1
|
Srithabut S, Chareonsudjai P, Chaianunporn T, Bunma C, Phetcharaburanin J, Suksawat M, Chitcharoen S, Chareonsudjai S. NMR-based metabolomics of Burkholderia pseudomallei biofilms and extracellular polymeric substance cultured in LB and MVBM media. BIOFOULING 2025:1-14. [PMID: 40369969 DOI: 10.1080/08927014.2025.2502936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 04/17/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Burkholderia pseudomallei biofilms are resistant to antibiotics and immune responses, leading to persistent infections. This study aimed to investigate the metabolic profiles of B. pseudomallei in biofilms and the extracellular polymeric substances (EPS) produced during grown in LB or MVBM medium using Nuclear Magnetic Resonance (NMR) spectroscopy to identify key metabolites. The results revealed similar biofilm metabolites in both media. However, betaine was detected in LB, but not in the case of MVBM. Acetate was significantly higher in MVBM compared to that of LB. Pathway analysis revealed that betaine-producing B. pseudomallei biofilm in LB was associated with metabolism of glycine, serine, and threonine, while acetate in MVBM was associated with metabolism of taurine and hypotaurine, phosphonate and phosphinate, and glycolysis/gluconeogenesis. The NMR analysis of EPS disclosed shared metabolites including dimethylsulfide, 1-methyluric acid and oxypurinol. This study provides the first extensive investigation into B. pseudomallei biofilm and EPS metabolites, identifying pathways that offer potential targets for combating B. pseudomallei biofilm-associated infections.
Collapse
Affiliation(s)
- Suthantip Srithabut
- Department of Environmental Science, Khon Kaen University, Khon Kaen, Thailand
| | - Pisit Chareonsudjai
- Department of Environmental Science, Khon Kaen University, Khon Kaen, Thailand
| | | | - Chainarong Bunma
- Interdisciplinary Department of Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
- Center of Excellence in Systems Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University National Phenome Institute, Office of the President, Khon Kaen University, Khon Kaen, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Manida Suksawat
- Department of International Technology and Innovation Management, International College, Khon Kaen University, Khon Kaen, Thailand
| | - Suwalak Chitcharoen
- Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen, Thailand
| |
Collapse
|
2
|
Kakahi FB, Martinez JA, Avitia FM, Volke DC, Wirth NT, Nikel PI, Delvigne F. Release of extracellular DNA by Pseudomonas sp. as a major determinant for biofilm switching and an early indicator for cell population control. iScience 2025; 28:112063. [PMID: 40124492 PMCID: PMC11928846 DOI: 10.1016/j.isci.2025.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/28/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
In Pseudomonas sp., the switch from planktonic to sessile state is driven by extracellular DNA release. We observed a subpopulation of cells associated with eDNA in the planktonic phase, as indicated by propidium iodide staining. Surprisingly, the size of this subpopulation was directly correlated with the overall biofilm-forming capacity of the population. This challenges the prevailing understanding of phenotypic switching and confirms that biofilm formation in Pseudomonas is a collective process governed by eDNA release. Automated flow cytometry tracked the process, and PI-positive cells were identified as an early indicator of biofilm formation. Automated glucose pulsing successfully reduced biofilm formation by interfering with PI-positive cell proliferation. This study provides insights into the collective determinants of biofilm switching in Pseudomonas putida and introduces a potential strategy for controlling biofilm formation.
Collapse
Affiliation(s)
- Fatemeh Bajoul Kakahi
- Terra Research and Teaching Centre, Micro Bial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Juan Andres Martinez
- Terra Research and Teaching Centre, Micro Bial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Fabian Moreno Avitia
- Terra Research and Teaching Centre, Micro Bial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Nicolas T. Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Frank Delvigne
- Terra Research and Teaching Centre, Micro Bial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| |
Collapse
|
3
|
Roopkhan N, Chaianunporn T, Chareonsudjai S, Chaianunporn K. Inhibitory effects of Trichoderma asperellum culture filtrates on pathogenic bacteria, Burkholderia pseudomallei. PeerJ 2025; 13:e19051. [PMID: 40034672 PMCID: PMC11874947 DOI: 10.7717/peerj.19051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Background Burkholderia pseudomallei is a soil- and water-dwelling bacterium that causes the life-threatening infection melioidosis. Patients typically acquire this infection through environmental exposure, so reducing B. pseudomallei levels in the environment could mitigate the risk of infection. Trichoderma asperellum is a biological control agent that synthesizes a diverse range of antimicrobial substances targeting other microorganisms. This study therefore examined the antibacterial and anti-biofilm activities of T. asperellum culture filtrate against B. pseudomallei. Methods The antibacterial activities of T. asperellum culture filtrates, collected at various time intervals, were assessed against B. pseudomallei using the agar well diffusion method. Subsequently, the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and anti-biofilm activities of the culture filtrate exhibiting the highest inhibitory effect were determined. Bactericidal efficacy was further evaluated via a time-kill assay. The mechanisms underlying inhibition were then investigated using scanning electron microscopy and crystal violet uptake assays. Results Filtrate collected from 7-day old cultures of T. asperellum (TD7) exhibited the strongest inhibitory effect on B. pseudomallei, with an inhibition zone of 30.33 ± 0.19 mm. The MIC of TD7 against B. pseudomallei was 7.81 ± 0.00 mg/mL and the MBC ranged from 7.81 ± 0.00 to 11.72 ± 1.75 mg/mL. Time-kill studies with TD7 confirmed its bactericidal activity, with complete elimination of B. pseudomallei occurring within 30 min treatment at 62.48 mg/mL (8xMIC) and 24 h treatment at 7.81 mg/mL (1xMIC). At a concentration of 7.81 mg/mL, TD7 also significantly reduced B. pseudomallei biofilm formation. Scanning electron microscopy revealed surface roughening and cell shrinkage of TD7-treated B. pseudomallei. TD7-treated bacteria were also found to absorb more crystal violet dye than untreated cells, indicating that TD7 might inhibit and kill B. pseudomallei by disrupting cell membrane permeability. Conclusions Our findings demonstrate that T. asperellum culture filtrates possess bactericidal activity and effectively disrupt biofilm formation by B. pseudomallei. This suggests that T. asperellum could potentially be used to reduce the presence of B. pseudomallei in the environment and, consequently, lower the incidence of melioidosis.
Collapse
Affiliation(s)
- Naritsara Roopkhan
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Thotsapol Chaianunporn
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | | |
Collapse
|
4
|
Pakkulnan R, Sirichoat A, Chareonsudjai S. d-Methionine-induced DNases disperse established Burkholderia pseudomallei biofilms and promotes ceftazidime susceptibility. Biofilm 2024; 8:100213. [PMID: 39148891 PMCID: PMC11325068 DOI: 10.1016/j.bioflm.2024.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Burkholderia pseudomallei biofilm is correlated with pathogenesis, antibiotic resistance, and relapsing cases of melioidosis, leading to challenges in clinical management. There is increasing interest in employing biofilm dispersal agents as adjunctive treatments for biofilm-associated infections. Methionine (Met) has shown promise as an anti-biofilm agent by inducing bacterial DNase production, resulting in the degradation of extracellular DNA (eDNA) and dispersion of bacterial biofilm. In this study, we investigated the impact of 0.05-50 μM D-Met and L-Met on the 24-h established biofilm of a clinical isolate, B. pseudomallei H777. Our findings revealed the ability of D-Met and L-Met to disperse the established biofilm in a non-dose-dependent manner accompanied by eDNA depletion. Real-time PCR analysis further identified an up-regulation of bacterial nuclease genes, including recJ, eddB, nth, xth, and recD, in the presence of 0.05 μM D-Met. Similarly, recJ and eddB in B. pseudomallei were up-regulated in response to the presence of 0.05 μM L-Met. Notably, D-Met enhanced the susceptibility of B. pseudomallei H777 biofilm cells to ceftazidime. Our findings indicate a correlation between methionine supplementation and the up-regulation of nuclease genes, leading to eDNA depletion and the dispersal of preformed B. pseudomallei H777 biofilm. This enhances the susceptibility of biofilm cells to ceftazidime, showing promise in combating biofilm-associated B. pseudomallei infections.
Collapse
Affiliation(s)
- Rattiyaphorn Pakkulnan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Auttawit Sirichoat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
5
|
Elawady R, Aboulela AG, Gaballah A, Ghazal AA, Amer AN. Antimicrobial Sub-MIC induces Staphylococcus aureus biofilm formation without affecting the bacterial count. BMC Infect Dis 2024; 24:1065. [PMID: 39342123 PMCID: PMC11438285 DOI: 10.1186/s12879-024-09790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Biofilm formation is an essential virulence factor that creates a highly protected growth mode for Staphylococcus aureus (S. aureus) to survive in any hostile environment. Antibiotic sub-minimal inhibitory concentration (sub-MIC) may modulate the biofilm formation ability of bacterial pathogens, thereby affecting bacterial pathogenesis and infection outcomes. Intense antimicrobial therapy to treat biofilm-associated infections can control the pathogenic infection aggravation but cannot guarantee its complete eradication. OBJECTIVE This study aimed to assess the sub-MICs effect of 5 different antimicrobial classes on biofilm-forming capacity among Staphylococcus aureus clinical isolates using three different biofilm quantitation techniques. METHODS In this study, the effects of 5 different antimicrobial agents, namely, azithromycin, gentamicin, ciprofloxacin, doxycycline, and imipenem, at sub-MICs of 12.5%, 25%, and 50% were tested on 5 different clinical isolates of S. aureus. The biofilms formed in the absence and presence of different antimicrobial sub-MICs were then assessed using the following three different techniques: the crystal violet (CV) staining method, the quantitative PCR (qPCR) method, and the spread plate method (SPM). RESULTS Biofilm formation was significantly induced in 64% of the tested conditions using the CV technique. On the other hand, the qPCR quantifying the total bacterial count and the SPM quantifying the viable bacterial count showed significant induction only in 24% and 17.3%, respectively (Fig. 1). The difference between CV and the other techniques indicates an increase in biofilm biomass without an increase in bacterial growth. As expected, sub-MICs did not reduce the viable cell count, as shown by the SPM. The CV staining method revealed that sub-MICs of imipenem and ciprofloxacin had the highest significance rate (80%) showing an inductive effect on the biofilm development. On the other hand, doxycycline, azithromycin, and gentamicin displayed lower significance rates of 73%, 53%, and 47%, respectively. CONCLUSION Exposure to sub-MIC doses of antimicrobial agents induces the biofilm-forming capacity of S. aureus via increasing the total biomass without significantly affecting the bacterial growth of viable count.
