1
|
Wang C, Liu Y, Chang J, He Y, Yang P, Fu J, Du W, Ma C, Liu G, Guo Y, Liu C. Genetically engineered BMSCs promote dopamine secretion and ameliorate motor dysfunction in a Parkinson's disease rat model. Sci Rep 2025; 15:12514. [PMID: 40217082 PMCID: PMC11992172 DOI: 10.1038/s41598-025-97557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 04/06/2025] [Indexed: 04/14/2025] Open
Abstract
Regenerative therapy based on mesenchymal stem cells (MSCs) is regarded as a promising strategy for treating Parkinson's disease (PD). Previous studies have shown that mesenchymal stem cell transplantation has the potential to treat Parkinson's disease, but its specific mechanism of action is still unclear. In the present study, we generate genetically engineered bone marrow mesenchymal stem cells (BMSCs) encoding three critical genes (TH, DDC, and GCH1) for dopamine synthesis (DA-BMSCs). The DA-BMSCs maintain their MSCs characteristics and stable ability to secrete dopamine after passage. Moreover, the DA-BMSCs survived and functioned in a rat model of PD treated with 6-OHDA 8 weeks after transplantation. Histological studies showed that DA-BMSCs could differentiate into various functional neurons and astrocytes, and DA-BMSCs derived mature dopaminergic neurons extended dense neurites into the host striatum. Importantly, DA-BMSCs promoted the reconstruction of midbrain dopamine pathways by upregulating striatal dopamine and 5-HT levels and downregulating the levels of inflammatory factors including IL-6, TNF-α, and IL-10. These findings suggest that engineered mesenchymal stem cell transplantation for dopamine synthesis may be an attractive donor material for treating Parkinson's disease.
Collapse
Affiliation(s)
- Chunjing Wang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yang Liu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Junyan Chang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yiqin He
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Pan Yang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Jingjing Fu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Wanying Du
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Caiyun Ma
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Gaofeng Liu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yu Guo
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China.
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China.
| | - Changqing Liu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China.
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China.
| |
Collapse
|
2
|
Maya-Aguirre CA, Torres A, Gutiérrez-Castañeda LD, Salazar LM, Abreu-Villaça Y, Manhães AC, Arenas NE. Changes in the proteome of Apis mellifera acutely exposed to sublethal dosage of glyphosate and imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45954-45969. [PMID: 38980489 PMCID: PMC11269427 DOI: 10.1007/s11356-024-34185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.
Collapse
Affiliation(s)
- Carlos Andrés Maya-Aguirre
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C, Colombia
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Angela Torres
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Luz Dary Gutiérrez-Castañeda
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Luz Mary Salazar
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Nelson Enrique Arenas
- Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Barrio Zaragocilla, Carrera 50a #24-63, Cartagena de Indias, Bolivar, Colombia.
| |
Collapse
|
3
|
Taylor BA, Taylor D, Bodrug‐Schepers A, Câmara Ferreira F, Stralis‐Pavese N, Himmelbauer H, Guigó R, Reuter M, Sumner S. Molecular signatures of alternative reproductive strategies in a facultatively social hover wasp. Mol Ecol 2024; 33:e17217. [PMID: 38014715 PMCID: PMC10953455 DOI: 10.1111/mec.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Social insect reproductives and non-reproductives represent ideal models with which to understand the expression and regulation of alternative phenotypes. Most research in this area has focused on the developmental regulation of reproductive phenotypes in obligately social taxa such as honey bees, while relatively few studies have addressed the molecular correlates of reproductive differentiation in species in which the division of reproductive labour is established only in plastic dominance hierarchies. To address this knowledge gap, we generate the first genome for any stenogastrine wasp and analyse brain transcriptomic data for non-reproductives and reproductives of the facultatively social species Liostenogaster flavolineata, a representative of one of the simplest forms of social living. By experimentally manipulating the reproductive 'queues' exhibited by social colonies of this species, we show that reproductive division of labour in this species is associated with transcriptomic signatures that are more subtle and variable than those observed in social taxa in which colony living has become obligate; that variation in gene expression among non-reproductives reflects their investment into foraging effort more than their social rank; and that genes associated with reproductive division of labour overlap to some extent with those underlying division of labour in the separate polistine origin of wasp sociality but only explain a small portion of overall variation in this trait. These results indicate that broad patterns of within-colony transcriptomic differentiation in this species are similar to those in Polistinae but offer little support for the existence of a strongly conserved 'toolkit' for sociality.
