1
|
Devedžić A, Urzi F, Pokorny B, Vengušt G, Vengušt DŽ, Janžekovič F, Velić L, Eterović T, Stroil BK, Bužan E. Spatial genetic characterization of the red fox (Vulpes vulpes) in the area between the Alps and the Central Dinaric Mountains. Vavilovskii Zhurnal Genet Selektsii 2024; 28:752-758. [PMID: 39722666 PMCID: PMC11668821 DOI: 10.18699/vjgb-24-83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 12/28/2024] Open
Abstract
Red fox, Vulpes vulpes, is a globally distributed species characterized by its high adaptability to diverse habitats and a broad range of food resources. This remarkable adaptability has allowed the red fox to thrive in various environments, from urban areas to remote wilderness. In this study, we used a set of microsatellite markers for the comparative genetic analysis of red fox populations from two countries. We included populations from the Eastern Alps and the northern Dinaric Mountains in Slovenia, as well as the Central Dinaric Mountains in Bosnia and Herzegovina. We successfully isolated DNA and genotyped 118 red fox samples. Our analyses, which included Bayesian clustering techniques, revealed a weak genetic differentiation among the studied populations. However, it is noteworthy that statistically significant differences in estimates of genetic differentiation were only apparent when comparing the populations between the two countries. Further spatial genetic clustering analyses provided additional insights, unveiling a differentiation into four genetic clusters. These clusters comprised two distinct groups in Bosnia and Herzegovina and two in Slovenia. This pattern of differentiation suggests that isolation by distance is a key factor influencing the genetic structure of the red fox in this studied region. Additionally, our findings highlighted that populations from the Alps and northern Dinaric Mountains exhibit higher genetic diversity and observed heterozygosity compared to their counterparts in the Central Dinaric Mountains. The genetic diversity is also notable when compared to other European red fox populations. Studying genetic diversity is crucial for the resilience and adaptability of populations, ensuring their survival amid environmental changes and human-induced pressures.
Collapse
Affiliation(s)
- A Devedžić
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - F Urzi
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - B Pokorny
- Faculty of Environmental Protection, Velenje, Slovenia
| | - G Vengušt
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - D Ž Vengušt
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - F Janžekovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - L Velić
- Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - T Eterović
- Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - B K Stroil
- Institute of Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - E Bužan
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia Faculty of Environmental Protection, Velenje, Slovenia
| |
Collapse
|
2
|
Malik Da Silva A, Afonso E, Raoul F, Giraudoux P, Mergey M, Umhang G, Courquet S, Rieffel D, Millon L, Knapp J. Assessing the role of individual foxes in environmental contamination with Echinococcus multilocularis through faecal samples. Int J Parasitol 2024; 54:321-332. [PMID: 38460722 DOI: 10.1016/j.ijpara.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Key parasite transmission parameters are difficult to obtain from elusive wild animals. For Echinococcus multilocularis, the causative agent of alveolar echinococcosis (AE), the red fox is responsible for most of the environmental contamination in Europe. The identification of individual spreaders of E. multilocularis environmental contamination is crucial to improving our understanding of the ecology of parasite transmission in areas of high endemicity and optimising the effectiveness of prevention and control measures in the field. Genetic faecal sampling appears to be a feasible method to gain information about the faecal deposition of individual animals. We conducted a 4 year faecal sampling study in a village that is highly endemic for E. multilocularis, to assess the feasibility of individual identification and sexing of foxes to describe individual infection patterns. Individual fox identification from faecal samples was performed by obtaining reliable genotypes from 14 microsatellites and one sex locus, coupled with the detection of E. multilocularis DNA, first using captive foxes and then by environmental sampling. From a collection of 386 fox stools collected between 2017 and 2020, tested for the presence of E. multilocularis DNA, 180 were selected and 124 samples were successfully genotyped (68.9%). In total, 45 unique individual foxes were identified and 26 associated with at least one sample which tested positive for E. multilocularis (Em(+)). Estimation of the population size showed the fox population to be between 29 and 34 individuals for a given year and 67 individuals over 4 years. One-third of infected individuals (9/26 Em(+) foxes) deposited 2/3 of the faeces which tested positive for E. multilocularis (36/60 Em(+) stools). Genetic investigation showed a significantly higher average number of multiple stools for females than males, suggesting that the two sexes potentially defecated unequally in the studied area. Three partially overlapping clusters of fox faeces were found, with one cluster concentrating 2/3 of the total E. multilocularis-positive faeces. Based on these findings, we estimated that 12.5 million E. multilocularis eggs were produced during the study period, emphasizing the high contamination level of the environment and the risk of exposure faced by the parasite hosts.