Collapse
Affiliation(s)
- Raghda Elawady
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Aliaa G Aboulela
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed Gaballah
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Abeer A Ghazal
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed N Amer
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy and Drug Manufacturing, Pharos University, Alexandria, Egypt
| |
Collapse
|
6
|
Cao X, Xiao N, Huang J, Li L, Zhong L, Zhang J, Wang F. Synergistic in vitro activity and mechanism of KBN lotion and miconazole nitrate against drug-resistant Candida albicans biofilms. Front Cell Infect Microbiol 2024; 14:1426791. [PMID: 39268490 PMCID: PMC11390680 DOI: 10.3389/fcimb.2024.1426791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Background In the face of increasing antifungal resistance among Candida albicans biofilms, this study explores the efficacy of a combined treatment using Kangbainian lotion (KBN) and miconazole nitrate (MN) to address this challenge. Methods Using UPLC-Q-TOF/MS Analysis for Identification of Active Compounds in KBN Lotion; FICI for synergy evaluation, XTT and ROS assays for biofilm viability and oxidative stress, fluorescence and confocal laser scanning microscopy (CLSM) for structural and viability analysis, and real-time fluorescence for gene expression. Conclusion Our study indicates that the combined application of KBN and MN somewhat impacts the structural integrity of Candida albicans biofilms and affects the expression of several key genes involved in biofilm formation, including ALS1, ALS3, HWP1, HSP90, and CSH1. These preliminary findings suggest that there may be a synergistic effect between KBN and MN, potentially influencing not only the structural aspects of fungal biofilms but also involving the modulation of genetic pathways during their formation.
Collapse
Affiliation(s)
- Xiaoyu Cao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ni Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengyun Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Wei Y, Dang GP, Ren ZY, Wan MC, Wang CY, Li HB, Zhang T, Tay FR, Niu LN. Recent advances in the pathogenesis and prevention strategies of dental calculus. NPJ Biofilms Microbiomes 2024; 10:56. [PMID: 39003275 PMCID: PMC11246453 DOI: 10.1038/s41522-024-00529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Dental calculus severely affects the oral health of humans and animal pets. Calculus deposition affects the gingival appearance and causes inflammation. Failure to remove dental calculus from the dentition results in oral diseases such as periodontitis. Apart from adversely affecting oral health, some systemic diseases are closely related to dental calculus deposition. Hence, identifying the mechanisms of dental calculus formation helps protect oral and systemic health. A plethora of biological and physicochemical factors contribute to the physiological equilibrium in the oral cavity. Bacteria are an important part of the equation. Calculus formation commences when the bacterial equilibrium is broken. Bacteria accumulate locally and form biofilms on the tooth surface. The bacteria promote increases in local calcium and phosphorus concentrations, which triggers biomineralization and the development of dental calculus. Current treatments only help to relieve the symptoms caused by calculus deposition. These symptoms are prone to relapse if calculus removal is not under control. There is a need for a treatment regime that combines short-term and long-term goals in addressing calculus formation. The present review introduces the mechanisms of dental calculus formation, influencing factors, and the relationship between dental calculus and several systemic diseases. This is followed by the presentation of a conceptual solution for improving existing treatment strategies and minimizing recurrence.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gao-Peng Dang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhao-Yang Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mei-Chen Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Yu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hong-Bo Li
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tong Zhang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Tetz V, Kardava K, Vecherkovskaya M, Khodadadi-Jamayran A, Tsirigos A, Tetz G. Previously unknown regulatory role of extracellular RNA on bacterial directional migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603110. [PMID: 39026763 PMCID: PMC11257571 DOI: 10.1101/2024.07.11.603110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacterial directional migration plays a significant role in bacterial adaptation. However, the regulation of this process, particularly in young biofilms, remains unclear. Here, we demonstrated the critical role of extracellular RNA as part of the Universal Receptive System in bacterial directional migration using a multidisciplinary approach, including bacterial culture, biochemistry, and genetics. We found that the destruction or inactivation of extracellular RNA with RNase or RNA-specific antibodies in the presence of the chemoattractant triggered the formation of bacterial "runner cells» in what we call a "panic state" capable of directional migration. These cells quickly migrated even on the surface of 1.5% agar and formed evolved colonies that were transcriptionally and biochemically different from the ancestral cells. We have also shown that cell-free DNA from blood plasma can act as a potent bacterial chemoattractant. Our data revealed a previously unknown role of bacterial extracellular RNA in the regulation of bacterial migration and have shown that its destruction or inhibition triggered the directional migration of developing and mature biofilms towards the chemoattractant.
Collapse
|
9
|
Zhang X, Zhang Z, Yan Q, Du Z, Zhao L, Qin Y. Amino Acid-Induced Chemotaxis Plays a Key Role in the Adaptation of Vibrio harveyi from Seawater to the Muscle of the Host Fish. Microorganisms 2024; 12:1292. [PMID: 39065061 PMCID: PMC11278769 DOI: 10.3390/microorganisms12071292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Vibrio harveyi is a normal flora in natural marine habitats and a significant opportunistic pathogen in marine animals. This bacterium can cause a series of lesions after infecting marine animals, in which muscle necrosis and ulcers are the most common symptoms. This study explored the adaptation mechanisms of V. harveyi from the seawater environment to host fish muscle environment. The comprehensive transcriptome analysis revealed dramatic changes in the transcriptome of V. harveyi during its adaptation to the host fish muscle environment. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, flagellar assembly, oxidative phosphorylation, bacterial chemotaxis, and two-component systems play crucial roles in V. harveyi's adaptation to host fish muscle. A comparison of biological phenotypes revealed that V. harveyi displayed a significant increase in flagellar length, swimming, twitching, chemotaxis, adhesion, and biofilm formation after induction by host fish muscle, and its dominant amino acids, especially bacterial chemotaxis induced by host muscle, Ala and Arg. It could be speculated that the enhancement of bacterial chemotaxis induced by amino acids plays a key role in the adaptation of V. harveyi from seawater to the muscle of the host fish.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Zhe Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Qingpi Yan
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Ziyan Du
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Lingmin Zhao
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Yingxue Qin
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| |
Collapse
|
10
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
11
|
Mugunthan S, Wong LL, Winnerdy FR, Summers S, Bin Ismail MH, Foo YH, Jaggi TK, Meldrum OW, Tiew PY, Chotirmall SH, Rice SA, Phan AT, Kjelleberg S, Seviour T. RNA is a key component of extracellular DNA networks in Pseudomonas aeruginosa biofilms. Nat Commun 2023; 14:7772. [PMID: 38012164 PMCID: PMC10682433 DOI: 10.1038/s41467-023-43533-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
The extracellular matrix of bacterial biofilms consists of diverse components including polysaccharides, proteins and DNA. Extracellular RNA (eRNA) can also be present, contributing to the structural integrity of biofilms. However, technical difficulties related to the low stability of RNA make it difficult to understand the precise roles of eRNA in biofilms. Here, we show that eRNA associates with extracellular DNA (eDNA) to form matrix fibres in Pseudomonas aeruginosa biofilms, and the eRNA is enriched in certain bacterial RNA transcripts. Degradation of eRNA associated with eDNA led to a loss of eDNA fibres and biofilm viscoelasticity. Compared with planktonic and biofilm cells, the biofilm matrix was enriched in specific mRNA transcripts, including lasB (encoding elastase). The mRNA transcripts colocalised with eDNA fibres in the biofilm matrix, as shown by single molecule inexpensive FISH microscopy (smiFISH). The lasB mRNA was also observed in eDNA fibres in a clinical sputum sample positive for P. aeruginosa. Thus, our results indicate that the interaction of specific mRNAs with eDNA facilitates the formation of viscoelastic networks in the matrix of Pseudomonas aeruginosa biofilms.
Collapse
Affiliation(s)
- Sudarsan Mugunthan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lan Li Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | | | - Stephen Summers
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- St John's Island National Marine Laboratory c/o Tropical Marine Science Institute, National University of Singapore, 119227, Singapore
| | | | - Yong Hwee Foo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, 636921, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- The iThree Institute, University of Technology Sydney, Sydney, 2007, Australia
- CSIRO, Agriculture and Food, Westmead and Microbiomes for One Systems Health, Canberra, Australia
| | - Anh Tuân Phan
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia.
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Aarhus, 8000, Denmark.
| |
Collapse
|
12
|
Bunma C, Noinarin P, Phetcharaburanin J, Chareonsudjai S. Burkholderia pseudomallei biofilm resists Acanthamoeba sp. grazing and produces 8-O-4'-diferulic acid, a superoxide scavenging metabolite after passage through the amoeba. Sci Rep 2023; 13:16578. [PMID: 37789212 PMCID: PMC10547685 DOI: 10.1038/s41598-023-43824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Burkholderia pseudomallei, an etiological agent of melioidosis is an environmental bacterium that can survive as an intracellular pathogen. The biofilm produced by B. pseudomallei is crucial for cellular pathogenesis of melioidosis. The purpose of this investigation is to explore the role of biofilm in survival of B. pseudomallei during encounters with Acanthamoeba sp. using B. pseudomallei H777 (a biofilm wild type), M10 (a biofilm defect mutant) and C17 (a biofilm-complemented strain). The results demonstrated similar adhesion to amoebae by both the biofilm wild type and biofilm mutant strains. There was higher initial internalisation, but the difference diminished after longer encounter with the amoeba. Interestingly, confocal laser scanning microscopy demonstrated that pre-formed biofilm of B. pseudomallei H777 and C17 were markedly more persistent in the face of Acanthamoeba sp. grazing than that of M10. Metabolomic analysis revealed a significant increased level of 8-O-4'-diferulic acid, a superoxide scavenger metabolite, in B. pseudomallei H777 serially passaged in Acanthamoeba sp. The interaction between B. pseudomallei with a free-living amoeba may indicate the evolutionary pathway that enables the bacterium to withstand superoxide radicals in intracellular environments. This study supports the hypothesis that B. pseudomallei biofilm persists under grazing by amoebae and suggests a strategy of metabolite production that turns this bacterium from saprophyte to intracellular pathogen.
