1
|
Selvakumar B, Rah B, Jagal J, Sekar P, Moustafa R, Ramakrishnan RK, Haider M, Ibrahim SM, Samsudin R. Modulation of Plet1 expression by N-Acetylglucosamine through the IL-17 A-MAPK pathway in an imiquimod-induced psoriasis mouse model. Inflamm Res 2024; 73:2217-2230. [PMID: 39407062 DOI: 10.1007/s00011-024-01958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 12/11/2024] Open
Abstract
Psoriasis (Ps) is a chronic inflammatory disorder marked by skin plaque formation, driven by immune dysregulation and genetic factors. Despite the available treatments, incidence of Ps is increasing in the dermatology patients. Novel strategies are crucial due to current treatment limitations. The interleukin 17 (IL-17) pathway is pivotal in Ps pathogenesis, however the expression of its putative target gene placenta expressed transcript 1 (Plet1) remains unstudied in Ps. Considering the potential anti-inflammatory properties of N-Acetylglucosamine (GlcNAc), our study explored its role in modulating Plet1 expression in an imiquimod (IMQ)-induced Ps mouse model. Our data demonstarted a significant reduction of inflammation and Psoriasis Area and Severity Index (PASI) scores, downregulation of growth factors (GFs), IL-17 A, and MAPK expression after GlcNAc treatment. In addition, GlcNAc treatment reduced neutrophils, monocyte-dendritic cells (Mo-DC) and conventional T cells (Tcons) while increasing monocyte-macrophages (Mo-Macs) and regulatory T cells (Tregs). GlcNAc treatment also downregulated Plet1 overexpression in psoriatic mouse skin and in vitro, reduced proliferation and apoptosis in IL-17 A stimulated human dermal fibroblasts (HDF), along with IL-17 A and TGF-β mRNA expression. Together, these data suggest that, GlcNAc interferes with downstream mechanisms in IL-17 pathway and downregulating Plet1 expression, presenting a promising strategy for Ps treatment.
Collapse
Affiliation(s)
- Balachandar Selvakumar
- Microbiota research group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Bilal Rah
- Iron Biology research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Jayalakshmi Jagal
- Drug Delivery research group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Priyadarshini Sekar
- Microbiota research group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raneem Moustafa
- Microbiota research group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Rakhee Kizhuvappat Ramakrishnan
- Tissue injury and repair research group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohamed Haider
- Drug Delivery research group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Saleh Mohamed Ibrahim
- College of Medicine and Health Science Research, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
- Institute of Experimental Dermatology, University of Lübeck, 2562, Lübeck, Germany
| | - Rani Samsudin
- Microbiota research group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- College of Dental Medicine, University of sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
2
|
Iglesias Pastrana C, Sgobba MN, Navas González FJ, Delgado Bermejo JV, Pierri CL, Lentini G, Musio B, Osman TKS, Gallo V, Duarte IF, Guerra L, Ciani E. Factors influencing the bioactivity of natural matrices: The case of osmolarity-dependent modulation of cell viability by different dilutions of camel urines. Res Vet Sci 2024; 180:105419. [PMID: 39341022 DOI: 10.1016/j.rvsc.2024.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
The widespread practice of dromedary urinotherapy as a remedy for various illnesses, including cancer, is well-established in traditional dromedary countries. Researchers attempted to demonstrate anticancer properties of camel urine through in vitro experiments with debated outcomes. Notably, two critical aspects remained unexplored in those assays: (i) the osmolarity of tested urines, which can significantly influence in vitro results; (ii) the potential morphological changes of cells, following exposure to camel urines. In this study, we addressed these gaps by evaluating the osmolarity-dependent modulation of cell viability in human renal cell lines. In this regard, we assessed the impact of hyperosmolar mannitol-based solutions and dromedary urine on the viability and morphology of human non-tumor (HK2) and tumor renal cells (Caki-1). The results indicate that cell viability or morphology in both HK2 and Caki-1 cells are not significantly affected only if mannitol-induced hyperosmolarity is lower than 500 mOsm/L. Notably, when exposed to urine solution, diluted to <500 mOsm/L, statistically significant antiproliferative effects were observed primarily in Caki-1 cells (in presence of two out of ten tested urine samples). Conversely, alterations in cell morphology were observed exclusively in HK2 cells when exposed to the same diluted camel urines. In order to investigate, at molecular level, the observed antiproliferative effects, a preliminary metabolomics analysis of the tested urine samples was performed to identify potential bioactive compounds. The Nuclear Magnetic Resonance (NMR) metabolic profiling revealed the presence of three antioxidant compounds, namely trigonelline, pyruvic acid and N-acetylglucosamine. In conclusion, our results highlight the importance of considering the critical role of osmolarity when evaluating the bioactive properties of camel urine in vitro, which should not be used to treat any illness as it is. Conversely, it can be considered the possibility to use camel urines as a source of bioactive compounds.
