur, Georgia, USA
| |
Collapse
|
16
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tanya Marie Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sepideh Pakpour
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ed J Kuijper
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sukanya Neupane
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sadeghi
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Estello Nap-Hill
- Department of Medicine, Division of Gastroenterology, St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Cong Y, Zhang Y, Han Y, Wu Y, Wang D, Zhang B. Recommendations for nutritional supplements for dry eye disease: current advances. Front Pharmacol 2024; 15:1388787. [PMID: 38873421 PMCID: PMC11169594 DOI: 10.3389/fphar.2024.1388787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
Dry eye disease (DED) represents a prevalent ocular surface disease. The development of effective nutritional management strategies for DED is crucial due to its association with various factors such as inflammation, oxidative stress, deficiencies in polyunsaturated fatty acids (PUFAs), imbalanced PUFA ratios, and vitamin insufficiencies. Extensive research has explored the impact of oral nutritional supplements, varying in composition and dosage, on the symptoms of DED. The main components of these supplements include fish oils (Omega-3 fatty acids), vitamins, trace elements, and phytochemical extracts. Beyond these well-known nutrients, it is necessary to explore whether novel nutrients might contribute to more effective DED management. This review provides a comprehensive update on the therapeutic potential of nutrients and presents new perspectives for combination supplements in DED treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Bingjie Zhang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Nguyen Y, Rudd Zhong Manis J, Ronczkowski NM, Bui T, Oxenrider A, Jadeja RN, Thounaojam MC. Unveiling the gut-eye axis: how microbial metabolites influence ocular health and disease. Front Med (Lausanne) 2024; 11:1377186. [PMID: 38799150 PMCID: PMC11122920 DOI: 10.3389/fmed.2024.1377186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
The intricate interplay between the gut microbiota and ocular health has surpassed conventional medical beliefs, fundamentally reshaping our understanding of organ interconnectivity. This review investigates into the intricate relationship between gut microbiota-derived metabolites and their consequential impact on ocular health and disease pathogenesis. By examining the role of specific metabolites, such as short-chain fatty acids (SCFAs) like butyrate and bile acids (BAs), herein we elucidate their significant contributions to ocular pathologies, thought-provoking the traditional belief of organ sterility, particularly in the field of ophthalmology. Highlighting the dynamic nature of the gut microbiota and its profound influence on ocular health, this review underlines the necessity of comprehending the complex workings of the gut-eye axis, an emerging field of science ready for further exploration and scrutiny. While acknowledging the therapeutic promise in manipulating the gut microbiome and its metabolites, the available literature advocates for a targeted, precise approach. Instead of broad interventions, it emphasizes the potential of exploiting specific microbiome-related metabolites as a focused strategy. This targeted approach compared to a precision tool rather than a broad-spectrum solution, aims to explore the therapeutic applications of microbiome-related metabolites in the context of various retinal diseases. By proposing a nuanced strategy targeted at specific microbial metabolites, this review suggests that addressing specific deficiencies or imbalances through microbiome-related metabolites might yield expedited and pronounced outcomes in systemic health, extending to the eye. This focused strategy holds the potential in bypassing the irregularity associated with manipulating microbes themselves, paving a more efficient pathway toward desired outcomes in optimizing gut health and its implications for retinal diseases.
Collapse
Affiliation(s)
- Yvonne Nguyen
- Mercer University School of Medicine, Macon, GA, United States
| | | | | | - Tommy Bui
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Allston Oxenrider
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Ravirajsinh N. Jadeja
- Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Menaka C. Thounaojam
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| |
Collapse
|
19
|
Singh J, Ibrahim B, Han SH. Nontraditional Treatment of Hepatic Encephalopathy. Clin Liver Dis 2024; 28:297-315. [PMID: 38548441 DOI: 10.1016/j.cld.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The pathophysiology of hepatic encephalopathy (HE) is complex, with hyperammonemia playing a central role in its development. Traditional therapies for HE have targeted ammonia and include medications such as lactulose and rifaximin. Although these agents are considered standard of care, nontraditional treatments seek to affect other factors in the pathogenesis of HE. Finally, procedural therapies include albumin dialysis, shunt closure, and the ultimate cure for HE, which is liver transplant. The treatments discussed provide alternative options for patients who have failed standard of care. However, more high-quality studies are needed to routinely recommend many of these agents.
Collapse
Affiliation(s)
- Jasleen Singh
- Department of Medicine, University of California at Los Angeles; Los Angeles, CA, USA.
| | - Brittney Ibrahim
- Department of Surgery, University of California at Los Angeles; Los Angeles, CA, USA
| | - Steven-Huy Han
- Department of Medicine, University of California at Los Angeles; Los Angeles, CA, USA; Department of Surgery, University of California at Los Angeles; Los Angeles, CA, USA
| |
Collapse
|
20
|
Herman C, Barker BM, Bartelli TF, Chandra V, Krajmalnik-Brown R, Jewell M, Li L, Liao C, McAllister F, Nirmalkar K, Xavier JB, Gregory Caporaso J. Assessing Engraftment Following Fecal Microbiota Transplant. ARXIV 2024:arXiv:2404.07325v1. [PMID: 38659636 PMCID: PMC11042410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fecal Microbiota Transplant (FMT) is an FDA approved treatment for recurrent Clostridium difficile infections, and is being explored for other clinical applications, from alleviating digestive and neurological disorders, to priming the microbiome for cancer treatment, and restoring microbiomes impacted by cancer treatment. Quantifying the extent of engraftment following an FMT is important in determining if a recipient didn't respond because the engrafted microbiome didn't produce the desired outcomes (a successful FMT, but negative treatment outcome), or the microbiome didn't engraft (an unsuccessful FMT and negative treatment outcome). The lack of a consistent methodology for quantifying FMT engraftment extent hinders the assessment of FMT success and its relation to clinical outcomes, and presents challenges for comparing FMT results and protocols across studies. Here we review 46 studies of FMT in humans and model organisms and group their approaches for assessing the extent to which an FMT engrafts into three criteria: 1) Chimeric Asymmetric Community Coalescence investigates microbiome shifts following FMT engraftment using methods such as alpha diversity comparisons, beta diversity comparisons, and microbiome source tracking. 2) Donated Microbiome Indicator Features tracks donated microbiome features (e.g., amplicon sequence variants or species of interest) as a signal of engraftment with methods such as differential abundance testing based on the current sample collection, or tracking changes in feature abundances that have been previously identified (e.g., from FMT or disease-relevant literature). 3) Temporal Stability examines how resistant post-FMT recipient's microbiomes are to reverting back to their baseline microbiome. Individually, these criteria each highlight a critical aspect of microbiome engraftment; investigated together, however, they provide a clearer assessment of microbiome engraftment. We discuss the pros and cons of each of these criteria, providing illustrative examples of their application. We also introduce key terminology and recommendations on how FMT studies can be analyzed for rigorous engraftment extent assessment.