Collapse
Affiliation(s)
- Chainarong Bunma
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Parumon Noinarin
- Department of Occupational Health and Safety, Faculty of Public Health, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen, Thailand.
| |
Collapse
|
13
|
Kalia VC, Patel SKS, Lee JK. Bacterial biofilm inhibitors: An overview. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115389. [PMID: 37634478 DOI: 10.1016/j.ecoenv.2023.115389] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Bacteria that cause infectious diseases adopt biofilms as one of their most prevalent lifestyles. Biofilms enable bacteria to tolerate environmental stress and evade antibacterial agents. This bacterial defense mechanism has rendered the use of antibiotics ineffective for the treatment of infectious diseases. However, many highly drug-resistant microbes have rapidly emerged owing to such treatments. Different signaling mechanisms regulate bacterial biofilm formation, including cyclic dinucleotide (c-di-GMP), small non-coding RNAs, and quorum sensing (QS). A cell density-dependent phenomenon, QS is associated with c-di-GMP (a global messenger), which regulates gene expression related to adhesion, extracellular matrix production, the transition from the planktonic to biofilm stage, stability, pathogenicity, virulence, and acquisition of nutrients. The article aims to provide information on inhibiting biofilm formation and disintegrating mature/preformed biofilms. This treatment enables antimicrobials to target the free-living/exposed bacterial cells at lower concentrations than those needed to treat bacteria within the biofilm. Therefore, a complementary action of antibiofilm and antimicrobial agents can be a robust strategic approach to dealing with infectious diseases. Taken together, these molecules have broad implications for human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
14
|
Lucassen R, van Leuven N, Bockmühl D. A loophole in soap dispensers mediates contamination with Gram-negative bacteria. Microbiologyopen 2023; 12:e1384. [PMID: 37877653 PMCID: PMC10541457 DOI: 10.1002/mbo3.1384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Liquid soap dispensers are widely used in domestic and clinical settings. In previous studies, the risk of bacterial contamination of refillable systems was pointed out and a bacterial contamination rate of 25%, with values of up to 108 colony-forming units/mL (CFU/mL), was reported. However, the route of contamination remains elusive. To address this point, we determined the microbial contamination of refillable standard pump dispensers and nonrefillable press-dispenser systems. Following the collection of 104 liquid soap dispensers from hotel rooms across Germany, bacterial counts were determined. Isolates of samples containing nonfastidious Gram-negative(lac-) bacteria were further analyzed by the Vitek 2 system for the determination of species. 70.2% of the refillable pump dispensers (mean total bacterial count = 2.2 × 105 CFU/mL) but only 10.6% of the nonrefillable press dispensers, were contaminated (mean total bacterial count = 1.5 × 101 CFU/mL). Of samples containing nonfastidious Gram-negative(lac-) bacteria, Pluralibacter gergoviae was present in 41.7%, Pseudomonads (Pseudomonas aeruginosa and Pseudomonas putida) in 25%, Serratia marcescens in 16.7%, and Klebsiella oxytoca and Pasteurella testudinis in 8.3%. After the initial assessment, we contaminated different dispensing systems with P. aeruginosa/P. gergoviae, to reveal the route of contamination and identied the pressure release of standard pump dispensers as the loophole for microbial contamination.
Collapse
Affiliation(s)
- Ralf Lucassen
- Faculty of Life SciencesRhine Waal University of Applied SciencesKleveGermany
| | - Nicole van Leuven
- Faculty of Life SciencesRhine Waal University of Applied SciencesKleveGermany
| | - Dirk Bockmühl
- Faculty of Life SciencesRhine Waal University of Applied SciencesKleveGermany
| |
Collapse
|
15
|
Lin S, Li J, Zhou F, Tan BK, Zheng B, Hu J. K 6[P 2Mo 18O 62] as DNase-Mimetic Artificial Nucleases to Promote Extracellular Deoxyribonucleic Acid Degradation in Bacterial Biofilms. ACS OMEGA 2023; 8:33966-33974. [PMID: 37744825 PMCID: PMC10515355 DOI: 10.1021/acsomega.3c04790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
In the current study, the DNase-like activity of the Dawson-type polyoxometalate K6[P2Mo18O62] was explored. The obtained findings demonstrated that K6[P2Mo18O62] could effectively cleave phosphoester bonds in the DNA model substrate (4-nitrophenyl phosphate) and result in the degradation of plasmid DNA. Moreover, the application potential of this Dawson-type polyoxometalate as a DNase-mimetic artificial enzyme to degrade extracellular DNA (eDNA) in Escherichia coli (E. coli) bacterial biofilm was explored. The results demonstrated that K6[P2Mo18O62] exhibited high cleavage ability toward eDNA secreted by E. coli and thus eradicated the bacterial biofilm. In conclusion, Dawson-type polyoxometalate K6[P2Mo18O62] possessed desirable DNase-like activity, which could serve as a bacterial biofilm eradication agent by cleaving and degrading eDNA molecules.
Collapse
Affiliation(s)
- Shaoling Lin
- College
of Food Science, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
| | - Jing Li
- College
of Food Science, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
| | - Feng Zhou
- College
of Food Science, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
| | - Bee K. Tan
- College
of Life Sciences, University of Leicester, Leicester LE1 7RH, U.K.
| | - Baodong Zheng
- College
of Food Science, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
| | - Jiamiao Hu
- College
of Food Science, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
- College
of Life Sciences, University of Leicester, Leicester LE1 7RH, U.K.
| |
Collapse
|
16
|
Gomes T, Ribeiro PS, Carvalho NB, El-Hani CN, Figueira CP, Ristow P. Impact of Extracellular DNA on Architectural Parameters of Leptospira biflexa Biofilm. Indian J Microbiol 2023; 63:373-379. [PMID: 37781014 PMCID: PMC10533471 DOI: 10.1007/s12088-023-01085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/22/2023] [Indexed: 10/03/2023] Open
Abstract
Extracellular DNA (eDNA) is a major component of bacterial biofilms. In this study, we performed a three-dimensional analysis of Leptospira biofilm using advanced imaging by confocal laser scanning microscopy (CLSM) and multi-parameter analysis by COMSTAT 2 software, with quantification of Leptospira and eDNA fluorescence. To investigate the role of eDNA in Leptospira biofilm, we treated Leptospira biflexa biofilms with DNase I enzyme (DNase), which digested eDNA, and compared DNase treated biofilms and controls. There was a significant reduction of the biomass of biofilms treated with DNase, by spectrophotometry and COMSTAT analysis. The multiparameter analysis evidenced for DNase-treated biofilms a significant decrease in the surface area and the average thickness; opposing to a significant augmentation of the surface/biovolume ratio and the roughness coefficient (Ra*), when compared to controls. We analyzed the parameters of DNase-treated biofilms by Pearson's correlation coefficient and found significant positive correlations between biomass and average thickness; biomass and surface area; surface area and average thickness. On the other hand, there were significant negative correlations between Ra* and biomass; Ra* and average thickness; Ra* and surface area. These findings suggest that eDNA digestion results in biofilm instability and alteration of the three-dimensional architecture, justifying the negative correlation between Ra* and the above-mentioned parameters. In conclusion, our study showed that eDNA digestion produced a massive structural loss, instability, and dramatic changes in the three-dimensional architecture of Leptospira biflexa biofilm. These findings contribute to a better understanding of the role of eDNA and highlight the importance of eDNA as a key component in Leptospira biofilms.
Collapse
Affiliation(s)
- T. Gomes
- Institute of Biology, Federal University of Bahia, Salvador, Bahia 40170-115 Brazil
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, Bahia 40170-115 Brazil
| | - P. S. Ribeiro
- Institute of Biology, Federal University of Bahia, Salvador, Bahia 40170-115 Brazil
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, Bahia 40170-115 Brazil
| | - N. B. Carvalho
- Institute of Biology, Federal University of Bahia, Salvador, Bahia 40170-115 Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, Bahia 40170-115 Brazil
| | - C. N. El-Hani
- Institute of Biology, Federal University of Bahia, Salvador, Bahia 40170-115 Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, Bahia 40170-115 Brazil
| | - C. P. Figueira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia 40296-710 Brazil
| | - P. Ristow
- Institute of Biology, Federal University of Bahia, Salvador, Bahia 40170-115 Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, Bahia 40170-115 Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia 40296-710 Brazil
| |
Collapse
|
17
|
Han B, Yang L, Hu Z, Chen Y, Mei N, Yao H. Critical role of extracellular DNA in the establishment and maintenance of anammox biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161897. [PMID: 36709891 DOI: 10.1016/j.scitotenv.2023.161897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/08/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has been widely used for the sustainable removal of nitrogen from wastewater. Extracellular DNA (exDNA), as one of the main components of biofilms, not only determines the initial formation process, but also allows the three-dimensional structure to be maintained. Since the effects of exDNA on anammox biofilm formation are still poorly understood, this study elucidated the effects of exDNA on different stages of anammox biofilm establishment and maintenance under static conditions and its mechanism. The results revealed that exDNA mainly affected the maintenance stage of anammox biofilm formation. Compared with the absence of exDNA, nitrogen removal efficiency in the presence of exDNA was 6.17 % higher; the number of bacteria cells attached to the carrier was 2.23 times that in the absence of exDNA. The spatiotemporal distribution of bacteria was revealed by fluorescence in situ hybridization. After 30 days, the relative abundances of anammox in biofilms were 6.19 % and 0.4 % in the presence and absence of exDNA, respectively, indicating its positive role in anammox bacteria (AnAOB) adhesion and biofilm formation. The presence of exDNA in extracellular polymeric substances (EPS) promotes the synthesis of proteins and soluble microbial products. According to the extended Derjaguin-Landau-Verwey-Overbeek (X - DLVO) theory, the presence of exDNA also reduced the Lewis acid-base interaction energy and created favorable thermodynamic conditions for AnAOB adhesion. These findings advance our understanding of the role of exDNA in anammox-mediated biofilm formation and offer insights into the mechanism of exDNA in the establishment and maintenance stages.
Collapse
Affiliation(s)
- Baohong Han
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Lijun Yang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Zhifeng Hu
- Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, PR China
| | - Yao Chen
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Ning Mei
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China.
| |
Collapse
|
18
|
Aziz K, Zaidi A, Rehman N. Probiotic profiling of bifidobacteria indigenous to the human intestinal mucosa shows alleviation of dysbiosis-associated pathogen biofilms. Arch Microbiol 2023; 205:176. [PMID: 37027059 DOI: 10.1007/s00203-023-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023]
Abstract
The present study was undertaken to isolate bifidobacterial probiotics and characterize the biodiversity of mucosal bacteria in the human distal gut through 16S rRNA amplicon sequencing. Bifidobacterial strains obtained by selective culturing were investigated for biofilms and probiotic characteristics. Both culture-dependent and culture-independent approaches revealed substantial microbial diversity. Bifidobacterium strains yielded robust biofilms with predominantly exopolysaccharides and eDNA matrix. Microscopy revealed species-dependent spatial arrangement of microcolonies. Following probiotic profiling and safety assessment, the inter- and intra-specific interactions in in dual strain bifidobacterial biofilms were studied. As a species, only strains of B. bifidum exhibited exclusively inductive type of interactions whereas in other species, the interactions were more varied. On the other hand, in dual species biofilms, a preponderance of inductive interactions was evident between B. adolescentis, B. thermophilum, B. bifidum, and B. longum. The strong biofilm-formers also diminished pathogenic biofilm viability, and some were proficient in cholesterol removal in vitro. None of the strains exhibited harmful enzymatic activities associated with disease pathology. Interaction between biofilm-forming bifidobacterial strains provides an understanding of their functionality and persistence in the human host, and food or medicine. Their anti-pathogenic activity represents a therapeutic strategy against drug-resistant pathogenic biofilms.
