1
|
Costa CE, Romaní A, Domingues L. Overview of resveratrol properties, applications, and advances in microbial precision fermentation. Crit Rev Biotechnol 2025; 45:788-804. [PMID: 39582165 DOI: 10.1080/07388551.2024.2424362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 07/13/2024] [Indexed: 11/26/2024]
Abstract
Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol's multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol's promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While Saccharomyces cerevisiae has been the most used host, non-conventional yeasts like Yarrowia lipolytica and bacteria like Escherichia coli have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.
Collapse
Affiliation(s)
- Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Aloia Romaní
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Sarhan OM, Abdelqader SO, Mostafa MSA, Badawi MAE, Ahmed MAM, El Sayed WGA, Gebril MI. Exploring the antidiabetic effect of various therapeutic essential oils synergistically with repaglinide. J Pharm Sci 2025; 114:103721. [PMID: 40058589 DOI: 10.1016/j.xphs.2025.103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE This study aimed to evaluate the antidiabetic efficacy of microemulsions formulated with cardamom oil, black seed oil, and olive oil. The goal was to determine the optimal formulation for stable microemulsions and assess their potential as innovative drug delivery systems for the antidiabetic drug repaglinide. METHODS Initial phase diagrams were constructed to identify the optimal ratios of oil, water, surfactant (Tween 80), and cosurfactant (ethanol) for producing stable microemulsions. The physical attributes of the resulting formulations, such as droplet size, zeta potential, and morphology, were characterized using transmission electron microscopy. Drug release profiles of microemulsions containing repaglinide were evaluated using the dialysis method. Moreover, vivo studies were conducted to assess the therapeutic efficacy of cardamom oil microemulsions compared to standard commercial repaglinide formulations. RESULTS Microemulsions exhibited suitable properties with optimal particle size, well-defined spherical droplets, and optimized zeta potential. Drug release studies indicated that cardamom oil-based microemulsions demonstrated superior release characteristics, providing a more sustained and controlled release of repaglinide compared to microemulsions containing black seed or olive oil. In vivo studies revealed a significant improvement in antidiabetic outcomes with cardamom oil microemulsions over standard commercial repaglinide formulations. The enhanced efficacy was attributed to improved bioavailability and the controlled release properties of the drug. CONCLUSION This research underscores the potential of cardamom oil-based microemulsions as effective antidiabetic drug delivery systems. With superior physicochemical properties and controlled release profiles, they promise innovative treatment options for diabetes, potentially improving therapeutic outcomes for patients.
Collapse
Affiliation(s)
- Omnia M Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt.
| | - Samaa O Abdelqader
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt
| | | | - Manar A E Badawi
- Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt
| | | | | | - Mostafa I Gebril
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt
| |
Collapse
|
3
|
Chen N, Sun H, Wang MX, Chen M, Guo X, Ren QD, Han QQ, Chen YY, Liu C, Li NY. Baicalin-loaded peony seed polypeptide nanoparticles via a pH-driven method: Characterization, release kinetics, and in vitro anti-inflammatory effects. Int J Biol Macromol 2025; 310:142958. [PMID: 40210039 DOI: 10.1016/j.ijbiomac.2025.142958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Baicalin (BA), a flavonoid with diverse bioactivities, faces clinical application challenges due to its poor solubility, low bioavailability, and limited stability. This study reports on the development of BA-loaded peony seed polypeptide nanoparticles (BA-PSP NPs) using a pH-driven method to overcome these limitations. These nanoparticles (NPs) were spherical, 88.20 ± 2.19 nm in size, with a zeta potential of -35 mV, demonstrating excellent stability under thermal, pH, salt ion, and storage conditions. Physicochemical assays confirmed that BA was encapsulated in an amorphous state within the peony seed peptide matrix, with an encapsulation efficiency of 81.37 ± 0.57 %. The nanosystem effectively protected BA from degradation in simulated gastrointestinal environments. In vitro assays revealed that BA-PSP NPs exerted a superior anti-inflammatory effect compared to free BA mediated via inhibiting pro-inflammatory factor secretion (IL-1β, IL-6, and TNF-α) and promoting anti-inflammatory factor production (IL-10) in LPS-induced RAW264.7 cells, as well as validated via qPCR for corresponding mRNA regulation. This study develops pH-driven self-assembled peony seed peptide nanoparticles as green and safe colon-targeted carriers, effectively encapsulating polyphenols with enhanced stability and bioavailability, thereby providing technical support for functional food development and precision nutraceutical delivery systems.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Hui Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Mu-Xuan Wang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Mo Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Qi-Dong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Qing-Qing Han
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Ying-Ying Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China.
| | - Ning-Yang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China.