Collapse
Affiliation(s)
- Benjamin A. Taylor
- Centre for Biodiversity & Environment ResearchUniversity College LondonLondonUK
- Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
| | - Daisy Taylor
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | | - Nancy Stralis‐Pavese
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Heinz Himmelbauer
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Roderic Guigó
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Max Reuter
- Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
- Centre for Life's Origins and EvolutionUniversity College LondonLondonUK
| | - Seirian Sumner
- Centre for Biodiversity & Environment ResearchUniversity College LondonLondonUK
- Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
4
|
Hemthanon T, Promdonkoy B, Boonserm P. Screening and characterization of Bacillus thuringiensis isolates for high production of Vip3A and Cry proteins and high thermostability to control Spodoptera spp. J Invertebr Pathol 2023; 201:108020. [PMID: 37956858 DOI: 10.1016/j.jip.2023.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Bacillus thuringiensis (Bt) is an entomopathogenic bacterium that produces crystalline (Cry and Cyt) and soluble (vegetative insecticidal proteins or Vips) proteins during the sporulation and vegetative growth phases, respectively. Combining Cry and Vip proteins could delay insect resistance development and exhibit synergistic activity against various insect pests. This study aims to screen Bt isolates collected from Thailand for high Vip3A and Cry protein production levels and high thermostability to control Spodoptera spp. Among the selected Bt isolates with high target protein synthesis, Bt isolate 506 was found to be safe for further biopesticide formulation due to the absence of non-specific metabolite, as determined by the detection of thermo-stable β-exotoxin I based on biological assays and PCR analysis. Bt isolate 506 showed the presence of Cry1A, Cry2A, and Vip3A-type proteins identified as Cry1Aa45, Cry2Aa22, and Vip3A87, respectively. The insecticidal activity of whole culture extracts containing Vip3A and Cry mixtures and culture supernatants containing secreted Vip3A protein was evaluated against the second-instar larvae of S. exigua and S. frugiperda. The Bt isolate 506 showed high toxicity against both insects, and the insecticidal proteins produced by this isolate retained their activity after heating at 50 °C. This Bt isolate is a promising candidate for further development as a biopesticide against lepidopteran pests.
Collapse
Affiliation(s)
- Tharathip Hemthanon
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
5
|
Patir A, Raper A, Fleming R, Henderson BEP, Murphy L, Henderson NC, Clark EL, Freeman TC, Barnett MW. Cellular heterogeneity of the developing worker honey bee (Apis mellifera) pupa: a single cell transcriptomics analysis. G3 (BETHESDA, MD.) 2023; 13:jkad178. [PMID: 37548242 PMCID: PMC10542211 DOI: 10.1093/g3journal/jkad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
It is estimated that animals pollinate 87.5% of flowering plants worldwide and that managed honey bees (Apis mellifera) account for 30-50% of this ecosystem service to agriculture. In addition to their important role as pollinators, honey bees are well-established insect models for studying learning and memory, behavior, caste differentiation, epigenetic mechanisms, olfactory biology, sex determination, and eusociality. Despite their importance to agriculture, knowledge of honey bee biology lags behind many other livestock species. In this study, we have used scRNA-Seq to map cell types to different developmental stages of the worker honey bee (prepupa at day 11 and pupa at day 15) and sought to determine their gene expression signatures. To identify cell-type populations, we examined the cell-to-cell network based on the similarity of the single-cells transcriptomic profiles. Grouping similar cells together we identified 63 different cell clusters of which 17 clusters were identifiable at both stages. To determine genes associated with specific cell populations or with a particular biological process involved in honey bee development, we used gene coexpression analysis. We combined this analysis with literature mining, the honey bee protein atlas, and gene ontology analysis to determine cell cluster identity. Of the cell clusters identified, 17 were related to the nervous system and sensory organs, 7 to the fat body, 19 to the cuticle, 5 to muscle, 4 to compound eye, 2 to midgut, 2 to hemocytes, and 1 to malpighian tubule/pericardial nephrocyte. To our knowledge, this is the first whole single-cell atlas of honey bees at any stage of development and demonstrates the potential for further work to investigate their biology at the cellular level.