Collapse
Affiliation(s)
- Chloe Herman
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Thais F Bartelli
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, U.S.A
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, U.S.A
| | | | - Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khemlal Nirmalkar
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, U.S.A
| | - Joao B Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - J Gregory Caporaso
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
21
|
Belelli D, Riva A, Nutt DJ. Reducing the harms of alcohol: nutritional interventions and functional alcohol alternatives. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:241-276. [PMID: 38555118 DOI: 10.1016/bs.irn.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The health risks and harm associated with regular alcohol consumption are well documented. In a recent WHO statement published in The Lancet Public Health alcohol consumption has been estimated to contribute worldwide to 3 million deaths in 2016 while also being responsible for 5·1% of the global burden of disease and injury. The total elimination of alcohol consumption, which has been long imbedded in human culture and society, is not practical and prohibition policies have proved historically ineffective. However, valuable strategies to reduce alcohol harms are already available and improved alternative approaches are currently being developed. Here, we will review and discuss recent advances on two main types of approaches, that is nutritional interventions and functional alcohol alternatives.
Collapse
Affiliation(s)
- Delia Belelli
- GABALabs Res. Senior Scientific Consultant, United Kingdom
| | - Antonio Riva
- Roger Williams Institute of Hepatology (Foundation for Liver Research), London; Faculty of Life Sciences & Medicine, King's College London, London
| | | |
Collapse
|
22
|
Chakraborty N. Metabolites: a converging node of host and microbe to explain meta-organism. Front Microbiol 2024; 15:1337368. [PMID: 38505556 PMCID: PMC10949987 DOI: 10.3389/fmicb.2024.1337368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, United States
| |
Collapse
|
23
|
Aroniadis OC, Grinspan AM. The Gut Microbiome: A Primer for the Clinician. Am J Gastroenterol 2024; 119:S2-S6. [PMID: 38153219 DOI: 10.14309/ajg.0000000000002583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Olga C Aroniadis
- Division of Gastroenterology and Hepatology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Ari M Grinspan
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
24
|
Porcari S, Maida M, Bibbò S, McIlroy J, Ianiro G, Cammarota G. Fecal Microbiota Transplantation as Emerging Treatment in European Countries 2.0. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:85-99. [PMID: 38175472 DOI: 10.1007/978-3-031-42108-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI) is one of the most common healthcare-associated infections and one of the leading causes of morbidity and mortality in hospitalized patients in the world. Although several antibiotics effectively treat CDI, some individuals may not respond to these drugs and may be cured by transplanting stool from healthy donors. FMT has demonstrated extraordinary cure rates for the cure of CDI recurrences.Moreover, FMT has also been investigated in other disorders associated with the alteration of gut microbiota, such as inflammatory bowel disease (IBD), where the alterations of the gut microbiota ecology have been theorized to play a causative role. Although FMT is currently not recommended to cure IBD patients in clinical practice, several studies have been recently carried out with the ultimate goal to search new therapeutic options to patients.This review summarizes data on the use of FMT for the treatment of both CDI and IBD, with a special attention to highlight studies conducted in European countries.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, Caltanissetta, Italy
| | - Stefano Bibbò
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - James McIlroy
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
25
|
Zhang Z, Mocanu V, Deehan EC, Hotte N, Zhu Y, Wei S, Kao DH, Karmali S, Birch DW, Walter J, Madsen KL. Recipient microbiome-related features predicting metabolic improvement following fecal microbiota transplantation in adults with severe obesity and metabolic syndrome: a secondary analysis of a phase 2 clinical trial. Gut Microbes 2024; 16:2345134. [PMID: 38685731 PMCID: PMC11062372 DOI: 10.1080/19490976.2024.2345134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Microbial-based therapeutics in clinical practice are of considerable interest, and a recent study demonstrated fecal microbial transplantation (FMT) followed by dietary fiber supplements improved glucose homeostasis. Previous evidence suggests that donor and recipient compatibility and FMT protocol are key determinants, but little is known about the involvement of specific recipient factors. Using data from our recent randomized placebo-control phase 2 clinical trial in adults with obesity and metabolic syndrome, we grouped participants that received FMT from one of 4 donors with either fiber supplement into HOMA-IR responders (n = 21) and HOMA-IR non-responders (n = 8). We further assessed plasma bile acids using targeted metabolomics and performed subgroup analyzes to evaluate the effects of recipient parameters and gastrointestinal factors on microbiota engraftment and homeostatic model assessment of insulin resistance (HOMA2-IR) response. The baseline fecal microbiota composition at genus level of recipients could predict the improvements in HOMA2-IR at week 6 (ROC-AUC = 0.70). Prevotella was identified as an important predictor, with responders having significantly lower relative abundance than non-responders (p = .02). In addition, recipients displayed a highly individualized degree of microbial engraftment from donors. Compared to the non-responders, the responders had significantly increased bacterial richness (Chao1) after FMT and a more consistent engraftment of donor-specific bacteria ASVs (amplicon sequence variants) such as Faecalibacillus intestinalis (ASV44), Roseburia spp. (ASV103), and Christensenellaceae spp. (ASV140) (p < .05). Microbiota engraftment was strongly associated with recipients' factors at baseline including initial gut microbial diversity, fiber and nutrient intakes, inflammatory markers, and bile acid derivative levels. This study identified that responders to FMT therapy had a higher engraftment rate in the transplantation of specific donor-specific microbes, which were strongly correlated with insulin sensitivity improvements. Further, the recipient baseline gut microbiota and related factors were identified as the determinants for responsiveness to FMT and fiber supplementation. The findings provide a basis for the development of precision microbial therapeutics for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, China
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Valentin Mocanu
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Edward C. Deehan
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yuanyuan Zhu
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, China
| | - Shanshan Wei
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, China
| | - Dina H. Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Shahzeer Karmali
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Daniel W. Birch
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | - Karen L. Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
He KY, Lei XY, Zhang L, Wu DH, Li JQ, Lu LY, Laila UE, Cui CY, Xu ZX, Jian YP. Development and management of gastrointestinal symptoms in long-term COVID-19. Front Microbiol 2023; 14:1278479. [PMID: 38156008 PMCID: PMC10752947 DOI: 10.3389/fmicb.2023.1278479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Emerging evidence reveals that SARS-CoV-2 possesses the capability to disrupt the gastrointestinal (GI) homeostasis, resulting in the long-term symptoms such as loss of appetite, diarrhea, gastroesophageal reflux, and nausea. In the current review, we summarized recent reports regarding the long-term effects of COVID-19 (long COVID) on the gastrointestine. Objective To provide a narrative review of abundant clinical evidence regarding the development and management of long-term GI symptoms in COVID-19 patients. Results Long-term persistent digestive symptoms are exhibited in a majority of long-COVID patients. SARS-CoV-2 infection of intestinal epithelial cells, cytokine storm, gut dysbiosis, therapeutic drugs, psychological factors and exacerbation of primary underlying diseases lead to long-term GI symptoms in COVID-19 patients. Interventions like probiotics, prebiotics, fecal microbiota transplantation, and antibiotics are proved to be beneficial in preserving intestinal microecological homeostasis and alleviating GI symptoms. Conclusion Timely diagnosis and treatment of GI symptoms in long-COVID patients hold great significance as they may contribute to the mitigation of severe conditions and ultimately lead to the improvement of outcomes of the patients.