Collapse
Affiliation(s)
- Abdou Malik Da Silva
- UMR CNRS 6249 Chrono-environnement Laboratory, University of Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Eve Afonso
- UMR CNRS 6249 Chrono-environnement Laboratory, University of Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Francis Raoul
- UMR CNRS 6249 Chrono-environnement Laboratory, University of Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Patrick Giraudoux
- UMR CNRS 6249 Chrono-environnement Laboratory, University of Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Marina Mergey
- University of Reims Champagne-Ardenne, CERFE, 08240 Boult-aux-Bois, France
| | - Gérald Umhang
- ANSES Nancy Laboratory for Rabies and Wildlife, National Reference Laboratory for Echinococcus spp. Wildlife Surveillance and Eco-epidemiology Unit, Agricultural and Veterinary Technopole, 54220 Malzéville, France
| | - Sandra Courquet
- UMR CNRS 6249 Chrono-environnement Laboratory, University of Franche-Comté, 16 Route de Gray, 25030 Besançon, France; Department of Parasitology-Mycology, University Hospital of Besançon, 25030 Besançon, France
| | - Dominique Rieffel
- UMR CNRS 6249 Chrono-environnement Laboratory, University of Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Laurence Millon
- UMR CNRS 6249 Chrono-environnement Laboratory, University of Franche-Comté, 16 Route de Gray, 25030 Besançon, France; Department of Parasitology-Mycology, University Hospital of Besançon, 25030 Besançon, France
| | - Jenny Knapp
- UMR CNRS 6249 Chrono-environnement Laboratory, University of Franche-Comté, 16 Route de Gray, 25030 Besançon, France; Department of Parasitology-Mycology, University Hospital of Besançon, 25030 Besançon, France.
| |
Collapse
|
3
|
Santoro A, Santolamazza F, Cacciò SM, La Rosa G, Antolová D, Auer H, Bagrade G, Bandelj P, Basso W, Beck R, Citterio CV, Davidson RK, Deksne G, Frey CF, Fuglei E, Glawischnig W, Gottstein B, Harna J, Huus Petersen H, Karamon J, Jansen F, Jarošová J, Jokelainen P, Lundström-Stadelmann B, Maksimov P, Miljević M, Miterpáková M, Moks E, Origgi F, Ozolina Z, Ryser MP, Romig T, Šarkūnas M, Scorrano N, Saarma U, Šnábel V, Sréter T, Umhang G, Vengušt G, Žele Vengušt D, Casulli A. Mitochondrial genetic diversity and phylogenetic relationships of Echinococcus multilocularis in Europe. Int J Parasitol 2024; 54:233-245. [PMID: 38246405 DOI: 10.1016/j.ijpara.2024.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/09/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
The cestode Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a fatal zoonotic parasitic disease of the northern hemisphere. Red foxes are the main reservoir hosts and, likely, the main drivers of the geographic spread of the disease in Europe. Knowledge of genetic relationships among E. multilocularis isolates at a European scale is key to understanding the dispersal characteristics of E. multilocularis. Hence, the present study aimed to describe the genetic diversity of E. multilocularis isolates obtained from different host species in 19 European countries. Based on the analysis of complete nucleotide sequences of the cob, atp6, nad2, nad1 and cox1 mitochondrial genes (4,968 bp), 43 haplotypes were inferred. Four haplotypes represented 62.56 % of the examined isolates (142/227), and one of these four haplotypes was found in each country investigated, except Svalbard, Norway. While the haplotypes from Svalbard were markedly different from all the others, mainland Europe appeared to be dominated by two main clusters, represented by most western, central and eastern European countries, and the Baltic countries and northeastern Poland, respectively. Moreover, one Asian-like haplotype was identified in Latvia and northeastern Poland. To better elucidate the presence of Asian genetic variants of E. multilocularis in Europe, and to obtain a more comprehensive Europe-wide coverage, further studies, including samples from endemic regions not investigated in the present study, especially some eastern European countries, are needed. Further, the present work proposes historical causes that may have contributed to shaping the current genetic variability of E. multilocularis in Europe.