Collapse
Affiliation(s)
- Carlos Iglesias Pastrana
- Faculty of Veterinary Sciences, Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
| | - Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies and Environment, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | | | | | - Ciro Leonardo Pierri
- Department of Pharmacy- Pharmaceutical Sciences, University of Bari 'Aldo Moro', 70125 Bari, Italy.
| | - Giovanni Lentini
- Department of Pharmacy- Pharmaceutical Sciences, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | - Biagia Musio
- Department of Civil, Environmental, Land, Construction Engineering and Chemistry (DICATECh), Polytechnic University of Bari, 70125 Bari, Italy
| | | | - Vito Gallo
- Department of Civil, Environmental, Land, Construction Engineering and Chemistry (DICATECh), Polytechnic University of Bari, 70125 Bari, Italy; Innovative Solutions S.r.l, Spin Off Company at Polytechnic University of Bari, 70015 Noci (BA), Italy
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari 'Aldo Moro', 70125 Bari, Italy.
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, University of Bari 'Aldo Moro', 70125 Bari, Italy
| |
Collapse
|
3
|
Wang SF, Chen HL, Liu FT. Galectins and Host-Pathogen Interactions: The roles in viral infections. Semin Immunol 2024; 76:101911. [PMID: 39580998 DOI: 10.1016/j.smim.2024.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Galectins, a family of carbohydrate-binding proteins, play crucial roles in the host-virus interaction landscape. This review explores the multifaceted contributions of endogenous galectins to various stages of the viral lifecycle, including attachment, replication, assembly, and release of progeny virions. Recent studies have indicated that viral infections can induce the expression and secretion of specific galectins, with elucidated signaling pathways in some cases, enhancing our understanding of their regulatory mechanisms. While many studies have focused on the effects of exogenous recombinant galectins, there is growing interest in the intrinsic functions of endogenous galectins, particularly through genetic alterations in cellular models. This review highlights the need for further research to uncover the complex roles of galectins in modulating viral infections and emphasizes their potential as therapeutic targets in the fight against viral diseases. Understanding these interactions could pave the way for novel strategies to enhance host defense mechanisms and mitigate viral pathogenesis.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Hung-Lin Chen
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Fu-Tong Liu
- Department of Dermatology, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
4
|
Zhang Z, Wang W, Xu P, Cui Q, Yang X, Hassan AE. Synthesis and anti-inflammatory activities of two new N-acetyl glucosamine derivatives. Sci Rep 2024; 14:11079. [PMID: 38745047 PMCID: PMC11094000 DOI: 10.1038/s41598-024-61780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
N-acetyl glucosamine (NAG) is a natural amino sugar found in various human tissues with previously described anti-inflammatory effects. Various chemical modifications of NAG have been made to promote its biomedical applications. In this study, we synthesized two bi-deoxygenated NAG, BNAG1 and BNAG2 and investigated their anti-inflammatory properties, using an in vivo and in vitro inflammation mouse model induced by lipopolysaccharide (LPS). Among the parent molecule NAG, BNAG1 and BNAG2, BNAG1 showed the highest inhibition against serum levels of IL-6 and TNF α and the leukocyte migration to lungs and peritoneal cavity in LPS challenged mice, as well as IL-6 and TNF α production in LPS-stimulated primary peritoneal macrophages. BNAG2 displayed an anti-inflammatory effect which was comparable to NAG. These findings implied potential application of these novel NAG derivatives, especially BNAG1, in treatment of certain inflammation-related diseases.