| |
Collapse
|
4
|
Chen L, Zhang X, Xie J, Xiao T, Zhong H, He H, Zhang G, Liu H. Valsartan Loaded Solid Self-Nanoemulsifying Delivery System to Enhance Oral Absorption and Bioavailability. AAPS PharmSciTech 2025; 26:45. [PMID: 39849239 DOI: 10.1208/s12249-024-03032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Valsartan (VST) is an angiotensin II receptor antagonist with low oral bioavailability. The present study developed a solid self-nanoemulsifying drug delivery system (S-SNEDDS) to enhance the oral absorption and bioavailability of VST. VST-loaded liquid SNEDDS (VST@L-SNEDDS) was prepared by investigating the solubility of VST and constructing the pseudo-ternary phase diagrams. The formulation of VST@S-SNEDDS was obtained by adsorbing VST@L-SNEDDS onto a solid carrier. In vitro studies including drug dissolution, stability, cytotoxicity, and Caco-2 uptake of VST@S-SNEDDS were assessed. An in vivo pharmacokinetic study of VST@S-SNEDDS was employed to evaluate the oral bioavailability of VST. VST@L-SNEDDS, with an average particle size of 19.90 nm and zeta potential of -20.57 mV, consisted of 12.37% VST (drug loading), 21.91% ethyl oleate, 45.50% RH 40, and 20.22% Transcutol HP. VST@S-SNEDDS was prepared using Neusilin® UFL2 as a solid adsorbent, which contained VST@L-SNEDDS at 2.28 ± 0.15 g/g. The in vitro release study demonstrated that VST@S-SNEDDS exhibited rapid release characteristic without affecting by the pH of the media, and dissolution rates exceeded 90% within 60 min in different media. The long-term stability of VST@S-SNEDDS was better than that of VST@L-SNEDDS. These two formulations increased the Caco-2 uptake significantly. The area under the drug concentration-time curve (AUC0-24h) and peak drug concentration in plasma (Cmax) of VST@S-SNEDDS increased by 2.28-fold and 4.86-fold compared to raw VST, respectively. The proposed VST@S-SNEDDS represents a novel approach to enhance the oral absorption and bioavailability of VST, providing a promising avenue for hypertension treatment.
Collapse
Affiliation(s)
- Lusi Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xin Zhang
- School of Food and Biological, Wuyi University, Jiangmen, 529000, China
| | - Jiayu Xie
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Tao Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiying Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Haibing He
- Jiangsu Haizhihong Biomedical Co., Ltd, Nantong, 226133, China.
| | - Guoqing Zhang
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226133, China.
| | - Hongfei Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
- School of Food and Biological, Wuyi University, Jiangmen, 529000, China.
- Jiangsu Haizhihong Biomedical Co., Ltd, Nantong, 226133, China.
| |
Collapse
|
5
|
Pereira CFDA, Melo MNDO, de Campos VEB, Pereira IP, Oliveira AP, Rocha MS, Batista JVDC, Paes de Almeida V, Monchak IT, Ricci-Júnior E, Garrett R, Carvalho AGA, Manfron J, Baumgartner S, Holandino C. Self-Nanoemulsifying Drug Delivery System (SNEDDS) Using Lipophilic Extract of Viscum album subsp. austriacum (Wiesb.) Vollm. Int J Nanomedicine 2024; 19:5953-5972. [PMID: 38895147 PMCID: PMC11185262 DOI: 10.2147/ijn.s464508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Background and Purpose Natural products are potential sources of anticancer components. Among various species, the lipophilic extract of the Viscum album subsp. austriacum (Wiesb.) Vollm. (VALE) has shown promising therapeutic potential. The present work aimed to qualify the plant source and characterize the extract's chemical profile. In addition, a self-nanoemulsifying drug delivery system (SNEDDS) containing VALE (SNEDDS-VALE) was developed. Methods V. album subsp. austriacum histochemistry was performed, and the chemical profile of VALE was analyzed by GC-MS. After the SNEEDS-VALE development, its morphology was visualized by transmission electron microscopy (TEM), while its stability was evaluated by the average droplet size, polydispersity index (PdI) and pH. Lastly, SNEDDS-VALE chemical stability was evaluated by LC-DAD-MS. Results The histochemical analysis showed the presence of lipophilic compounds in the leaves and stems. The major compound in the VALE was oleanolic acid, followed by lupeol acetate and ursolic acid. SNEDDS was composed of medium chain triglyceride and Kolliphor® RH 40 (PEG-40 hydrogenated castor oil). A homogeneous, isotropic and stable nanoemulsion was obtained, with an average size of 36.87 ± 1.04 nm and PdI of 0.14 ± 0.02, for 14 weeks. Conclusion This is the first histochemistry analysis of V. album subsp. austriacum growing on Pinus sylvestris L. which provided detailed information regarding its lipophilic compounds. A homogeneous, isotropic and stable SNEDDS-VALE was obtained to improve the low water solubility of VALE. Further, in vitro and in vivo experiments should be performed, in order to evaluate the antitumoral potential of SNEDDS-VALE.
Collapse
Affiliation(s)
- Camila Faria de Amorim Pereira
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle Nonato de Oliveira Melo
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ivania Paiva Pereira
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Passos Oliveira
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Souza Rocha
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Vitor da Costa Batista
- Society for Cancer Research, Hiscia Institute, Arlesheim, Switzerland
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Valter Paes de Almeida
- Postgraduate Program in Pharmaceutical Sciences, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Irailson Thierry Monchak
- Postgraduate Program in Pharmaceutical Sciences, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Eduardo Ricci-Júnior
- Galenic Development Laboratory (LADEG), Department of Drugs and Medicines, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Garrett
- Metabolomics Laboratory, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jane Manfron
- Postgraduate Program in Pharmaceutical Sciences, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Stephan Baumgartner
- Society for Cancer Research, Hiscia Institute, Arlesheim, Switzerland
- Institute of Integrative Medicine, University of Witten/Herdecke, Herdecke, Germany
- Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland
| | - Carla Holandino
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Society for Cancer Research, Hiscia Institute, Arlesheim, Switzerland
| |
Collapse
|
6
|
Zhang G, Pan J, Dong X, Li X, Song Z, Liu Y, Liu X, Li Y, Li Q. Construction of atom co-sharing Bi/Bi 4O 5Br 2 nanosheet heterojunction for plasmonic-enhanced visible-light-driven photocatalytic antibacterial activity. Colloids Surf B Biointerfaces 2024; 238:113923. [PMID: 38692173 DOI: 10.1016/j.colsurfb.2024.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The rapid advancement of photodynamic therapy (PDT) antibacterial materials has led to promising alternatives to antibiotics for treating bacterial infections. However, antibacterial drugs have poor light absorption and utilization rates, which limits their practical application. Constructing two-dimensional (2D) heterojunctions from materials with matching photophysical properties has emerged as a highly effective strategy for achieving high-efficiency photo-antibacterial performance. Here, we designed and prepared an atom co-sharing Bi/Bi4O5Br2 nanosheet heterojunction by a simple in situ reduction. This heterojunction material combines outstanding biocompatibility with excellent bactericidal efficiency, which exceeded 90 % against Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) under visible light irradiation, around nine-fold higher than that with pure Bi4O5Br2 nanosheets. The results suggest that localized surface plasmon resonance (LSPR) of shared Bi atoms on the Bi4O5Br2 nanosheets promotes light utilization and the separation and transfer of photo-generated charges, thus producing more abundant reactive oxygen species (ROS), which can partake in the PDT antibacterial effect. Our study underscores the potential utility of LSPR-enhanced Bi-based nanosheet heterojunctions for safe and efficient PDT to combat bacterial infections.