Collapse
Affiliation(s)
- Kanwal Aziz
- National Probiotic Lab-National Institute for Biotechnology and Genetic Engineering-College (NIBGE-C), Jhang Road, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Arsalan Zaidi
- National Probiotic Lab-National Institute for Biotechnology and Genetic Engineering-College (NIBGE-C), Jhang Road, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan.
| | - Nadeem Rehman
- Kulsum International Hospital (KIH), 2020 Blue Area, Islamabad, Pakistan
| |
Collapse
|
19
|
Al-Wahaibi ASM, Upstill-Goddard RC, Burgess JG. Isolation and Staining Reveal the Presence of Extracellular DNA in Marine Gel Particles. Gels 2023; 9:251. [PMID: 36975700 PMCID: PMC10048003 DOI: 10.3390/gels9030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Marine gel particles (MGP) are amorphous hydrogel exudates from bacteria and microalgae that are ubiquitous in the oceans, but their biochemical composition and function are poorly understood. While dynamic ecological interactions between marine microorganisms and MGPs may result in the secretion and mixing of bacterial extracellular polymeric substances (EPS) such as nucleic acids, compositional studies currently are limited to the identification of acidic polysaccharides and proteins in transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP). Previous studies targeted MGPs isolated by filtration. We developed a new way of isolating MGPs from seawater in liquid suspension and applied it to identify extracellular DNA (eDNA) in North Sea surface seawater. Seawater was filtered onto polycarbonate (PC) filters with gentle vacuum filtration, and then the filtered particles were gently resuspended in a smaller volume of sterile seawater. The resulting MGPs ranged in size from 0.4 to 100 µm in diameter. eDNA was detected by fluorescent microscopy using YOYO-1 (for eDNA), with Nile red (targeting cell membranes) as a counterstain. TOTO-3 was also used to stain eDNA, with ConA to localise glycoproteins and SYTO-9 for the live/dead staining of cells. Confocal laser scanning microscopy (CLSM) revealed the presence of proteins and polysaccharides. We found eDNA to be universally associated with MGPs. To further elucidate the role of eDNA, we established a model experimental MGP system using bacterial EPS from Pseudoalteromonas atlantica that also contained eDNA. Our results clearly demonstrate the occurrence of eDNA in MGPs, and should aid furthering our understanding of the micro-scale dynamics and fate of MGPs that underly the large-scale processes of carbon cycling and sedimentation in the ocean.
Collapse
Affiliation(s)
- Aisha S. M. Al-Wahaibi
- Centre of Excellence in Marine Biotechnology, Sultan Qaboos University, P.O. Box 50, Muscat 123, Oman
| | | | - J. Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
20
|
Nyanasegran PK, Nathan S, Firdaus-Raih M, Muhammad NAN, Ng CL. Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei. J Microbiol Biotechnol 2023; 33:15-27. [PMID: 36451302 PMCID: PMC9899790 DOI: 10.4014/jmb.2207.07032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022]
Abstract
The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.
Collapse
Affiliation(s)
| | - Sheila Nathan
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Corresponding author Phone: +03 8921 4561 Fax: +603 8921 3398 E-mail:
| |
Collapse
|
21
|
Pakkulnan R, Thonglao N, Chareonsudjai S. DNase I and chitosan enhance efficacy of ceftazidime to eradicate Burkholderia pseudomallei biofilm cells. Sci Rep 2023; 13:1059. [PMID: 36658182 PMCID: PMC9852466 DOI: 10.1038/s41598-023-27790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Biofilm-associated Burkholderia pseudomallei infection contributes to antibiotic resistance and relapse of melioidosis. Burkholderia pseudomallei biofilm matrix contains extracellular DNA (eDNA) that is crucial for biofilm establishment. However, the contribution of eDNA to antibiotic resistance by B. pseudomallei remains unclear. In this study, we first demonstrated in vitro that DNase I with the administration of ceftazidime (CAZ) at 24 h considerably inhibited the 2-day biofilm formation and reduced the number of viable biofilm cells of clinical B. pseudomallei isolates compared to biofilm treated with CAZ alone. A 3-4 log reduction in numbers of viable cells embedded in the 2-day biofilm was observed when CAZ was combined with DNase I. Confocal laser-scanning microscope visualization emphasized the competence of DNase I followed by CAZ supplementation to significantly limit B. pseudomallei biofilm development and to eradicate viable embedded B. pseudomallei biofilm cells. Furthermore, DNase I supplemented with chitosan (CS) linked with CAZ (CS/CAZ) significantly eradicated shedding planktonic and biofilm cells. These findings indicated that DNase I effectively degraded eDNA leading to biofilm inhibition and dispersion, subsequently allowing CAZ and CS/CAZ to eradicate both shedding planktonic and embedded biofilm cells. These findings provide efficient strategies to interrupt biofilm formation and improve antibiotic susceptibility of biofilm-associated infections.
Collapse
Affiliation(s)
- Rattiyaphorn Pakkulnan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nuttaya Thonglao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand. .,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
22
|
Zeng J, Chen D, Lv C, Qin K, Zhou Q, Pu N, Song S, Wang X. Antimicrobial and anti-biofilm activity of Polygonum chinense L.aqueous extract against Staphylococcus aureus. Sci Rep 2022; 12:21988. [PMID: 36539472 PMCID: PMC9768122 DOI: 10.1038/s41598-022-26399-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Polygonum chinense Linn. (Polygonum chinense L.) is one of the main raw materials of Chinese patent medicines such as Guangdong herbal tea. The increasing antibiotic resistance of S. aureus and the biofilm poses a serious health threat to humans, and there is an urgent need to provide new antimicrobial agents. As a traditional Chinese medicine, the antibacterial effect of Polygonum chinense L. has been reported, but the antibacterial mechanism of Polygonum chinense L.aqueous extract and its effect on biofilm have not been studied in great detail, which hinders its application as an effective antibacterial agent. In this study, the mechanism of action of Polygonum chinense L.aqueous extract on Staphylococcus aureus (S. aureus) and its biofilm was mainly evaluated by morphological observation, flow cytometry and laser confocal experiments. Our findings demonstrate that Polygonum chinense L.aqueous extract has a significant bacteriostatic effect on S. aureus. The result of growth curve exhibits that Polygonum chinense L.aqueous extract presents a significant inhibitory effect against S. aureus. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) reveals that Polygonum chinense L.aqueous extract exerts a potent destruction of the cell wall of S. aureus and a significant inhibitory effect on the formation of S. aureus biofilm. In addition, flow cytometry showed the ability of Polygonum chinense L.aqueous extract to promote apoptosis by disrupting cell membranes of S. aureus. Notably, confocal laser scanning microscopy (CLSM) images illustrated the ability of Polygonum chinense L.aqueous to inhibit the formation of S. aureus biofilms in a dose-dependent manner. These results suggested that Polygonum chinense L.aqueous is a promising alternative antibacterial and anti-biofilm agent for combating infections caused by planktonic and biofilm cells of S. aureus.
Collapse
Affiliation(s)
- Jianye Zeng
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Dandan Chen
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Chunli Lv
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Kening Qin
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Qin Zhou
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Na Pu
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Shanshan Song
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Xiaomin Wang
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China ,National Clinical Research Center for Infectious Diseases, Shenzhen, 518112 Guangdong People’s Republic of China
| |
Collapse
|
23
|
Zhu Y, Di Capua F, Li D, Li H. Enhancement and mechanisms of micron-pyrite driven autotrophic denitrification with different pretreatments for treating organic-limited waters. CHEMOSPHERE 2022; 308:136306. [PMID: 36067811 DOI: 10.1016/j.chemosphere.2022.136306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Pyrite-driven autotrophic denitrification (PAD) represents a cheap and promising way for nitrogen removal from organic-limited wastewater, which has obtained increasing attention in recent years. However, the limited denitrification rate and unclear mechanism underlying the process have hindered the engineered application of PAD. This study aims to shed light on the impacts of different pretreatments (i.e., ultrasonication, acid-washing and calcination) on micron-pyrite surface characteristics, denitrification performance and biofilm formation during PAD in batch reactors. A series of solid-phase analyses revealed that all pretreatments could significantly promote biofilm attachment on pyrite granules, but impacted the proportion, distribution and chemical oxidation state of sulfur (S) and iron (Fe) at varying degrees. Batch tests showed that ultrasonication and acid-washing could enhance the total nitrogen reduction rate by 14% and 99%, and decrease the sulfate production rate by 51% and 42%, respectively, when compared with untreated pyrite. Microbial community analysis indicated that Thiobacillus and Rhodanobacter dominated in PAD systems. Two types of indirect mechanisms (i.e., contact and non-contact) for pyrite leaching may co-occur in PAD system, resulting in ferrous iron (Fe2+), thiosulfate (S2O32-) and sulfide (S2-) as the main electron donors for denitrification. A PAD mechanism model was proposed to describe the PAD electron transfer pathway with the aim to optimize the engineered application of PAD for nitrogen removal.
Collapse
Affiliation(s)
- Yingjie Zhu
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Francesco Di Capua
- Department of Civil Environmental Land Construction and Chemistry (DICATECh), Polytechnic University of Bari, 70125, Bari, Italy
| | - Duanxin Li
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Huaizheng Li
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
24
|
Khamwong M, Phanthanawiboon S, Salao K, Chareonsudjai S. Burkholderia pseudomallei biofilm phenotypes confined but surviving in neutrophil extracellular traps of varying appearance. Front Immunol 2022; 13:926788. [PMID: 36059509 PMCID: PMC9434113 DOI: 10.3389/fimmu.2022.926788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Melioidosis is a fatal infectious disease caused by Burkholderia pseudomallei. Complications following treatment are usually due to antibiotic resistance and relapse is mainly caused by B. pseudomallei biofilm. Although the release of neutrophil extracellular traps (NETs) is crucial to capture and eliminate bacterial pathogens, to date response of NETs to B. pseudomallei biofilm is poorly understood. Here we compare the NETs produced by neutrophils in response to B. pseudomallei H777 (a biofilm-producing strain containing the bpsl0618 gene), a biofilm-defect strain lacking this gene (B. pseudomallei M10) and a bpsl0618 biofilm-complemented strain, B. pseudomallei C17, in which function of bpsl0618 was restored. Co-cultivation of these strains with healthy human neutrophils at MOI 10 with or without cytochalasin D demonstrated that H777 significantly resisted neutrophil-mediated killing and non-phagocytotic mechanisms compared to M10 (p < 0.0001). Three distinct morphotypes of NETs were seen: “aggregated”, “spiky” and “cloudy”. These were induced in different proportions by the different bacterial strains. All types of NETs were shown to confine all B. pseudomallei strains. Strains H777 and C17 could stimulate production of twice as much extracellular DNA (234.62 ng/mL and 205.43 ng/mL, respectively) as did M10 (111.87 ng/mL). Cells of H777 and C17 were better able to survive in the presence of neutrophil killing mechanisms relative to M10 (p < 0.0001) and NET formation (p < 0.0001 and 0.05). These findings suggest that NET stimulation was insufficient to eradicate B. pseudomallei H777 and C17 despite their possession of bpsl0618, a sugar-transferase gene associated with biofilm formation ability. Our findings demonstrate that B. pseudomallei biofilm phenotype may be a key factor in assisting pathogens to escape killing by neutrophils. This work provides a better understanding of how B. pseudomallei biofilm-associated infections induce and survive NET formation, resulting in bacterial persistence and increased severity of disease.
