1
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
2
|
Misevičienė L, Golinelli-Cohen MP, Kairys V, Marozienė A, Lesanavičius M, Čėnas N. Reactions of Plasmodium falciparum Type II NADH: Ubiquinone Oxidoreductase with Nonphysiological Quinoidal and Nitroaromatic Oxidants. Int J Mol Sci 2025; 26:2509. [PMID: 40141152 PMCID: PMC11941790 DOI: 10.3390/ijms26062509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
In order to detail the antiplasmodial effects of quinones (Q) and nitroaromatic compounds (ArNO2), we investigated their reduction mechanism by Plasmodium falciparum flavoenzyme type II NADH:ubiquinone oxidoreductase (PfNDH2). The reactivity of Q and ArNO2 (n = 29) follows a common trend and exhibits a parabolic dependence on their single-electron reduction potential (E71), albeit with significantly scattered data. The reactivity of quinones with similar E71 values increases with their lipophilicity. Quinones are reduced by PfNDH2 in a two-electron way, but ArNO2 are reduced in a single-electron way. The inhibition studies using NAD+ and ADP-ribose showed that quinones oxidize the complexes of reduced enzyme with NADH and NAD+. This suggests that, as in the case of other NDH2s, quinones and the nicotinamide ring of NAD(H) bind at separate sites. A scheme of PfNDH2 catalysis is proposed, consistent with both the observed 'ping-pong' mechanism and the presence of two substrate binding sites. Molecular docking showed that Q and ArNO2 bind in a similar manner and that lipophilic quinones have a higher affinity for the binding site. One may expect that PfNDH2 can be partially responsible for the previously observed enhanced antiplasmodial activity of aziridinylbenzoquinones caused by their two-electron reduction, as well as for the redox cycling and oxidative stress-type action of ArNO2.
Collapse
Affiliation(s)
- Lina Misevičienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (L.M.); (A.M.); (M.L.)
| | - Marie-Pierre Golinelli-Cohen
- Institut de Chimie des Substances Naturelles, UPR2301, CNRS, Université Paris-Saclay, 1, Avenue de la Terrasse, 99198 Gif-sur-Yvette, France;
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| | - Audronė Marozienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (L.M.); (A.M.); (M.L.)
| | - Mindaugas Lesanavičius
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (L.M.); (A.M.); (M.L.)
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (L.M.); (A.M.); (M.L.)
| |
Collapse
|
3
|
Elsworth B, Ye S, Dass S, Tennessen JA, Sultana Q, Thommen BT, Paul AS, Kanjee U, Grüring C, Ferreira MU, Gubbels MJ, Zarringhalam K, Duraisingh MT. The essential genome of Plasmodium knowlesi reveals determinants of antimalarial susceptibility. Science 2025; 387:eadq6241. [PMID: 39913579 DOI: 10.1126/science.adq6241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/05/2024] [Indexed: 02/09/2025]
Abstract
Measures to combat the parasites that cause malaria have become compromised because of reliance on a small arsenal of drugs and emerging drug resistance. We conducted a transposon mutagenesis screen in the primate malaria parasite Plasmodium knowlesi, producing the most complete classification of gene essentiality in any Plasmodium spp. to date, with the resolution to define truncatable genes. We found conservation in the druggable genome between Plasmodium spp. and divergences in mitochondrial metabolism. Perturbation analyses with the frontline antimalarial artemisinin revealed modulators that both increase and decrease drug susceptibility. Our findings aid prioritization of drug and vaccine targets for the Plasmodium vivax clade and reveal mechanisms of resistance that can inform therapeutic development.
Collapse
Affiliation(s)
- Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sida Ye
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Sheena Dass
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jacob A Tennessen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qudseen Sultana
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
- Department of Computer Science, University of Massachusetts Boston, Boston, MA, USA
| | - Basil T Thommen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christof Grüring
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | | | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Luth MR, Godinez-Macias KP, Chen D, Okombo J, Thathy V, Cheng X, Daggupati S, Davies H, Dhingra SK, Economy JM, Edgar RCS, Gomez-Lorenzo MG, Istvan ES, Jado JC, LaMonte GM, Melillo B, Mok S, Narwal SK, Ndiaye T, Ottilie S, Diaz SP, Park H, Peña S, Rocamora F, Sakata-Kato T, Small-Saunders JL, Summers RL, Tumwebaze PK, Vanaerschot M, Xia G, Yeo T, You A, Gamo FJ, Goldberg DE, Lee MC, McNamara CW, Ndiaye D, Rosenthal PJ, Schreiber SL, Serra G, De Siqueira-Neto JL, Skinner-Adams TS, Uhlemann AC, Kato N, Lukens AK, Wirth DF, Fidock DA, Winzeler EA. Systematic in vitro evolution in Plasmodium falciparum reveals key determinants of drug resistance. Science 2024; 386:eadk9893. [PMID: 39607932 PMCID: PMC11809290 DOI: 10.1126/science.adk9893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/21/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
Surveillance of drug resistance and the discovery of novel targets-key objectives in the fight against malaria-rely on identifying resistance-conferring mutations in Plasmodium parasites. Current approaches, while successful, require laborious experimentation or large sample sizes. To elucidate shared determinants of antimalarial resistance that can empower in silico inference, we examined the genomes of 724 Plasmodium falciparum clones, each selected in vitro for resistance to one of 118 compounds. We identified 1448 variants in 128 recurrently mutated genes, including drivers of antimalarial multidrug resistance. In contrast to naturally occurring variants, those selected in vitro are more likely to be missense or frameshift, involve bulky substitutions, and occur in conserved, ordered protein domains. Collectively, our dataset reveals mutation features that predict drug resistance in eukaryotic pathogens.