Collapse
Affiliation(s)
- Guixue Zhang
- Institute of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Jie Pan
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Xiaoyi Dong
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xue Li
- Department of Pharmacy, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Zhiguo Song
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yan Liu
- Institute of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Xiaomeng Liu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yongjin Li
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Qiyan Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming 650032, China.
| |
Collapse
|
7
|
Zhang H, Zhang Y, Hu Y, Wei S, Adu-Frimpong M, Sun C, Qi G. Improving cellular uptake and synergetic anti-tumor effects of magnolol and Brucea javanica oil through self-microemulsion. Drug Dev Ind Pharm 2024; 50:401-409. [PMID: 38466185 DOI: 10.1080/03639045.2024.2329730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Magnolol (MG) and Brucea javanica (L.) Merr. oil (BJO) possess synergetic anti-tumor effects, but have poor water solubility and stability, which results in low oral bioavailability. SIGNIFICANCE The MG loaded self-microemulsion drug delivery system (MG-SMDDS) with BJO as oil phase component was utilized to improve the cellular uptake and synergetic anti-tumor effects. METHODS Compatibility study and pseudoternary phase diagram (PTPD) were respectively employed to screen for the composition and proportion of oil phase in the formulation. Central composite design-effect surface method was applied to optimize proportion of each formulation condition. The droplet size, ζ-potential, colloid stability, encapsulation rate (ER) and in vitro dissolution rate of MG-SMDDS were evaluated. Furthermore, cellular uptake and cytotoxicity of the microemulsion on HepG2 cells were assessed. RESULTS The optimal composition of MG-SMDDS was: MG (9.09%), castor oil (7.40%), BJO (2.47%), Cremophor EL 35 (54.04%) and 1, 2-propanediol (27.01%). The MG-SMDDS exhibited satisfactory droplet size, ζ-potential, colloid stability and ER, as well as faster dissolution rate than free MG. More importantly, SMEDDS containing BJO could enhance the cellular uptake and cytotoxicity of free BJO and free MG on tumor cells. CONCLUSIONS The BJO self-microemulsion delivery technique can provide an idea for design of oral delivery vehicles based on BJO.
Collapse
Affiliation(s)
- Huiyun Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jiangsu, Yancheng, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jiangsu, Yancheng, China
| | - Yunfei Hu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jiangsu, Yancheng, China
| | - Shunru Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jiangsu, Yancheng, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana,UK
| | - Congyong Sun
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Gang Qi
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jiangsu, Yancheng, China
| |
Collapse
|
8
|
Pant T, Uche N, Juric M, Zielonka J, Bai X. Regulation of immunomodulatory networks by Nrf2-activation in immune cells: Redox control and therapeutic potential in inflammatory diseases. Redox Biol 2024; 70:103077. [PMID: 38359749 PMCID: PMC10877431 DOI: 10.1016/j.redox.2024.103077] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Nnamdi Uche
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
9
|
Arpa MD, Çağlar EŞ, Güreşçi D, Sipahi H, Üstündağ Okur N. Novel Microemulsion Containing Benzocaine and Fusidic Acid Simultaneously: Formulation, Characterization, and In Vitro Evaluation for Wound Healing. AAPS PharmSciTech 2024; 25:53. [PMID: 38443698 DOI: 10.1208/s12249-024-02762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Modern drug carrier technologies, such as microemulsions with small droplet sizes and high surface areas, improve the ability of low water solubility active ingredients to permeate and localize. The goal of this study was to create microemulsion formulations for wound healing that contained both fusidic acid (FA), an antibacterial agent, and benzocaine (BNZ), a local anesthetic. Studies on characterization were carried out, including viscosity, droplet size, and zeta potential. The drug-loaded microemulsion had a stable structure with -3.014 ± 1.265 mV of zeta potential and 19.388 ± 0.480 nm of droplet size. In both in vitro release and ex vivo permeability studies, the microemulsion was compared with Fucidin cream and oily BNZ solution. According to the drug release studies, BNZ release from the microemulsion and the BNZ solution showed a similar profile (p > 0.05), while FA release from the microemulsion had a higher drug release compared to Fucidin cream (p < 0.001). The microemulsion presented lower drug permeation (p > 0.05) for both active ingredients, on the other hand, provided higher drug accumulation compared to the control preparations. Moreover, according to the results of in vitro wound healing activity, the microemulsion indicated a dose-dependent wound healing potential with the highest wound healing activity at the highest concentrations. To the best of our knowledge, this developed BNZ- and FA-loaded microemulsion would be a promising candidate to create new opportunities for wound healing thanks to present the active ingredients, which have low water solubility, in a single formulation and achieved higher accumulation than control preparations.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences, 34668, Istanbul, Turkey
| | - Dilara Güreşçi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Hande Sipahi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, 34668, Istanbul, Turkey.