Collapse
Affiliation(s)
- Anirudh Patir
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Anna Raper
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Robert Fleming
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Beth E P Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neil C Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
- Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh,Edinburgh EH4 2XU, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Mark W Barnett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Beebytes Analytics CIC, The Roslin Innovation Centre, University of Edinburgh, The Charnock Bradley Building, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
6
|
Abdelmawla A, Yang C, Li X, Li M, Li CL, Liu YB, He XJ, Zeng ZJ. Feeding Asian honeybee queens with European honeybee royal jelly alters body color and expression of related coding and non-coding RNAs. Front Physiol 2023; 14:1073625. [PMID: 36776963 PMCID: PMC9908965 DOI: 10.3389/fphys.2023.1073625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Background and aims: The Asian honeybee (Apis cerana) and the European honeybee (Apis mellifera) are reproductively isolated. Previous studies reported that exchanging the larval food between the two species, known as nutritional crossbreeding, resulted in obvious changes in morphology, physiology and behavior. This study explored the molecular mechanisms underlying the honeybee nutritional crossbreeding. Methods: This study used full nutritional crossbreeding technology to rear A. cerana queens by feeding them with an A. mellifera royal jelly-based diet in an incubator. The body color and the expression of certain genes, microRNA, lncRNA, and circRNA among nutritional crossbred A. cerana queens (NQ), and control A. cerana queens (CQ) were compared. The biological functions of two target genes, TPH1 and KMO, were verified using RNA interference. Results: Our results showed that the NQ's body color turned yellow compared to the black control queens. Whole transcriptome sequencing results showed that a total of 1484, 311, 92, and 169 DEGs, DElncRNAs, DEmiRNAs, and DEcircRNAs, respectively, were identified in NQ and CQ, in which seven DEGs were enriched for three key pathways (tryptophan, tyrosine, and dopamine) involved in melanin synthesis. Interestingly, eight DElncRNAs and three DEmiRNAs were enriched into the key pathways regulating the above key DEGs. No circRNAs were enriched into these key pathways. Knocking down two key genes (KMO and TPH1) resulted in altered body color, suggesting that feeding NQ's an RNAi-based diet significantly downregulated the expression of TPH1 and KMO in 4-day-old larvae, which confirmed the function of key DEGs in the regulation of honeybee body color. Conclusion: These findings reveal that the larval diets from A. mellifera could change the body color of A. cerana, perhaps by altering the expression of non-coding RNAs and related key genes. This study serves as a model of epigenetic regulation in insect body color induced by environmental factors.
Collapse
Affiliation(s)
- Amal Abdelmawla
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China,Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Chen Yang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Xin Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Mang Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Chang Long Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Yi Bo Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Xu Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China,Jiangxi Key Laboratory of Honeybee Biology and Bee Keeping, Nanchang, Jiangxi, China,*Correspondence: Xu Jiang He, ; Zhi Jiang Zeng,
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China,Jiangxi Key Laboratory of Honeybee Biology and Bee Keeping, Nanchang, Jiangxi, China,*Correspondence: Xu Jiang He, ; Zhi Jiang Zeng,
| |
Collapse
|
7
|
Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 2023; 13:1112278. [PMID: 36699674 PMCID: PMC9868318 DOI: 10.3389/fphys.2022.1112278] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Threatening the global community is a wide variety of potential threats, most notably invasive pest species. Invasive pest species are non-native organisms that humans have either accidentally or intentionally spread to new regions. One of the most effective and first lines of control strategies for controlling pests is the application of insecticides. These toxic chemicals are employed to get rid of pests, but they pose great risks to people, animals, and plants. Pesticides are heavily used in managing invasive pests in the current era. Due to the overuse of synthetic chemicals, numerous invasive species have already developed resistance. The resistance development is the main reason for the failure to manage the invasive species. Developing pesticide resistance management techniques necessitates a thorough understanding of the mechanisms through which insects acquire insecticide resistance. Insects use a variety of behavioral, biochemical, physiological, genetic, and metabolic methods to deal with toxic chemicals, which can lead to resistance through continuous overexpression of detoxifying enzymes. An overabundance of enzymes causes metabolic resistance, detoxifying pesticides and rendering them ineffective against pests. A key factor in the development of metabolic resistance is the amplification of certain metabolic enzymes, specifically esterases, Glutathione S-transferase, Cytochromes p450 monooxygenase, and hydrolyses. Additionally, insect guts offer unique habitats for microbial colonization, and gut bacteria may serve their hosts a variety of useful services. Most importantly, the detoxification of insecticides leads to resistance development. The complete knowledge of invasive pest species and their mechanisms of resistance development could be very helpful in coping with the challenges and effectively developing effective strategies for the control of invasive species. Integrated Pest Management is particularly effective at lowering the risk of chemical and environmental contaminants and the resulting health issues, and it may also offer the most effective ways to control insect pests.