1
|
Liu J, Li B, Zhao B, Liu W, Yang F, Yang J, Jiang J, Hu K. IL-33 alleviates corneal nerve damage in herpes simplex keratitis. Int Immunopharmacol 2025; 159:114833. [PMID: 40394801 DOI: 10.1016/j.intimp.2025.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/11/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
Herpes simplex keratitis (HSK) is a leading cause of corneal blindness globally, primarily resulting from herpes simplex virus type 1 (HSV-1) infection. HSK can cause pervasive and irreversible corneal nerve damage, leading to decreased corneal sensitivity and vision loss. Interleukin (IL)-33, a multifunctional cytokine, plays an important role in immune and inflammatory responses. However, the effects of IL-33 on nerve damage associated with HSK and the underlying mechanisms remain poorly understood. In this study, we first evaluated the effects of IL-33 on the severity of HSK and corneal nerve damage in a mouse model of HSK. The mechanisms of IL-33 on the production of neuroprotective factors by corneal epithelial cells (HCE-Ts) were investigated in an HSV-1 infection model in vitro. Additionally, the role and mechanism of IL-33 in regulating macrophage polarization for neuroprotection were investigated through in vitro co-culture experiments. The results indicated that IL-33 reduced the severity of HSK and protected corneal nerves in HSK mouse model. Mechanistically, IL-33 promoted the production of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) via activation of the GSK3β/β-catenin signaling pathway in corneal epithelial cells. Furthermore, IL-33 promoted M2 macrophage polarization through activation of the JAK2/STAT6 pathway, which in turn attenuated inflammatory responses and reduced neuronal apoptosis. These findings reveal the neuroprotective mechanisms of IL-33 in HSK and offer new insights for further research and treatment of HSK.
Collapse
Affiliation(s)
- Junpeng Liu
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Boda Li
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Boxiao Zhao
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Wei Liu
- Department of Ophthalmology, Linyi Bright Eye Hospital Intersection of Lanling Road and Fuzuo Road, Linyi, 276002, China
| | - Fan Yang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jingya Yang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jiaxuan Jiang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Kai Hu
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China; Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
2
|
Setia M, Suvas PK, Rana M, Chakraborty A, Suvas S. Herpes stromal keratitis erodes the establishment of tissue-resident memory T cell pool in HSV-1 infected corneas. Mucosal Immunol 2025; 18:188-204. [PMID: 39581232 PMCID: PMC11891946 DOI: 10.1016/j.mucimm.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The recurrent herpes simplex virus-1 (HSV-1) infection of the cornea can cause the development of herpes stromal keratitis (HSK). This chronic immunoinflammatory condition is a major cause of infection-induced vision loss. The previous episodes of HSK increase the risk of future recurrences in the same cornea. However, not all HSV-1 infected corneas that shed infectious virus at the ocular surface develop HSK, suggesting that corneal HSV-1 infection may cause an establishment of protective immunity in HSV-1 infected corneas. However, upon recurrent corneal HSV-1 infection, the established protective immunity can get compromised, resulting in the development of HSK. In this study, we compared the quantity and quality of tissue-resident memory T (TRM) cells in HSV-1 infected corneas that did or did not develop HSK. Our results showed the predominance of TRM cell in the epithelium than in stroma of HSV-1 infected corneas. Furthermore, HSV-1 infected non-HSK corneas exhibited more CD4 and CD8 TRM cells than HSK corneas. The TRM cells in non-HSK than in HSK corneas were more effective in clearing the infectious virus upon secondary corneal HSV-1 infection. Our results demonstrate the differential quantity and quality of TRM cells in HSV-1 infected corneas that did or did not develop HSK.
Collapse
Affiliation(s)
- Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States; Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, United States
| | - Pratima Krishna Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Mashidur Rana
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Anish Chakraborty
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States.