| |
Collapse
|
10
|
Huang L, Huang XH, Yang X, Hu JQ, Zhu YZ, Yan PY, Xie Y. Novel nano-drug delivery system for natural products and their application. Pharmacol Res 2024; 201:107100. [PMID: 38341055 DOI: 10.1016/j.phrs.2024.107100] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The development of natural products for potential new drugs faces obstacles such as unknown mechanisms, poor solubility, and limited bioavailability, which limit the broadened applicability of natural products. Therefore, there is a need for advanced pharmaceutical formulations of active compounds or natural products. In recent years, novel nano-drug delivery systems (NDDS) for natural products, including nanosuspensions, nanoliposomes, micelle, microemulsions/self-microemulsions, nanocapsules, and solid lipid nanoparticles, have been developed to improve solubility, bioavailability, and tissue distribution as well as for prolonged retention and enhanced permeation. Here, we updated the NDDS delivery systems used for natural products with the potential enhancement in therapeutic efficiency observed with nano-delivery systems.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xue-Hua Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xi Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jia-Qin Hu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Pei-Yu Yan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Talianu MT, Dinu-Pîrvu CE, Ghica MV, Anuţa V, Prisada RM, Popa L. Development and Characterization of New Miconazole-Based Microemulsions for Buccal Delivery by Implementing a Full Factorial Design Modeling. Pharmaceutics 2024; 16:271. [PMID: 38399325 PMCID: PMC10893023 DOI: 10.3390/pharmaceutics16020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
This research aimed to develop miconazole-based microemulsions using oleic acid as a natural lipophilic phase and a stabilizer mixture comprising Tween 20 and PEG 400 to solubilize miconazole as an antifungal agent known for its activity in oral candidiasis and to improve its bioavailability. The formulation and preparation process was combined with a mathematical approach using a 23-full factorial plan. Fluid and gel-like microemulsions were obtained and analyzed considering pH, conductivity, and refractive index, followed by extensive analyses focused on droplet size, zeta potential, rheological behavior, and goniometry. In vitro release tests were performed to assess their biopharmaceutical characteristics. Independent variables coded X1-Oleic acid (%, w/w), X2-Tween 20 (%, w/w), and X3-PEG 400 (%, w/w) were analyzed in relationship with three main outputs like mean droplet size, work of adhesion, and diffusion coefficient by combining statistical tools with response surface methodology. The microemulsion containing miconazole base-2%, oleic acid-5%, Tween 20-40%, PEG 400-20%, and water-33% exhibited a mean droplet size of 119.6 nm, a work of adhesion of 71.98 mN/m, a diffusion coefficient of 2.11·10-5 cm2/s, and together with remarked attributes of two gel-like systems formulated with higher oil concentrations, modeled the final optimization step of microemulsions as potential systems for buccal delivery.
Collapse
Affiliation(s)
- Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Răzvan Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
12
|
Wang B, Jiang HM, Qi LM, Li X, Huang Q, Xie X, Xia Q. Deciphering resveratrol's role in modulating pathological pain: From molecular mechanisms to clinical relevance. Phytother Res 2024; 38:59-73. [PMID: 37795923 DOI: 10.1002/ptr.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Pathological pain, a multifaceted and debilitating ailment originating from injury or post-injury inflammation of the somatosensory system, poses a global health challenge. Despite its ubiquity, reliable therapeutic strategies remain elusive. To solve this problem, resveratrol, a naturally occurring nonflavonoid polyphenol, has emerged as a potential beacon of hope owing to its anti-inflammatory, antioxidant, and immunomodulatory capabilities. These properties potentially position resveratrol as an efficacious candidate for the management of pathological pain. This concise review summaries current experimental and clinical findings to underscore the therapeutic potential of resveratrol in pathological pain, casting light on the complex underlying pathophysiology. Our exploration suggests that resveratrol may exert its analgesic effect by the modulating pivotal signaling pathways, including PI3K/Akt/mTOR, TNFR1/NF-κB, MAPKs, and Nrf2. Moreover, resveratrol appears to attenuate spinal microglia activation, regulate primary receptors in dorsal root sensory neurons, inhibit pertinent voltage-gated ion channels, and curb the expression of inflammatory mediators and oxidative stress responses. The objective of this review is to encapsulate the pharmacological activity of resveratrol, including its probable signaling pathways, pharmacokinetics, and toxicology pertinent to the treatment of pathological pain. Hopefully, we aim to map out promising trajectories for the development of resveratrol as a potential analgesic.
Collapse
Affiliation(s)
- Biao Wang
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hai-Mei Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu-Ming Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Xia
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
13
|
Virani A, Dholaria N, Matharoo N, Michniak-Kohn B. A Study of Microemulsion Systems for Transdermal Delivery of Risperidone Using Penetration Enhancers. J Pharm Sci 2023; 112:3109-3119. [PMID: 37429357 DOI: 10.1016/j.xphs.2023.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The aim of this study was to develop and characterize microemulsion formulations using penetration enhancers as potential transdermal delivery systems for risperidone. Initially, a simple formulation of risperidone in Propylene Glycol (PG) was prepared as a control formulation, together with formulations incorporating various penetration enhancers, alone and/or in combination, and also microemulsion formulations with various chemical penetration enhancers, were prepared and all were evaluated for risperidone transdermal delivery. An ex-vivo permeation study was carried out using human cadaver skin and vertical glass Franz diffusion cells to compare all the microemulsion formulations. The microemulsion prepared from oleic acid as the oil (15%), Tween 80 (15%) as the surfactant and isopropyl alcohol (20%) as the co-surfactant, and water (50%) showed higher permeation with a flux value of 32.50±3.60 ug/hr/sq.cm, a globule size of 2.96±0.01 nm, a polydispersity index of 0.33±0.02 and pH of 4.95. This novel in vitro research disclosed that an optimized microemulsion formulated using penetration enhancers was able to increase permeation of risperidone by 14-fold compared to the control formulation. The data suggested that microemulsions may be useful in the delivery of risperidone via the transdermal route.