Collapse
Affiliation(s)
- Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Li-Yuan Lu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Umm E. Laila
- School of Life Sciences, Henan University, Kaifeng, China
| | - Cui-Yun Cui
- Department of Blood Transfusion, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Alam MZ, Markantonis JE, Fallon JT. Host Immune Responses to Clostridioides difficile Infection and Potential Novel Therapeutic Approaches. Trop Med Infect Dis 2023; 8:506. [PMID: 38133438 PMCID: PMC10747268 DOI: 10.3390/tropicalmed8120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a leading nosocomial infection, posing a substantial public health challenge within the United States and globally. CDI typically occurs in hospitalized elderly patients who have been administered antibiotics; however, there has been a rise in the occurrence of CDI in the community among young adults who have not been exposed to antibiotics. C. difficile releases toxins, which damage large intestinal epithelium, leading to toxic megacolon, sepsis, and even death. Unfortunately, existing antibiotic therapies do not always prevent these consequences, with up to one-third of treated patients experiencing a recurrence of the infection. Host factors play a crucial role in the pathogenesis of CDI, and accumulating evidence shows that modulation of host immune responses may potentially alter the disease outcome. In this review, we provide an overview of our current knowledge regarding the role of innate and adaptive immune responses on CDI outcomes. Moreover, we present a summary of non-antibiotic microbiome-based therapies that can effectively influence host immune responses, along with immunization strategies that are intended to tackle both the treatment and prevention of CDI.
Collapse
Affiliation(s)
- Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | | | | |
Collapse
|
28
|
Zhang X, Luo X, Tian L, Yue P, Li M, Liu K, Zhu D, Huang C, Shi Q, Yang L, Xia Z, Zhao J, Ma Z, Li J, Leung JW, Lin Y, Yuan J, Meng W, Li X, Chen Y. The gut microbiome dysbiosis and regulation by fecal microbiota transplantation: umbrella review. Front Microbiol 2023; 14:1286429. [PMID: 38029189 PMCID: PMC10655098 DOI: 10.3389/fmicb.2023.1286429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Gut microbiome dysbiosis has been implicated in various gastrointestinal and extra-gastrointestinal diseases, but evidence on the efficacy and safety of fecal microbiota transplantation (FMT) for therapeutic indications remains unclear. Methods The gutMDisorder database was used to summarize the associations between gut microbiome dysbiosis and diseases. We performed an umbrella review of published meta-analyses to determine the evidence synthesis on the efficacy and safety of FMT in treating various diseases. Our study was registered in PROSPERO (CRD42022301226). Results Gut microbiome dysbiosis was associated with 117 gastrointestinal and extra-gastrointestinal. Colorectal cancer was associated with 92 dysbiosis. Dysbiosis involving Firmicutes (phylum) was associated with 34 diseases. We identified 62 published meta-analyses of FMT. FMT was found to be effective for 13 diseases, with a 95.56% cure rate (95% CI: 93.88-97.05%) for recurrent Chloridoids difficile infection (rCDI). Evidence was high quality for rCDI and moderate to high quality for ulcerative colitis and Crohn's disease but low to very low quality for other diseases. Conclusion Gut microbiome dysbiosis may be implicated in numerous diseases. Substantial evidence suggests FMT improves clinical outcomes for certain indications, but evidence quality varies greatly depending on the specific indication, route of administration, frequency of instillation, fecal preparation, and donor type. This variability should inform clinical, policy, and implementation decisions regarding FMT.
Collapse
Affiliation(s)
- Xianzhuo Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xufei Luo
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Liang Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Mengyao Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Kefeng Liu
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daoming Zhu
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Chongfei Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qianling Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Liping Yang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhili Xia
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jinyu Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zelong Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jianlong Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, United States
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yaolong Chen
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Research Unit of Evidence-Based Evaluation and Guidelines, Chinese Academy of Medical Sciences, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Institute of Health Data Science, Lanzhou University, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou, China
| |
Collapse
|
29
|
Huang J, Gong C, Zhou A. Modulation of gut microbiota: a novel approach to enhancing the effects of immune checkpoint inhibitors. Ther Adv Med Oncol 2023; 15:17588359231204854. [PMID: 37841750 PMCID: PMC10571694 DOI: 10.1177/17588359231204854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have greatly improved the prognosis of some cancer patients, the majority still fail to respond adequately, and the available biomarkers cannot reliably predict drug efficacy. The gut microbiota has received widespread attention among the various intrinsic and extrinsic factors contributing to drug resistance. As an essential regulator of physiological function, the impact of gut microbiota on host immunity and response to cancer therapy is increasingly recognized. Several studies have demonstrated significant differences in gut microbiota between responders and nonresponders. The gut microbiota associated with better clinical outcomes is called 'favorable gut microbiota'. Significantly, interventions can alter the gut microbiota. By shifting the gut microbiota to the 'favorable' one through various modifications, preclinical and clinical studies have yielded more pronounced responses and better clinical outcomes when combined with ICIs treatment, providing novel approaches to improve the efficacy of cancer immunotherapy. These findings may be attributed to the effects of gut microbiota and its metabolites on the immune microenvironment and the systemic immune system, but the underlying mechanisms remain to be discovered. In this review, we summarize the clinical evidence that the gut microbiota is strongly associated with the outcomes of ICI treatment and describe the gut microbiota characteristics associated with better clinical outcomes. We then expand on the current prevalent modalities of gut microbiota regulation, provide a comprehensive overview of preclinical and clinical research advances in improving the therapeutic efficacy and prognosis of ICIs by modulating gut microbiota, and suggest fundamental questions we need to address and potential directions for future research expansion.
Collapse
Affiliation(s)
- Jinglong Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caifeng Gong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aiping Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| |
Collapse
|
30
|
Campagnoli LIM, Varesi A, Barbieri A, Marchesi N, Pascale A. Targeting the Gut-Eye Axis: An Emerging Strategy to Face Ocular Diseases. Int J Mol Sci 2023; 24:13338. [PMID: 37686143 PMCID: PMC10488056 DOI: 10.3390/ijms241713338] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The human microbiota refers to a large variety of microorganisms (bacteria, viruses, and fungi) that live in different human body sites, including the gut, oral cavity, skin, and eyes. In particular, the presence of an ocular surface microbiota with a crucial role in maintaining ocular surface homeostasis by preventing colonization from pathogen species has been recently demonstrated. Moreover, recent studies underline a potential association between gut microbiota (GM) and ocular health. In this respect, some evidence supports the existence of a gut-eye axis involved in the pathogenesis of several ocular diseases, including age-related macular degeneration, uveitis, diabetic retinopathy, dry eye, and glaucoma. Therefore, understanding the link between the GM and these ocular disorders might be useful for the development of new therapeutic approaches, such as probiotics, prebiotics, symbiotics, or faecal microbiota transplantation through which the GM could be modulated, thus allowing better management of these diseases.