Collapse
Affiliation(s)
- Zhichang Zhang
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, 450 Ray C. Hunt Drive, Charlottesville, VA, 22903, USA
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Weicheng Wang
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, 450 Ray C. Hunt Drive, Charlottesville, VA, 22903, USA
| | - Peng Xu
- Department of Pathology, University of Virginia, Charlottesville, 22903, USA
| | - Quanjun Cui
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, 450 Ray C. Hunt Drive, Charlottesville, VA, 22903, USA
| | - Xinlin Yang
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, 450 Ray C. Hunt Drive, Charlottesville, VA, 22903, USA.
| | - Ameer E Hassan
- Department of Neuroscience, Valley Baptist Medical Center, 2101 Pease St., Harlingen, TX, 78550, USA.
| |
Collapse
|
5
|
Askari VR, Baradaran Rahimi V, Shafiee-Nick R. Low Doses of β-Caryophyllene Reduced Clinical and Paraclinical Parameters of an Autoimmune Animal Model of Multiple Sclerosis: Investigating the Role of CB 2 Receptors in Inflammation by Lymphocytes and Microglial. Brain Sci 2023; 13:1092. [PMID: 37509022 PMCID: PMC10377147 DOI: 10.3390/brainsci13071092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple Sclerosis (MS) is a prevalent inflammatory disease in which the immune system plays an essential role in the damage, inflammation, and demyelination of central nervous system neurons (CNS). The cannabinoid receptor type 2 (CB2) agonists possess anti-inflammatory effects against noxious stimuli and elevate the neuronal survival rate. We attempted to analyze the protective impact of low doses of β-Caryophyllene (BCP) in experimental autoimmune encephalomyelitis (EAE) mice as a chronic MS model. Immunization of female C57BL/6 mice was achieved through two subcutaneous injections into different areas of the hind flank with an emulsion that consisted of myelin Myelin oligodendrocyte glycoprotein (MOG)35-55 (150 µg) and complete Freund's adjuvant (CFA) (400 µg) with an equal volume. Two intraperitoneal (i.p.) injections of pertussis toxin (300 ng) were performed on the animals on day zero (immunizations day) and 48 h (2nd day) after injection of MOG + CFA. The defensive effect of low doses of BCP (2.5 and 5 mg/kg/d) was investigated in the presence and absence of a CB2 receptor antagonist (1 mg/kg, AM630) in the EAE model. We also examined the pro/anti-inflammatory cytokine levels and the polarization of brain microglia and spleen lymphocytes in EAE animals. According to our findings, low doses of BCP offered protective impacts in the EAE mice treatment in a CB2 receptor-dependent way. In addition, according to results, BCP decreased the pathological and clinical defects in EAE mice via modulating adaptive (lymphocytes) and innate (microglia) immune systems from inflammatory phenotypes (M1/Th1/Th17) to anti-inflammatory (M2/Th2/Treg) phenotypes. Additionally, BCP elevated the anti-inflammatory cytokine IL-10 and reduced blood inflammatory cytokines. BCP almost targeted the systemic immune system more than the CNS immune system. Thus, a low dose of BCP can be suggested as a therapeutic effect on MS treatment with potent anti-inflammatory effects and possibly lower toxicity.
Collapse
Affiliation(s)
- Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Reza Shafiee-Nick
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
6
|
Paneque A, Fortus H, Zheng J, Werlen G, Jacinto E. The Hexosamine Biosynthesis Pathway: Regulation and Function. Genes (Basel) 2023; 14:genes14040933. [PMID: 37107691 PMCID: PMC10138107 DOI: 10.3390/genes14040933] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate-N-acetyl glucosamine, UDP-GlcNAc, which is a key metabolite that is used for N- or O-linked glycosylation, a co- or post-translational modification, respectively, that modulates protein activity and expression. The production of hexosamines can occur via de novo or salvage mechanisms that are catalyzed by metabolic enzymes. Nutrients including glutamine, glucose, acetyl-CoA, and UTP are utilized by the HBP. Together with availability of these nutrients, signaling molecules that respond to environmental signals, such as mTOR, AMPK, and stress-regulated transcription factors, modulate the HBP. This review discusses the regulation of GFAT, the key enzyme of the de novo HBP, as well as other metabolic enzymes that catalyze the reactions to produce UDP-GlcNAc. We also examine the contribution of the salvage mechanisms in the HBP and how dietary supplementation of the salvage metabolites glucosamine and N-acetylglucosamine could reprogram metabolism and have therapeutic potential. We elaborate on how UDP-GlcNAc is utilized for N-glycosylation of membrane and secretory proteins and how the HBP is reprogrammed during nutrient fluctuations to maintain proteostasis. We also consider how O-GlcNAcylation is coupled to nutrient availability and how this modification modulates cell signaling. We summarize how deregulation of protein N-glycosylation and O-GlcNAcylation can lead to diseases including cancer, diabetes, immunodeficiencies, and congenital disorders of glycosylation. We review the current pharmacological strategies to inhibit GFAT and other enzymes involved in the HBP or glycosylation and how engineered prodrugs could have better therapeutic efficacy for the treatment of diseases related to HBP deregulation.