Collapse
Affiliation(s)
- Muthita Khamwong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Disease (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Disease (RCEID), Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Sorujsiri Chareonsudjai,
| |
Collapse
|
25
|
Evaluating the Contribution of the Predicted Toxin-Antitoxin System HigBA to Persistence, Biofilm Formation, and Virulence in Burkholderia pseudomallei. Infect Immun 2022; 90:e0003522. [PMID: 35695502 PMCID: PMC9302164 DOI: 10.1128/iai.00035-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melioidosis is an underreported human disease caused by the Gram-negative intracellular pathogen Burkholderia pseudomallei (Bpm). Both the treatment and the clearance of the pathogen are challenging, with high relapse rates leading to latent infections. This has been linked to the bacterial persistence phenomenon, a growth arrest strategy that allows bacteria to survive under stressful conditions, as in the case of antibiotic treatment, within a susceptible clonal population. At a molecular level, this phenomenon has been associated with the presence of toxin-antitoxin (TA) systems. We annotated the Bpm K96243 genome and selected 11 pairs of genes encoding for these TA systems, and their expression was evaluated under different conditions (supralethal antibiotic conditions; intracellular survival bacteria). The predicted HigB toxin (BPSL3343) and its predicted antitoxin HigA (BPS_RS18025) were further studied using mutant construction. The phenotypes of two mutants (ΔhigB and ΔhigB ΔhigA) were evaluated under different conditions compared to the wild-type (WT) strain. The ΔhigB toxin mutant showed a defect in intracellular survival on macrophages, a phenotype that was eliminated after levofloxacin treatment. We found that the absence of the toxin provides an advantage over the WT strain, in both in vitro and in vivo models, during persister conditions induced by levofloxacin. The lack of the antitoxin also resulted in differential responses to the conditions evaluated, and under some conditions, it restored the WT phenotype, overall suggesting that both toxin and antitoxin components play a role in the persister-induced phenotype in Bpm.
Collapse
|
26
|
Garg A, Mejia E, Nam W, Nie M, Wang W, Vikesland P, Zhou W. Microporous Multiresonant Plasmonic Meshes by Hierarchical Micro-Nanoimprinting for Bio-Interfaced SERS Imaging and Nonlinear Nano-Optics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106887. [PMID: 35224852 DOI: 10.1002/smll.202106887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Microporous mesh plasmonic devices have the potential to combine the biocompatibility of microporous polymeric meshes with the capabilities of plasmonic nanostructures to enhance nanoscale light-matter interactions for bio-interfaced optical sensing and actuation. However, scalable integration of dense and uniformly structured plasmonic hotspot arrays with microporous polymeric meshes remains challenging due to the processing incompatibility of conventional nanofabrication methods with flexible microporous substrates. Here, scalable nanofabrication of microporous multiresonant plasmonic meshes (MMPMs) is achieved via a hierarchical micro-/nanoimprint lithography approach using dissolvable polymeric templates. It is demonstrated that MMPMs can serve as broadband nonlinear nanoplasmonic devices to generate second-harmonic generation, third-harmonic generation, and upconversion photoluminescence signals with multiresonant plasmonic enhancement under fs pulse excitation. Moreover, MMPMs are employed and explored as bio-interfaced surface-enhanced Raman spectroscopy mesh sensors to enable in situ spatiotemporal molecular profiling of bacterial biofilm activity. Microporous mesh plasmonic devices open exciting avenues for bio-interfaced optical sensing and actuation applications, such as inflammation-free epidermal sensors in conformal contact with skin, combined tissue-engineering and biosensing scaffolds for in vitro 3D cell culture models, and minimally invasive implantable probes for long-term disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elieser Mejia
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Meitong Nie
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
27
|
Can Aggregate-Associated Organisms Influence the Fouling in a SWRO Desalination Plant? Microorganisms 2022; 10:microorganisms10040682. [PMID: 35456734 PMCID: PMC9032733 DOI: 10.3390/microorganisms10040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
This pilot study investigates the formation of aggregates within a desalination plant, before and after pre-treatment, as well as their potential impact on fouling. The objective is to provide an understanding of the biofouling potential of the feed water within a seawater reverse osmosis (SWRO) desalination plant, due to the limited removal of fouling precursors. The 16S and 18S rRNA was extracted from the water samples, and the aggregates and sequenced. Pre-treatment systems, within the plant remove < 5 µm precursors and organisms; however, smaller size particles progress through the plant, allowing for the formation of aggregates. These become hot spots for microbes, due to their nutrient gradients, facilitating the formation of niche environments, supporting the proliferation of those organisms. Aggregate-associated organisms are consistent with those identified on fouled SWRO membranes. This study examines, for the first time, the factors supporting the formation of aggregates within a desalination system, as well as their microbial communities and biofouling potential.
Collapse
|
28
|
Okaro U, Mou S, Lenkoue G, Williams JA, Bonagofski A, Larson P, Kumar R, DeShazer D. A type IVB pilin influences twitching motility and in vitro adhesion to epithelial cells in Burkholderia pseudomallei. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35293855 PMCID: PMC9558350 DOI: 10.1099/mic.0.001150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type IV pili are involved in adhesion, twitching motility, aggregation, biofilm formation and virulence in a variety of Gram-negative bacteria. Burkholderia pseudomallei, the causative agent of melioidosis and a Tier 1 biological select agent, is a Gram-negative bacterium with eight type IV pili-associated loci (TFP1 to TFP8). Most have not been fully characterized. In this study, we investigated BPSS2185, an uncharacterized TFP8 gene that encodes a type IVB pilus protein subunit. Using genetic deletion and complementation analysis in B. pseudomallei JW270, we demonstrate that BPSS2185 plays an important role in twitching motility and adhesion to A549 human alveolar epithelial cells. Compared to JW270, the JW270 ΔBPSS2185 mutant failed to display twitching motility and did not adhere to the epithelial cells. These phenotypes were partially reversed by the complementation of BPSS2185 in the mutant strain. The study also shows that BPSS2185 is expressed only during the onset of mature biofilm formation and at the dispersal of a biofilm, suggesting that the motility characteristic is required to form a biofilm. Our study is the first to suggest that the BPSS2185 gene in TFP8 contributes to twitching motility, adhesion and biofilm formation, indicating that the gene may contribute to B. pseudomallei virulence.
Collapse
Affiliation(s)
- Udoka Okaro
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Sherry Mou
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Geraldin Lenkoue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Janice A Williams
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Ari Bonagofski
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Peter Larson
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Raina Kumar
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
29
|
Thonglao N, Pakkulnan R, Paluka J, Chareonsudjai P, Kanokmedhakul S, Kanokmedhakul K, Chareonsudjai S. Chitosan biological molecule improves bactericidal competence of ceftazidime against Burkholderia pseudomallei biofilms. Int J Biol Macromol 2022; 201:676-685. [PMID: 35063492 DOI: 10.1016/j.ijbiomac.2022.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/05/2022]
Abstract
Biofilm-associated Burkholderia pseudomallei infections (melioidosis) are problematic because of reduced sensitivity to antibiotics and high frequency of relapse. Biofilm dispersal agents are essential to liberate the biofilm-encased cells, which then become planktonic and are more susceptible to antibiotics. This study aimed to evaluate the ability of deacetylated chitosan (dCS), an antimicrobial and antibiofilm biological macromolecule, to disrupt established biofilms, thus enabling ceftazidime (CAZ) to kill biofilm-embedded B. pseudomallei. We combined dCS with CAZ using a mechanical stirring method to generate dCS/CAZ. In combination, 1.25-2.5 mg ml-1 dCS/1-2 μg ml-1 CAZ acted synergistically to kill cells more effectively than did either dCS or CAZ alone. Notably, a combination of 5-10 mg ml-1 dCS with 256-512 μg ml-1 CAZ, prepared either by mechanical stirring (dCS/CAZ) or mixing (dCS + CAZ), drastically improved bactericidal activities against biofilm cells leading to a 3-6 log CFU reduction. Confocal laser-scanning microscope (CLSM) images revealed that 10 mg ml-1 dCS/512 μg ml-1 CAZ is by far the best formulation to diminish B. pseudomallei biofilm biomass and produces the lowest live/dead cell ratios of B. pseudomallei in biofilm matrix. Collectively, these findings emphasize the potential of novel therapeutic antibacterial and antibiofilm agents to fight against antibiotic-tolerant B. pseudomallei biofilm-associated infections.
Collapse
Affiliation(s)
- Nuttaya Thonglao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rattiyaphorn Pakkulnan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jakkapat Paluka
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Pisit Chareonsudjai
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Somdej Kanokmedhakul
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen, Thailand.
| |
Collapse
|
30
|
Liang YB, Li HB, Chen ZS, Yang YD, Shi DY, Chen TJ, Yang D, Yin J, Zhou SQ, Cheng CY, Shao YF, Li JW, Jin M. Spatial behavior and source tracking of extracellular antibiotic resistance genes in a chlorinated drinking water distribution system. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127942. [PMID: 34902725 DOI: 10.1016/j.jhazmat.2021.127942] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) are receiving increasing concerns due to the antibiotic resistance crisis. Nevertheless, little is known about the spatial behavior and sources of extracellular ARGs (eARGs) in the chlorinated drinking water distribution systems (DWDSs). Here, tap water was continuously collected to reveal the occurrence of both eARGs and intracellular ARGs (iARGs) along a chlorinated DWDS. Afterward, the correlation between eARGs, eDNA-releasing communities, and communities of planktonic bacteria was further analyzed. The eARG concentration decreased significantly, whereas the proportion of vanA and blaNDM-1 increased. Further, the diversity of the eDNA-releasing community increased markedly with increasing distance from the drinking water treatment plant (DWTP). Moreover, the dominant eDNA-releasing bacteria shifted from Acinetobacter, Pseudomonas, and Methylobacterium-Methylorubrum in finished water from the DWTP to Bacteroides, Faecalibacterium, Staphylococcus, and Parabacteroides in the DWDS. In terms of eARG source, thirty genera were significantly correlated with seven types of eARGs that resulted from the lysis of dead planktonic bacteria and detached biofilms. Conversely, the iARGs concentration increased, whereas the biodiversity of the planktonic bacteria community decreased in the sampling points along the DWDSs. Our findings provide critical insights into the spatial behavior and sources of eARGs, highlighting the health risks associated with ARGs in DWDSs.