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Hira Naz
- Research and Development Centre for Fine Chemicals, National Key Laboratory of Green Pesticides, Guizhou University, Guiyang, China
| | - Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yiming Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- College of Science, Tibet University, Lhasa, China
| |
Collapse
|
8
|
Martelli F, Falcon T, Pinheiro DG, Simões ZLP, Nunes FMF. Worker bees (Apis mellifera) deprived of pollen in the first week of adulthood exhibit signs of premature aging. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 146:103774. [PMID: 35470035 DOI: 10.1016/j.ibmb.2022.103774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Pollinator populations, including bees, are in rapid decline in many parts of the world, raising concerns over the future of ecosystems and food production. Among the factors involved in these declines, poor nutrition deserves attention. The diet consumed by adult worker honeybees (Apis mellifera) is crucial for their behavioral maturation, i.e., the progressive division of labor they perform, such as nurse bees initially and later in life as foragers. Poor pollen nutrition is known to reduce the workers' lifespan, but the underlying physiological and genetic mechanisms are not fully understood. Here we investigate how the lack of pollen in the diet of workers during their first week of adult life can affect age-related phenotypes. During the first seven days of adult life, newly emerged workers were fed either a pollen-deprived (PD) diet mimicking that of an older bee, or a control pollen-rich (PR) diet, as typically consumed by young bees. The PD-fed bees showed alterations in their fat body transcriptome, such as a switch from a protein-lipid based metabolism to a carbohydrate-based metabolism, and a reduced expression of genes involved with immune response. The absence of pollen in the diet also led to an accumulation of oxidative stress markers in fat body tissue and alterations in the cuticular hydrocarbon profiles, which became similar to those of chronologically older bees. Together, our data indicate that the absence of pollen during first week of adulthood triggers the premature onset of an aging-related worker phenotype.
Collapse
Affiliation(s)
- Felipe Martelli
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Tiago Falcon
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Daniel G Pinheiro
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Zilá L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Francis M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil; Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luís - km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Soares MPM, Pinheiro DG, de Paula Freitas FC, Simões ZLP, Bitondi MMG. Transcriptome dynamics during metamorphosis of imaginal discs into wings and thoracic dorsum in Apis mellifera castes. BMC Genomics 2021; 22:756. [PMID: 34674639 PMCID: PMC8532292 DOI: 10.1186/s12864-021-08040-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Much of the complex anatomy of a holometabolous insect is built from disc-shaped epithelial structures found inside the larva, i.e., the imaginal discs, which undergo a rapid differentiation during metamorphosis. Imaginal discs-derived structures, like wings, are built through the action of genes under precise regulation. RESULTS We analyzed 30 honeybee transcriptomes in the search for the gene expression needed for wings and thoracic dorsum construction from the larval wing discs primordia. Analyses were carried out before, during, and after the metamorphic molt and using worker and queen castes. Our RNA-seq libraries revealed 13,202 genes, representing 86.2% of the honeybee annotated genes. Gene Ontology analysis revealed functional terms that were caste-specific or shared by workers and queens. Genes expressed in wing discs and descendant structures showed differential expression profiles dynamics in premetamorphic, metamorphic and postmetamorphic developmental phases, and also between castes. At the metamorphic molt, when ecdysteroids peak, the wing buds of workers showed maximal gene upregulation comparatively to queens, thus underscoring differences in gene expression between castes at the height of the larval-pupal transition. Analysis of small RNA libraries of wing buds allowed us to build miRNA-mRNA interaction networks to predict the regulation of genes expressed during wing discs development. CONCLUSION Together, these data reveal gene expression dynamics leading to wings and thoracic dorsum formation from the wing discs, besides highlighting caste-specific differences during wing discs metamorphosis.