Collapse
Affiliation(s)
- Azzurra Santoro
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis, Department of Infectious Diseases, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Federica Santolamazza
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis, Department of Infectious Diseases, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Simone M Cacciò
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giuseppe La Rosa
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela Antolová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Hlinkova 3, 040 01 Košice, Slovakia
| | - Herbert Auer
- Medical Parasitology, Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Guna Bagrade
- Latvian State Forest Research Institute "Silava", Wildlife Management Research Group, Salaspils, Rigas Street 111, LV-2169 Salaspils, Latvia
| | - Petra Bandelj
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Walter Basso
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Relja Beck
- Croatian Veterinary Institute, Laboratory for Parasitology, 10000 Zagreb, Croatia
| | - Carlo V Citterio
- Centro Specialistico Fauna Selvatica, SCT2-Belluno, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Via Cappellari 44/A, 32100 Belluno, Italy
| | | | - Gunita Deksne
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia; Faculty of Biology, University of Lavia, Jelgavas Street 1, Riga LV-1004, Latvia
| | - Caroline F Frey
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Eva Fuglei
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Walter Glawischnig
- Institute for Veterinary Disease Control Innsbruck, Austrian Agency for Health and Food Safety, Technikerstraße 70, 6020 Innsbruck, Austria
| | - Bruno Gottstein
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; Institute of Infectious Diseases, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Jiří Harna
- State Veterinary Institute Olomouc, Jakoubka ze Stribra 1, 779 00 Olomouc, Czech Republic
| | - Heidi Huus Petersen
- Danish Veterinary and Food Administration, Ministry of Food, Agriculture and Fisheries of Denmark, Stationsparken 31-33 2600, Glostrup, Denmark
| | - Jacek Karamon
- National Veterinary Research Institute, Department of Parasitology and Invasive Diseases, Partyzantow Avenue 57, 24-100 Pulawy, Poland
| | - Famke Jansen
- Institute of Tropical Medicine (ITM), Department of Biomedical Sciences, 155 Nationalestraat, B-2000 Antwerp, Belgium
| | - Júlia Jarošová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Hlinkova 3, 040 01 Košice, Slovakia
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Pavlo Maksimov
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald‑Insel Riems, Germany
| | - Milan Miljević
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Martina Miterpáková
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Hlinkova 3, 040 01 Košice, Slovakia
| | - Epp Moks
- National Centre for Laboratory Research and Risk Assessment, Fr. R. Kreutzwaldi 30, Tartu, Estonia
| | - Francesco Origgi
- Institute for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Längassstrasse 122, 3012 Bern, Switzerland
| | - Zanda Ozolina
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia
| | - Marie-Pierre Ryser
- Institute for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Längassstrasse 122, 3012 Bern, Switzerland
| | - Thomas Romig
- Parasitology Unit, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Mindaugas Šarkūnas
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, 47181 Kaunas, Lithuania
| | - Nathalie Scorrano
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Viliam Šnábel
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Hlinkova 3, 040 01 Košice, Slovakia
| | - Tamás Sréter
- National Reference Laboratory of Medical Parasitology, National Public Health Center, Albert Flórián út 2-6, Budapest, Hungary
| | - Gèrald Umhang
- Anses, Nancy Laboratory for Rabies and Wildlife, National Reference Laboratory Echinococcus spp, 54220 Malzéville, France
| | - Gorazd Vengušt
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Diana Žele Vengušt
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Adriano Casulli
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis, Department of Infectious Diseases, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
4
|
Talbot B, Alanazi TJ, Albert V, Bordeleau É, Bouchard É, Leighton PA, Marshall HD, Rondeau-Geoffrion D, Simon A, Massé A. Low levels of genetic differentiation and structure in red fox populations in Eastern Canada and implications for Arctic fox rabies propagation potential. PLoS One 2023; 18:e0286784. [PMID: 37279210 DOI: 10.1371/journal.pone.0286784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Rabies is a lethal zoonosis present in most parts of the world which can be transmitted to humans through the bite from an infected mammalian reservoir host. The Arctic rabies virus variant (ARVV) persists mainly in populations of Arctic foxes (Vulpes lagopus), and to a lesser extent in red fox populations (Vulpes vulpes). Red foxes are thought to be responsible for sporadic southward movement waves of the ARVV outside the enzootic area of northern Canada. In this study, we wanted to investigate whether red foxes displayed notable levels of genetic structure across the Quebec-Labrador Peninsula, which includes portions of the provinces of Quebec and Newfoundland-Labrador in Canada, and is a region with a history of southward ARVV movement waves. We combined two datasets that were collected and genotyped using different protocols, totalling 675 red fox individuals across the whole region and genotyped across 13 microsatellite markers. We found two genetic clusters across the region, reflecting a latitudinal gradient, and characterized by low genetic differentiation. We also observed weak but significant isolation by distance, which seems to be marginally more important for females than for males. These findings suggest a general lack of resistance to movement in red fox populations across the Quebec-Labrador Peninsula, regardless of sex. Implications of these findings include additional support for the hypothesis of long-distance southward ARVV propagation through its red fox reservoir host.