Collapse
Affiliation(s)
- Madeline R. Luth
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | | | - Daisy Chen
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Xiu Cheng
- Global Health Drug Discovery Institute; Beijing, 100192, China
| | - Sindhu Daggupati
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Heledd Davies
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Jan M. Economy
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Rebecca C. S. Edgar
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | - Eva S. Istvan
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine; Saint Louis, MO 63130, USA
- Department of Molecular Microbiology, Washington University School of Medicine; Saint Louis, MO 63130, USA
| | - Juan Carlos Jado
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Gregory M. LaMonte
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Bruno Melillo
- Chemical Biology and Therapeutics Science Program, Broad Institute; Cambridge, MA 02142, USA
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Sunil K. Narwal
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Tolla Ndiaye
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Sabine Ottilie
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Sara Palomo Diaz
- Global Health Medicines R&D, GSK; Tres Cantos, Madrid 28760, Spain
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Stella Peña
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República; Montevideo, Montevideo CC1157, Uruguay
| | - Frances Rocamora
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Tomoyo Sakata-Kato
- Global Health Drug Discovery Institute; Beijing, 100192, China
- Department of Protozoology, Nekken Institute for Tropical Medicine, Nagasaki University; Nagasaki, 852-8523, Japan
| | - Jennifer L. Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Robert L. Summers
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, The Broad Institute; Cambridge, MA 02142, USA
| | | | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Guoqin Xia
- Department of Chemistry, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Ashley You
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | | | - Daniel E. Goldberg
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine; Saint Louis, MO 63130, USA
- Department of Molecular Microbiology, Washington University School of Medicine; Saint Louis, MO 63130, USA
| | - Marcus C.S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Case W. McNamara
- Calibr, a division of The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Daouda Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco; San Francisco, CA 94115, USA
| | | | - Gloria Serra
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República; Montevideo, Montevideo CC1157, Uruguay
| | - Jair Lage De Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego; La Jolla, CA 92037, USA
| | - Tina S. Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University; Nathan, Queensland 4111, Australia
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Nobutaka Kato
- Global Health Drug Discovery Institute; Beijing, 100192, China
- Department of Protozoology, Nekken Institute for Tropical Medicine, Nagasaki University; Nagasaki, 852-8523, Japan
| | - Amanda K. Lukens
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, The Broad Institute; Cambridge, MA 02142, USA
| | - Dyann F. Wirth
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, The Broad Institute; Cambridge, MA 02142, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego; La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Gholam GM, Mahendra FR, Irsal RAP, Dwicesaria MA, Ariefin M, Kristiadi M, Rizki AFM, Azmi WA, Artika IM, Siregar JE. Computational exploration of compounds in Xylocarpus granatum as a potential inhibitor of Plasmodium berghei using docking, molecular dynamics, and DFT studies. Biochem Biophys Res Commun 2024; 733:150684. [PMID: 39293331 DOI: 10.1016/j.bbrc.2024.150684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Malaria remains a global health concern, with the emergence of resistance to the antimalarial drug atovaquone through cytochrome b (cyt b) being well-documented. This study was prompted by the presence of this mutation in cyt b to enable new drug candidates capable of overcoming drug resistance. Our objective was to identify potential drug candidates from compounds of Xylocarpus granatum by computationally assessing their interactions with Plasmodium berghei cyt b. Using computational methods, we modeled cyt b (GenBank: AF146076.1), identified the binding cavity, and analyzed the Ramachandran plot against cyt b. Additionally, we conducted drug-likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, along with density functional theory (DFT) analysis of the compounds. Molecular docking and molecular dynamics simulation (MDS) were used to evaluate the binding energy and stability of the cyt b-ligand complex. Notably, our investigation highlighted kaempferol as a promising compound due to its high binding energy of 7.67 kcal/mol among all X. granatum compounds, coupled with favorable pharmacological properties (ADMET) and antiprotozoal properties at Pa 0.345 > Pi 0.009 (PASS value). DFT analysis showed that kaempferol has an energy gap of 4.514 eV. MDS indicated that all tested ligands caused changes in bonding and affected the structural conformation of cyt b, as observed before MDS (0 ns) and after MDS (100 ns). The most notable differences were observed in the types of hydrogen bonds between 0 and 100 ns. Nevertheles, MDS results from a 100 ns simulation revealed consistent behavior for kaempferol across various parameters including root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), molecular mechanics-Poisson Boltzmann surface area (MM-PBSA), and hydrogen bonds. The cyt b-kaempferol complex demonstrated favorable energy stability, as supported by the internal energy distribution values observed in principal component analysis (PCA), which closely resembled those of the atovaquone control. Additionally, trajectory stability analysis indicated structural stability, with a cumulative eigenvalue of 24.7 %. Dynamic cross-correlation matrix (DCCM) analysis revealed a positive correlation among catalytic cytochrome residues within the amino acid residues range 119-268. The results of our research indicate that the structure of kaempferol holds promise as a potential candidate against Plasmodium.
Collapse
Affiliation(s)
- Gusnia Meilin Gholam
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Fachrur Rizal Mahendra
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Riyan Alifbi Putera Irsal
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Maheswari Alfira Dwicesaria
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Mokhamat Ariefin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Palangka Raya, Indonesia.
| | - Mikael Kristiadi
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| | - Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
6
|
Deng S, Sibley LD. Function of the alternative electron transport chain in the Cryptosporidium parvum mitosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616074. [PMID: 39605695 PMCID: PMC11601642 DOI: 10.1101/2024.10.01.616074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cryptosporidium parvum and C. hominis possess a remanent mitochondrion called the mitosome, which lacks DNA, the tricarboxylic acid cycle, a conventional electron transport chain, and ATP synthesis. The mitosome retains ubiquinone and iron sulfur cluster biosynthesis pathways, both of which require protein import that relies on the membrane potential. It was previously proposed that the membrane potential is generated by electrons transferred through an alternative respiratory pathway coupled to a transhydrogenase (TH) that pumps hydrogens out of the mitosome. This pathway relies on an alternative oxidase (AOX) and type II NADH dehydrogenase (NDH2), which also exists in plants, some fungi, and several protozoan parasites. To examine this model, we determined the location and function of AOX and NDH2 in C. parvum. Surprisingly, we observed that NDH2 was localized to parasite surface membranes instead of the mitosome. Furthermore, a Δndh2 knockout (KO) strain was readily obtained, indicating that this protein is not essential for parasite growth. Although, AOX exhibited a mitosome-like staining pattern, we readily obtained an Δaox knockout strain, indicating that AOX is also dispensable for parasite growth. The growth of the Δaox strain was inhibited by the AOX inhibitors SHAM and 8-HQ to the same extent as wild type, indicating that AOX is not the target of these inhibitors in C. parvum. Collectively, our studies indicate that NDH2 and AOX are non-essential genes in C. parvum, necessitating an alternative mechanism for maintaining the mitosome membrane potential. Importance Cryptosporidiosis is the leading cause of diarrhea in young children and immunocompromised individuals, particularly AIDS/HIV patients. The only FDA approved drug against cryptosporidiosis, nitazoxanide, has limited effectivity in immunocompromised patients and is not approved for usage in children under 1 year old. Genomic analysis and previous studies proposed an alternative respiration pathway involving alternative oxidase (AOX) and type II NAD(P)H dehydrogenase (NDH2), which are thought to generate the mitosome membrane potential in C. parvum. Additionally, AOX and NDH2 were nominated as potential drug targets, based on their absence in mammalian hosts and sensitivity of parasite growth to known inhibitors of AOX. However, our study demonstrated that NDH2 is not localized in mitosome, AOX non-essential for parasite growth, and knockout lines lacking this enzyme are equally sensitive to AOX inhibitors. These findings indicate that AOX and NDH2 are not ideal candidates for future drug development against cryptosporidiosis and force a re-evaluation for models of how the mitosome generate its membrane potential.
Collapse
Affiliation(s)
- Silu Deng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Kimura SI, Watanabe Y, Shibasaki S, Shinzato N, Inahashi Y, Sunazuka T, Hokari R, Ishiyama A, Iwatsuki M. New antimalarial iromycin analogs produced by Streptomyces sp. RBL-0292. J Antibiot (Tokyo) 2024; 77:272-277. [PMID: 38438501 DOI: 10.1038/s41429-024-00707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/06/2024]
Abstract
Two new antimalarial compounds, named prenylpyridones A (1) and B (2), were discovered from the actinomycete cultured material of Streptomyces sp. RBL-0292 isolated from the soil on Hamahiga Island in Okinawa prefecture. The structures of 1 and 2 were elucidated as new iromycin analogs having α-pyridone ring by MS and NMR analyses. Compounds 1 and 2 showed moderate in vitro antimalarial activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains, with IC50 values ranging from 80.7 to 106.7 µM.