Collapse
Affiliation(s)
- Michelle Prioli Miranda Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | | | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Pinheiro DH, Valicente FH. Identification of Bacillus thuringiensis Strains for the Management of Lepidopteran Pests. NEOTROPICAL ENTOMOLOGY 2021; 50:804-811. [PMID: 34398398 DOI: 10.1007/s13744-021-00896-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Bacillus thuringiensis (Bt)-based bioinsecticides and transgenic plants expressing proteins with insecticidal activity (Cry and Vip) have been successfully used in several integrated pest management programs worldwide. Lepidoptera comprise some of the most economically important insect pests of the major agricultural crops. In this study, the toxicity of 150 Bt strains was evaluated against Helicoverpa armigera (Hübner) larvae. Eight strains (426, 520B, 1636, 1641, 1644, 1648, 1657 and 1658) showed high insecticide activity against H. armigera and were therefore tested against Anticarsia gemmatalis (Hübner), Spodoptera cosmioides (Walker), Chrysodeixis includens (Walker), and Diatraea saccharalis (Fabricius) larvae. Our results showed that most of the Bt strains were also toxic to these lepidopteran species. The biochemical and molecular analyses of these strains revealed that they had a similar protein profile; however, their cry and vip gene contents were variable. In addition, the median lethal concentration (LC50) of the selected strains indicated that the strains 1636, 1641, and 1658 were the most effective against H. armigera, showing LC50 values of 185.02, 159.44, and 192.98 ng/cm2, respectively. Our results suggest that the selected Bt strains have great potential to control the lepidopteran pests H. armigera, A. gemmatalis, D. saccharalis, S. cosmioides, and C. includes.
Collapse
Affiliation(s)
- Daniele Heloísa Pinheiro
- Embrapa Maize and Sorghum, Sete Lagoas, MG, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | | |
Collapse
|
11
|
Capitani G, Papa G, Pellecchia M, Negri I. Disentangling multiple PM emission sources in the Po Valley (Italy) using honey bees. Heliyon 2021; 7:e06194. [PMID: 33615008 PMCID: PMC7881223 DOI: 10.1016/j.heliyon.2021.e06194] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/28/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Particulate matter (PM) is a complex mixture of airborne chemical compounds commonly classified by their aerodynamic diameter. Although PM toxicity strongly depends on the morphology, chemical composition, and dimensions of particles, exposure limits set by environmental organisations only refer to the mean mass concentration of PM sampled daily or annually by monitoring stations. In this study, we used honey bees as sensors of airborne PM10 and PM2.5 in a highly polluted area of the Po Valley, northern Italy. Honey bees are an efficient sampler of airborne PM because, during flight and foraging activities, their pubescence promotes the accumulation of electrical charge on the body surface owing to air resistance, thus enhancing airborne PM attraction. Particles attached to the body of bees are readily accessible for physico-chemical characterisation using a scanning electron microscope coupled with X-ray spectroscopy (SEM/EDX). Our results demonstrate that residents in the study area are intermittently but chronically exposed to a well-defined spectrum of metal-bearing particles and mineral phases known to induce specific health outcomes. The morphology, size, and chemical composition of PM10 and PM2.5 detected on bees in the monitoring area were indicative of traffic, agricultural operations, and high-temperature combustion processes. The contribution of the A1 Milano-Bologna highway, local wheat and alfalfa cultivation, and the Parma incineration plant were clearly distinguishable. Our data also demonstrated that PM exposure levels may vary sharply throughout the year based on recurrent local activities.