Collapse
Affiliation(s)
- Yong-Bing Liang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Hai-Bei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Zheng-Shan Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Yi-di Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Dan-Yang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Tian-Jiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Shu-Qing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Chun-Yan Cheng
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Yi-Fan Shao
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China.
| |
Collapse
|
31
|
Cayetano RDA, Kim GB, Park J, Yang YH, Jeon BH, Jang M, Kim SH. Biofilm formation as a method of improved treatment during anaerobic digestion of organic matter for biogas recovery. BIORESOURCE TECHNOLOGY 2022; 344:126309. [PMID: 34798247 DOI: 10.1016/j.biortech.2021.126309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The efficiency of anaerobic digestion could be increased by promoting microbial retention through biofilm development. The inclusion of certain types of biofilm carriers has differentiated existing AD biofilm reactors through their respective mode of biofilm growth. Bacteria and archaea engaged in methanogenesis during anaerobic processes potentially build biofilms by adhering or attaching to biofilm carriers. Meta-analyzed results depicted varying degrees of biogas enhancement within AD biofilm reactors. Furthermore, different carrier materials highly induced the dynamicity of the dominant microbial population in each system. It is suggested that the promotion of surface contact and improvement of interspecies electron transport have greatly impacted the treatment results. Modern spectroscopy techniques have been and will continue to give essential information regarding biofilm's composition and structural organization which can be useful in elucidating the added function of this special layer of microbial cells.
Collapse
Affiliation(s)
- Roent Dune A Cayetano
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
32
|
Dokic A, Peterson E, Arrieta-Ortiz ML, Pan M, Di Maio A, Baliga N, Bhatt A. Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profile. Cell Surf 2021; 7:100051. [PMID: 33912773 PMCID: PMC8066798 DOI: 10.1016/j.tcsw.2021.100051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
A non-tuberculous mycobacterium, Mycobacterium abscessus is an emerging opportunistic pathogen associated with difficult to treat pulmonary infections, particularly in patients suffering from cystic fibrosis. It is capable of forming biofilms in vitro that result in an increase of already high levels of antibiotic resistance in this bacterium. Evidence that M. abscessus forms biofilm-like microcolonies in patient lungs and on medical devices further implicated the need to investigate this biofilm in detail. Therefore, in this study we characterized the M. abscessus pellicular biofilm, formed on a liquid-air interface, by studying its molecular composition, and its transcriptional profile in comparison to planktonic cells. Using scanning electron micrographs and fluorescence microscopy, we showed that M. abscessus biofilms produce an extracellular matrix composed of lipids, proteins, carbohydrates and extracellular DNA. Transcriptomic analysis of biofilms revealed an upregulation of pathways involved in the glyoxylate shunt, redox metabolism and mycolic acid biosynthesis. Genes involved in elongation and desaturation of mycolic acids were highly upregulated in biofilms and, mirroring those findings, biochemical analysis of mycolates revealed molecular changes and an increase in mycolic acid chain length. Together these results give us an insight into the complex structure of M. abscessus biofilms, the understanding of which may be adapted for clinical use in treatment of biofilm infections, including strategies for dispersing the extracellular matrix, allowing antibiotics to gain access to bacteria within the biofilm.
Collapse
Affiliation(s)
- Anja Dokic
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | - Min Pan
- Institute for Systems Biology, Seattle, WA 98109 USA
| | - Alessandro Di Maio
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Nitin Baliga
- Institute for Systems Biology, Seattle, WA 98109 USA
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
33
|
Rilstone V, Vignale L, Craddock J, Cushing A, Filion Y, Champagne P. The role of antibiotics and heavy metals on the development, promotion, and dissemination of antimicrobial resistance in drinking water biofilms. CHEMOSPHERE 2021; 282:131048. [PMID: 34470147 DOI: 10.1016/j.chemosphere.2021.131048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR), as well as the development of biofilms in drinking water distribution systems (DWDSs), have become an increasing concern for public health and management. As bulk water travels from source to tap, it may accumulate contaminants of emerging concern (CECs) such as antibiotics and heavy metals. When these CECs and other selective pressures, such as disinfection, pipe material, temperature, pH, and nutrient availability interact with planktonic cells and, consequently, DWDS biofilms, AMR is promoted. The purpose of this review is to highlight the mechanisms by which AMR develops and is disseminated within DWDS biofilms. First, this review will lay a foundation by describing how DWDS biofilms form, as well as their basic intrinsic and acquired resistance mechanisms. Next, the selective pressures that further induce AMR in DWDS biofilms will be elaborated. Then, the pressures by which antibiotic and heavy metal CECs accumulate in DWDS biofilms, their individual resistance mechanisms, and co-selection are described and discussed. Finally, the known human health risks and current management strategies to mitigate AMR in DWDSs will be presented. Overall, this review provides critical connections between several biotic and abiotic factors that influence and induce AMR in DWDS biofilms. Implications are made regarding the importance of monitoring and managing the development, promotion, and dissemination of AMR in DWDS biofilms.
Collapse
Affiliation(s)
- Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Craddock
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Alexandria Cushing
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada.
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada; Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Québec City, Québec, G1K 9A9, Canada
| |
Collapse
|
34
|
Investigating Extracellular DNA Release in Staphylococcus xylosus Biofilm In Vitro. Microorganisms 2021; 9:microorganisms9112192. [PMID: 34835318 PMCID: PMC8617998 DOI: 10.3390/microorganisms9112192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus xylosus forms biofilm embedded in an extracellular polymeric matrix. As extracellular DNA (eDNA) resulting from cell lysis has been found in several staphylococcal biofilms, we investigated S. xylosus biofilm in vitro by a microscopic approach and identified the mechanisms involved in cell lysis by a transcriptomic approach. Confocal laser scanning microscopy (CLSM) analyses of the biofilms, together with DNA staining and DNase treatment, revealed that eDNA constituted an important component of the matrix. This eDNA resulted from cell lysis by two mechanisms, overexpression of phage-related genes and of cidABC encoding a holin protein that is an effector of murein hydrolase activity. This lysis might furnish nutrients for the remaining cells as highlighted by genes overexpressed in nucleotide salvage, in amino sugar catabolism and in inorganic ion transports. Several genes involved in DNA/RNA repair and genes encoding proteases and chaperones involved in protein turnover were up-regulated. Furthermore, S. xylosus perceived osmotic and oxidative stresses and responded by up-regulating genes involved in osmoprotectant synthesis and in detoxification. This study provides new insight into the physiology of S. xylosus in biofilm.
Collapse
|
35
|
Hill BM, Bisht K, Atkins GR, Gomez AA, Rumbaugh KP, Wakeman CA, Brown AMV. Lysis-Hi-C as a method to study polymicrobial communities and eDNA. Mol Ecol Resour 2021; 22:1029-1042. [PMID: 34669257 PMCID: PMC9215119 DOI: 10.1111/1755-0998.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022]
Abstract
Microbes interact in natural communities in a spatially structured manner, particularly in biofilms and polymicrobial infections. While next generation sequencing approaches provide powerful insights into diversity, metabolic capacity, and mutational profiles of these communities, they generally fail to recover in situ spatial proximity between distinct genotypes in the interactome. Hi‐C is a promising method that has assisted in analysing complex microbiomes, by creating chromatin cross‐links in cells, that aid in identifying adjacent DNA, to improve de novo assembly. This study explored a modified Hi‐C approach involving an initial lysis phase prior to DNA cross‐linking, to test whether adjacent cell chromatin can be cross‐linked, anticipating that this could provide a new avenue for study of spatial‐mutational dynamics in structured microbial communities. An artificial polymicrobial mixture of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli was lysed for 1–18 h, then prepared for Hi‐C. A murine biofilm infection model was treated with sonication, mechanical lysis, or chemical lysis before Hi‐C. Bioinformatic analyses of resulting Hi‐C interspecies chromatin links showed that while microbial species differed from one another, generally lysis significantly increased links between species and increased the distance of Hi‐C links within species, while also increasing novel plasmid‐chromosome links. The success of this modified lysis‐Hi‐C protocol in creating extracellular DNA links is a promising first step toward a new lysis‐Hi‐C based method to recover genotypic microgeography in polymicrobial communities, with potential future applications in diseases with localized resistance, such as cystic fibrosis lung infections and chronic diabetic ulcers.
Collapse
Affiliation(s)
- Bravada M Hill
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Georgia Rae Atkins
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Amy A Gomez
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Kendra P Rumbaugh
- Department of Surgery, School of Medicine, Texas Tech Health Sciences Center, Lubbock, Texas, USA
| | - Catherine A Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
36
|
Li Z, Ding Z, Liu Y, Jin X, Xie J, Li T, Zeng Z, Wang Z, Liu J. Phenotypic and Genotypic Characteristics of Biofilm Formation in Clinical Isolates of Acinetobacter baumannii. Infect Drug Resist 2021; 14:2613-2624. [PMID: 34262306 PMCID: PMC8274629 DOI: 10.2147/idr.s310081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Acinetobacter baumannii is an important pathogen in clinical infections, and biofilm formation is an effective way for A. baumannii to survive under external pressures. In this study, the aims were to examine the antimicrobial resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of A. baumannii. Materials and Methods A total of 104 clinical A. baumannii isolates were collected from a large teaching hospital in Southwest China. The antibiotics susceptibilities were tested, and biofilm-forming ability was evaluated by crystal violet staining by confocal laser scanning microscopy (CLSM). Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) of ciprofloxacin, meropenem, and ceftazidime were tested on selected strains by broth microdilution method. Biofilm-associated genes were detected by polymerase chain reaction (PCR), and expression of genes at planktonic stage and biofilm stage were analyzed by real-time reverse transcription PCR (RT-PCR). Results Multidrug-resistant (MDR) isolates accounted for 65.4%, but no strain was resistant to tigecycline and polymyxin B. Moreover, non-MDR strains tended to form stronger biofilms than MDR strains, and a negative correlation between biofilm-forming ability and resistance profiles to each of tested antimicrobials were observed. The MBECs and MBICs of ciprofloxacin, ceftazidime, and meropenem were evidently increased compared with MICs and MBCs among all tested strains. Additionally, the biofilm formation ability of the csuD-positive strains was stronger than that of the csuD-negative strains. The strains in MDR group had higher carrying rate of csuA and csuD genes than non-MDR group, while non-MDR strains possessed more ompA gene than MDR group. Finally, abaI gene was significantly up-regulated after biofilm formation. Conclusion These results revealed valuable data for the negative correlation between antimicrobial resistance and biofilm formation, as well as phenotypic and genotypic characteristics of biofilm formation in A. baumannii.