Collapse
Affiliation(s)
- So-Ichiro Kimura
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshihiro Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shiori Shibasaki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Naoya Shinzato
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara-cho, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Toshiaki Sunazuka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Rei Hokari
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Aki Ishiyama
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
8
|
Esser L, Xia D. Mitochondrial Cytochrome bc1 Complex as Validated Drug Target: A Structural Perspective. Trop Med Infect Dis 2024; 9:39. [PMID: 38393128 PMCID: PMC10892539 DOI: 10.3390/tropicalmed9020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial respiratory chain Complex III, also known as cytochrome bc1 complex or cyt bc1, is a validated target not only for antibiotics but also for pesticides and anti-parasitic drugs. Although significant progress has been made in understanding the mechanisms of cyt bc1 function and inhibition by using various natural and synthetic compounds, important issues remain in overcoming drug resistance in agriculture and in evading cytotoxicity in medicine. In this review, we look at these issues from a structural perspective. After a brief description of the essential and common structural features, we point out the differences among various cyt bc1 complexes of different organisms, whose structures have been determined to atomic resolution. We use a few examples of cyt bc1 structures determined via bound inhibitors to illustrate both conformational changes observed and implications to the Q-cycle mechanism of cyt bc1 function. These structures not only offer views of atomic interactions between cyt bc1 complexes and inhibitors, but they also provide explanations for drug resistance when structural details are coupled to sequence changes. Examples are provided for exploiting structural differences in evolutionarily conserved enzymes to develop antifungal drugs for selectivity enhancement, which offer a unique perspective on differential interactions that can be exploited to overcome cytotoxicity in treating human infections.
Collapse
Affiliation(s)
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2122C, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Solebo O, Ling L, Nwankwo I, Zhou J, Fu TM, Ke H. Plasmodium falciparum utilizes pyrophosphate to fuel an essential proton pump in the ring stage and the transition to trophozoite stage. PLoS Pathog 2023; 19:e1011818. [PMID: 38048362 PMCID: PMC10732439 DOI: 10.1371/journal.ppat.1011818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
During asexual growth and replication cycles inside red blood cells, the malaria parasite Plasmodium falciparum primarily relies on glycolysis for energy supply, as its single mitochondrion performs little or no oxidative phosphorylation. Post merozoite invasion of a host red blood cell, the ring stage lasts approximately 20 hours and was traditionally thought to be metabolically quiescent. However, recent studies have shown that the ring stage is active in several energy-costly processes, including gene transcription, protein translation, protein export, and movement inside the host cell. It has remained unclear whether a low glycolytic flux alone can meet the energy demand of the ring stage over a long period post invasion. Here, we demonstrate that the metabolic by-product pyrophosphate (PPi) is a critical energy source for the development of the ring stage and its transition to the trophozoite stage. During early phases of the asexual development, the parasite utilizes Plasmodium falciparum vacuolar pyrophosphatase 1 (PfVP1), an ancient pyrophosphate-driven proton pump, to export protons across the parasite plasma membrane. Conditional deletion of PfVP1 leads to a delayed ring stage that lasts nearly 48 hours and a complete blockage of the ring-to-trophozoite transition before the onset of parasite death. This developmental arrest can be partially rescued by an orthologous vacuolar pyrophosphatase from Arabidopsis thaliana, but not by the soluble pyrophosphatase from Saccharomyces cerevisiae, which lacks proton pumping activities. Since proton-pumping pyrophosphatases have been evolutionarily lost in human hosts, the essentiality of PfVP1 suggests its potential as an antimalarial drug target. A drug target of the ring stage is highly desired, as current antimalarials have limited efficacy against this stage.
Collapse
Affiliation(s)
- Omobukola Solebo
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Liqin Ling
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ikechukwu Nwankwo
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Esser L, Zhou F, Zeher A, Wu W, Huang R, Yu CA, Lane KD, Wellems TE, Xia D. Structure of complex III with bound antimalarial agent CK-2-68 provides insights into selective inhibition of Plasmodium cytochrome bc 1 complexes. J Biol Chem 2023; 299:104860. [PMID: 37236355 PMCID: PMC10404626 DOI: 10.1016/j.jbc.2023.104860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Among the various components of the protozoan Plasmodium mitochondrial respiratory chain, only Complex III is a validated cellular target for antimalarial drugs. The compound CK-2-68 was developed to specifically target the alternate NADH dehydrogenase of the malaria parasite respiratory chain, but the true target for its antimalarial activity has been controversial. Here, we report the cryo-EM structure of mammalian mitochondrial Complex III bound with CK-2-68 and examine the structure-function relationships of the inhibitor's selective action on Plasmodium. We show that CK-2-68 binds specifically to the quinol oxidation site of Complex III, arresting the motion of the iron-sulfur protein subunit, which suggests an inhibition mechanism similar to that of Pf-type Complex III inhibitors such as atovaquone, stigmatellin, and UHDBT. Our results shed light on the mechanisms of observed resistance conferred by mutations, elucidate the molecular basis of the wide therapeutic window of CK-2-68 for selective action of Plasmodium vs. host cytochrome bc1, and provide guidance for future development of antimalarials targeting Complex III.
Collapse
Affiliation(s)
- Lothar Esser
- Laboratory of Cell Biology, Center for Cancer Research National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Fei Zhou
- Laboratory of Cell Biology, Center for Cancer Research National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Allison Zeher
- Laboratory of Cell Biology, Center for Cancer Research National Cancer Institute, NIH, Bethesda, Maryland, USA; NIH Intramural Cryo-EM Consortium (NICE), Bethesda, Maryland, USA
| | - Weimin Wu
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Rick Huang
- Laboratory of Cell Biology, Center for Cancer Research National Cancer Institute, NIH, Bethesda, Maryland, USA; NIH Intramural Cryo-EM Consortium (NICE), Bethesda, Maryland, USA
| | - Chang-An Yu
- Department of Biochemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kristin D Lane
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research National Cancer Institute, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
11
|
Hayward JA, Makota FV, Cihalova D, Leonard RA, Rajendran E, Zwahlen SM, Shuttleworth L, Wiedemann U, Spry C, Saliba KJ, Maier AG, van Dooren GG. A screen of drug-like molecules identifies chemically diverse electron transport chain inhibitors in apicomplexan parasites. PLoS Pathog 2023; 19:e1011517. [PMID: 37471441 PMCID: PMC10403144 DOI: 10.1371/journal.ppat.1011517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
Apicomplexans are widespread parasites of humans and other animals, and include the causative agents of malaria (Plasmodium species) and toxoplasmosis (Toxoplasma gondii). Existing anti-apicomplexan therapies are beset with issues around drug resistance and toxicity, and new treatment options are needed. The mitochondrial electron transport chain (ETC) is one of the few processes that has been validated as a drug target in apicomplexans. To identify new inhibitors of the apicomplexan ETC, we developed a Seahorse XFe96 flux analyzer approach to screen the 400 compounds contained within the Medicines for Malaria Venture 'Pathogen Box' for ETC inhibition. We identified six chemically diverse, on-target inhibitors of the ETC in T. gondii, at least four of which also target the ETC of Plasmodium falciparum. Two of the identified compounds (MMV024937 and MMV688853) represent novel ETC inhibitor chemotypes. MMV688853 belongs to a compound class, the aminopyrazole carboxamides, that were shown previously to target a kinase with a key role in parasite invasion of host cells. Our data therefore reveal that MMV688853 has dual targets in apicomplexans. We further developed our approach to pinpoint the molecular targets of these inhibitors, demonstrating that all target Complex III of the ETC, with MMV688853 targeting the ubiquinone reduction (Qi) site of the complex. Most of the compounds we identified remain effective inhibitors of parasites that are resistant to Complex III inhibitors that are in clinical use or development, indicating that they could be used in treating drug resistant parasites. In sum, we have developed a versatile, scalable approach to screen for compounds that target the ETC in apicomplexan parasites, and used this to identify and characterize novel inhibitors.