Collapse
Affiliation(s)
| | - Giulia Papa
- DIPROVES - Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Ilaria Negri
- DIPROVES - Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
12
|
Ma CP, Guo ZM, Zhang FL, Su JY. Molecular identification, expression and function analysis of peroxidasin in Chilo suppressalis. INSECT SCIENCE 2020; 27:1173-1185. [PMID: 31829500 DOI: 10.1111/1744-7917.12743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/21/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Peroxidasin plays a unique role in the formation and stability of extracellular matrix (ECM) in the animal kingdom; however, it was only characterized in Diptera, not in other insect orders. In this study peroxidasin (CsPxd) was first identified and characterized from Chilo suppressalis, a lepidopteran pest. CsPxd complementary DNA with a 4080 bp open reading frame encodes a peptide of 1359 amino acids; the derived amino acid sequence of CsPxd harbors the typical structural characteristics of peroxidasin family in heme-peroxidase superfamily, including the signal peptide at N-terminal, leucine-rich repeat domain, Ig-loop motifs and peroxidase domain, signifying the extracellular location of protein and the involvement in ECM formation. Eukaryotic expression reveals CsPxd protein displays peroxidase activity on H2 O2 , justifying the membership of peroxidase. Phyletic analysis shows the monophyletic evolution pattern of peroxidasin in insect phyle, and moreover only one peroxidasin is present in each species of insects, suggesting its evolutionary conservation on function. Peroxidasin messenger RNA is mainly expressed in egg and the final instar larvae stage. Injection of peroxidasin double-stranded RNA into the final instar larvae impacts the cuticle sclerotization during the metamorphosis from larvae to pupa, and eventually lead to lethality of larvae and pupa. These results suggest the presence of collagen crosslink in chorion and cuticle of insects, and indicate peroxidasin plays a role in the development of chorion and cuticle; furthermore peroxidasin might be the one of potential target genes for pest control using RNA interference.
Collapse
Affiliation(s)
- Chun-Ping Ma
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Mu Guo
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Li Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Ya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Rossini C, Rodrigo F, Davyt B, Umpiérrez ML, González A, Garrido PM, Cuniolo A, Porrini LP, Eguaras MJ, Porrini MP. Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. PLoS One 2020; 15:e0241666. [PMID: 33147299 PMCID: PMC7641371 DOI: 10.1371/journal.pone.0241666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022] Open
Abstract
When developing new products to be used in honeybee colonies, further than acute toxicity, it is imperative to perform an assessment of risks, including various sublethal effects. The long-term sublethal effects of xenobiotics on honeybees, more specifically of acaricides used in honeybee hives, have been scarcely studied, particularly so in the case of essential oils and their components. In this work, chronic effects of the ingestion of Eupatorium buniifolium (Asteraceae) essential oil were studied on nurse honeybees using laboratory assays. Survival, food consumption, and the effect on the composition of cuticular hydrocarbons (CHC) were assessed. CHC were chosen due to their key role as pheromones involved in honeybee social recognition. While food consumption and survival were not affected by the consumption of the essential oil, CHC amounts and profiles showed dose-dependent changes. All groups of CHC (linear and branched alkanes, alkenes and alkadienes) were altered when honeybees were fed with the highest essential oil dose tested (6000 ppm). The compounds that significantly varied include n-docosane, n-tricosane, n-tetracosane, n-triacontane, n-tritriacontane, 9-tricosene, 7-pentacosene, 9-pentacosene, 9-heptacosene, tritriacontene, pentacosadiene, hentriacontadiene, tritriacontadiene and all methyl alkanes. All of them but pentacosadiene were up-regulated. On the other hand, CHC profiles were similar in healthy and Nosema-infected honeybees when diets included the essential oil at 300 and 3000 ppm. Our results show that the ingestion of an essential oil can impact CHC and that the effect is dose-dependent. Changes in CHC could affect the signaling process mediated by these pheromonal compounds. To our knowledge this is the first report of changes in honeybee cuticular hydrocarbons as a result of essential oil ingestion.
Collapse
Affiliation(s)
- Carmen Rossini
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- * E-mail:
| | - Federico Rodrigo
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
| | - Belén Davyt
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - María Laura Umpiérrez
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Andrés González
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
| | - Paula Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Antonella Cuniolo
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Leonardo P. Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Martín Javier Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Martín P. Porrini
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
14
|
Shimakage R, Nihei KI. Synthesis, structural revision, and tyrosinase inhibitory activity of proposed phloretin-4-O-β-D-glucopyranoside from Homalium stenophyllum. Nat Prod Res 2020; 36:1803-1811. [PMID: 32924592 DOI: 10.1080/14786419.2020.1817922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phloretin-4-O-β-D-glucopyranoside (1), isolated from Homalium stenophyllum, was synthesized for the first time through aldol condensation and Schmidt glycosylation reactions aiming to develop a novel hydrophilic tyrosinase inhibitor. However, the specific rotation of synthetic 1 was found to be negative and different from that reported for natural product 1. Thus, L-glucoside 2 was chemically synthesized using the established synthetic route of 1, suggesting that the configuration of the natural product 1 was the same as that of 2, as their specific rotation and spectroscopic data were also the same. In addition, the evaluation of the inhibitory activity of 1 and 2 against tyrosinase indicated that 2 was 1.4 times more potent than 1, but they were both relatively weak. Therefore, the enantiomeric analogues 1 and 2 were proved to be unique tyrosinase inhibitors due to the chiral recognition from the tyrosinase active site.