Collapse
Affiliation(s)
- Amitkumar Virani
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Nirali Dholaria
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Namrata Matharoo
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Bozena Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
14
|
Liu D, Liu R, Zhuang Z, Yao B, Qin C, Ma F, Shi J. Preparation of Self-microemulsion Solids of Kaempferia galanga (L.) Volatile Oil and Its Effect on Rats with Gastric Ulcer. AAPS PharmSciTech 2023; 24:243. [PMID: 38030940 DOI: 10.1208/s12249-023-02693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Kaempferia galanga volatile oil (KVO), the main effective component of the medicinal plant Kaempferia galanga L., possesses a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-angiogenic activities and has therapeutic potential for gastric ulcer (GU). However, poor solubility as well as instability limits the clinical application of KVO. In this study, K. galanga volatile oil self-microemulsion solids (KVO-SSMEDDS) were prepared to improve its bioavailability and stability, and the therapeutic effects were evaluated in a rat model with GU. The ratio of oil phase, emulsifier, and co-emulsifier in the KVO-SMEDDS prescription were optimized by plotting the pseudo-ternary phase diagram with the star point design-response surface method. Based on the optimal prescription, self-microemulsifying drug delivery system (SMEDDS) was prepared as solid particles (S-SMEDDS). The prepared KVO-SSMEDDS had a rounded and non-adhesive appearance, formed an O/W emulsion after dissolution in water, and had a uniform particle size distribution with good stability and solubility. It was administered to GU model animals, and the results showed that a certain dose of KVO-SSMEDDS solution could increase the content of gastric mucosal protective factors PGE2, TGF-α, and EGF in gastric tissues and serum, and the expression of inflammatory factors IL-8 and TNF-α was downregulated. Meanwhile, the expression of the NF-κB/COX-2 pathway proteins was inhibited. In conclusion, the prepared KVO-SSMEDDS has good dispersion, solubility, and stability and has a therapeutic effect on rats with GU.
Collapse
Affiliation(s)
- Dongrong Liu
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China
| | - Ruiping Liu
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China
| | - Zebin Zhuang
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China
| | - Bijin Yao
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China
| | - Chuyue Qin
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China
| | - Fangli Ma
- Faculty of Rehabilitation & Medical Science, Guangzhou International Economics College, No. 28 Dayuan North Road, Shatai Road, Guangzhou, 510540, Guangdong, China.
| | - Jun Shi
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China.
- Engineering & Technology Research of Topical Precise Drug Delivery System, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Chen J, Yao Y. Phytoglycogen to Enhance the Solubility and in-vitro Permeation of Resveratrol. FOOD BIOPHYS 2023; 18:1-10. [PMID: 37362010 PMCID: PMC10063939 DOI: 10.1007/s11483-023-09785-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
This study investigated the capability of phytoglycogen (PG) to improve the water-soluble amount and bioavailability of resveratrol (RES). RES and PG were incorporated through co-solvent mixing and spray-drying to form PG-RES solid dispersions. The soluble amount of RES of PG-RES solid dispersions reached 289.6 μg/mL at PG:RES ratio of 50:1, compared with 45.6 μg/mL for RES alone. X-ray powder diffraction and Fourier-transform infrared spectroscopy tests suggested a significant reduction of RES crystallinity in PG-RES solid dispersions and the formation of hydrogen bonds between RES and PG. Caco-2 monolayer permeation tests showed that, at low RES loading concentrations (15 and 30 μg/mL), PG-RES solid dispersions achieved greater permeation of RES (0.60 and 1.32 μg/well, respectively) than RES alone (0.32 and 0.90 μg/well, respectively). At an RES loading of 150 μg/mL, PG-RES solid dispersion realized RES permeation of 5.89 μg/well, suggesting the potential of PG in enhancing the bioavailability of RES.