Collapse
Affiliation(s)
- Alysta Paneque
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Julia Zheng
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
In Vitro Antiviral and Anti-Inflammatory Activities of N-Acetylglucosamine: Development of an Alternative and Safe Approach to Fight Viral Respiratory Infections. Int J Mol Sci 2023; 24:ijms24065129. [PMID: 36982205 PMCID: PMC10049122 DOI: 10.3390/ijms24065129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Viral respiratory tract infections (RTIs) are responsible for significant morbidity and mortality worldwide. A prominent feature of severe respiratory infections, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is the cytokine release syndrome. Therefore, there is an urgent need to develop different approaches both against viral replication and against the consequent inflammation. N-acetylglucosamine (GlcNAc), a glucosamine (GlcN) derivative, has been developed as an immunomodulatory and anti-inflammatory inexpensive and non-toxic drug for non-communicable disease treatment and/or prevention. Recent studies have suggested that GlcN, due to its anti-inflammatory activity, could be potentially useful for the control of respiratory virus infections. Our present study aimed to evaluate in two different immortalized cell lines whether GlcNAc could inhibit or reduce both viral infectivity and the inflammatory response to viral infection. Two different viruses, frequent cause of upper and lower respiratory tract infections, were used: the H1N1 Influenza A virus (IAV) (as model of enveloped RNA virus) and the Human adenovirus type 2 (Adv) (as model of naked DNA virus). Two forms of GlcNAc have been considered, bulk GlcNAc and GlcNAc in nanoform to overcome the possible pharmacokinetic limitations of GlcNAc. Our study suggests that GlcNAc restricts IAV replication but not Adv infection, whereas nano-GlcNAc inhibits both viruses. Moreover, GlcNAc and mainly its nanoformulation were able to reduce the pro-inflammatory cytokine secretion stimulated by viral infection. The correlation between inflammatory and infection inhibition is discussed.
Collapse
|
8
|
Miao Y, Zhang C, Yang L, Zeng X, Hu Y, Xue X, Dai Y, Wei Z. The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TβRII/IL-2Rα. Cell Commun Signal 2022; 20:48. [PMID: 35392915 PMCID: PMC8991706 DOI: 10.1186/s12964-022-00849-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor gamma (PPARγ) is an enhancer of Treg responses, but the mechanisms remain elusive. This study aimed to solve this problem in view of cellular metabolism. METHODS Three recognized PPARγ agonists (synthetic agonist: rosiglitazone; endogenous ligand: 15d-PGJ2; natural product: morin) were used as the tools to activate PPARγ. The fatty acid oxidation (FAO) was evaluated through the detection of fatty acid uptake, oxygen consumption rate, mitochondrial mass, mitochondrial membrane potential and acetyl-CoA level. The involvement of UDP-GlcNAc/N-linked glycosylation axis and the exact role of PPARγ in the action of PPARγ agonists were determined by flow cytometry, Q-PCR, western blotting, a commercial kit for enzyme activity and CRISPR/Cas9-mediated knockout. RESULTS Rosiglitazone, 15d-PGJ2 and morin all increased the frequency of CD4+Foxp3+ Treg cells generated from naïve CD4+ T cells, boosted the transcription of Foxp3, IL-10, CTLA4 and TIGIT, and facilitated the function of Treg cells. They significantly promoted FAO in differentiating Treg cells by up-regulating the levels of CD36 and CPT1 but not other enzymes involved in FAO such as ACADL, ACADM, HADHA or HADHB, and siCD36 or siCPT1 dampened PPARγ agonists-promoted Treg responses. Moreover, PPARγ agonists enhanced UDP-GlcNAc biosynthesis and subsequent N-linked glycosylation, but did not affect the expressions of N-glycan branching enzymes Mgat1, 2, 4 and 5. Notably, the enzyme activity of phosphofructokinase (PFK) was inhibited by PPARγ agonists and the effect was limited by siCD36 or siCPT1, implying PFK to be a link between PPARγ agonists-promoted FAO and UDP-GlcNAc biosynthesis aside from acetyl-CoA. Furthermore, PPARγ agonists facilitated the cell surface abundance of TβRII and IL-2Rα via N-linked glycosylation, thereby activating TGF-β/Smads and IL-2/STAT5 signaling, and the connection between N-linked glycosylation and Treg responses was revealed by tunicamycin. However, the increased surface abundance of CD36 was demonstrated to be mainly owing to PPARγ agonists-up-regulated overall expression. Finally, PPARγ antagonist GW9662 or CRISPR/Cas9-mediated knockout of PPARγ constrained the effects of rosiglitazone, 15d-PGJ2 and morin, confirming the exact role of PPARγ. CONCLUSIONS The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TβRII/IL-2Rα, which is beneficial for inflammatory and autoimmune diseases. Video Abstract.