Collapse
Affiliation(s)
- Jenni A. Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - F. Victor Makota
- Research School of Biology, Australian National University, Canberra, Australia
| | - Daniela Cihalova
- Research School of Biology, Australian National University, Canberra, Australia
| | - Rachel A. Leonard
- Research School of Biology, Australian National University, Canberra, Australia
| | - Esther Rajendran
- Research School of Biology, Australian National University, Canberra, Australia
| | - Soraya M. Zwahlen
- Research School of Biology, Australian National University, Canberra, Australia
| | - Laura Shuttleworth
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ursula Wiedemann
- Research School of Biology, Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, Australian National University, Canberra, Australia
| | - Alexander G. Maier
- Research School of Biology, Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
12
|
Kruth S, Nett M. Aurachins, Bacterial Antibiotics Interfering with Electron Transport Processes. Antibiotics (Basel) 2023; 12:1067. [PMID: 37370386 DOI: 10.3390/antibiotics12061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Aurachins are farnesylated quinolone alkaloids of bacterial origin and excellent inhibitors of the respiratory chain in pro- and eukaryotes. Therefore, they have become important tool compounds for the investigation of electron transport processes and they also serve as lead structures for the development of antibacterial and antiprotozoal drugs. Especially aurachin D proved to be a valuable starting point for structure-activity relationship studies. Aurachin D is a selective inhibitor of the cytochrome bd oxidase, which has received increasing attention as a target for the treatment of infectious diseases caused by mycobacteria. Moreover, aurachin D possesses remarkable activities against Leishmania donovani, the causative agent of leishmaniasis. Aurachins are naturally produced by myxobacteria of the genus Stigmatella as well as by some Streptomyces and Rhodococcus strains. The recombinant production of these antibiotics turned out to be challenging due to their complex biosynthesis and their inherent toxicity. Recently, the biotechnological production of aurachin D was established in E. coli with a titer which is higher than previously reported from natural producer organisms.
Collapse
Affiliation(s)
- Sebastian Kruth
- Laboratory of Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - Markus Nett
- Laboratory of Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
13
|
Tripathi H, Bhalerao P, Singh S, Arya H, Alotaibi BS, Rashid S, Hasan MR, Bhatt TK. Malaria therapeutics: are we close enough? Parasit Vectors 2023; 16:130. [PMID: 37060004 PMCID: PMC10103679 DOI: 10.1186/s13071-023-05755-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Malaria is a vector-borne parasitic disease caused by the apicomplexan protozoan parasite Plasmodium. Malaria is a significant health problem and the leading cause of socioeconomic losses in developing countries. WHO approved several antimalarials in the last 2 decades, but the growing resistance against the available drugs has worsened the scenario. Drug resistance and diversity among Plasmodium strains hinder the path of eradicating malaria leading to the use of new technologies and strategies to develop effective vaccines and drugs. A timely and accurate diagnosis is crucial for any disease, including malaria. The available diagnostic methods for malaria include microscopy, RDT, PCR, and non-invasive diagnosis. Recently, there have been several developments in detecting malaria, with improvements leading to achieving an accurate, quick, cost-effective, and non-invasive diagnostic tool for malaria. Several vaccine candidates with new methods and antigens are under investigation and moving forward to be considered for clinical trials. This article concisely reviews basic malaria biology, the parasite's life cycle, approved drugs, vaccine candidates, and available diagnostic approaches. It emphasizes new avenues of therapeutics for malaria.
Collapse
Affiliation(s)
- Himani Tripathi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Preshita Bhalerao
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Sujeet Singh
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia.
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| |
Collapse
|
14
|
Cahyono AW, Fitri LE, Winarsih S, Prabandari EE, Waluyo D, Pramisandi A, Chrisnayanti E, Dewi D, Siska E, Nurlaila N, Nugroho NB, Nozaki T, Suciati S. Nornidulin, A New Inhibitor of Plasmodium falciparum Malate: Quinone Oxidoreductase ( PfMQO) from Indonesian Aspergillus sp. BioMCC f.T.8501. Pharmaceuticals (Basel) 2023; 16:268. [PMID: 37259413 PMCID: PMC9964459 DOI: 10.3390/ph16020268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/20/2025] Open
Abstract
This study aimed to obtain a microbial active compound as a novel antimalarial drug from Indonesian isolates. Target-based assays were used to screen for antimalarial activity against the parasite mitochondrial, Plasmodium falciparum malate:quinone oxidoreductase (PfMQO) enzyme. In total, 1600 crude extracts, composed from 800 fungi and 800 actinomycetes extracts, were screened against PfMQO, yielding six active extracts as primary hits. After several stages of stability tests, one extract produced by Aspergillus sp. BioMCC f.T.8501 demonstrated stable PfMQO inhibitory activity. Several purification stages, including OCC, TLC, and HPLC, were performed to obtain bioactive compounds from this active extract. All purification steps were followed by an assay against PfMQO. We identified the active compound as nornidulin based on its LC-MS and UV spectrum data. Nornidulin inhibited PfMQO activity at IC50 of 51 µM and P. falciparum 3D7 proliferation in vitro at IC50 of 44.6 µM, however, it had no effect on the growth of several mammalian cells. In conclusion, we isolated nornidulin from Indonesian Aspergillus sp. BioMCC f.T.8501 as a novel inhibitor of PfMQO, which showed inhibitory activity against the proliferation of P. falciparum 3D7 in vitro.