Collapse
Affiliation(s)
- Jingfan Chen
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 United States
| | - Yuan Yao
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 United States
| |
Collapse
|
16
|
Wei C, Wang Q, Weng W, Adu-Frimpong M, Toreniyazov E, Ji H, Xu X, Yu J. Enhanced oral bioavailability and anti-hyperuricemic activity of liquiritin via a self-nanoemulsifying drug delivery system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2032-2040. [PMID: 34558068 DOI: 10.1002/jsfa.11542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND This study focused on the development of a self-nanoemulsifying drug delivery system (SNEDDS) to improve, potentially, the solubility and oral bioavailability of liquiritin (LQ). METHODS The solubility of LQ in different types of excipient, namely oils (OLs), emulsifiers (EMs), and co-emulsifiers (CO-EMs), was evaluated, and a pseudo-ternary phase diagram (PTPD) and the formulation optimization were established. The prepared self-nanoemulsifying drug delivery system of liquiritin (LQ-SNEDDS) was assessed using droplet size (DS), zeta potential (ZP), polydispersity index (PDI), droplet morphology, drug release in vitro, and oral bioavailability. RESULTS After the dilution of the LQ-SNEDDS, a transparent nanoemulsion was obtained with an acceptable DS (24.70 ± 0.73 nm), ZP (-18.69 ± 1.44 mV), and PDI (0.122 ± 0.006). The LQ-SNEDDS that was developed had a better release rate in vitro than the free LQ suspension. Pharmacokinetic evaluation showed that the relative oral bioavailability of LQ-SNEDDS was increased by 5.53 times, and LQ-SNEDDS exhibited a delayed half life and longer retention time in comparison with those of free LQ. Similarly, LQ-SNEDDS had a better urate lowering effect and provided better organ protection than free LQ at the same dose (P < 0.05). CONCLUSIONS The incorporation of LQ into SNEDDS could serve as a promising approach to improve the solubility, oral bioavailability, and anti-hyperuricemic effect of LQ. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunmei Wei
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Wen Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Applied Chemistry and Biochemistry, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Elmurat Toreniyazov
- Ashkent State Agricultural University (Nukus Branch), Nukus, Republic of Uzbekistan
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| | - Hao Ji
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| |
Collapse
|
17
|
Liu M, Chen S, Zhiwen Z, Li H, Sun G, Yin N, Wen J. Anti-ageing peptides and proteins for topical applications: a review. Pharm Dev Technol 2021; 27:108-125. [PMID: 34957891 DOI: 10.1080/10837450.2021.2023569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin ageing is a cumulative result of oxidative stress, predominantly caused by reactive oxygen species (ROS). Respiration, pollutants, toxins, or ultraviolet A (UVA) irradiation produce ROS with 80% of skin damage attributed to UVA irradiation. Anti-ageing peptides and proteins are considered valuable compounds for removing ROS to prevent skin ageing and maintenance of skin health. In this review, skin ageing theory has been illustrated with a focus on the mechanism and relationship with anti-ageing peptides and proteins. The effects, classification, and transport pathways of anti-ageing peptides and proteins across skin are summarized and discussed. Over the last decade, several novel formulations and advanced strategies have been developed to overcome the challenges in the dermal delivery of proteins and peptides for skin ageing. This article also provides an in-depth review of the latest advancements in the dermal delivery of anti-ageing proteins and peptides. Based on these studies, this review prospected several semi-solid dosage forms to achieve topical applicability for anti-ageing peptides and proteins.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Zhang Zhiwen
- Shanghai Institute of Materia Medica, Chinese Academy of Science, China
| | - Hongyu Li
- School of Pharmacy, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Xie Z, Chen X. Healthy benefits and edible delivery systems of resveratrol: a review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhenfeng Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Grilc NK, Sova M, Kristl J. Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases. Pharmaceutics 2021; 13:2137. [PMID: 34959418 PMCID: PMC8708625 DOI: 10.3390/pharmaceutics13122137] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is associated with a wide range of diseases characterised by oxidant-mediated disturbances of various signalling pathways and cellular damage. The only effective strategy for the prevention of cellular damage is to limit the production of oxidants and support their efficient removal. The implication of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the cellular redox status has spurred new interest in the use of its natural modulators (e.g., curcumin, resveratrol). Unfortunately, most natural Nrf2 modulators are poorly soluble and show extensive pre-systemic metabolism, low oral bioavailability, and rapid elimination, which necessitates formulation strategies to circumvent these limitations. This paper provides a brief introduction on the cellular and molecular mechanisms involved in Nrf2 modulation and an overview of commonly studied formulations for the improvement of oral bioavailability and in vivo pharmacokinetics of Nrf2 modulators. Some formulations that have also been studied in vivo are discussed, including solid dispersions, self-microemulsifying drug delivery systems, and nanotechnology approaches, such as polymeric and solid lipid nanoparticles, nanocrystals, and micelles. Lastly, brief considerations of nano drug delivery systems for the delivery of Nrf2 modulators to the brain, are provided. The literature reviewed shows that the formulations discussed can provide various improvements to the bioavailability and pharmacokinetics of natural Nrf2 modulators. This has been demonstrated in animal models and clinical studies, thereby increasing the potential for the translation of natural Nrf2 modulators into clinical practice.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Matej Sova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Julijana Kristl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
20
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
21
|
Li YH, Wang YS, Zhao JS, Li ZY, Chen HH. A pH-sensitive curcumin loaded microemulsion-filled alginate and porous starch composite gels: Characterization, in vitro release kinetics and biological activity. Int J Biol Macromol 2021; 182:1863-1873. [PMID: 34058207 DOI: 10.1016/j.ijbiomac.2021.05.174] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022]
Abstract
To improve the controlled release and stability of the loaded drug, the alginate-porous starch solution, as the gel matrix (GM), was prepared and added into curcumin-loaded microemulsion (CUR-ME) in a certain proportion, and then mixed with slow-gelling agents (CaCO3 + d-glucono-δ-lactone) to prepared curcumin-loaded microemulsion gel (CUR-ME-G). With increasing the proportion of GM from 25% (CUR-ME3G1) to 83% (CUR-ME1G5), the drug loading efficiency increased from 24% to 98% and the maximum drug loading capacity (14.9 mg/g) was found in CUR-ME1G3 with 75% GM. Moreover, a denser structure that entrapped all microemulsion droplets was formed with increasing the proportion of microemulsion according to the observation of scanning electron microscopy. This was also confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy that no new peaks appeared in CUR-ME-G, while the hydrogen bonding interactions might exist between curcumin and sodium alginate. The in vitro release of the CUR-ME-G followed diffusion-controlled mechanism that was consistent with the first-order kinetic model. The release rate depended on the components of the CUR-ME-G and the pH value of the release medium. CUR-ME-G with curcumin concentration of 0.20% exhibited the best biological activity. CUR-ME-G might provide a potential application in the smart drug delivery systems.