Collapse
Affiliation(s)
- Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Thaneah J Alanazi
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs, Québec, QC, Canada
| | - Émilie Bordeleau
- Ministère des Forêts, de la Faune et des Parcs, Québec, QC, Canada
| | - Émilie Bouchard
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patrick A Leighton
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - H Dawn Marshall
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Audrey Simon
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Ariane Massé
- Ministère des Forêts, de la Faune et des Parcs, Québec, QC, Canada
| |
Collapse
|
5
|
Assessing Red Fox ( Vulpes vulpes) Demographics to Monitor Wildlife Diseases: A Spotlight on Echinococcus multilocularis. Pathogens 2022; 12:pathogens12010060. [PMID: 36678408 PMCID: PMC9862526 DOI: 10.3390/pathogens12010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The assessment of red fox population density is considered relevant to the surveillance of zoonotic agents vectored by this species. However, density is difficult to estimate reliably, since the ecological plasticity and elusive behavior of this carnivore hinder classic methods of inference. In this study, red fox population density was estimated using a non-invasive molecular spatial capture-recapture (SCR) approach in two study areas: one in a known hotspot of the zoonotic cestode Echinococcus multilocularis, and another naïve to the parasite. Parasitological investigations on collected samples confirmed the presence of the parasite exclusively in the former area; the SCR results indicated a higher fox population density in the control area than in the hotspot, suggesting either that the relationship between fox density and parasite prevalence is not linear and/or the existence of other latent factors supporting the parasitic cycle in the known focus. In addition, fox spotlight count data for the two study areas were used to estimate the index of kilometric abundance (IKA). Although this method is cheaper and less time-consuming than SCR, IKA values were the highest in the areas with the lower molecular SCR density estimates, confirming that IKA should be regarded as a relative index only.
Collapse
|
6
|
Wu Q, Chen L, Zhang Q, Jin X, Tang L, Zhang X, Liu Y, Li J, Pei J, Zhu Q, Jin S, Zhao Q, Shen J, Zhao Z, Jin Y, He H, Gu X, Yang M. Sarcoptic mange is an emerging threat to biodiversity in the Qinling Mountains in China. Transbound Emerg Dis 2022; 69:3724-3736. [PMID: 36251176 DOI: 10.1111/tbed.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 02/07/2023]
Abstract
Sarcoptic mange, a disease caused by the burrowing mite Sarcoptes scabiei, is globally endemic and an emerging threat to wildlife. Although many studies have shown that wildlife diseases play key roles in biodiversity conservation, knowledge about sarcoptic mange is still insufficient. In this study, we aim to improve the understanding of the impacts of sarcoptic mange on wildlife populations, the mechanisms involved in its eco-epidemiology and the associated risks to public and ecosystem health by investigating mass death events in gorals and serows in the Qinling Mountains. We conducted interviews with practitioners and local people in the central Qinling Mountains. From the same locations, we collected 24 cutaneous samples from various animals and surveillance data from infrared cameras. Pathological, parasitological and microbiological examinations of the samples were performed. Mite-induced cutaneous lesions, mites and eggs were observed in samples from dead gorals and one dead serow but not in other species. Molecular analysis confirmed the mites to be S. scabiei and shared the same cox 1 genotype. The data obtained from the interviews and infrared cameras indicated that the death of wildlife was related to sarcoptic mange infection and that there had been a decrease in the goral population since the outbreak of the disease. We confirmed that sarcoptic mange was the major cause of the mass death events and may have spread from the western to eastern Qinling Mountains. Based on our findings, we propose several protection strategies to help preserve biodiversity in the Qinling Mountains.
Collapse
Affiliation(s)
- Qiaoxing Wu
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, China.,Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- Niubeiliang National Nature Reserve of Shaanxi, Xi'an, China
| | - Qiqi Zhang
- Niubeiliang National Nature Reserve of Shaanxi, Xi'an, China
| | - Xuelin Jin
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, China
| | - Liubin Tang
- Foping National Reserve of Shaanxi, Hanzhong, China
| | - Xueli Zhang
- Qinling Ecology and Environment Protection and Comprehensive Law Enforcement Bureau of Chang'an District, Xi'an, China
| | - Yuqiang Liu
- Forestry Resources Protection Center of Chang'an District, Xi'an, China
| | - Jun'an Li
- Taibai Mountain National Reserve of Shaanxi, Yangling, China
| | - Junfeng Pei
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, China
| | - Qifeng Zhu
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, China
| | | | - Qingxia Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, China
| | - Jie Shen
- Forestry Resources Protection Center of Chang'an District, Xi'an, China
| | - Zemin Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, China
| | - Yipeng Jin
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongxuan He
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
7
|
Grassi L, Menandro ML, Obber F, Drigo M, Legnardi M, Pasotto D, Tucciarone CM, Faustini G, Citterio C, Cecchinato M, Franzo G. Investigation of Carnivore protoparvovirus 1 and Amdoparvovirus infections in red fox populations of the Italian Dolomites. Vet Res Commun 2022; 46:1291-1295. [PMID: 35916969 DOI: 10.1007/s11259-022-09965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/20/2022] [Indexed: 10/16/2022]
Abstract
Members of the family Parvoviridae are well recognized infectious agents of companion, livestock and wild animals as well, whose relevance on production, health, welfare and conservation is often high. Nevertheless, the knowledge of their epidemiology in wild populations is scarce or fragmentary. In this study, the presence and features of two parvoviruses, Carnivore protoparvovirus 1 and Amdoparvovirus, were evaluated in the red fox population resident in the Dolomites area, Northern Italy, and compared with the scenario of other countries and Italian regions. Six out of 117 spleen samples (5.13%: 95CI: 1.91-10.83%) tested positive to Carnivore protoparvovirus 1 and were molecularly characterized as Canine parvovirus (CPV). Infection frequency was comparable with that observed in wild carnivore populations present in Southern Italian regions, although in that case, Feline parvovirus (FPV) was predominant. No evidence of infection-related clinical signs was reported and viral loads were invariably low, suggesting the subclinical nature of the infection, the persistent carrier status or the detection of traces of viral DNA. No samples tested positive to Amdoparvovirus genus-specific PCR. The present study provides the first evidence of CPV circulation in the Northern Italy fox population. Unfortunately, the inevitable convenience nature of the sampling prevents definitive conclusions. Therefore, a more coordinated and standardized approach should be applied, at least in neighbouring geographic areas, to study these viral infections and their relevance in wildlife.