Collapse
Affiliation(s)
| | - Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Annalisa Barbieri
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Alessia Pascale
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| |
Collapse
|
31
|
Yan X, Bai L, Qi P, Lv J, Song X, Zhang L. Potential Effects of Regulating Intestinal Flora on Immunotherapy for Liver Cancer. Int J Mol Sci 2023; 24:11387. [PMID: 37511148 PMCID: PMC10380345 DOI: 10.3390/ijms241411387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal flora plays an important role in the occurrence and development of liver cancer, affecting the efficacy and side effects of conventional antitumor therapy. Recently, immunotherapy for liver cancer has been a palliative treatment for patients with advanced liver cancer lacking surgical indications. Representative drugs include immune checkpoint inhibitors, regulators, tumor vaccines, and cellular immunotherapies. The effects of immunotherapy on liver cancer vary because of the heterogeneity of the tumors. Intestinal flora can affect the efficacy and side effects of immunotherapy for liver cancer by regulating host immunity. Therefore, applying probiotics, prebiotics, antibiotics, and fecal transplantation to interfere with the intestinal flora is expected to become an important means of assisting immunotherapy for liver cancer. This article reviews publications that discuss the relationship between intestinal flora and immunotherapy for liver cancer and further clarifies the potential relationship between intestinal flora and immunotherapy for liver cancer.
Collapse
Affiliation(s)
- Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
32
|
Wang M, Xie X, Zhao S, Ma X, Wang Z, Zhang Y. Fecal microbiota transplantation for irritable bowel syndrome: a systematic review and meta-analysis of randomized controlled trials. Front Immunol 2023; 14:1136343. [PMID: 37275867 PMCID: PMC10234428 DOI: 10.3389/fimmu.2023.1136343] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
Objective Whether fecal microbiota transplantation (FMT) in patients with irritable bowel syndrome (IBS) is effective in improving outcomes remains controversial. We assessed the safety and efficacy of FMT for patients with IBS. Methods In this systematic review and meta-analysis, we searched PubMed, Embase, Web of Science, the Cochrane Library, the clinicaltrials.gov and International Clinical Trials Registry Platform (ICTRP) up to February 25, 2022, updated to March 28, 2023. Randomized controlled trials (RCTs) compared the stool and capsule FMT with placebo in patients with IBS were included. Two authors independently assessed study eligibility, extracted the data, and assessed risk of bias. We did meta-analysis with RevMan, and the Stata software was used for sensitivity analysis and meta-regression. The GRADE system was used to assess the quality of evidences. Mean difference (MD) or standardized Mean difference (SMD) with 95% CI for continuous data, and risk ratios (RR) with 95% CI for dichotomous data were used with random-effects models. The primary outcomes included the clinical response rate and IBS-SSS score. This study is registered with PROSPERO: CRD42022328377. Results Nineteen reports from nine RCTs were included finally. Compared with the placebo, a single stool FMT could significantly decrease the IBS-SSS score at 1 month (MD=-65.75, 95%CI [-129.37, -2.13]), 3 months (MD=-102.11, 95% CI [-141.98, -62.24]), 6 months (MD=-84.38, 95%CI [-158.79, -9.97]), 24 months (MD=-110.41, 95%CI [-145.37, -75.46]), and 36 months (MD=-104.71, 95%CI [-137.78, -71.64]). It also could improve the clinical response rate at 3 months (RR=1.91, 95% [1.12, 3.25]), 24 months (RR=2.97, 95% [1.94, 4.54]), and 36 months (RR=2.48, 95% [1.65, 3.72]), and increase the IBS-QoL score at 3 months, 24 months, and 36 months. FMT did not increase the serious adverse event. The risk of bias was low, and the quality of evidence based on GRADE system was moderate in the stool FMT group. However, we did not find positive effect of capsule FMT on patients with IBS based on the current available data. Conclusion A single stool FMT is effective and safe for patients with IBS. However, some factors may affect the effectiveness of FMT, and the relationship between the gut microbiome and the effect of FMT for IBS is still unclear. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022328377.
Collapse
Affiliation(s)
- Mancai Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaofeng Xie
- Department of Histology and Embryology, Medical College of Northwest Minzu University, Lanzhou, China
| | - Songbo Zhao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaojuan Ma
- Department of Histology and Embryology, Medical College of Northwest Minzu University, Lanzhou, China
| | - Zheyuan Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Youcheng Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
33
|
Porcari S, Benech N, Valles-Colomer M, Segata N, Gasbarrini A, Cammarota G, Sokol H, Ianiro G. Key determinants of success in fecal microbiota transplantation: From microbiome to clinic. Cell Host Microbe 2023; 31:712-733. [PMID: 37167953 DOI: 10.1016/j.chom.2023.03.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fecal microbiota transplantation (FMT) has achieved satisfactory results in preventing the recurrence of Clostridioides difficile infection, but these positive outcomes have only been partially replicated in other diseases. Several factors influence FMT success, including those related to donors and recipients (including diversity and specific composition of the gut microbiome, immune system, and host genetics) as well as to working protocols (fecal amount and number of infusions, route of delivery, and adjuvant treatments). Moreover, initial evidence suggests that the clinical success of FMT may be related to the degree of donor microbial engraftment. The application of cutting-edge technologies for microbiome assessment, along with changes in the current vision of fecal transplants, are expected to improve FMT protocols and outcomes. Here, we review the key determinants of FMT success and insights and strategies that will enable a close integration of lab-based and clinical approaches for increasing FMT success.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicolas Benech
- Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France; Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Lyon, France; French Fecal Transplant Group (GFTF), France
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Harry Sokol
- French Fecal Transplant Group (GFTF), France; Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France; Paris Centre for Microbiome Medicine FHU, Paris, France; INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
34
|
Minkoff NZ, Aslam S, Medina M, Tanner-Smith EE, Zackular JP, Acra S, Nicholson MR, Imdad A. Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile (Clostridium difficile). Cochrane Database Syst Rev 2023; 4:CD013871. [PMID: 37096495 PMCID: PMC10125800 DOI: 10.1002/14651858.cd013871.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
BACKGROUND Clostridioides difficile (formerly known as Clostridium difficile) is a bacterium that can cause potentially life-threatening diarrheal illness in individuals with an unhealthy mixture of gut bacteria, known as dysbiosis, and can cause recurrent infections in nearly a third of infected individuals. The traditional treatment of recurrent C difficile infection (rCDI) includes antibiotics, which may further exacerbate dysbiosis. There is growing interest in correcting the underlying dysbiosis in rCDI using of fecal microbiota transplantation (FMT); and there is a need to establish the benefits and harms of FMT for the treatment of rCDI based on data from randomized controlled trials. OBJECTIVES To evaluate the benefits and harms of donor-based fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile infection in immunocompetent people. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 31 March 2022. SELECTION CRITERIA We considered randomized trials of adults or children with rCDI for inclusion. Eligible interventions must have met the definition of FMT, which is the administration of fecal material containing distal gut microbiota from a healthy donor to the gastrointestinal tract of a person with rCDI. The comparison group included participants who did not receive FMT and were given placebo, autologous FMT, no intervention, or antibiotics with activity against C difficile. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. proportion of participants with resolution of rCDI and 2. serious adverse events. Our secondary outcomes were 3. treatment failure, 4. all-cause mortality, 5. withdrawal from study, 6. rate of new CDI infection after a successful FMT, 7. any adverse event, 8. quality of life, and 9. colectomy. We used the GRADE criteria to assess certainty of evidence for each outcome. MAIN RESULTS We included six studies with 320 participants. Two studies were conducted in Denmark, and one each in the Netherlands, Canada, Italy, and the US. Four were single-center and two were multicenter studies. All studies included only adults. Five studies excluded people who were severely immunocompromised, with only one study including 10 participants who were receiving immunosuppressive therapy out of the 64 enrolled; these were similarly distributed between the FMT arm (4/24 or 17%) and comparison arms (6/40 or 15%). The route of administration was the upper gastrointestinal tract via a nasoduodenal tube in one study, two studies used enema only, two used colonoscopic only delivery, and one used either nasojejunal or colonoscopic delivery, depending on a clinical determination of whether the recipient could tolerate a colonoscopy. Five studies had at least one comparison group that received vancomycin. The risk of bias (RoB 2) assessments did not find an overall high risk of bias for any outcome. All six studies assessed the efficacy and safety of FMT for the treatment of rCDI. Pooled results from six studies showed that the use of FMT in immunocompetent participants with rCDI likely leads to a large increase in resolution of rCDI in the FMT group compared to control (risk ratio (RR) 1.92, 95% confidence interval (CI) 1.36 to 2.71; P = 0.02, I2 = 63%; 6 studies, 320 participants; number needed to treat for an additional beneficial outcome (NNTB) 3; moderate-certainty evidence). Fecal microbiota transplantation probably results in a slight reduction in serious adverse events; however, the CIs around the summary estimate were wide (RR 0.73, 95% CI 0.38 to 1.41; P = 0.24, I² = 26%; 6 studies, 320 participants; NNTB 12; moderate-certainty evidence). Fecal microbiota transplantation may result in a reduction in all-cause mortality; however, the number of events was small, and the CIs of the summary estimate were wide (RR 0.57, 95% CI 0.22 to 1.45; P = 0.48, I2 = 0%; 6 studies, 320 participants; NNTB 20; low-certainty evidence). None of the included studies reported colectomy rates. AUTHORS' CONCLUSIONS In immunocompetent adults with rCDI, FMT likely leads to a large increase in the resolution of recurrent Clostridioides difficile infection compared to alternative treatments such as antibiotics. There was no conclusive evidence regarding the safety of FMT for the treatment of rCDI as the number of events was small for serious adverse events and all-cause mortality. Additional data from large national registry databases might be required to assess any short-term or long-term risks with using FMT for the treatment of rCDI. Elimination of the single study that included some immunocompromised people did not alter these conclusions. Due to the low number of immunocompromised participants enrolled, conclusions cannot be drawn about the risks or benefits of FMT for rCDI in the immunocompromised population.
Collapse
Affiliation(s)
- Nathan Zev Minkoff
- Pediatric Gastroenterology, Hepatology and Nutrition, Valley Children's Hospital, Madera, California, USA
| | - Scheherzade Aslam
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Melissa Medina
- Department of Public Health and Preventative Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Emily E Tanner-Smith
- Counseling Psychology and Human Services, University of Oregon, Eugene, Oregon, USA
| | - Joseph P Zackular
- Department of Pathology and Laboratory Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sari Acra
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Maribeth R Nicholson
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
35
|
Kahan T, Chandan S, Khan SR, Deliwala S, Chang S, Axelrad J, Shaukat A. Safety and Efficacy of Fecal Microbiota Transplant in Chronic Pouchitis-A Systematic Review With Meta-Analysis. GASTRO HEP ADVANCES 2023; 2:843-852. [PMID: 39130120 PMCID: PMC11307912 DOI: 10.1016/j.gastha.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/20/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Pouchitis is the most common long-term complication after ileal-pouch anal anastomosis in patients with ulcerative colitis. We conducted a systematic review and meta-analysis evaluating the safety and efficacy of fecal microbiota transplant (FMT) in chronic antibiotic dependent and refractory pouchitis. Methods Multiple databases were searched through April 2022 for studies that reported the efficacy and safety of FMT in patients with chronic pouchitis. Meta-analysis using random effects model was performed to calculate pooled rates. Results Eight studies with a total of 89 patients were included in our review, with 74 patients having received FMT and 15 patients having received placebo. The mean age ranged from 32.6 to 51.5 years. In patients that received FMT, the pooled rates of overall remission was (Pouchitis Disease Activity Index score < 7) 22% (95% CI, 9%-43%; I2, 29%), clinical remission was 20% (95% CI, 6%-49%; I2, 25%), clinical response rate was 42% (95% CI, 30%-54%; I2, 7%), and the relapse rate 60% (95% CI, 40%-77%, I2 16%) over the mean follow up of 4.67 months (range 1-12 months). The pooled proportion of patients with adverse events was 54% (95% CI, 21%-84%; I2, 73%). There were no serious adverse events or deaths. Conclusion In patients with chronic pouchitis, FMT is safe though there are mixed results in terms of its long-term efficacy. Future Randomized Controlled Trials with larger sample sizes and greater standardization in terms of preparation, delivery, and length of treatment of FMT are needed to determine efficacy.
Collapse
Affiliation(s)
- Tamara Kahan
- Division of Gastroenterology and Hepatology, NYU Grossman School of Medicine, New York, New York
| | - Saurabh Chandan
- Division of Gastroenterology and Hepatology, Creighton University School of Medicine, Omaha, Nebraska
| | - Shahab R. Khan
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Smit Deliwala
- Division of Gastroenterology & Hepatology, Emory University, Atlanta, Georgia
| | - Shannon Chang
- Division of Gastroenterology and Hepatology, NYU Grossman School of Medicine, New York, New York
| | - Jordan Axelrad
- Division of Gastroenterology and Hepatology, NYU Grossman School of Medicine, New York, New York
| | - Aasma Shaukat
- Division of Gastroenterology and Hepatology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
36
|
Zhou S, Cui Y, Zhang Y, Zhao T, Cong J. Fecal microbiota transplantation for induction of remission in Crohn's disease: a systematic review and meta-analysis. Int J Colorectal Dis 2023; 38:62. [PMID: 36882658 DOI: 10.1007/s00384-023-04354-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE Fecal microbiota transplantation (FMT) has been found to be a potential treatment for Crohn's disease (CD). We sought to perform a systematic review and meta-analysis to evaluate the efficacy and safety of FMT in CD. METHODS Electronic databases were searched for studies until January 2023. Clinical remission was established as the primary outcome. The secondary outcome was clinical response, endoscopic remission, minor adverse events, serious adverse events, and changes in disease activity indices, biochemical indicators, and microbial diversities. Pooled effect sizes and 95% confidence intervals (CIs) were calculated under the random effects model. RESULTS Eleven cohort studies and one randomized controlled trial involving 228 patients were included. In a meta-analysis, the pooled proportion of adult patients with active CD that achieved clinical remission 2 to 4 weeks after FMT was 57% (95% CI = 49-64%) with a low risk of heterogeneity (I2 = 37%). Furthermore, our results showed that FMT significantly (standardized mean difference = -0.66; 95% CI = -1.12 to -0.20; I2 = 0) reduced Crohn's disease activity index scores 4 to 8 weeks after FMT. Subgroup analyses showed no difference between FMT methodologies, except for pre-FMT treatment with antibiotics (P = 0.02). Most adverse events were self-limiting and disappeared spontaneously within hours or days after FMT. Microbiota analysis showed an increased Shannon diversity and a shift toward donor-like microbiome after FMT. CONCLUSION FMT could be a promising therapy in the short-term treatment of active CD. More placebo-controlled randomized trials with a long-term follow-up treatment are necessary. TRIAL REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022322694 No. CRD42022322694.