Collapse
Affiliation(s)
- Ying-Hui Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yu-Sheng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jing-Song Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zi-Yan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
22
|
Ghazwani M, Alam P, Alqarni MH, Yusufoglu HS, Shakeel F. Solubilization of Trans-Resveratrol in Some Mono-Solvents and Various Propylene Glycol + Water Mixtures. Molecules 2021; 26:3091. [PMID: 34064283 PMCID: PMC8196874 DOI: 10.3390/molecules26113091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
This research deals with the determination of solubility, Hansen solubility parameters, dissolution properties, enthalpy-entropy compensation, and computational modeling of a naturally-derived bioactive compound trans-resveratrol (TRV) in water, methanol, ethanol, n-propanol, n-butanol, propylene glycol (PG), and various PG + water mixtures. The solubility of TRV in six different mono-solvents and various PG + water mixtures was determined at 298.2-318.2 K and 0.1 MPa. The measured experimental solubility values of TRV were regressed using six different computational/theoretical models, including van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsly-Roseman, Jouyban-Acree, and van't Hoff-Jouyban-Acree models, with average uncertainties of less than 3.0%. The maxima of TRV solubility in mole fraction was obtained in neat PG (2.62 × 10-2) at 318.2 K. However, the minima of TRV solubility in the mole fraction was recorded in neat water (3.12 × 10-6) at 298.2 K. Thermodynamic calculation of TRV dissolution properties suggested an endothermic and entropy-driven dissolution of TRV in all studied mono-solvents and various PG + water mixtures. Solvation behavior evaluation indicated an enthalpy-driven mechanism as the main mechanism for TRV solvation. Based on these data and observations, PG has been chosen as the best mono-solvent for TRV solubilization.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (P.A.); (M.H.A.); (H.S.Y.)
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (P.A.); (M.H.A.); (H.S.Y.)
| | - Hasan S. Yusufoglu
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (P.A.); (M.H.A.); (H.S.Y.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Jaisamut P, Wanna S, Limsuwan S, Chusri S, Wiwattanawongsa K, Wiwattanapatapee R. Enhanced Oral Bioavailability and Improved Biological Activities of a Quercetin/Resveratrol Combination Using a Liquid Self-Microemulsifying Drug Delivery System. PLANTA MEDICA 2021; 87:336-346. [PMID: 33176379 DOI: 10.1055/a-1270-7606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Both quercetin and resveratrol are promising plant-derived compounds with various well-described biological activities; however, they are categorized as having low aqueous solubility and labile natural compounds. The purpose of the present study was to propose a drug delivery system to enhance the oral bioavailability of combined quercetin and resveratrol. The suitable self-microemulsifying formulation containing quercetin together with resveratrol comprised 100 mg Capryol 90, 700 mg Cremophor EL, 200 mg Labrasol, 20 mg quercetin, and 20 mg resveratrol, which gave a particle size of 16.91 ± 0.08 nm and was stable under both intermediate and accelerated storage conditions for 12 months. The percentages of release for quercetin and resveratrol in the self-microemulsifying formulation were 75.88 ± 1.44 and 86.32 ± 2.32%, respectively, at 30 min. In rats, an in vivo pharmacokinetics study revealed that the area under the curve of the self-microemulsifying formulation containing quercetin and resveratrol increased approximately ninefold for quercetin and threefold for resveratrol compared with the unformulated compounds. Moreover, the self-microemulsifying formulation containing quercetin and resveratrol slightly enhanced the in vitro antioxidant and cytotoxic effects on AGS, Caco-2, and HT-29 cells. These findings demonstrate that the self-microemulsifying formulation containing quercetin and resveratrol could successfully enhance the oral bioavailability of the combination of quercetin and resveratrol without interfering with their biological activities. These results provide valuable information for more in-depth research into the utilization of combined quercetin and resveratrol.
Collapse
Affiliation(s)
- Patcharawalai Jaisamut
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Subhaphorn Wanna
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Surasak Limsuwan
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sasitorn Chusri
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kamonthip Wiwattanawongsa
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Ruedeekorn Wiwattanapatapee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
24
|
Górska A, Krupa A, Majda D, Kulinowski P, Kurek M, Węglarz WP, Jachowicz R. Poly(Vinyl Alcohol) Cryogel Membranes Loaded with Resveratrol as Potential Active Wound Dressings. AAPS PharmSciTech 2021; 22:109. [PMID: 33718994 PMCID: PMC7956935 DOI: 10.1208/s12249-021-01976-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrogel wound dressings are highly effective in the therapy of wounds. Yet, most of them do not contain any active ingredient that could accelerate healing. The aim of this study was to prepare hydrophilic active dressings loaded with an anti-inflammatory compound - trans-resveratrol (RSV) of hydrophobic properties. A special attention was paid to select such a technological strategy that could both reduce the risk of irritation at the application site and ensure the homogeneity of the final hydrogel. RSV dissolved in Labrasol was combined with an aqueous sol of poly(vinyl) alcohol (PVA), containing propylene glycol (PG) as a plasticizer. This sol was transformed into a gel under six consecutive cycles of freezing (-80 °C) and thawing (RT). White, uniform and elastic membranes were successfully produced. Their critical features, namely microstructure, mechanical properties, water uptake and RSV release were studied using SEM, DSC, MRI, texture analyser and Franz-diffusion cells. The cryogels made of 8 % of PVA showed optimal tensile strength (0.22 MPa) and elasticity (0.082 MPa). The application of MRI enabled to elucidate mass transport related phenomena in this complex system at the molecular (detection of PG, confinement effects related to pore size) as well as at the macro level (swelling). The controlled release of RSV from membranes was observed for 48 h with mean dissolution time of 18 h and dissolution efficiency of 35 %. All in all, these cryogels could be considered as a promising new active wound dressings.