Collapse
Affiliation(s)
- Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Federica Obber
- O.U. of Ecopathology, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), SCT2, 32100, Belluno, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Giulia Faustini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Carlo Citterio
- O.U. of Ecopathology, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), SCT2, 32100, Belluno, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy.
| |
Collapse
|
8
|
Franzo G, Menandro ML, Tucciarone CM, Barbierato G, Crovato L, Mondin A, Libanora M, Obber F, Orusa R, Robetto S, Citterio C, Grassi L. Canine Circovirus in Foxes from Northern Italy: Where Did It All Begin? Pathogens 2021; 10:pathogens10081002. [PMID: 34451466 PMCID: PMC8400258 DOI: 10.3390/pathogens10081002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/26/2023] Open
Abstract
Canine circovirus (CanineCV) is a recently identified virus affecting both domestic and wild carnivores, including foxes, sometimes in presence of severe clinical signs. Its circulation in wild animals can thus represent a potential threat for endangered species conservation and an infection source for dogs. Nevertheless, no data were available on its circulation in the Alps region of Northern Italy. In the present study, samples collected from 186 foxes in the period 2009–2020 from Valle d’Aosta and Veneto regions were tested using a real-time PCR assay, demonstrating a viral circulation of approximatively 2–5%, depending on the considered regions. Two complete or almost complete genome sequences were obtained, highlighting that the detected strains were part of a so defined “fox only” clade, which suggests that, despite common contact opportunities, Alps foxes are not involved in frequent transmission events to domestic dogs. Such genetic isolation could be at least partially attributed to some sort of independent evolution occurred in the foxes, leading to species barrier. Additionally, CanineCV strains in foxes from Italy were unexpectedly related to those previously identified in foxes from the United Kingdom and Scandinavian area. Combining the history of fox distribution in Europe since the last glacial maximum (LGM) with the viral history allowed us to speculate a long-standing coexistence between European canine circovirus and this host, justifying the peculiar geographic distribution and evolutionary paths of the fox infecting clade.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.M.); (C.M.T.); (G.B.); (L.C.); (A.M.); (L.G.)
- Correspondence: ; Tel.: +39-049-827-2968
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.M.); (C.M.T.); (G.B.); (L.C.); (A.M.); (L.G.)
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.M.); (C.M.T.); (G.B.); (L.C.); (A.M.); (L.G.)
| | - Giacomo Barbierato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.M.); (C.M.T.); (G.B.); (L.C.); (A.M.); (L.G.)
| | - Lorenzo Crovato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.M.); (C.M.T.); (G.B.); (L.C.); (A.M.); (L.G.)
| | - Alessandra Mondin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.M.); (C.M.T.); (G.B.); (L.C.); (A.M.); (L.G.)
| | - Martina Libanora
- O.U. of Ecopathology, SCT2 Belluno, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 32100 Belluno, Italy; (M.L.); (F.O.); (C.C.)
| | - Federica Obber
- O.U. of Ecopathology, SCT2 Belluno, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 32100 Belluno, Italy; (M.L.); (F.O.); (C.C.)
| | - Riccardo Orusa
- S.C. Valle d.’Aosta—National Reference Centre Wildlife Diseases, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZS PLV)—Ce.R.M.A.S., 11020 Quart, AO, Italy; (R.O.); (S.R.)