Collapse
Affiliation(s)
- Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, People's Republic of China
| | - Ying Cui
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Siliu South Road No.127, Qingdao, 266000, People's Republic of China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, People's Republic of China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, People's Republic of China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
37
|
Gangwani MK, Aziz M, Aziz A, Priyanka F, Weissman S, Phan K, Dahiya DS, Ahmed Z, Sohail AH, Lee-Smith W, Kamal F, Javaid T, Nawras A, Hart B. Fresh Versus Frozen Versus Lyophilized Fecal Microbiota Transplant for Recurrent Clostridium Difficile Infection: A Systematic Review and Network Meta-analysis. J Clin Gastroenterol 2023; 57:239-245. [PMID: 36656270 DOI: 10.1097/mcg.0000000000001777] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Clostridium difficile Infection is a significant source of morbidity and mortality, which is on the rise. Fecal Microbiota Transplantation (FMT) is an alternative therapy to antibiotics with a high success rate and low relapse rate. Current data regarding the efficacy of the types of FMT used, namely fresh, frozen, and lyophilized is conflicting. Our review attempts to consolidate this data and highlight the most efficacious treatment currently available. METHODOLOGY MEDLINE, Embase, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, SciELO, the Korean Citation Index, and Global Index Medicus were systematically searched from inception through May 3, 2022. Studies in which patients are undergoing any form of FMT who had failed antibiotic treatment previously were included. Both pairwise (direct) and network (direct + indirect) meta-analysis were performed using a random effects model and DerSimonian-Laird approach. A frequentist approach was used for network meta-analysis. Risk differences with (RD) with 95% confidence interval (CI) were calculated. RESULTS A total of 8 studies, including 4 RCTs and 4 cohort studies, were included with a total of 616 patients. Fresh FMT was determined to be most successful with 93% efficacy 95% CI (0.913 to 0.999) followed by frozen with 88% efficacy 95% CI (0.857 to 0.947) and lyophilized with 83% efficacy 95% CI (0.745 to 0.910). The direct meta-analysis showed no statistically significant difference between fresh and frozen group. (RD -0.051 95% CI -0.116 to 0.014 P =0.178). No significant differences were noted in frozen versus lyophilized groups with an overall trend towards Fresh FM (RD -0.061 95% CI -0.038 to 0.160 P =0.617). On network meta-analysis, when compared with fresh group, a lower recovery rate was noted with both frozen group (RD -0.06 95% CI -0.11 to 0.00 P =0.05) and lyophilized group (RD -0.16 95% CI -0.27 to -0.05 P =0.01). CONCLUSION We conclude the efficacy of Frozen and Lyophilized preparations is high with no difference in direct comparison, and the relative efficacy reduction based on network analysis is outweighed by the safety, accessibility, and practicality of Frozen or Lyophilized preparations.
Collapse
Affiliation(s)
| | - Muhammad Aziz
- Division of Gastroenterology and Hepatology, University of Toledo Medical Center
| | - Abeer Aziz
- Division of Medicine, Aga Khan University, Karachi
| | - Fnu Priyanka
- Division of Medicine, Shaheed Mohtarma Benazir Bhutto University, Larkana, Pakistan
| | - Simcha Weissman
- Department of Medicine, Hackensack University, Palisade Medical Center, North Bergen, NJ
| | - Khiem Phan
- Department of Medicine, Hackensack University, Palisade Medical Center, North Bergen, NJ
| | - Dushyant Singh Dahiya
- Department of Medicine, Central Michigan University College of Medicine, Saginaw, MI
| | | | - Amir Humza Sohail
- Department of General Surgery, New York University Langone Health, Long Island, NY
| | - Wade Lee-Smith
- University of Toledo Libraries, University of Toledo, Toledo, Ohio
| | - Faisal Kamal
- Division of Gastroenterology, University of San Francisco, San Francisco, CA
| | - Toseef Javaid
- Division of Gastroenterology and Hepatology, University of Toledo Medical Center
| | - Ali Nawras
- Division of Gastroenterology and Hepatology, University of Toledo Medical Center
| | - Benjamin Hart
- Division of Gastroenterology and Hepatology, University of Toledo Medical Center
| |
Collapse
|
38
|
Chopra T. A profile of the live biotherapeutic product RBX2660 and its role in preventing recurrent Clostridioides difficile infection. Expert Rev Anti Infect Ther 2023; 21:243-253. [PMID: 36756869 DOI: 10.1080/14787210.2023.2171986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Clostridiodes difficile infection (CDI) is a life-threatening illness that has been labelled as an urgent threat by the Centers for Disease prevention (CDC). AREAS COVERED RBX2660, a live biotherapeutic product offers a very promising treatment option for patients with recurrent Clostridiodes difficile infection(rCDI). RBX2660 restores the healthy gut microbiome and shows clinically meaningful benefits for patients suffering from rCDI. Safety, efficacy, and tolerability of RBX2660 have been thoroughly assessed . EXPERT OPINION An FDA-approved, standardized, and accessible microbiota restoration product like RBX2660 would provide a new option for patients in need of treatment for rCDI by breaking the cycle of disease recurrence.
Collapse
Affiliation(s)
- Teena Chopra
- Division of Infectious Diseases. Corporate Medical Director, Infection Prevention, Epidemiology, and Antibiotic Stewardship, Detroit Medical Center and Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
39
|
Faecal microbiota trasplant: Current status and perspectives beyond Clostridioides difficile infection. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:203-205. [PMID: 36737368 DOI: 10.1016/j.eimce.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023]
|
40
|
Alam MZ, Maslanka JR, Abt MC. Immunological consequences of microbiome-based therapeutics. Front Immunol 2023; 13:1046472. [PMID: 36713364 PMCID: PMC9878555 DOI: 10.3389/fimmu.2022.1046472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
The complex network of microscopic organisms living on and within humans, collectively referred to as the microbiome, produce wide array of biologically active molecules that shape our health. Disruption of the microbiome is associated with susceptibility to a range of diseases such as cancer, diabetes, allergy, obesity, and infection. A new series of next-generation microbiome-based therapies are being developed to treat these diseases by transplanting bacteria or bacterial-derived byproducts into a diseased individual to reset the recipient's microbiome and restore health. Microbiome transplantation therapy is still in its early stages of being a routine treatment option and, with a few notable exceptions, has had limited success in clinical trials. In this review, we highlight the successes and challenges of implementing these therapies to treat disease with a focus on interactions between the immune system and microbiome-based therapeutics. The immune activation status of the microbiome transplant recipient prior to transplantation has an important role in supporting bacterial engraftment. Following engraftment, microbiome transplant derived signals can modulate immune function to ameliorate disease. As novel microbiome-based therapeutics are developed, consideration of how the transplants will interact with the immune system will be a key factor in determining whether the microbiome-based transplant elicits its intended therapeutic effect.