Collapse
Affiliation(s)
- Ryo Shimakage
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, Tochigi, Japan
| | - Ken-Ichi Nihei
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
15
|
de Paula Freitas FC, Lourenço AP, Nunes FMF, Paschoal AR, Abreu FCP, Barbin FO, Bataglia L, Cardoso-Júnior CAM, Cervoni MS, Silva SR, Dalarmi F, Del Lama MA, Depintor TS, Ferreira KM, Gória PS, Jaskot MC, Lago DC, Luna-Lucena D, Moda LM, Nascimento L, Pedrino M, Oliveira FR, Sanches FC, Santos DE, Santos CG, Vieira J, Barchuk AR, Hartfelder K, Simões ZLP, Bitondi MMG, Pinheiro DG. The nuclear and mitochondrial genomes of Frieseomelitta varia - a highly eusocial stingless bee (Meliponini) with a permanently sterile worker caste. BMC Genomics 2020; 21:386. [PMID: 32493270 PMCID: PMC7268684 DOI: 10.1186/s12864-020-06784-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most of our understanding on the social behavior and genomics of bees and other social insects is centered on the Western honey bee, Apis mellifera. The genus Apis, however, is a highly derived branch comprising less than a dozen species, four of which genomically characterized. In contrast, for the equally highly eusocial, yet taxonomically and biologically more diverse Meliponini, a full genome sequence was so far available for a single Melipona species only. We present here the genome sequence of Frieseomelitta varia, a stingless bee that has, as a peculiarity, a completely sterile worker caste. RESULTS The assembly of 243,974,526 high quality Illumina reads resulted in a predicted assembled genome size of 275 Mb composed of 2173 scaffolds. A BUSCO analysis for the 10,526 predicted genes showed that these represent 96.6% of the expected hymenopteran orthologs. We also predicted 169,371 repetitive genomic components, 2083 putative transposable elements, and 1946 genes for non-coding RNAs, largely long non-coding RNAs. The mitochondrial genome comprises 15,144 bp, encoding 13 proteins, 22 tRNAs and 2 rRNAs. We observed considerable rearrangement in the mitochondrial gene order compared to other bees. For an in-depth analysis of genes related to social biology, we manually checked the annotations for 533 automatically predicted gene models, including 127 genes related to reproductive processes, 104 to development, and 174 immunity-related genes. We also performed specific searches for genes containing transcription factor domains and genes related to neurogenesis and chemosensory communication. CONCLUSIONS The total genome size for F. varia is similar to the sequenced genomes of other bees. Using specific prediction methods, we identified a large number of repetitive genome components and long non-coding RNAs, which could provide the molecular basis for gene regulatory plasticity, including worker reproduction. The remarkable reshuffling in gene order in the mitochondrial genome suggests that stingless bees may be a hotspot for mtDNA evolution. Hence, while being just the second stingless bee genome sequenced, we expect that subsequent targeting of a selected set of species from this diverse clade of highly eusocial bees will reveal relevant evolutionary signals and trends related to eusociality in these important pollinators.