Collapse
Affiliation(s)
- Yumeng Miao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Changliu Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ling Yang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yuxiao Hu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xinru Xue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
9
|
Mkhikian H, Hayama KL, Khachikyan K, Li C, Zhou RW, Pawling J, Klaus S, Tran PQN, Ly KM, Gong AD, Saryan H, Hai JL, Grigoryan D, Lee PL, Newton BL, Raffatellu M, Dennis JW, Demetriou M. Age-associated impairment of T cell immunity is linked to sex-dimorphic elevation of N-glycan branching. NATURE AGING 2022; 2:231-242. [PMID: 35528547 PMCID: PMC9075523 DOI: 10.1038/s43587-022-00187-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Abstract
Impaired T cell immunity with aging increases mortality from infectious disease. The branching of Asparagine-linked glycans is a critical negative regulator of T cell immunity. Here we show that branching increases with age in females more than males, in naïve more than memory T cells, and in CD4+ more than CD8+ T cells. Female sex hormones and thymic output of naïve T cells (TN) decrease with age, however neither thymectomy nor ovariectomy altered branching. Interleukin-7 (IL-7) signaling was increased in old female more than male mouse TN cells, and triggered increased branching. N-acetylglucosamine, a rate-limiting metabolite for branching, increased with age in humans and synergized with IL-7 to raise branching. Reversing elevated branching rejuvenated T cell function and reduced severity of Salmonella infection in old female mice. These data suggest sex-dimorphic antagonistic pleiotropy, where IL-7 initially benefits immunity through TN maintenance but inhibits TN function by raising branching synergistically with age-dependent increases in N-acetylglucosamine.
Collapse
Affiliation(s)
- Haik Mkhikian
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ken L Hayama
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Khachik Khachikyan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Carey Li
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Raymond W Zhou
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Suzi Klaus
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Phuong Q N Tran
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Kim M Ly
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Andrew D Gong
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Hayk Saryan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Jasper L Hai
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - David Grigoryan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Philip L Lee
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Barbara L Newton
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Mucosal Immunology, Allergy, and Vaccines, Chiba University-UC San Diego, La Jolla, CA, USA
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Demetriou
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
10
|
Nio-Kobayashi J, Itabashi T. Galectins and Their Ligand Glycoconjugates in the Central Nervous System Under Physiological and Pathological Conditions. Front Neuroanat 2021; 15:767330. [PMID: 34720894 PMCID: PMC8554236 DOI: 10.3389/fnana.2021.767330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Galectins are β-galactoside-binding lectins consisting of 15 members in mammals. Galectin-1,-3,-4,-8, and -9 are predominantly expressed in the central nervous system (CNS) and regulate various physiological and pathological events. This review summarizes the current knowledge of the cellular expression and role of galectins in the CNS, and discusses their functions in neurite outgrowth, myelination, and neural stem/progenitor cell niches, as well as in ischemic/hypoxic/traumatic injuries and neurodegenerative diseases such as multiple sclerosis. Galectins are expressed in both neurons and glial cells. Galectin-1 is mainly expressed in motoneurons, whereas galectin-3-positive neurons are broadly distributed throughout the brain, especially in the hypothalamus, indicating