Collapse
Affiliation(s)
| | | | - Michael C. Abt
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
41
|
Eaton SE, Kaczmarek J, Mahmood D, McDiarmid AM, Norarfan AN, Scott EG, Then CK, Tsui HY, Kiltie AE. Exploiting dietary fibre and the gut microbiota in pelvic radiotherapy patients. Br J Cancer 2022; 127:2087-2098. [PMID: 36175620 PMCID: PMC9727022 DOI: 10.1038/s41416-022-01980-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
With an ageing population, there is an urgent need to find alternatives to current standard-of-care chemoradiation schedules in the treatment of pelvic malignancies. The gut microbiota may be exploitable, having shown a valuable role in improving patient outcomes in anticancer immunotherapy. These bacteria feed on dietary fibres, which reach the large intestine intact, resulting in the production of beneficial metabolites, including short-chain fatty acids. The gut microbiota can impact radiotherapy (RT) treatment responses and itself be altered by the radiation. Evidence is emerging that manipulation of the gut microbiota by dietary fibre supplementation can improve tumour responses and reduce normal tissue side effects following RT, although data on tumour response are limited to date. Both may be mediated by immune and non-immune effects of gut microbiota and their metabolites. Alternative approaches include use of probiotics and faecal microbiota transplantation (FMT). Current evidence will be reviewed regarding the use of dietary fibre interventions and gut microbiota modification in improving outcomes for pelvic RT patients. However, data regarding baseline (pre-RT) gut microbiota of RT patients and timing of dietary fibre manipulation (before or during RT) is limited, heterogenous and inconclusive, thus more robust clinical studies are required before these strategies can be applied clinically.
Collapse
Affiliation(s)
- Selina E Eaton
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Justyna Kaczmarek
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daanish Mahmood
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Anna M McDiarmid
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alya N Norarfan
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Erin G Scott
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Chee Kin Then
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hailey Y Tsui
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Anne E Kiltie
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
42
|
Singh T, Bedi P, Bumrah K, Gandhi D, Arora T, Verma N, Schleicher M, Rai MP, Garg R, Verma B, Sanaka MR. Fecal Microbiota Transplantation and Medical Therapy for Clostridium difficile Infection : Meta-analysis of Randomized Controlled Trials. J Clin Gastroenterol 2022; 56:881-888. [PMID: 34516460 DOI: 10.1097/mcg.0000000000001610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
GOALS The aim was to assess the effectiveness of fecal microbiota transplantation (FMT) against medical therapy (MT). BACKGROUND FMT has shown good outcomes in the treatment of Clostridium difficile infection (CDI). We aimed to conduct a systematic review and meta-analysis to compare the effectiveness of FMT versus MT for CDI. STUDY We performed a comprehensive search to identify randomized controlled trials comparing FMT against MT in patients with CDI. Outcomes of interest were clinical cure as determined by the resolution of diarrhea and/or negative C. difficile testing. Primary CDI is defined as the first episode of CDI confirmed endoscopically or by laboratory analysis. Recurrent C. difficile infection (RCDI) is defined as laboratory or endoscopically confirmed episode of CDI after at least 1 course of approved antibiotic regimen. RESULTS A total of 7 studies with 238 patients were included in meta-analysis. Compared with MT, FMT did not have a statistically significant difference for clinical cure of combined primary and RCDI after first session [risk ratio (RR): 1.52, 95% confidence interval (CI): 0.90, 2.58; P =0.12; I2 =77%] and multiple sessions of FMT (RR: 1.68; CI: 0.96, 2.94; P =0.07; I2 =82%). On subgroup analysis, FMT has statistically higher rate of response than MT (RR: 2.41; CI: 1.20, 4.83; I2 =78%) for RCDI. However, for primary CDI there is no statistically significant difference between FMT and MT (RR: 1.00; CI: 0.72, 1.39; I2 =0%). CONCLUSION As per our analysis, FMT should not be utilized for every patient with CDI. It is more effective in RCDI, but the results were not significant in patients with primary CDI.
Collapse
Affiliation(s)
| | | | | | - Darshan Gandhi
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tanureet Arora
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Nikita Verma
- Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | | | - Manoj P Rai
- Department of Medicine, Asante Rogue Regional Medical Center, Medford, OR
| | | | | | | |
Collapse
|
43
|
Faecal microbiota trasplant: Current status and perspectives beyond Clostridioides difficile infection. Enferm Infecc Microbiol Clin 2022. [DOI: 10.1016/j.eimc.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Malard F, Gaugler B, Mohty M. Faecal microbiota transplantation in patients with haematological malignancies undergoing cellular therapies: from translational research to routine clinical practice. Lancet Haematol 2022; 9:e776-e785. [PMID: 36174640 DOI: 10.1016/s2352-3026(22)00223-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
The effect of the gut microbiota on patients' outcomes after allogeneic haematopoietic cell transplantation (HCT) is now well established. In particular, gut microbiota dysbiosis has been associated with acute graft-versus-host disease (GVHD). Furthermore, increasing data also suggest an effect of the gut microbiota on outcome after autologous HCT and CAR T cells. In fact, the bacterial gut microbiota interplays with the immune system and contributes to immunological complication and antitumour response to treatment. Therefore, faecal microbiota transplantation has been evaluated in patients with haematological malignancies for various indications, including Clostridioides difficile infection, eradication of multidrug-resistant bacteria, and steroid refractory acute GVHD. In addition, use of prophylactic faecal microbiota transplantation to restore the gut microbiota and improve patients' outcomes is being developed in the setting of allogeneic HCT, but also probably very soon in patients receiving autologous HCT or CAR T cells.
Collapse
Affiliation(s)
- Florent Malard
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| | - Béatrice Gaugler
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Mohamad Mohty
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| |
Collapse
|
45
|
Abstract
We are host to an assembly of microorganisms that vary in structure and function along the length of the gut and from the lumen to the mucosa. This ecosystem is collectively known as the gut microbiota and significant efforts have been spent during the past 2 decades to catalog and functionally describe the normal gut microbiota and how it varies during a wide spectrum of disease states. The gut microbiota is altered in several cardiometabolic diseases and recent work has established microbial signatures that may advance disease. However, most research has focused on identifying associations between the gut microbiota and human diseases states and to investigate causality and potential mechanisms using cells and animals. Since the gut microbiota functions on the intersection between diet and host metabolism, and can contribute to inflammation, several microbially produced metabolites and molecules may modulate cardiometabolic diseases. Here we discuss how the gut bacterial composition is altered in, and can contribute to, cardiometabolic disease, as well as how the gut bacteria can be targeted to treat and prevent metabolic diseases.