Collapse
Affiliation(s)
- Alfian Wika Cahyono
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| | - Loeki Enggar Fitri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
- Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| | - Sri Winarsih
- Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
- Department of Microbiology—Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| | - Erwahyuni Endang Prabandari
- Research Centre for Vaccine and Drug, National Research and Innovation Agency, Cibinong Science Centre, Jalan Raya Bogor, Bogor 16143, West Java, Indonesia
| | - Danang Waluyo
- Research Centre for Vaccine and Drug, National Research and Innovation Agency, Cibinong Science Centre, Jalan Raya Bogor, Bogor 16143, West Java, Indonesia
| | - Amila Pramisandi
- Research Centre for Applied Microbiology, National Research and Innovation Agency, Cibinong Science Centre, Jalan Raya Bogor, Bogor 16143, West Java, Indonesia
| | - Evita Chrisnayanti
- Research Centre for Applied Microbiology, National Research and Innovation Agency, Cibinong Science Centre, Jalan Raya Bogor, Bogor 16143, West Java, Indonesia
| | - Diana Dewi
- Research Centre for Applied Microbiology, National Research and Innovation Agency, Cibinong Science Centre, Jalan Raya Bogor, Bogor 16143, West Java, Indonesia
| | - Eka Siska
- Research Centre for Vaccine and Drug, National Research and Innovation Agency, Cibinong Science Centre, Jalan Raya Bogor, Bogor 16143, West Java, Indonesia
| | - Nurlaila Nurlaila
- Research Centre for Applied Microbiology, National Research and Innovation Agency, Cibinong Science Centre, Jalan Raya Bogor, Bogor 16143, West Java, Indonesia
| | - Nuki Bambang Nugroho
- Research Centre for Vaccine and Drug, National Research and Innovation Agency, Cibinong Science Centre, Jalan Raya Bogor, Bogor 16143, West Java, Indonesia
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Suciati Suciati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, East Java, Indonesia
| |
Collapse
|
15
|
Hidayati AR, Melinda, Ilmi H, Sakura T, Sakaguchi M, Ohmori J, Hartuti ED, Tumewu L, Inaoka DK, Tanjung M, Yoshida E, Tokumasu F, Kita K, Mori M, Dobashi K, Nozaki T, Syafruddin D, Hafid AF, Waluyo D, Widyawaruyanti A. Effect of geranylated dihydrochalcone from Artocarpus altilis leaves extract on Plasmodium falciparum ultrastructural changes and mitochondrial malate: Quinone oxidoreductase. Int J Parasitol Drugs Drug Resist 2022; 21:40-50. [PMID: 36565667 PMCID: PMC9798170 DOI: 10.1016/j.ijpddr.2022.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Nearly half of the world's population is at risk of being infected by Plasmodium falciparum, the pathogen of malaria. Increasing resistance to common antimalarial drugs has encouraged investigations to find compounds with different scaffolds. Extracts of Artocarpus altilis leaves have previously been reported to exhibit in vitro antimalarial activity against P. falciparum and in vivo activity against P. berghei. Despite these initial promising results, the active compound from A. altilis is yet to be identified. Here, we have identified 2-geranyl-2', 4', 3, 4-tetrahydroxy-dihydrochalcone (1) from A. altilis leaves as the active constituent of its antimalarial activity. Since natural chalcones have been reported to inhibit food vacuole and mitochondrial electron transport chain (ETC), the morphological changes in food vacuole and biochemical inhibition of ETC enzymes of (1) were investigated. In the presence of (1), intraerythrocytic asexual development was impaired, and according to the TEM analysis, this clearly affected the ultrastructure of food vacuoles. Amongst the ETC enzymes, (1) inhibited the mitochondrial malate: quinone oxidoreductase (PfMQO), and no inhibition could be observed on dihydroorotate dehydrogenase (DHODH) as well as bc1 complex activities. Our study suggests that (1) has a dual mechanism of action affecting the food vacuole and inhibition of PfMQO-related pathways in mitochondria.
Collapse
Affiliation(s)
- Agriana Rosmalina Hidayati
- Doctoral Program, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia,Department of Pharmacy, Faculty of Medicine, Universitas Mataram, Mataram, Indonesia
| | - Melinda
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Hilkatul Ilmi
- Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Junko Ohmori
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Endah Dwi Hartuti
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, Indonesia,Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Lidya Tumewu
- Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Mulyadi Tanjung
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Eri Yoshida
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Fuyuki Tokumasu
- Department of Cellular Architecture Studies, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan,Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Mihoko Mori
- Kitasato Institute for Life Science, Kitasato University, Tokyo, Japan
| | - Kazuyuki Dobashi
- Kitasato Institute for Life Science, Kitasato University, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Din Syafruddin
- Department of Parasitology, Faculty of Medicine, Hasanudin University, Makassar, Indonesia
| | - Achmad Fuad Hafid
- Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Danang Waluyo
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Aty Widyawaruyanti
- Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia,Corresponding author. Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
16
|
Dass S, Mather MW, Morrisey JM, Ling L, Vaidya AB, Ke H. Transcriptional changes in Plasmodium falciparum upon conditional knock down of mitochondrial ribosomal proteins RSM22 and L23. PLoS One 2022; 17:e0274993. [PMID: 36201550 PMCID: PMC9536634 DOI: 10.1371/journal.pone.0274993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
The mitochondrion of malaria parasites is an attractive antimalarial drug target, which require mitoribosomes to translate genes encoded in the mitochondrial (mt) DNA. Plasmodium mitoribosomes are composed of highly fragmented ribosomal RNA (rRNA) encoded in the mtDNA. All mitoribosomal proteins (MRPs) and other assembly factors are encoded in the nuclear genome. Here, we have studied one putative assembly factor, RSM22 (Pf3D7_1027200) and one large subunit (LSU) MRP, L23 (Pf3D7_1239100) in Plasmodium falciparum. We show that both proteins localize to the mitochondrion. Conditional knock down (KD) of PfRSM22 or PfMRPL23 leads to reduced cytochrome bc1 complex activity and increased sensitivity to bc1 inhibitors such as atovaquone and ELQ-300. Using RNA sequencing as a tool, we reveal the transcriptomic changes of nuclear and mitochondrial genomes upon KD of these two proteins. In the early phase of KD, while most mt rRNAs and transcripts of putative MRPs were downregulated in the absence of PfRSM22, many mt rRNAs and several MRPs were upregulated after KD of PfMRPL23. The contrast effects in the early phase of KD likely suggests non-redundant roles of PfRSM22 and PfMRPL23 in the assembly of P. falciparum mitoribosomes. At the late time points of KD, loss of PfRSM22 and PfMRPL23 caused defects in many essential metabolic pathways and transcripts related to essential mitochondrial functions, leading to parasite death. In addition, we enlist mitochondrial proteins of unknown function that are likely novel Plasmodium MRPs based on their structural similarity to known MRPs as well as their expression profiles in KD parasites.
Collapse
Affiliation(s)
- Swati Dass
- Center for Molecular Parasitology, Department of Microbiology and Immunology Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael W. Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joanne M. Morrisey
- Center for Molecular Parasitology, Department of Microbiology and Immunology Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Liqin Ling
- Center for Molecular Parasitology, Department of Microbiology and Immunology Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
17
|
Alday PH, Nilsen A, Doggett JS. Structure-activity relationships of Toxoplasma gondii cytochrome bc1 inhibitors. Expert Opin Drug Discov 2022; 17:997-1011. [PMID: 35772172 PMCID: PMC9561756 DOI: 10.1080/17460441.2022.2096588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Toxoplasma gondii is a prolific apicomplexan parasite that infects human and nonhuman animals worldwide and can cause severe brain and eye disease. Safer, more effective therapies for toxoplasmosis are needed. Cytochrome bc1 inhibitors are remarkably effective against toxoplasmosis and other apicomplexan-caused diseases. AREAS COVERED This work reviews T. gondii cytochrome bc1 inhibitors. Emphasis is placed on the structure-activity relationships of these inhibitors with regard to efficacy, pharmacokinetics, selectivity of T. gondii cytochrome bc1 over host, safety, and potential therapeutic strategies. EXPERT OPINION Cytochrome bc1 inhibitors are highly promising compounds for toxoplasmosis that have been effective in clinical and preclinical studies. Clinical experience with atovaquone previously validated cytochrome bc1 as a tractable drug target and, over the past decade, optimization of cytochrome bc1 inhibitors has resulted in improved bioavailability, metabolic stability, potency, blood-brain barrier penetration, and selectivity for the T. gondii cytochrome bc1 over the mammalian bc1. Recent studies have demonstrated preclinical safety, identified novel therapeutic strategies for toxoplasmosis using synergistic combinations or long-acting administration and provided insight into their role in chronic infection. This research has identified drug candidates that are more effective than clinically used drugs in preclinical measures of efficacy.