its function in the regulation of homeostasis, stress response, and the endocrine/autonomic system. Astrocytes predominantly contain galectin-1, and galectin-3 and−9 are upregulated along with its activation. Activated, but not resting, microglia contain galectin-3, supporting its phagocytic activity. Galectin-1,−3, and -4 are characteristically expressed during oligodendrocyte differentiation. Galectin-3 from microglia promotes oligodendrocyte differentiation and myelination, while galectin-1 and axonal galectin-4 suppress its differentiation and myelination. Galectin-1- and- 3-positive cells are involved in neural stem cell niche formation in the subventricular zone and hippocampal dentate gyrus, and the migration of newly generated neurons and glial cells to the olfactory bulb or damaged lesions. In neurodegenerative diseases, galectin-1,-8, and -9 have neuroprotective and anti-inflammatory activities. Galectin-3 facilitates pro-inflammatory action; however, it also plays an important role during the recovery period. Several ligand glycoconjugates have been identified so far such as laminin, integrins, neural cell adhesion molecule L1, sulfatide, neuropilin-1/plexinA4 receptor complex, triggering receptor on myeloid cells 2, and T cell immunoglobulin and mucin domain. N-glycan branching on lymphocytes and oligodendroglial progenitors mediated by β1,6-N-acetylglucosaminyltransferase V (Mgat5/GnTV) influences galectin-binding, modulating inflammatory responses and remyelination in neurodegenerative diseases. De-sulfated galactosaminoglycans such as keratan sulfate are potential ligands for galectins, especially galectin-3, regulating neural regeneration. Galectins have multitudinous functions depending on cell type and context as well as post-translational modifications, including oxidization, phosphorylation, S-nitrosylation, and cleavage, but there should be certain rules in the expression patterns of galectins and their ligand glycoconjugates, possibly related to glucose metabolism in cells.
Collapse
Affiliation(s)
- Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tetsuya Itabashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Hamala V, Červenková Šťastná L, Kurfiřt M, Cuřínová P, Balouch M, Hrstka R, Voňka P, Karban J. The effect of deoxyfluorination and O-acylation on the cytotoxicity of N-acetyl-D-gluco- and D-galactosamine hemiacetals. Org Biomol Chem 2021; 19:4497-4506. [PMID: 33949602 DOI: 10.1039/d1ob00497b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fully acetylated deoxyfluorinated hexosamine analogues and non-fluorinated 3,4,6-tri-O-acylated N-acetyl-hexosamine hemiacetals have previously been shown to display moderate anti-proliferative activity. We prepared a set of deoxyfluorinated GlcNAc and GalNAc hemiacetals that comprised both features: O-acylation at the non-anomeric positions with an acetyl, propionyl and butanoyl group, and deoxyfluorination at selected positions. Determination of the in vitro cytotoxicity towards the MDA-MB-231 breast cancer and HEK-293 cell lines showed that deoxyfluorination enhanced cytotoxicity in most analogues. Increasing the ester alkyl chain length had a variable effect on the cytotoxicity of fluoro analogues, which contrasted with non-fluorinated hemiacetals where butanoyl derivatives had always higher cytotoxicity than acetates. Reaction with 2-phenylethanethiol indicated that the recently described S-glyco-modification is an unlikely cause of cytotoxicity.
Collapse
Affiliation(s)
- Vojtěch Hamala
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic. and University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic.
| | - Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic. and University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic.
| | - Martin Balouch
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Prague, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, žlutý kopec 7, Brno, 65653, Czech Republic
| | - Petr Voňka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, žlutý kopec 7, Brno, 65653, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic.