Collapse
Affiliation(s)
- Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zixuan Ding
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yao Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xinrui Jin
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jingling Xie
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Tingting Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhibin Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| |
Collapse
|
37
|
Qi X, Brothers KM, Ma D, Mandell JB, Donegan NP, Cheung AL, Richardson AR, Urish KL. The Staphylococcus aureus toxin-antitoxin system YefM-YoeB is associated with antibiotic tolerance and extracellular dependent biofilm formation. J Bone Jt Infect 2021; 6:241-253. [PMID: 34262845 PMCID: PMC8273624 DOI: 10.5194/jbji-6-241-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
The high antibiotic tolerance of Staphylococcus aureus biofilms is associated with challenges
for treating periprosthetic joint infection. The toxin–antitoxin system,
YefM–YoeB, is thought to be a regulator for antibiotic tolerance, but its
physiological role is unknown. The objective of this study was to determine
the biofilm and antibiotic susceptibility phenotypes associated with S. aureus yoeB
homologs. We hypothesized the toxin–antitoxin yoeB homologs contribute to
biofilm formation and antibiotic susceptibility. Disruption of yoeB1 and
yoeB2 resulted in decreased biofilm formation in comparison to Newman and JE2
wild-type (WT) S. aureus strains. In comparison to yoeB mutants, both Newman and JE2 WT
strains had higher polysaccharide intercellular adhesin (PIA) production.
Treatment with sodium metaperiodate increased biofilm formation in Newman
WT, indicating biofilm formation may be increased under conditions of
oxidative stress. DNase I treatment decreased biofilm formation in Newman
WT but not in the absence of yoeB1 or yoeB2. Additionally, WT strains had a higher
extracellular DNA (eDNA) content in comparison to yoeB mutants but no
differences in biofilm protein content. Moreover, loss of yoeB1 and yoeB2 decreased
biofilm survival in both Newman and JE2 strains. Finally, in a neutropenic
mouse abscess model, deletion of yoeB1 and yoeB2 resulted in reduced bacterial
burden. In conclusion, our data suggest that yoeB1 and yoeB2 are associated with
S. aureus planktonic growth, extracellular dependent biofilm formation, antibiotic
tolerance, and virulence.
Collapse
Affiliation(s)
- Xinyu Qi
- Arthritis and Arthroplasty Design Group (AAD Lab), Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopedic Surgery, the First Affiliated Hospital of Traditional Chinese Medicine of Guangzhou University, Guangzhou, Guangdong, China
| | - Kimberly M Brothers
- Arthritis and Arthroplasty Design Group (AAD Lab), Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dongzhu Ma
- Arthritis and Arthroplasty Design Group (AAD Lab), Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan B Mandell
- Arthritis and Arthroplasty Design Group (AAD Lab), Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Niles P Donegan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, New Hampshire, USA
| | - Ambrose L Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, New Hampshire, USA
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kenneth L Urish
- Arthritis and Arthroplasty Design Group (AAD Lab), Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Gunardi WD, Timotius KH, Natasha A, Evriarti PR. Biofilm Targeting Strategy in the Eradication of Burkholderia Infections: A Mini-Review. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Burkholderia are intracellular pathogenic bacteria which can produce biofilm. This biofilm protects the intracellular pathogenic bacteria from antibiotic treatment and the immunological system of the host. Therefore, this review aims to describe the capacity of Burkholderia to form a biofilm, the regulation of its biofilm formation, the efficacy of antibiotics to eradicate biofilm, and the novel therapy which targets its biofilm. Burkholderia's biofilm is characterized by its lipopolysaccharides, exopolysaccharides (EPSs), biofilm-associated proteins, and eDNA. Its regulation is made by quorum sensing, c-di-AMP, sRNA, and two component systems. Many antibiotics have been used as sole or mixture agents; however, they are not always effective in eradicating the biofilm-forming Burkholderia. Inhibitors of quorum sensing and other non-conventional antibiotic approaches are promising to discover effective treatment of Burkholderia infections.
Collapse
|
39
|
Fu J, Zhang Y, Lin S, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Strategies for Interfering With Bacterial Early Stage Biofilms. Front Microbiol 2021; 12:675843. [PMID: 34168632 PMCID: PMC8217469 DOI: 10.3389/fmicb.2021.675843] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilm-related bacteria show high resistance to antimicrobial treatments, posing a remarkable challenge to human health. Given bacterial dormancy and high expression of efflux pumps, persistent infections caused by mature biofilms are not easy to treat, thereby driving researchers toward the discovery of many anti-biofilm molecules that can intervene in early stage biofilms formation to inhibit further development and maturity. Compared with mature biofilms, early stage biofilms have fragile structures, vigorous metabolisms, and early attached bacteria are higher susceptibility to antimicrobials. Thus, removing biofilms at the early stage has evident advantages. Many reviews on anti-biofilm compounds that prevent biofilms formation have already been done, but most of them are based on compound classifications to introduce anti-biofilm effects. This review discusses the inhibitory effects of anti-biofilm compounds on early stage biofilms formation from the perspective of the mechanisms of action, including hindering reversible adhesion, reducing extracellular polymeric substances production, interfering in the quorum sensing, and modifying cyclic di-GMP. This information can be exploited further to help researchers in designing new molecules with anti-biofilm activity.
Collapse
Affiliation(s)
- Jingyuan Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
40
|
Burns JR. Introducing Bacteria and Synthetic Biomolecules along Engineered DNA Fibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100136. [PMID: 33960622 DOI: 10.1002/smll.202100136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Deoxyribonucleic acid (DNA) nanotechnology enables user-defined structures to be built with unrivalled control. The approach is currently restricted across the nanoscale, yet the ability to generate macroscopic DNA structures has enormous potential with applications spanning material, physical, and biological science. To address this need, I employed DNA nanotechnology and developed a new macromolecular nanoarchitectonic assembly method to produce DNA fibers with customizable properties. The process involves coalescing DNA nanotubes under high salt conditions to yield filament superstructures. Using this strategy, fibers over 100 microns long, with stiffnesses 10 times greater than cytoskeletal actin filaments can be fabricated. The DNA framework enables fibers to be functionalized with advanced synthetic molecules, including, aptamers, origami, nanoparticles, and vesicles. In addition, the fibers can act as bacterial extracellular scaffolds and adhere Escherichia coli cells in a controllable fashion. These results showcase the opportunities offered from DNA nanotechnology across the macroscopic scale. The new biophysical approach should find widespread use, from the generation of hybrid-fabric materials, smart analytical devices in biomedicine, and platforms to study cell-cell interactions.
Collapse
Affiliation(s)
- Jonathan R Burns
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
41
|
Konduri R, Saiabhilash CR, Shivaji S. Biofilm-Forming Potential of Ocular Fluid Staphylococcus aureus and Staphylococcus epidermidis on Ex Vivo Human Corneas from Attachment to Dispersal Phase. Microorganisms 2021; 9:microorganisms9061124. [PMID: 34067392 PMCID: PMC8224674 DOI: 10.3390/microorganisms9061124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The biofilm-forming potential of Staphylococcus aureus and Staphylococcus epidermidis, isolated from patients with Endophthalmitis, was monitored using glass cover slips and cadaveric corneas as substrata. Both the ocular fluid isolates exhibited biofilm-forming potential by the Congo red agar, Crystal violet and 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-(phenylamino) carbonyl-2H-tetra-zolium hydroxide (XTT) methods. Confocal microscopy demonstrated that the thickness of the biofilm increased from 4–120 h of biofilm formation. Scanning electron microscopic studies indicated that the biofilms grown on cover slips and ex vivo corneas of both the isolates go through an adhesion phase at 4 h followed by multilayer clumping of cells with intercellular connections and copious amounts of extracellular polymeric substance. Clumps subsequently formed columns and eventually single cells were visible indicative of dispersal phase. Biofilm formation was more rapid when the cornea was used as a substratum. In the biofilms grown on corneas, clumping of cells, formation of 3D structures and final appearance of single cells indicative of dispersal phase occurred by 48 h compared to 96–120 h when biofilms were grown on cover slips. In the biofilm phase, both were several-fold more resistant to antibiotics compared to planktonic cells. This is the first study on biofilm forming potential of ocular fluid S. aureus and S. epidermidis on cadaveric cornea, from attachment to dispersal phase of biofilm formation.
Collapse
|
42
|
Panlilio H, Rice CV. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng 2021; 118:2129-2141. [PMID: 33748946 DOI: 10.1002/bit.27760] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
Advances in biotechnology to treat and cure human disease have markedly improved human health and the development of modern societies. However, substantial challenges remain to overcome innate biological factors that thwart the activity and efficacy of pharmaceutical therapeutics. Until recently, the importance of extracellular DNA (eDNA) in biofilms was overlooked. New data reveal its extensive role in biofilm formation, adhesion, and structural integrity. Different approaches to target eDNA as anti-biofilm therapies have been proposed, but eDNA and the corresponding biofilm barriers are still difficult to disrupt. Therefore, more creative approaches to eradicate biofilms are needed. The production of eDNA often originates with the genetic material of bacterial cells through cell lysis. However, genomic DNA and eDNA are not necessarily structurally or compositionally identical. Variations are noteworthy because they dictate important interactions within the biofilm. Interactions between eDNA and biofilm components may as well be exploited as alternative anti-biofilm strategies. In this review, we discuss recent developments in eDNA research, emphasizing potential ways to disrupt biofilms. This review also highlights proteins, exopolysaccharides, and other molecules interacting with eDNA that can serve as anti-biofilm therapeutic targets. Overall, the array of diverse interactions with eDNA is important in biofilm structure, architecture, and stability.