| |
Collapse
|
3
|
Arya D, Jaggi U, Wang S, Tormanen K, Che M, Mahov S, Jin L, Ghiasi H. A novel GFP-based strategy to quantitate cellular spatial associations in HSV-1 viral pathogenesis. mBio 2024; 15:e0145424. [PMID: 39248563 PMCID: PMC11481894 DOI: 10.1128/mbio.01454-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Periodic reactivation of herpes simplex virus type 1 (HSV-1) triggers immune responses that result in corneal scarring (CS), known as herpes stromal keratitis (HSK). Despite considerable research, fully understanding HSK and eliminating it remains challenging due to a lack of comprehensive analysis of HSV-1-infected immune cells in both corneas and trigeminal ganglia (TG). We engineered a recombinant HSV-1 expressing green fluorescent protein (GFP) in the virulent McKrae virus strain that does not require corneal scarification for efficient virus replication (GFP-McKrae). Next-generation sequencing (NGS) analysis, along with in vitro and in vivo assays, showed that GFP-McKrae virus was similar to WT-McKrae virus. Furthermore, corneal cells infected with GFP-McKrae were quantitatively analyzed using image mass cytometry (IMC). The single-cell reconstruction data generated cellular maps of corneas based on the expression of 25 immune cell markers in GFP-McKrae-infected mice. Corneas from mock control mice showed the presence of T cells and macrophages, whereas corneas from GFP-McKrae-infected mice on days 3 and 5 post-infection (PI) exhibited increased immune cells. Notably, on day 3 PI, increased GFP expression was observed in closely situated clusters of DCs, macrophages, and epithelial cells. By day 5 PI, macrophages and T cells became prominent. Finally, immunostaining methods detected HSV-1 or GFP and gD proteins in latently infected TG. This study presents a valuable strategy for identifying cellular spatial associations in viral pathogenesis and holds promise for future therapeutic applications.IMPORTANCEThe goal of this study was to establish quantitative approaches to analyze immune cell markers in HSV-1-infected intact corneas and trigeminal ganglia from primary and latently infected mice. This allowed us to define spatial and temporal interactions between specific immune cells and their potential roles in virus replication and latency. To accomplish this important goal, we took advantage of the utility of GFP-McKrae virus as a valuable research tool while also highlighting its potential to uncover previously unrecognized cell types that play pivotal roles in HSV-1 replication and latency. Such insights will pave the way for developing targeted therapeutic approaches to tackle HSV-1 infections more effectively.
Collapse
Affiliation(s)
- Deepak Arya
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mingtian Che
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Simeon Mahov
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ling Jin
- Department of Biomedical Sciences, Oregon State University, College of Veterinary Medicine, Corvallis, Oregon, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
4
|
Wang S, Jaggi U, Katsumata M, Ghiasi H. The importance of IFNα2A (Roferon-A) in HSV-1 latency and T cell exhaustion in ocularly infected mice. PLoS Pathog 2024; 20:e1012612. [PMID: 39352890 PMCID: PMC11469491 DOI: 10.1371/journal.ppat.1012612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Published studies have generated compelling results indicating that type I IFN modulates function of HSV-1 latency-associated transcript (LAT). One member of type I IFN is IFNα2A also called Roferon-A). IFNα2A has been used in monotherapy or in combination therapy with other drugs to treat viral infections and different kinds of cancer in humans. The goal of this study was to determine whether the absence of IFNα2A affects primary and latent infections in ocularly infected mice. Therefore, we generated a mouse strain lacking IFNα2A expression (IFNα2A-/-). Ocular HSV-1 replication, IFN and immune cell expressions on days 3 and 5 post infection (PI), as well as eye disease, survival, latency-reactivation, and T cell exhaustion were evaluated in ocularly infected IFNα2A-/- and wild type (WT) control mice. Absence of IFNα2A did not affect other members of the IFNα family but it affected IFNβ and IFNγ expressions as well as some immune cells on day 5 PI compared to WT mice. Viral replication in the eye, eye disease, and survival amongst ocularly infected IFNα2A-/- mice were similar to that of WT infected mice. The absence of IFNα2A significantly reduced the levels of latency and T cell exhaustion but not time of reactivation compared with control mice. Our results suggest that blocking IFNα2A expression may be a useful tool in reducing latency and the subsequent side effects associated with higher levels of latency.