| |
Collapse
|
12
|
Abstract
In this review, we focus on the metabolism of mammalian glycan-associated monosaccharides, where the vast majority of our current knowledge comes from research done during the 1960s and 1970s. Most monosaccharides enter the cell using distinct, often tissue specific transporters from the SLC2A family. If not catabolized, these monosaccharides can be activated to donor nucleotide sugars and used for glycan synthesis. Apart from exogenous and dietary sources, all monosaccharides and their associated nucleotide sugars can be synthesized de novo, using mostly glucose to produce all nine nucleotide sugars present in human cells. Today, monosaccharides are used as treatment options for a small number of rare genetic disorders and even some common conditions. Here, we cover therapeutic applications of these sugars and highlight biochemical gaps that must be revisited as we go forward.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Mortales CL, Lee SU, Manousadjian A, Hayama KL, Demetriou M. N-Glycan Branching Decouples B Cell Innate and Adaptive Immunity to Control Inflammatory Demyelination. iScience 2020; 23:101380. [PMID: 32745987 PMCID: PMC7398982 DOI: 10.1016/j.isci.2020.101380] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
B cell depletion potently reduces episodes of inflammatory demyelination in multiple sclerosis (MS), predominantly through loss of innate rather than adaptive immunity. However, molecular mechanisms controlling innate versus adaptive B cell function are poorly understood. N-glycan branching, via interactions with galectins, controls endocytosis and signaling of cell surface receptors to control cell function. Here we report that N-glycan branching in B cells dose dependently reduces pro-inflammatory innate responses by titrating decreases in Toll-like receptor-4 (TLR4) and TLR2 surface expression via endocytosis. In contrast, a minimal level of N-glycan branching maximizes surface retention of the B cell receptor (BCR) and the CD19 co-receptor to promote adaptive immunity. Branched N-glycans inhibit antigen presentation by B cells to reduce T helper cell-17 (TH17)/TH1 differentiation and inflammatory demyelination in mice. Thus, N-glycan branching negatively regulates B cell innate function while promoting/maintaining adaptive immunity via BCR, providing an attractive therapeutic target for MS.
Collapse
Affiliation(s)
- Christie-Lynn Mortales
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA
| | - Sung-Uk Lee
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Armen Manousadjian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Ken L Hayama
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA
| | - Michael Demetriou
- Department of Neurology, University of California, Irvine, CA 92617, USA; Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
14
|
González‐Gualda E, Pàez‐Ribes M, Lozano‐Torres B, Macias D, Wilson JR, González‐López C, Ou H, Mirón‐Barroso S, Zhang Z, Lérida‐Viso A, Blandez JF, Bernardos A, Sancenón F, Rovira M, Fruk L, Martins CP, Serrano M, Doherty GJ, Martínez‐Máñez R, Muñoz‐Espín D. Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell 2020; 19:e13142. [PMID: 32233024 PMCID: PMC7189993 DOI: 10.1111/acel.13142] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence-associated lysosomal β-galactosidase (SA-β-gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose-encapsulated nanoparticles within these cells. Here, we show that galacto-conjugation of the BCL-2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav-Gal), that can be preferentially activated by SA-β-gal activity in a wide range of cell types. Nav-Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav-Gal enhances the cytotoxicity of standard senescence-inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav-Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto-conjugation reduces Navitoclax-induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities.
Collapse
Affiliation(s)
- Estela González‐Gualda
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Marta Pàez‐Ribes
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Beatriz Lozano‐Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de ValènciaValenciaSpain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaCentro de Investigación Príncipe FelipeUniversitat Politècnica de ValènciaValenciaSpain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresIIS La FeUniversitat Politècnica de ValènciaValenciaSpain
| | - David Macias
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Joseph R. Wilson
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Cristina González‐López
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Hui‐Ling Ou
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Sofía Mirón‐Barroso
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Zhenguang Zhang
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Araceli Lérida‐Viso
- Unidad Mixta de Investigación en Nanomedicina y SensoresIIS La FeUniversitat Politècnica de ValènciaValenciaSpain
| | - Juan F. Blandez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de ValènciaValenciaSpain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de ValènciaValenciaSpain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaCentro de Investigación Príncipe FelipeUniversitat Politècnica de ValènciaValenciaSpain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- Senolytic Therapeutics S.L.Parc Científic de BarcelonaBarcelonaSpain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de ValènciaValenciaSpain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaCentro de Investigación Príncipe FelipeUniversitat Politècnica de ValènciaValenciaSpain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresIIS La FeUniversitat Politècnica de ValènciaValenciaSpain
| | - Miguel Rovira
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Ljiljana Fruk
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
| | | | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Gary J. Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustAddenbrooke's HospitalCambridgeUK
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de ValènciaValenciaSpain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaCentro de Investigación Príncipe FelipeUniversitat Politècnica de ValènciaValenciaSpain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresIIS La FeUniversitat Politècnica de ValènciaValenciaSpain
| | - Daniel Muñoz‐Espín
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
15
|
Combination of Imipramine, a sphingomyelinase inhibitor, and β-caryophyllene improve their therapeutic effects on experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 2019; 77:105923. [DOI: 10.1016/j.intimp.2019.105923] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
|