Collapse
Affiliation(s)
- Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
43
|
Ranjith K, Sharma S, Shivaji S. Microbes of the human eye: Microbiome, antimicrobial resistance and biofilm formation. Exp Eye Res 2021; 205:108476. [PMID: 33549582 DOI: 10.1016/j.exer.2021.108476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND The review focuses on the bacteria associated with the human eye using the dual approach of detecting cultivable bacteria and the total microbiome using next generation sequencing. The purpose of this review was to highlight the connection between antimicrobial resistance and biofilm formation in ocular bacteria. METHODS Pubmed was used as the source to catalogue culturable bacteria and ocular microbiomes associated with the normal eyes and those with ocular diseases, to ascertain the emergence of anti-microbial resistance with special reference to biofilm formation. RESULTS This review highlights the genetic strategies used by microorganisms to evade the lethal effects of anti-microbial agents by tracing the connections between candidate genes and biofilm formation. CONCLUSION The eye has its own microbiome which needs to be extensively studied under different physiological conditions; data on eye microbiomes of people from different ethnicities, geographical regions etc. are also needed to understand how these microbiomes affect ocular health.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| | - Savitri Sharma
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| |
Collapse
|
44
|
Nilusha RT, Wei Y. New Insights into the Microbial Diversity of Cake Layer in Yttria Composite Ceramic Tubular Membrane in an Anaerobic Membrane Bioreactor (AnMBR). MEMBRANES 2021; 11:108. [PMID: 33546268 PMCID: PMC7913466 DOI: 10.3390/membranes11020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022]
Abstract
Cake layer formation is an inevitable challenge in membrane bioreactor (MBR) operation. The investigations on the cake layer microbial community are essential to control biofouling. This work studied the bacterial and archaeal communities in the cake layer, the anaerobic sludge, and the membrane cleaning solutions of anaerobic membrane bioreactor (AnMBR) with yttria-based ceramic tubular membrane by polymerase chain reaction (PCR) amplification of 16S rRNA genes. The cake layer resistance was 69% of the total membrane resistance. Proteins and soluble microbial by-products (SMPs) were the dominant foulants in the cake layer. The pioneering archaeal and bacteria in the cake layer were mostly similar to those in the anaerobic bulk sludge. The dominant biofouling bacteria were Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi and the dominant archaeal were Methanosaetacea and Methanobacteriacea at family level. This finding may help to develop antifouling membranes for AnMBR treating domestic wastewater.
Collapse
Affiliation(s)
- Rathmalgodage Thejani Nilusha
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Environment Technology Section, Industrial Technology Institute, 363, Bauddhaloka Mawatha, Colombo 07 00700, Sri Lanka; or
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330029, China
| |
Collapse
|
45
|
da Nóbrega Alves D, Monteiro AFM, Andrade PN, Lazarini JG, Abílio GMF, Guerra FQS, Scotti MT, Scotti L, Rosalen PL, de Castro RD. Docking Prediction, Antifungal Activity, Anti-Biofilm Effects on Candida spp., and Toxicity against Human Cells of Cinnamaldehyde. Molecules 2020; 25:molecules25245969. [PMID: 33339401 PMCID: PMC7767272 DOI: 10.3390/molecules25245969] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: This study evaluated the antifungal activity of cinnamaldehyde on Candida spp. In vitro and in situ assays were carried out to test cinnamaldehyde for its anti-Candida effects, antibiofilm activity, effects on fungal micromorphology, antioxidant activity, and toxicity on keratinocytes and human erythrocytes. Statistical analysis was performed considering α = 5%. Results: The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of cinnamaldehyde ranged from 18.91 μM to 37.83 μM. MIC values did not change in the presence of 0.8 M sorbitol, whereas an 8-fold increase was observed in the presence of ergosterol, suggesting that cinnamaldehyde may act on the cell membrane, which was subsequently confirmed by docking analysis. The action of cinnamaldehyde likely includes binding to enzymes involved in the formation of the cytoplasmic membrane in yeast cells. Cinnamaldehyde-treated microcultures showed impaired cellular development, with an expression of rare pseudo-hyphae and absence of chlamydoconidia. Cinnamaldehyde reduced biofilm adherence by 64.52% to 33.75% (p < 0.0001) at low concentrations (378.3–151.3 µM). Cinnamaldehyde did not show antioxidant properties. Conclusions: Cinnamaldehyde showed fungicidal activity through a mechanism of action likely related to ergosterol complexation; it was non-cytotoxic to keratinocytes and human erythrocytes and showed no antioxidant activity.
Collapse
Affiliation(s)
- Danielle da Nóbrega Alves
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Clinic and Social Dentistry, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil;
| | - Alex France Messias Monteiro
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Patrícia Néris Andrade
- Experimental Pharmacology and Cell Culture Laboratory, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil;
| | - Josy Goldoni Lazarini
- Department of Bioscience, Piracicaba Dental School, University of Campinas, Campinas-SP 13414-903, Brazil; (J.G.L.); (P.L.R.)
| | - Gisely Maria Freire Abílio
- Department of Physiology and Pathology, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Felipe Queiroga Sarmento Guerra
- Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Marcus Tullius Scotti
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Chemistry, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Luciana Scotti
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Cheminformatics Laboratory, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Pedro Luiz Rosalen
- Department of Bioscience, Piracicaba Dental School, University of Campinas, Campinas-SP 13414-903, Brazil; (J.G.L.); (P.L.R.)
- Biological Sciences Graduate Program (PPGCB), Institute of Biomedical Sciences (ICB), Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-000, Brazil
| | - Ricardo Dias de Castro
- Department of Clinic and Social Dentistry, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil
- Correspondence: ; Tel.: +55-83-3216-7742
| |
Collapse
|
46
|
Li Y, Tan L, Guo L, Zhang P, Malakar PK, Ahmed F, Liu H, Wang JJ, Zhao Y. Acidic electrolyzed water more effectively breaks down mature Vibrio parahaemolyticus biofilm than DNase I. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Li J, Ma X, Zhao L, Li Y, Zhou Q, Du X. Extended Contact Lens Wear Promotes Corneal Norepinephrine Secretion and Pseudomonas aeruginosa Infection in Mice. Invest Ophthalmol Vis Sci 2020; 61:17. [PMID: 32298434 PMCID: PMC7401850 DOI: 10.1167/iovs.61.4.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Extended contact lens (CL) wear predisposes the wearer to Pseudomonas aeruginosa infection of the cornea, but the mechanism involved remains incompletely understood. The purpose of this study was to investigate the role of the stress hormone norepinephrine (NE) in the pathogenesis of CL-induced P. aeruginosa keratitis. Methods A total 195 adult C57BL/6 mice were used in this study. Corneal NE content was measured after 48 hours of sterile CL wear in mice. The effect of NE on P. aeruginosa adhesion and biofilm formation on the CL surface was examined in vitro. Moreover, mouse eyes were covered with P. aeruginosa-contaminated CLs, and either 500-µM NE was topically applied or the eyes were subconjunctivally injected with 100 µg of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to deplete local NE. Clinical scores, neutrophil infiltration, proinflammatory cytokine levels, and bacterial load on the corneas and CLs were evaluated. Results Corneal NE content was elevated with extended CL wear in mice. In vitro, NE promoted the adhesion and biofilm formation of P. aeruginosa on the CL surface. In mice, topical application of NE aggravated P. aeruginosa infection, accompanied with increased clinical scores, neutrophil infiltration, proinflammatory cytokine expression, and bacterial burden on the corneas and CLs. However, pre-depletion of local NE with DSP-4 significantly alleviated the severity of P. aeruginosa keratitis. Conclusions Extended CL wear elevates corneal NE content, which promotes the pathogenesis of CL-induced P. aeruginosa keratitis in mice. Targeting NE may provide a potential strategy for the treatment of CL-related corneal infection caused by P. aeruginosa.
Collapse
|
48
|
Zhang K, Li X, Yu C, Wang Y. Promising Therapeutic Strategies Against Microbial Biofilm Challenges. Front Cell Infect Microbiol 2020; 10:359. [PMID: 32850471 PMCID: PMC7399198 DOI: 10.3389/fcimb.2020.00359] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Biofilms are communities of microorganisms that are attached to a biological or abiotic surface and are surrounded by a self-produced extracellular matrix. Cells within a biofilm have intrinsic characteristics that are different from those of planktonic cells. Biofilm resistance to antimicrobial agents has drawn increasing attention. It is well-known that medical device- and tissue-associated biofilms may be the leading cause for the failure of antibiotic treatments and can cause many chronic infections. The eradication of biofilms is very challenging. Many researchers are working to address biofilm-related infections, and some novel strategies have been developed and identified as being effective and promising. Nevertheless, more preclinical studies and well-designed multicenter clinical trials are critically needed to evaluate the prospects of these strategies. Here, we review information about the mechanisms underlying the drug resistance of biofilms and discuss recent progress in alternative therapies and promising strategies against microbial biofilms. We also summarize the strengths and weaknesses of these strategies in detail.
Collapse
Affiliation(s)
- Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Chen Yu
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
49
|
Improved understanding of biofilm development by Piscirickettsia salmonis reveals potential risks for the persistence and dissemination of piscirickettsiosis. Sci Rep 2020; 10:12224. [PMID: 32699383 PMCID: PMC7376020 DOI: 10.1038/s41598-020-68990-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/30/2020] [Indexed: 02/03/2023] Open
Abstract
Piscirickettsia salmonis is the causative agent of piscirickettsiosis, a disease with high socio-economic impacts for Chilean salmonid aquaculture. The identification of major environmental reservoirs for P. salmonis has long been ignored. Most microbial life occurs in biofilms, with possible implications in disease outbreaks as pathogen seed banks. Herein, we report on an in vitro analysis of biofilm formation by P. salmonis Psal-103 (LF-89-like genotype) and Psal-104 (EM-90-like genotype), the aim of which was to gain new insights into the ecological role of biofilms using multiple approaches. The cytotoxic response of the salmon head kidney cell line to P. salmonis showed interisolate differences, depending on the source of the bacterial inoculum (biofilm or planktonic). Biofilm formation showed a variable-length lag-phase, which was associated with wider fluctuations in biofilm viability. Interisolate differences in the lag phase emerged regardless of the nutritional content of the medium, but both isolates formed mature biofilms from 288 h onwards. Psal-103 biofilms were sensitive to Atlantic salmon skin mucus during early formation, whereas Psal-104 biofilms were more tolerant. The ability of P. salmonis to form viable and mucus-tolerant biofilms on plastic surfaces in seawater represents a potentially important environmental risk for the persistence and dissemination of piscirickettsiosis.
Collapse
|
50
|
Vishwakarma J, V.L S. Unraveling the anti-biofilm potential of green algal sulfated polysaccharides against Salmonella enterica and Vibrio harveyi. Appl Microbiol Biotechnol 2020; 104:6299-6314. [DOI: 10.1007/s00253-020-10653-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023]
|