Collapse
Affiliation(s)
- Shaohui Wang
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ujjaldeep Jaggi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Makoto Katsumata
- Rodent genetics core facility, Department of Comparative Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Jaggi U, Matundan HH, Oh JJ, Ghiasi H. Absence of CD80 reduces HSV-1 replication in the eye and delays reactivation but not latency levels. J Virol 2024; 98:e0201023. [PMID: 38376148 PMCID: PMC10949485 DOI: 10.1128/jvi.02010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Herpes simplex virus-1 (HSV-1) infections are among the most frequent serious viral eye infections in the U.S. and are a major cause of viral-induced blindness. HSV-1 infection is known to induce T cell activation, proliferation, and differentiation that play crucial roles in the development of virus-induced inflammatory lesions, leading to eye disease and causing chronic corneal damage. CD80 is a co-stimulatory molecule and plays a leading role in T cell differentiation. Previous efforts to limit lesion severity by controlling inflammation at the cellular level led us to ask whether mice knocked out for CD80 would show attenuated virus replication following reactivation. By evaluating the effects of CD80 activity on primary and latent infection, we found that in the absence of CD80, virus replication in the eyes and virus reactivation in latent trigeminal ganglia were both significantly reduced. However, latency in latently infected CD80-/- mice did not differ significantly from that in wild-type (WT) control mice. Reduced virus replication in the eyes of CD80-/- mice correlated with significantly expanded CD11c gene expression as compared to WT mice. Taken together, our results indicate that suppression of CD80 could offer significant beneficial therapeutic effects in the treatment of Herpes Stromal Keratitis (HSK).IMPORTANCEOf the many problems associated with recurrent ocular infection, reducing virus reactivation should be a major goal of controlling ocular herpes simplex virus-1 (HSV-1) infection. In this study, we have shown that the absence of CD80 reduces HSV-1 reactivation, which marks the establishment of a previously undescribed mechanism underlying viral immune evasion that could be exploited to better manage HSV infection.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Jay J. Oh
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| |
Collapse
|
7
|
Antony F, Pundkar C, Sandey M, Mishra A, Suryawanshi A. Role of IL-27 in HSV-1-Induced Herpetic Stromal Keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:474-485. [PMID: 37326494 PMCID: PMC10495105 DOI: 10.4049/jimmunol.2200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Herpetic stromal keratitis (HSK) is a painful and vision-impairing disease caused by recurrent HSV-1 infection of the cornea. The virus replication in the corneal epithelium and associated inflammation play a dominant role in HSK progression. Current HSK treatments targeting inflammation or virus replication are partially effective and promote HSV-1 latency, and long-term use can cause side effects. Thus, understanding molecular and cellular events that control HSV-1 replication and inflammation is crucial for developing novel HSK therapies. In this study, we report that ocular HSV-1 infection induces the expression of IL-27, a pleiotropic immunoregulatory cytokine. Our data indicate that HSV-1 infection stimulates IL-27 production by macrophages. Using a primary corneal HSV-1 infection mouse model and IL-27 receptor knockout mice, we show that IL-27 plays a critical role in controlling HSV-1 shedding from the cornea, the optimum induction of effector CD4+ T cell responses, and limiting HSK progression. Using in vitro bone marrow-derived macrophages, we show that IL-27 plays an antiviral role by regulating macrophage-mediated HSV-1 killing, IFN-β production, and IFN-stimulated gene expression after HSV-1 infection. Furthermore, we report that IL-27 is critical for macrophage survival, Ag uptake, and the expression of costimulatory molecules involved in the optimum induction of effector T cell responses. Our results indicate that IL-27 promotes endogenous antiviral and anti-inflammatory responses and represents a promising target for suppressing HSK progression.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| |
Collapse
|
8
|
The Dilemma of HSV-1 Oncolytic Virus Delivery: The Method Choice and Hurdles. Int J Mol Sci 2023; 24:ijms24043681. [PMID: 36835091 PMCID: PMC9962028 DOI: 10.3390/ijms24043681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as effective gene therapy and immunotherapy drugs. As an important gene delivery platform, the integration of exogenous genes into OVs has become a novel path for the advancement of OV therapy, while the herpes simplex virus type 1 (HSV-1) is the most commonly used. However, the current mode of administration of HSV-1 oncolytic virus is mainly based on the tumor in situ injection, which limits the application of such OV drugs to a certain extent. Intravenous administration offers a solution to the systemic distribution of OV drugs but is ambiguous in terms of efficacy and safety. The main reason is the synergistic role of innate and adaptive immunity of the immune system in the response against the HSV-1 oncolytic virus, which is rapidly cleared by the body's immune system before it reaches the tumor, a process that is accompanied by side effects. This article reviews different administration methods of HSV-1 oncolytic virus in the process of tumor treatment, especially the research progress in intravenous administration. It also discusses immune constraints and solutions of intravenous administration with the intent to provide new insights into HSV-1 delivery for OV therapy.