| | - Serena Robetto
- S.C. Valle d.’Aosta—National Reference Centre Wildlife Diseases, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZS PLV)—Ce.R.M.A.S., 11020 Quart, AO, Italy; (R.O.); (S.R.)
| | - Carlo Citterio
- O.U. of Ecopathology, SCT2 Belluno, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 32100 Belluno, Italy; (M.L.); (F.O.); (C.C.)
| | - Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.M.); (C.M.T.); (G.B.); (L.C.); (A.M.); (L.G.)
| |
Collapse
|
9
|
Watson KMA, Mikac KM, Schwab SG. Population Genetics of the Invasive Red Fox, Vulpes vulpes, in South-Eastern Australia. Genes (Basel) 2021; 12:genes12050786. [PMID: 34065589 PMCID: PMC8161170 DOI: 10.3390/genes12050786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The use of genetic information in conservation biology has become more widespread with genetic information more readily available for non-model organisms. It has also been recognized that genetic information from invasive species can inform their management and control. The red fox poses a significant threat to Australian native fauna and the agricultural industry. Despite this, there are few recently published studies investigating the population genetics of foxes in Australia. This study investigated the population genetics of 94 foxes across the Illawarra and Shoalhaven regions of New South Wales, Australia. Diversity Array sequencing technology was used to genotype a large number of single nucleotide polymorphisms (N = 33,375). Moderate genetic diversity and relatedness were observed across the foxes sampled. Low to moderate levels of inbreeding, high-levels of identity-by-state values, as well as high identity-by-descent values were also found. There was limited evidence for population genetic structure among the foxes across the landscape sampled, supporting the presence of a single population across the study area. This indicates that there may be no barriers hindering fox dispersal across the landscape.
Collapse
Affiliation(s)
- Kalynda M.-A. Watson
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong 2522, Australia;
| | - Katarina M. Mikac
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong 2522, Australia;
- Correspondence: ; Tel.: +61-242-213-307
| | - Sibylle G. Schwab
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong 2522, Australia;
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia
| |
Collapse
|
10
|
Čolić D, Krešić N, Mihaljević Ž, Andreanszky T, Balić D, Lolić M, Brnić D. A Remarkable Genetic Diversity of Rotavirus A Circulating in Red Fox Population in Croatia. Pathogens 2021; 10:pathogens10040485. [PMID: 33923799 PMCID: PMC8072941 DOI: 10.3390/pathogens10040485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
Rotaviruses (RV), especially Rotavirus A (RVA), are globally recognized as pathogens causing neonatal diarrhea, but they also affect intensive animal farming. However, the knowledge on their significance in wildlife is rather limited. The aim of the study was to unveil the prevalence, molecular epidemiology, and genetic diversity of RVA strains circulating in the red fox (Vulpes vulpes) population in Croatia. From 2018 to 2019, 370 fecal samples from fox carcasses hunted for rabies monitoring were collected. All samples were first tested using a VP2 real-time RT-PCR; in the subsequent course, positives were subjected to VP7 and VP4 genotyping. The results revealed an RVA prevalence of 14.9%, while the circulating RVA strains showed a remarkable genetic diversity in terms of 11 G and nine P genotypes, among which one G and three P were tentatively identified as novel. In total, eight genotype combinations were detected: G8P[14], G9P[3], G9P[23], G10P[11], G10P[3], G11P[13], G15P[21], and G?P[?]. The results suggest a complex background of previous interspecies transmission events, shedding new light on the potential influence of foxes in RVA epidemiology. Their role as potential reservoirs of broad range of RVA genotypes, usually considered typical solely of domestic animals and humans, cannot be dismissed.
Collapse
Affiliation(s)
- Daniel Čolić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (D.Č.); (N.K.); (Ž.M.)
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Nina Krešić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (D.Č.); (N.K.); (Ž.M.)
| | - Željko Mihaljević
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (D.Č.); (N.K.); (Ž.M.)
| | - Tibor Andreanszky
- Veterinary Department, Croatian Veterinary Institute, Podmurvice 29, 51000 Rijeka, Croatia;
| | - Davor Balić
- Veterinary Department, Croatian Veterinary Institute, Josipa Kozarca 24, 32100 Vinkovci, Croatia; (D.B.); (M.L.)
| | - Marica Lolić
- Veterinary Department, Croatian Veterinary Institute, Josipa Kozarca 24, 32100 Vinkovci, Croatia; (D.B.); (M.L.)
| | - Dragan Brnić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (D.Č.); (N.K.); (Ž.M.)