Collapse
Affiliation(s)
- Louise E Olofsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Denmark.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| |
Collapse
|
46
|
Wang M, Xie X, Zhao S, Han W, Zhang Y. Global research trends and hotspots of fecal microbiota transplantation: A bibliometric and visualization study. Front Microbiol 2022; 13:990800. [PMID: 36060783 PMCID: PMC9433904 DOI: 10.3389/fmicb.2022.990800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Fecal microbiota transplantation (FMT) has gained considerable attention in a variety of clinical research areas, and an increasing number of articles are being published. It is very critical to reveal the global status, future research trends, and hotspots in the FMT research and application. Methods We searched the Web of Science Core Collection up to May 10, 2022, and only articles and review articles about FMT were included finally. CiteSpace 5.8.R3, VOSviewer 1.6.18, Scimago Graphica and Microsoft Office Excel 2019 were used for data analysis and visualization. The results included publication characteristics, Co-authorships analysis, Co-cited analysis, Co-occurrence analysis, and burst analysis. Results Eleven thousand nine hundred seventy-two records were used for the analysis and visualization finally, these records were published between 1980 and 2022, and the publication about FMT is increasing year by year. Co-authorship analysis shown that the USA played a key role in this field. After data analysis and visualization, a total of 57 hotspots about FMT were produced. We summarized these hotspots and classified them into 7 grades according to the number of evidence sources. The evidence sources included top 25 of Web of Science categories, top 30 most Co-cited references, top 10 clusters of references, top 25 references with the strongest citation bursts, top 25 keywords with the most occurrence frequency, major 15 clusters of keywords, top 25 keywords with the strongest citation bursts, and top 35 disease keywords. Conclusion This bibliometric analysis is expected to provide overall perspective for FMT. FMT has gained increasing attention and interest, there are many hotspots in this field, which may help researchers to explore new directions for future research.
Collapse
Affiliation(s)
- Mancai Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaofeng Xie
- Medical College, Northwest Minzu University, Lanzhou, China
| | - Songbo Zhao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Wei Han
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Youcheng Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Youcheng Zhang,
| |
Collapse
|
47
|
Nishida A, Nishino K, Ohno M, Sakai K, Owaki Y, Noda Y, Imaeda H. Update on gut microbiota in gastrointestinal diseases. World J Clin Cases 2022; 10:7653-7664. [PMID: 36158494 PMCID: PMC9372855 DOI: 10.12998/wjcc.v10.i22.7653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The human gut is a complex microbial ecosystem comprising approximately 100 trillion microbes collectively known as the "gut microbiota". At a rough estimate, the human gut microbiome contains almost 3.3 million genes, which are about 150 times more than the total human genes present in the human genome. The vast amount of genetic information produces various enzymes and physiologically active substances. Thus, the gut microbiota contributes to the maintenance of host health; however, when healthy microbial composition is perturbed, a condition termed "dysbiosis", the altered gut microbiota can trigger the development of various gastrointestinal diseases. The gut microbiota has consequently become an extremely important research area in gastroenterology. It is also expected that the results of research into the gut microbiota will be applied to the prevention and treatment of human gastrointestinal diseases. A randomized controlled trial conducted by a Dutch research group in 2013 showed the positive effect of fecal microbiota transplantation (FMT) on recurrent Clostridioides difficile infection (CDI). These findings have led to the development of treatments targeting the gut microbiota, such as probiotics and FMT for inflammatory bowel diseases (IBD) and other diseases. This review focuses on the association of the gut microbiota with human gastrointestinal diseases, including CDI, IBD, and irritable bowel syndrome. We also summarize the therapeutic options for targeting the altered gut microbiota, such as probiotics and FMT.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Kyohei Nishino
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Masashi Ohno
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Keitaro Sakai
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Yuji Owaki
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Yoshika Noda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Hirotsugu Imaeda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| |
Collapse
|
48
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Gulliver EL, Young RB, Chonwerawong M, D'Adamo GL, Thomason T, Widdop JT, Rutten EL, Rossetto Marcelino V, Bryant RV, Costello SP, O'Brien CL, Hold GL, Giles EM, Forster SC. Review article: the future of microbiome-based therapeutics. Aliment Pharmacol Ther 2022; 56:192-208. [PMID: 35611465 PMCID: PMC9322325 DOI: 10.1111/apt.17049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND From consumption of fermented foods and probiotics to emerging applications of faecal microbiota transplantation, the health benefit of manipulating the human microbiota has been exploited for millennia. Despite this history, recent technological advances are unlocking the capacity for targeted microbial manipulation as a novel therapeutic. AIM This review summarises the current developments in microbiome-based medicines and provides insight into the next steps required for therapeutic development. METHODS Here we review current and emerging approaches and assess the capabilities and weaknesses of these technologies to provide safe and effective clinical interventions. Key literature was identified through Pubmed searches with the following key words, 'microbiome', 'microbiome biomarkers', 'probiotics', 'prebiotics', 'synbiotics', 'faecal microbiota transplant', 'live biotherapeutics', 'microbiome mimetics' and 'postbiotics'. RESULTS Improved understanding of the human microbiome and recent technological advances provide an opportunity to develop a new generation of therapies. These therapies will range from dietary interventions, prebiotic supplementations, single probiotic bacterial strains, human donor-derived faecal microbiota transplants, rationally selected combinations of bacterial strains as live biotherapeutics, and the beneficial products or effects produced by bacterial strains, termed microbiome mimetics. CONCLUSIONS Although methods to identify and refine these therapeutics are continually advancing, the rapid emergence of these new approaches necessitates accepted technological and ethical frameworks for measurement, testing, laboratory practices and clinical translation.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Remy B. Young
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Gemma L. D'Adamo
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Tamblyn Thomason
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - James T. Widdop
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Emily L. Rutten
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Vanessa Rossetto Marcelino
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Robert V. Bryant
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Samuel P. Costello
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Georgina L. Hold
- Microbiome Research Centre, St George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Edward M. Giles
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
50
|
Rakotonirina A, Galperine T, Allémann E. Fecal microbiota transplantation: a review on current formulations in Clostridioides difficile infection and future outlooks. Expert Opin Biol Ther 2022; 22:929-944. [PMID: 35763604 DOI: 10.1080/14712598.2022.2095901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The role of the gut microbiota in health and the pathogenesis of several diseases has been highlighted in recent years. Even though the precise mechanisms involving the microbiome in these ailments are still unclear, microbiota-modulating therapies have been developed. Fecal microbiota transplantation (FMT) has shown significant results against Clostridioides difficile infection (CDI), and its potential has been investigated for other diseases. Unfortunately, the technical aspects of the treatment make it difficult to implement. Pharmaceutical technology approaches to encapsulate microorganisms could play an important role in providing this treatment and render the treatment modalities easier to handle. AREAS COVERED After an overview of CDI, this narrative review aims to discuss the current formulations for FMT and specifically addresses the technical aspects of the treatment. This review also distinguishes itself by focusing on the hurdles and emphasizing the possible improvements using pharmaceutical technologies. EXPERT OPINION FMT is an efficient treatment for recurrent CDI. However, its standardization is overlooked. The approach of industrial and hospital preparations of FMT are different, but both show promise in their respective methodologies. Novel FMT formulations could enable further research on dysbiotic diseases in the future.
Collapse
Affiliation(s)
- Adèle Rakotonirina
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Tatiana Galperine
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland.,French Group of Faecal Microbiota Transplantation
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|