Collapse
Affiliation(s)
- Phil Holland Alday
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron Nilsen
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
18
|
Rajaram K, Tewari SG, Wallqvist A, Prigge ST. Metabolic changes accompanying the loss of fumarate hydratase and malate-quinone oxidoreductase in the asexual blood stage of Plasmodium falciparum. J Biol Chem 2022; 298:101897. [PMID: 35398098 PMCID: PMC9118666 DOI: 10.1016/j.jbc.2022.101897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
In the glucose-rich milieu of red blood cells, asexually replicating malarial parasites mainly rely on glycolysis for ATP production, with limited carbon flux through the mitochondrial tricarboxylic acid (TCA) cycle. By contrast, gametocytes and mosquito-stage parasites exhibit an increased dependence on the TCA cycle and oxidative phosphorylation for more economical energy generation. Prior genetic studies supported these stage-specific metabolic preferences by revealing that six of eight TCA cycle enzymes are completely dispensable during the asexual blood stages of Plasmodium falciparum, with only fumarate hydratase (FH) and malate-quinone oxidoreductase (MQO) being refractory to deletion. Several hypotheses have been put forth to explain the possible essentiality of FH and MQO, including their participation in a malate shuttle between the mitochondrial matrix and the cytosol. However, using newer genetic techniques like CRISPR and dimerizable Cre, we were able to generate deletion strains of FH and MQO in P. falciparum. We employed metabolomic analyses to characterize a double knockout mutant of FH and MQO (ΔFM) and identified changes in purine salvage and urea cycle metabolism that may help to limit fumarate accumulation. Correspondingly, we found that the ΔFM mutant was more sensitive to exogenous fumarate, which is known to cause toxicity by modifying and inactivating proteins and metabolites. Overall, our data indicate that P. falciparum is able to adequately compensate for the loss of FH and MQO, rendering them unsuitable targets for drug development.
Collapse
Affiliation(s)
- Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
19
|
Consalvi S, Tammaro C, Appetecchia F, Biava M, Poce G. Malaria transmission blocking compounds: a patent review. Expert Opin Ther Pat 2022; 32:649-666. [PMID: 35240899 DOI: 10.1080/13543776.2022.2049239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite substantial progress in the field, malaria remains a global health issue and currently available control strategies are not sufficient to achieve eradication. Agents able to prevent transmission are likely to have a strong impact on malaria control and have been prioritized as a primary objective to reduce the number of secondary infections. Therefore, there is an increased interest in finding novel drugs targeting sexual stages of Plasmodium and innovative methods to target malaria transmission from host to vector, and vice versa. AREAS COVERED This review covers innovative transmission-blocking inventions patented between 2015 and October 2021. The focus is on chemical interventions which could be used as "chemical vaccines" to prevent transmission (small molecules, carbohydrates, and polypeptides). EXPERT OPINION Even though the development of novel strategies to block transmission still requires fundamental additional research and a deeper understanding of parasite sexual stages biology, the research in this field has significantly accelerated. Among innovative inventions patented over the last six years, the surface-delivery of antimalarial drugs to kill transmission-stages parasites in mosquitoes holds the highest promise for success in malaria control strategies, opening completely new scenarios in malaria transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Chiara Tammaro
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Federico Appetecchia
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
20
|
Yang Y, Tang T, Li X, Michel T, Ling L, Huang Z, Mulaka M, Wu Y, Gao H, Wang L, Zhou J, Meunier B, Ke H, Jiang L, Rao Y. Design, synthesis, and biological evaluation of multiple targeting antimalarials. Acta Pharm Sin B 2021; 11:2900-2913. [PMID: 34589403 PMCID: PMC8463279 DOI: 10.1016/j.apsb.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
Malaria still threatens global health seriously today. While the current discoveries of antimalarials are almost totally focused on single mode-of-action inhibitors, multi-targeting inhibitors are highly desired to overcome the increasingly serious drug resistance. Here, we performed a structure-based drug design on mitochondrial respiratory chain of Plasmodium falciparum and identified an extremely potent molecule, RYL-581, which binds to multiple protein binding sites of P. falciparum simultaneously (allosteric site of type II NADH dehydrogenase, Qo and Qi sites of cytochrome bc1). Antimalarials with such multiple targeting mechanism of action have never been reported before. RYL-581 kills various drug-resistant strains in vitro and shows good solubility as well as in vivo activity. This structure-based strategy for designing RYL-581 from starting compound may be helpful for other medicinal chemistry projects in the future, especially for drug discovery on membrane-associated targets.
Collapse
|
21
|
A Yeast-Based Drug Discovery Platform To Identify Plasmodium falciparum Type II NADH Dehydrogenase Inhibitors. Antimicrob Agents Chemother 2021; 65:AAC.02470-20. [PMID: 33722883 DOI: 10.1128/aac.02470-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Conventional methods utilizing in vitro protein activity assay or in vivo parasite survival to screen for malaria inhibitors suffer from high experimental background and/or inconvenience. Here, we introduce a yeast-based system to facilitate chemical screening for specific protein or pathway inhibitors. The platform comprises several isogeneic Pichia strains that differ only in the target of interest, so that a compound which inhibits one strain but not the other is implicated in working specifically against the target. We used Plasmodium falciparum NDH2 (PfNDH2), a type II NADH dehydrogenase, as a proof of principle to show how well this works. Three isogenic Pichia strains harboring, respectively, exogeneously introduced PfNDH2, its own complex I (a type I NADH dehydrogenase), and PfNDH2 with its own complex I, were constructed. In a pilot screen of more than 2,000 compounds, we identified a highly specific inhibitor that acts on PfNDH2. This compound poorly inhibits the parasites at the asexual blood stage; however, is highly effective in repressing oocyst maturation in the mosquito stage. Our results demonstrate that the yeast cell-based screen platform is feasible, efficient, economical, and has very low background noise. Similar strategies could be extended to the functional screen for interacting molecules of other targets.
Collapse
|
22
|
Tuvshintulga B, Vannier E, Tayebwa DS, Gantuya S, Sivakumar T, Guswanto A, Krause PJ, Yokoyama N, Igarashi I. Clofazimine, a Promising Drug for the Treatment of Babesia microti Infection in Severely Immunocompromised Hosts. J Infect Dis 2021; 222:1027-1036. [PMID: 32310272 DOI: 10.1093/infdis/jiaa195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/17/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Persistent and relapsing babesiosis caused by Babesia microti often occurs in immunocompromised patients, and has been associated with resistance to antimicrobial agents such as atovaquone. Given the rising incidence of babesiosis in the United States, novel drugs are urgently needed. In the current study, we tested whether clofazimine (CFZ), an antibiotic used to treat leprosy and drug-resistant tuberculosis, is effective against B. microti. METHODS Mice with severe combined immunodeficiency were infected with 107B. microti-infected erythrocytes. Parasites were detected by means of microscopic examination of Giemsa-stained blood smears or nested polymerase chain reaction. CFZ was administered orally. RESULTS Uninterrupted monotherapy with CFZ curtailed the rise of parasitemia and achieved radical cure. B. microti parasites and B. microti DNA were cleared by days 10 and 50 of therapy, respectively. A 7-day administration of CFZ delayed the rise of parasitemia by 22 days. This rise was caused by B. microti isolates that did not carry mutations in the cytochrome b gene. Accordingly, a 14-day administration of CFZ was sufficient to resolve high-grade parasitemia caused by atovaquone-resistant B. microti parasites. CONCLUSIONS Clofazimine is effective against B. microti infection in the immunocompromised host. Additional preclinical studies are required to identify the minimal dose and dosage of CFZ for babesiosis.