Collapse
Affiliation(s)
- Anna Górska
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland.
| | - Dorota Majda
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Piotr Kulinowski
- Institute of Technology, Pedagogical University of Krakow, Cracow, Poland
| | - Mateusz Kurek
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Władysław P Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland
| |
Collapse
|
25
|
Song Y, Wang X, Wang X, Wang J, Hao Q, Hao J, Hou X. Osthole-Loaded Nanoemulsion Enhances Brain Target in the Treatment of Alzheimer's Disease via Intranasal Administration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8844455. [PMID: 33564364 PMCID: PMC7850840 DOI: 10.1155/2021/8844455] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023]
Abstract
Osthole (OST) is a natural coumarin compound that exerts multiple pharmacologic effects. However, the poor water solubility and the low oral absorption of OST limit its clinical application for the treatment of neurologic diseases. A suitable preparation needs to be tailored to evade these unfavourable properties of OST. In this study, an OST nanoemulsion (OST-NE) was fabricated according to the pseudoternary phase diagram method, which was generally used to optimize the prescription in light of the solubility of OST in surfactants and cosurfactants. The final composition of OST-NE was 3.6% of ethyl oleate as oil phase, 11.4% of the surfactant (polyethylene glycol ester of 15-hydroxystearic acid: polyoxyethylene 35 castor oil = 1 : 1), 3% of polyethylene glycol 400 as cosurfactant, and 82% of the aqueous phase. The pharmacokinetic study of OST-NE showed that the brain-targeting coefficient of OST was larger by the nasal route than that by the intravenous route. Moreover, OST-NE inhibited cell death, decreased the apoptosis-related proteins (Bax and caspase-3), and enhanced the activity of antioxidant enzymes (superoxide dismutase and glutathione) in L-glutamate-induced SH-SY5Y cells. OST-NE improved the spatial memory ability, increased the acetylcholine content in the cerebral cortex, and decreased the activity of acetylcholinesterase in the hippocampus of Alzheimer's disease model mice. In conclusion, this study indicates that the bioavailability of OST was improved by using the OST-NE via the nasal route. A low dose of OST-NE maintained the neuroprotective effects of OST, such as inhibiting apoptosis and oxidative stress and regulating the cholinergic system. Therefore, OST-NE can be used as a possible alternative to improve its bioavailability in the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yilei Song
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Xiangyu Wang
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Xingrong Wang
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Jianze Wang
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Qiulian Hao
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Jifu Hao
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Xueqin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| |
Collapse
|
26
|
Chen H, Yang F, Lv L, Fu C, Cai X, Wang S. Interaction among protein, daidzein and surfactants in the WPI-based daidzein self-microemulsifying delivery system. Food Chem 2020; 332:127461. [PMID: 32659698 DOI: 10.1016/j.foodchem.2020.127461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Accepted: 06/28/2020] [Indexed: 10/23/2022]
Abstract
The self-microemulsifying delivery system was fabricated by whey protein isolate (WPI), daidzein (Dai) and surfactants, the interaction of WPI, Dai and D-α-Tocopherol polyethylene glycol succinate (TPGS) was hereby studied in the absence or presence of Tween 20. The increase of surfactant concentration led to the decrease of the modulus and changes of protein interfacial conformation, which allowed the formation of a strong intermolecular network. The environment and structure of WPI and daidzein could be changed by TPGS, and the addition of Tween 20 could further enhance the interaction between the components by changing TPGS structure. With the increase of surfactants and oil phase, Ksv and Ka values of WPI-Dai increased first and then decreased. Therefore, the interaction between the components was also dependent on the WPI-surfactant ration. These findings provide a potential strategy for designing microemulsion food system based on the understanding of the interactions among individual composition of microemulsions.
Collapse
Affiliation(s)
- Huimin Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Fujia Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Liang Lv
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Caili Fu
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Xixi Cai
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China.
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
27
|
Singh G. Resveratrol: nanocarrier-based delivery systems to enhance its therapeutic potential. Nanomedicine (Lond) 2020; 15:2801-2817. [PMID: 33191840 DOI: 10.2217/nnm-2020-0289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) is a polyphenolic compound existing in trees, peanuts and grapes and exhibits a broad spectrum of promising therapeutic activities, but it is unclear whether this entity targets the sites of action after oral administration. In vivo applicability of resveratrol has limited success so far, mainly due to its incompetent systemic delivery resulting from its low water solubility, poor bioavailability and short biological half-life. First-pass metabolism and presence of enterohepatic recirculation create doubt on the biological application of high doses typically used for in vitro trials. To augment bioavailability, absorption and uptake of resveratrol by cellular internalization, countless approaches have been implemented which involve the use of nanocarriers. Nanocarriers are a well-known delivery system used to reduce first-pass hepatic metabolism, overcome enterohepatic recirculation and accelerate the absorption of drugs via lymphatic pathways.
Collapse
|
28
|
Saffarionpour S. Preparation of Food Flavor Nanoemulsions by High- and Low-Energy Emulsification Approaches. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09201-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Development of solid self-emulsifying drug delivery systems (SEDDS) to improve the solubility of resveratrol. Ther Deliv 2019; 10:626-641. [DOI: 10.4155/tde-2019-0054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A solid self-emulsifying drug delivery systems was developed by using the spray-drying technique, to improve the solubility of resveratrol (RES). Materials & methods: Cod liver oil and three surfactant system were tested: soy phosphatidylcholine (SPC)/Eumulgin® HRE-40 (EU)/Sodium oleate (system A); SPC/Tween®80 (TW) /Sodium oleate (system B) and SPC/EU/TW (system C). Results: The greatest incorporation was obtained with system C (21.26 mg/ml). Solid self-emulsifying drug delivery systems with the highest yield were obtained with colloidal silicon dioxide (CSD) (80.12%), and CSD sodium croscarmelose 9:1 and 5:5. RES dissolution attained 100% at 45 min with CSD:CS 5:5. Discussion: The surface modification to hydrophilic by CSD:sodium croscarmellose reduced the cohesive force among drug particles. Conclusion: The developed systems are a good approximation for the design of strategies that could allow increasing the oral bioavailability of RES.
Collapse
|