- Correspondence: ; Tel.: +385-1-6123-650
| |
Collapse
|
11
|
Baecklund TM, Morrison J, Donaldson ME, Hueffer K, Kyle CJ. The role of a mechanistic host in maintaining arctic rabies variant distributions: Assessment of functional genetic diversity in Alaskan red fox (Vulpes vulpes). PLoS One 2021; 16:e0249176. [PMID: 33831031 PMCID: PMC8031376 DOI: 10.1371/journal.pone.0249176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/12/2021] [Indexed: 11/18/2022] Open
Abstract
Populations are exposed to different types and strains of pathogens across heterogeneous landscapes, where local interactions between host and pathogen may present reciprocal selective forces leading to correlated patterns of spatial genetic structure. Understanding these coevolutionary patterns provides insight into mechanisms of disease spread and maintenance. Arctic rabies (AR) is a lethal disease with viral variants that occupy distinct geographic distributions across North America and Europe. Red fox (Vulpes vulpes) are a highly susceptible AR host, whose range overlaps both geographically distinct AR strains and regions where AR is absent. It is unclear if genetic structure exists among red fox populations relative to the presence/absence of AR or the spatial distribution of AR variants. Acquiring these data may enhance our understanding of the role of red fox in AR maintenance/spread and inform disease control strategies. Using a genotyping-by-sequencing assay targeting 116 genomic regions of immunogenetic relevance, we screened for sequence variation among red fox populations from Alaska and an outgroup from Ontario, including areas with different AR variants, and regions where the disease was absent. Presumed neutral SNP data from the assay found negligible levels of neutral genetic structure among Alaskan populations. The immunogenetically-associated data identified 30 outlier SNPs supporting weak to moderate genetic structure between regions with and without AR in Alaska. The outliers included SNPs with the potential to cause missense mutations within several toll-like receptor genes that have been associated with AR outcome. In contrast, there was a lack of genetic structure between regions with different AR variants. Combined, we interpret these data to suggest red fox populations respond differently to the presence of AR, but not AR variants. This research increases our understanding of AR dynamics in the Arctic, where host/disease patterns are undergoing flux in a rapidly changing Arctic landscape, including the continued northward expansion of red fox into regions previously predominated by the arctic fox (Vulpes lagopus).
Collapse
Affiliation(s)
- Tristan M. Baecklund
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- * E-mail:
| | - Jaycee Morrison
- Forensic Science Undergraduate Program, Trent University, Peterborough, Ontario, Canada
| | - Michael E. Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Christopher J. Kyle
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling & Forensic Centre, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
12
|
Walton Z, Hagenlund M, Østbye K, Samelius G, Odden M, Norman A, Willebrand T, Spong G. Moving far, staying close: red fox dispersal patterns revealed by SNP genotyping. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe genetic structure of a population can provide important insights into animal movements at varying geographical scales. Individual and social behaviors, such as philopatry and dispersal, affect patterns of relatedness, age and sex structure, shaping the local genetic structure of populations. However, these fine scale patterns may not be detected within broader population genetic structure. Using SNP genotyping for pairwise relatedness estimates, we investigated the spatial and genetic structuring of 141 red foxes within south-central Sweden at two scales. First, we looked at broad scale population structuring among red foxes at the regional level. We then estimated pairwise relatedness values to evaluate the spatial and genetic structure of male, female and mixed sex pairs for patterns of philopatry and dispersal at a more localized scale. We found limited genetic differentiation at the regional scale. However, local investigations revealed patterns of female philopatry and male biased dispersal. There were significant differences in pairwise geographic distances between highly related same sex pairs with the average distance between related males, 37.8 km, being six times farther than that of related females, averaging 6.3 km. In summary, the low levels of genetic differentiation found in this study illustrates the mobility and dispersal ability of red foxes across scales. However, relatedness plays a strong role in the spatial organization of red foxes locally, ultimately contributing to male biased dispersal patterns.
Collapse
|
13
|
Bianco A, Zecchin B, Fusaro A, Schivo A, Ormelli S, Bregoli M, Citterio CV, Obber F, Dellamaria D, Trevisiol K, Lorenzetto M, De Benedictis P, Monne I. Two waves of canine distemper virus showing different spatio-temporal dynamics in Alpine wildlife (2006-2018). INFECTION GENETICS AND EVOLUTION 2020; 84:104359. [PMID: 32407794 DOI: 10.1016/j.meegid.2020.104359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
Canine distemper virus (CDV) represents an important threat for both wild and domestic carnivores. Since 2006, the North-Eastern regions in Italy have been experiencing severe and widespread recurring outbreaks of CDV affecting the wild carnivore population. In this study we performed an extensive phylogeographic analysis of CDV strains belonging to the Wildlife-Europe genetic group identified between 2006 and 2018 in Veneto, Trentino Alto Adige and Friuli Venezia Giulia regions. Our analysis revealed that viruses from the first (2006-2009) and the second (2011-2018) epidemic wave cluster separately, suggesting the introduction of two distinct genetic variants. These two events were characterized by different diffusion rates and spatial distribution, thus suggesting the existence of a connection between infection spread and host population dynamics. We also report the first spillover event of this strain to a non-vaccinated dog in a rural area of Friuli Venezia Giulia. The increasing prevalence of the infection in wildlife population, the broad host range of CDV circulating in the Alpine wildlife and the first reported transmission of a wild-adapted strain to a domestic dog in this region raise concerns over the vulnerability of wildlife species and the exposure of our pets to new threatening strains. Understanding the dynamic of CDV epidemics will also improve preparedness for re-emerging diseases affecting carnivore species.