Collapse
Affiliation(s)
- Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Institute of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, Mongolia
| | - Edouard Vannier
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| | - Dickson S Tayebwa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Sambuu Gantuya
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Azirwan Guswanto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, Connecticut, USA
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
23
|
Mounkoro P, Michel T, Golinelli-Cohen MP, Blandin S, Davioud-Charvet E, Meunier B. A role for the succinate dehydrogenase in the mode of action of the redox-active antimalarial drug, plasmodione. Free Radic Biol Med 2021; 162:533-541. [PMID: 33232753 DOI: 10.1016/j.freeradbiomed.2020.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Abstract
Malaria, caused by protozoan parasites, is a major public health issue in subtropical countries. An arsenal of antimalarial treatments is available, however, resistance is spreading, calling for the development of new antimalarial compounds. The new lead antimalarial drug plasmodione is a redox-active compound that impairs the redox balance of parasites leading to cell death. Based on extensive in vitro assays, a model of its mode of action was drawn, involving the generation of active plasmodione metabolites that act as subversive substrates of flavoproteins, initiating a redox cycling process producing reactive oxygen species. We showed that, in yeast, the mitochondrial respiratory chain NADH-dehydrogenases are the main redox-cycling target enzymes. Furthermore, our data supported the proposal that plasmodione is a pro-drug acting via its benzhydrol and benzoyl metabolites. Here, we selected plasmodione-resistant yeast mutants to further decipher plasmodione mode of action. Of the eleven mutants analysed, nine harboured a mutation in the FAD binding subunit of succinate dehydrogenase (SDH). The analysis of the SDH mutations points towards a specific role for SDH-bound FAD in plasmodione bioactivation, possibly in the first step of the process, highlighting a novel property of SDH.
Collapse
Affiliation(s)
- Pierre Mounkoro
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, cedex, France
| | - Thomas Michel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, cedex, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles (ICSN), 91198, Gif-sur-Yvette, cedex, France
| | - Stéphanie Blandin
- Université de Strasbourg, CNRS, Inserm, UPR9022/U1257, Mosquito Immune Responses (MIR), F-67000, Strasbourg, France
| | - Elisabeth Davioud-Charvet
- Université de Strasbourg, Université de Haute-Alsace, Centre National de la Recherche Scientifique (CNRS), UMR 7042 LIMA, Team Bioorganic and Medicinal Chemistry, ECPM, 25 Rue Becquerel, 67087, Strasbourg, France
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, cedex, France.
| |
Collapse
|
24
|
Sato D, Hartuti ED, Inaoka DK, Sakura T, Amalia E, Nagahama M, Yoshioka Y, Tsuji N, Nozaki T, Kita K, Harada S, Matsubayashi M, Shiba T. Structural and Biochemical Features of Eimeria tenella Dihydroorotate Dehydrogenase, a Potential Drug Target. Genes (Basel) 2020; 11:genes11121468. [PMID: 33297567 PMCID: PMC7762340 DOI: 10.3390/genes11121468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022] Open
Abstract
Dihydroorotate dehydrogenase (DHODH) is a mitochondrial monotopic membrane protein that plays an essential role in the pyrimidine de novo biosynthesis and electron transport chain pathways. In Eimeria tenella, an intracellular apicomplexan parasite that causes the most severe form of chicken coccidiosis, the activity of pyrimidine salvage pathway at the intracellular stage is negligible and it relies on the pyrimidine de novo biosynthesis pathway. Therefore, the enzymes of the de novo pathway are considered potential drug target candidates for the design of compounds with activity against this parasite. Although, DHODHs from E. tenella (EtDHODH), Plasmodium falciparum (PfDHODH), and human (HsDHODH) show distinct sensitivities to classical DHODH inhibitors, in this paper, we identify ferulenol as a potent inhibitor of both EtDHODH and HsDHODH. Additionally, we report the crystal structures of EtDHODH and HsDHODH in the absence and presence of ferulenol. Comparison of these enzymes showed that despite similar overall structures, the EtDHODH has a long insertion in the N-terminal helix region that assumes a disordered configuration. In addition, the crystal structures revealed that the ferulenol binding pocket of EtDHODH is larger than that of HsDHODH. These differences can be explored to accelerate structure-based design of inhibitors specifically targeting EtDHODH.
Collapse
Affiliation(s)
- Dan Sato
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Endah Dwi Hartuti
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
- Correspondence: (D.K.I.); (T.S.); Tel.: +81-95-819-7230 (D.K.I.); Tel./Fax: +81-75-724-7541 (T.S.)
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Eri Amalia
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
| | - Madoka Nagahama
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Yukina Yoshioka
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan;
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Makoto Matsubayashi
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Orai Kita, Izumisano, Osaka 598-8531, Japan;
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
- Correspondence: (D.K.I.); (T.S.); Tel.: +81-95-819-7230 (D.K.I.); Tel./Fax: +81-75-724-7541 (T.S.)
| |
Collapse
|
25
|
Abstract
Malaria elimination efforts have been repeatedly hindered by the evolution and spread of multidrug-resistant strains of Plasmodium falciparum. The absence of a commercially available vaccine emphasizes the need for a better understanding of Plasmodium biology in order to further translational research. This has been partly facilitated by targeted gene deletion strategies for the functional analysis of parasite genes. However, genes that are essential for parasite replication in erythrocytes are refractory to such methods, and require conditional knockdown or knockout approaches to dissect their function. One such approach is the TetR-DOZI system that employs multiple synthetic aptamers in the untranslated regions of target genes to control their expression in a tetracycline-dependent manner. Maintaining modified parasites with intact aptamer copies has been challenging since these repeats can be lost by recombination. By interspacing the aptamers with unique sequences, we created a stable genetic system that remains effective at controlling target gene expression. One of the most powerful approaches to understanding gene function involves turning genes on and off at will and measuring the impact at the cellular or organismal level. This particularly applies to the cohort of essential genes where traditional gene knockouts are inviable. In Plasmodium falciparum, conditional control of gene expression has been achieved by using multicomponent systems in which individual modules interact with each other to regulate DNA recombination, transcription, or posttranscriptional processes. The recently devised TetR-DOZI aptamer system relies on the ligand-regulatable interaction of a protein module with synthetic RNA aptamers to control the translation of a target gene. This technique has been successfully employed to study essential genes in P. falciparum and involves the insertion of several aptamer copies into the 3′ untranslated regions (UTRs), which provide control over mRNA fate. However, aptamer repeats are prone to recombination and one or more copies can be lost from the system, resulting in a loss of control over target gene expression. We rectified this issue by redesigning the aptamer array to minimize recombination while preserving the control elements. As proof of concept, we compared the original and modified arrays for their ability to knock down the levels of a putative essential apicoplast protein (PF3D7_0815700) and demonstrated that the modified array is highly stable and efficient. This redesign will enhance the utility of a tool that is quickly becoming a favored strategy for genetic studies in P. falciparum. IMPORTANCE Malaria elimination efforts have been repeatedly hindered by the evolution and spread of multidrug-resistant strains of Plasmodium falciparum. The absence of a commercially available vaccine emphasizes the need for a better understanding of Plasmodium biology in order to further translational research. This has been partly facilitated by targeted gene deletion strategies for the functional analysis of parasite genes. However, genes that are essential for parasite replication in erythrocytes are refractory to such methods, and require conditional knockdown or knockout approaches to dissect their function. One such approach is the TetR-DOZI system that employs multiple synthetic aptamers in the untranslated regions of target genes to control their expression in a tetracycline-dependent manner. Maintaining modified parasites with intact aptamer copies has been challenging since these repeats can be lost by recombination. By interspacing the aptamers with unique sequences, we created a stable genetic system that remains effective at controlling target gene expression.