Collapse
Affiliation(s)
- Flávia C. de Paula Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Anete P. Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG Brazil
| | - Francis M. F. Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | | | - Fabiano C. P. Abreu
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fábio O. Barbin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Luana Bataglia
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Carlos A. M. Cardoso-Júnior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Mário S. Cervoni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Saura R. Silva
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP Brazil
| | - Fernanda Dalarmi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Marco A. Del Lama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Thiago S. Depintor
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Kátia M. Ferreira
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Paula S. Gória
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Michael C. Jaskot
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Denyse C. Lago
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Livia M. Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Leonardo Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Matheus Pedrino
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Franciene Rabiço Oliveira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fernanda C. Sanches
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Douglas E. Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Carolina G. Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Joseana Vieira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Angel R. Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP Brazil
| |
Collapse
|
16
|
Traniello IM, Bukhari SA, Kevill J, Ahmed AC, Hamilton AR, Naeger NL, Schroeder DC, Robinson GE. Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation. Sci Rep 2020; 10:3101. [PMID: 32080242 PMCID: PMC7033282 DOI: 10.1038/s41598-020-59808-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Crop pollination by the western honey bee Apis mellifera is vital to agriculture but threatened by alarmingly high levels of colony mortality, especially in Europe and North America. Colony loss is due, in part, to the high viral loads of Deformed wing virus (DWV), transmitted by the ectoparasitic mite Varroa destructor, especially throughout the overwintering period of a honey bee colony. Covert DWV infection is commonplace and has been causally linked to precocious foraging, which itself has been linked to colony loss. Taking advantage of four brain transcriptome studies that unexpectedly revealed evidence of covert DWV-A infection, we set out to explore whether this effect is due to DWV-A mimicking naturally occurring changes in brain gene expression that are associated with behavioral maturation. Consistent with this hypothesis, we found that brain gene expression profiles of DWV-A infected bees resembled those of foragers, even in individuals that were much younger than typical foragers. In addition, brain transcriptional regulatory network analysis revealed a positive association between DWV-A infection and transcription factors previously associated with honey bee foraging behavior. Surprisingly, single-cell RNA-Sequencing implicated glia, not neurons, in this effect; there are relatively few glial cells in the insect brain and they are rarely associated with behavioral plasticity. Covert DWV-A infection also has been linked to impaired learning, which together with precocious foraging can lead to increased occurrence of infected bees from one colony mistakenly entering another colony, especially under crowded modern apiary conditions. These findings provide new insights into the mechanisms by which DWV-A affects honey bee health and colony survival.
Collapse
Affiliation(s)
- Ian M Traniello
- Neuroscience Program, University of Illinois at Urbana-Champaign, (UIUC), Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA.
| | - Syed Abbas Bukhari
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
- Department of Animal Biology, UIUC, Urbana, USA
| | - Jessica Kevill
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Amy Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
| | - Adam R Hamilton
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
| | - Nicholas L Naeger
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- School of Biological Sciences, University of Reading, Reading, UK
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, (UIUC), Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
- Department of Entomology, UIUC, Urbana, USA
| |
Collapse
|
17
|
Pho QH, Losic D, Ostrikov K(K, Tran NN, Hessel V. Perspectives on plasma-assisted synthesis of N-doped nanoparticles as nanopesticides for pest control in crops. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00069h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Green plasma-based technology production of N-doped NPs for a new agri-tech revolution in pest control.
Collapse
Affiliation(s)
- Quoc Hue Pho
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
- The ARC Graphene Research Hub
| | - Kostya (Ken) Ostrikov
- School of Chemistry, Physics, and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
- School of Chemical Engineering
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
- School of Engineering
| |
Collapse
|
18
|
Freitas FCP, Depintor TS, Agostini LT, Luna-Lucena D, Nunes FMF, Bitondi MMG, Simões ZLP, Lourenço AP. Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in three stingless bee species (Hymenoptera: Apidae: Meliponini). Sci Rep 2019; 9:17692. [PMID: 31776359 PMCID: PMC6881334 DOI: 10.1038/s41598-019-53544-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Stingless bees are generalist pollinators distributed through the pantropical region. There is growing evidence that their wild populations are experiencing substantial decline in response to habitat degradation and pesticides. Policies for conservation of endangered species will benefit from studies focusing on genetic and molecular aspects of their development and behavior. The most common method for looking at gene expression is real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR) of the mRNA of interest. This method requires the identification of reliable reference genes to correctly estimate fluctuations in transcript levels. To contribute to molecular studies on stingless bees, we used Frieseomelitta varia, Melipona quadrifasciata, and Scaptotrigona bipunctata species to test the expression stability of eight reference genes (act, ef1-α, gapdh, rpl32, rps5, rps18, tbp, and tbp-af) in RT-qPCR procedures in five physiological and experimental conditions (development, sex, tissues, bacteria injection, and pesticide exposure). In general, the rpl32, rps5 and rps18 ribosomal protein genes and tpb-af gene showed the highest stability, thus being identified as suitable reference genes for the three stingless bee species and defined conditions. Our results also emphasized the need to evaluate the stability of candidate genes for any designed experimental condition and stingless bee species.
Collapse
Affiliation(s)
- Flávia C P Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Thiago S Depintor
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas T Agostini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Francis M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Márcia M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Zilá L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Anete P Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil. .,Departamento de Ciências Biológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
| |
Collapse
|