Collapse
Affiliation(s)
- Alice Bianco
- Istituto Zooprofilattico Sperimentale delle Venezie, Italy.
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie, Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Italy
| | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie, Italy
| | - Silvia Ormelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Italy
| | - Marco Bregoli
- Istituto Zooprofilattico Sperimentale delle Venezie, Italy
| | | | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie, Italy
| | | | | | | | | | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, Italy
| |
Collapse
|
14
|
Pisano SRR, Zimmermann F, Rossi L, Capt S, Akdesir E, Bürki R, Kunz F, Origgi FC, Ryser-Degiorgis MP. Spatiotemporal spread of sarcoptic mange in the red fox (Vulpes vulpes) in Switzerland over more than 60 years: lessons learnt from comparative analysis of multiple surveillance tools. Parasit Vectors 2019; 12:521. [PMID: 31690337 PMCID: PMC6833187 DOI: 10.1186/s13071-019-3762-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sarcoptic mange is a contagious skin disease of wild and domestic mammals caused by the mite Sarcoptes scabiei. Reports of sarcoptic mange in wildlife increased worldwide in the second half of the 20th century, especially since the 1990s. The aim of this study was to provide new insights into the epidemiology of mange by (i) documenting the emergence of sarcoptic mange in the red fox (Vulpes vulpes) in the last decades in Switzerland; and (ii) describing its spatiotemporal spread combining data obtained through different surveillance methods. METHODS Retrospective analysis of archived material together with prospective data collection delivered a large dataset from the 19th century to 2018. Methods included: (i) a review of historical literature; (ii) screening of necropsy reports from general health surveillance (1958-2018); (iii) screening of data on mange (1968-1992) collected during the sylvatic rabies eradication campaign; (iv) a questionnaire survey (<1980-2017) and (v) evaluation of camera-trap bycatch data (2005-2018). RESULTS Sarcoptic mange in red foxes was reported as early as 1835 in Switzerland. The first case diagnosed in the framework of the general health surveillance was in 1959. Prior to 1980, sarcoptic mange occurred in non-adjacent surveillance districts scattered all over the country. During the period of the rabies epidemic (1970s-early 1990s), the percentage of foxes tested for rabies with sarcoptic mange significantly decreased in subregions with rabies, whereas it remained high in the few rabies-free subregions. Sarcoptic mange re-emerged in the mid-1990s and continuously spread during the 2000-2010s, to finally extend to the whole country in 2017. The yearly prevalence of mange in foxes estimated by camera-trapping ranged from 0.1-12%. CONCLUSIONS Sarcoptic mange has likely been endemic in Switzerland as well as in other European countries at least since the mid-19th century. The rabies epidemics seem to have influenced the pattern of spread of mange in several locations, revealing an interesting example of disease interaction in free-ranging wildlife populations. The combination of multiple surveillance tools to study the long-term dynamics of sarcoptic mange in red foxes in Switzerland proved to be a successful strategy, which underlined the usefulness of questionnaire surveys.
Collapse
Affiliation(s)
- Simone Roberto Rolando Pisano
- Centre for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, PO Box, 3001 Bern, Switzerland
| | - Fridolin Zimmermann
- KORA – Carnivore Ecology and Wildlife Management, Thunstrasse 31, 3074 Muri, Switzerland
| | - Luca Rossi
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Simon Capt
- Info Fauna, Swiss Centre for the Cartography of the Fauna, Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Ezgi Akdesir
- Swiss Rabies Centre, Institute of Virology and Immunology (IVI), Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, PO Box, 3001 Bern, Switzerland
| | - Roland Bürki
- KORA – Carnivore Ecology and Wildlife Management, Thunstrasse 31, 3074 Muri, Switzerland
| | - Florin Kunz
- KORA – Carnivore Ecology and Wildlife Management, Thunstrasse 31, 3074 Muri, Switzerland
| | - Francesco Carlo Origgi
- Centre for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, PO Box, 3001 Bern, Switzerland
| | - Marie-Pierre Ryser-Degiorgis
- Centre for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, PO Box, 3001 Bern, Switzerland
| |
Collapse
|