Collapse
|
26
|
Ling L, Mulaka M, Munro J, Dass S, Mather MW, Riscoe MK, Llinás M, Zhou J, Ke H. Genetic ablation of the mitoribosome in the malaria parasite Plasmodium falciparum sensitizes it to antimalarials that target mitochondrial functions. J Biol Chem 2020; 295:7235-7248. [PMID: 32273345 PMCID: PMC7247301 DOI: 10.1074/jbc.ra120.012646] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/04/2020] [Indexed: 02/05/2023] Open
Abstract
The mitochondrion of malaria parasites contains several clinically validated drug targets. Within Plasmodium spp., the causative agents of malaria, the mitochondrial DNA (mtDNA) is only 6 kb long, being the smallest mitochondrial genome among all eukaryotes. The mtDNA encodes only three proteins of the mitochondrial electron transport chain and ∼27 small, fragmented rRNA genes having lengths of 22-195 nucleotides. The rRNA fragments are thought to form a mitochondrial ribosome (mitoribosome), together with ribosomal proteins imported from the cytosol. The mitoribosome of Plasmodium falciparum is essential for maintenance of the mitochondrial membrane potential and parasite viability. However, the role of the mitoribosome in sustaining the metabolic status of the parasite mitochondrion remains unclear. The small ribosomal subunit in P. falciparum has 14 annotated mitoribosomal proteins, and employing a CRISPR/Cas9-based conditional knockdown tool, here we verified the location and tested the essentiality of three candidates (PfmtRPS12, PfmtRPS17, and PfmtRPS18). Using immuno-EM, we provide evidence that the P. falciparum mitoribosome is closely associated with the mitochondrial inner membrane. Upon knockdown of the mitoribosome, parasites became hypersensitive to inhibitors targeting mitochondrial Complex III (bc1), dihydroorotate dehydrogenase (DHOD), and the F1F0-ATP synthase complex. Furthermore, the mitoribosome knockdown blocked the pyrimidine biosynthesis pathway and reduced the cellular pool of pyrimidine nucleotides. These results suggest that disruption of the P. falciparum mitoribosome compromises the metabolic capacity of the mitochondrion, rendering the parasite hypersensitive to a panel of inhibitors that target mitochondrial functions.
Collapse
Affiliation(s)
- Liqin Ling
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Maruthi Mulaka
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Justin Munro
- Department of Chemistry and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Swati Dass
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Michael W Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Michael K Riscoe
- Portland Veterans Affairs Medical Center, Portland, Oregon 97239
| | - Manuel Llinás
- Department of Chemistry and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129.
| |
Collapse
|
27
|
Xie T, Wu Z, Gu J, Guo R, Yan X, Duan H, Liu X, Liu W, Liang L, Wan H, Luo Y, Tang D, Shi H, Hu J. The global motion affecting electron transfer in Plasmodium falciparum type II NADH dehydrogenases: a novel non-competitive mechanism for quinoline ketone derivative inhibitors. Phys Chem Chem Phys 2019; 21:18105-18118. [PMID: 31396604 DOI: 10.1039/c9cp02645b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the emergence of drug-resistant Plasmodium falciparum, the treatment of malaria has become a significant challenge; therefore, the development of antimalarial drugs acting on new targets is extremely urgent. In Plasmodium falciparum, type II nicotinamide adenine dinucleotide (NADH) dehydrogenase (NDH-2) is responsible for catalyzing the transfer of two electrons from NADH to flavin adenine dinucleotide (FAD), which in turn transfers the electrons to coenzyme Q (CoQ). As an entry enzyme for oxidative phosphorylation, NDH-2 has become one of the popular targets for the development of new antimalarial drugs. In this study, reliable motion trajectories of the NDH-2 complex with its co-factors (NADH and FAD) and inhibitor, RYL-552, were obtained by comparative molecular dynamics simulations. The influence of cofactor binding on the global motion of NDH-2 was explored through conformational clustering, principal component analysis and free energy landscape. The molecular interactions of NDH-2 before and after its binding with the inhibitor RYL-552 were analyzed, and the key residues and important hydrogen bonds were also determined. The results show that the association of RYL-552 results in the weakening of intramolecular hydrogen bonds and large allosterism of NDH-2. There was a significant positive correlation between the angular change of the key pocket residues in the NADH-FAD-pockets that represents the global functional motion and the change in distance between NADH-C4 and FAD-N5 that represents the electron transfer efficiency. Finally, the possible non-competitive inhibitory mechanism of RYL-552 was proposed. Specifically, the association of inhibitors with NDH-2 significantly affects the global motion mode of NDH-2, leading to widening of the distance between NADH and FAD through cooperative motion induction; this reduces the electron transfer efficiency of the mitochondrial respiratory chain. The simulation results provide useful theoretical guidance for subsequent antimalarial drug design based on the NDH-2 structure and the respiratory chain electron transfer mechanism.
Collapse
Affiliation(s)
- Tao Xie
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, 610106, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Same same, but different: Uncovering unique features of the mitochondrial respiratory chain of apicomplexans. Mol Biochem Parasitol 2019; 232:111204. [DOI: 10.1016/j.molbiopara.2019.111204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023]
|
29
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
30
|
Wang X, Miyazaki Y, Inaoka DK, Hartuti ED, Watanabe YI, Shiba T, Harada S, Saimoto H, Burrows JN, Benito FJG, Nozaki T, Kita K. Identification of Plasmodium falciparum Mitochondrial Malate: Quinone Oxidoreductase Inhibitors from the Pathogen Box. Genes (Basel) 2019; 10:genes10060471. [PMID: 31234346 PMCID: PMC6627850 DOI: 10.3390/genes10060471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Malaria is one of the three major global health threats. Drug development for malaria, especially for its most dangerous form caused by Plasmodium falciparum, remains an urgent task due to the emerging drug-resistant parasites. Exploration of novel antimalarial drug targets identified a trifunctional enzyme, malate quinone oxidoreductase (MQO), located in the mitochondrial inner membrane of P. falciparum (PfMQO). PfMQO is involved in the pathways of mitochondrial electron transport chain, tricarboxylic acid cycle, and fumarate cycle. Recent studies have shown that MQO is essential for P. falciparum survival in asexual stage and for the development of experiment cerebral malaria in the murine parasite P. berghei, providing genetic validation of MQO as a drug target. However, chemical validation of MQO, as a target, remains unexplored. In this study, we used active recombinant protein rPfMQO overexpressed in bacterial membrane fractions to screen a total of 400 compounds from the Pathogen Box, released by Medicines for Malaria Venture. The screening identified seven hit compounds targeting rPfMQO with an IC50 of under 5 μM. We tested the activity of hit compounds against the growth of 3D7 wildtype strain of P. falciparum, among which four compounds showed an IC50 from low to sub-micromolar concentrations, suggesting that PfMQO is indeed a potential antimalarial drug target.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Yukiko Miyazaki
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Endah Dwi Hartuti
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Yoh-Ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Hashikamicho, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Hashikamicho, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan.
| | | | | | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|