Collapse
|
9
|
Cytokine profile of human limbal myofibroblasts: Key players in corneal antiviral response. Cytokine 2022; 160:156047. [DOI: 10.1016/j.cyto.2022.156047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
10
|
Jaggi U, Matundan HH, Lee DH, Ghiasi H. Blocking Autophagy in M1 Macrophages Enhances Virus Replication and Eye Disease in Ocularly Infected Transgenic Mice. J Virol 2022; 96:e0140122. [PMID: 36286481 PMCID: PMC9645210 DOI: 10.1128/jvi.01401-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages are one of the first innate immune infiltrates in the cornea of mice following ocular infection with herpes simplex virus 1 (HSV-1). Using gamma interferon (IFN-γ) and interleukin-4 (IL-4) injections to polarize macrophages into M1 and M2, respectively, and in M1 and M2 conditional knockout mice, we have shown that M1 macrophages play an important role in suppressing both virus replication in the eye and eye disease in HSV-1-infected mice. Autophagy is also important in controlling HSV infection and integrity of infected cells. To determine if blocking autophagy in M1 and M2 macrophages affects HSV-1 infectivity and eye disease, we generated two transgenic mouse strains expressing the HSV-1 γ34.5 autophagy gene under the M1 promoter (M1-γ34.5) or the M2 promoter (M2-γ34.5). We found that blocking autophagy in M1 macrophages increased both virus replication in the eyes and eye disease in comparison to blocking autophagy in M2 macrophages or wild-type (WT) control mice, but blocked autophagy did not affect latency-reactivation. However, blocking autophagy affected fertility in both M1 and M2 transgenic mice. Analysis of 62 autophagy genes and 32 cytokines/chemokines from infected bone marrow-derived macrophages from M1-γ34.5, M2-γ34.5, and WT mice suggested that upregulation of autophagy-blocking genes (i.e., Hif1a, Mtmr14, mTOR, Mtmr3, Stk11, and ULK2) and the inflammatory tumor necrosis factor alpha (TNF-α) gene in M1-γ34.5 transgenic mice correlated with increased pathogenicity, while upregulation of proautophagy genes (Nrbf2 and Rb1cc1) in M2-γ34.5 macrophages correlated with reduced pathogenicity. The in vivo and in vitro responses of M1-γ34.5 and M2-γ34.5 transgenic mice to HSV-1 infection were independent of the presence of the γ34.5 gene in wild-type HSV-1. Our results suggest that M1 macrophages, but not M2 macrophages, play an important role in autophagy relative to primary virus replication in the eye and eye disease in infected mice. IMPORTANCE Autophagy plays a critical role in clearing, disassembling, and recycling damaged cells, thus limiting inflammation. The HSV-1 γ34.5 gene is involved in neurovirulence and immune evasion by blocking autophagy in infected cells. We found that blocking autophagy in M1 macrophages enhances HSV-1 virus replication in the eye and eye disease in ocularly infected transgenic mice. Our results also show the suppressive effects of γ34.5 on immune responses to infection, suggesting the importance of intact autophagy in M1 but not M2 macrophages in controlling primary infection and eye disease.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Dhong Hyun Lee
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| |
Collapse
|
11
|
Rana M, Setia M, Suvas PK, Chakraborty A, Suvas S. Diphenyleneiodonium Treatment Inhibits the Development of Severe Herpes Stromal Keratitis Lesions. J Virol 2022; 96:e0101422. [PMID: 35946937 PMCID: PMC9472634 DOI: 10.1128/jvi.01014-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in tissue inflammation. In this study, we measured the intracellular level of ROS in herpes stromal keratitis (HSK) corneas and determined the outcome of manipulating ROS level on HSK severity. Our results showed the predominance of ROS generation in neutrophils but not CD4 T cells in HSK corneas. NADPH oxidase 2 (NOX2) enzyme is known to generate ROS in myeloid cells. Our results showed baseline expression of different NOX2 subunits in uninfected corneas. After corneal herpes simplex virus-1 (HSV-1) infection, an enhanced expression of NOX2 subunits was detected in infected corneas. Furthermore, flow cytometry results showed a higher level of gp91 (Nox2 subunit) protein in neutrophils from HSK corneas, suggesting the involvement of NOX2 in generating ROS. However, no significant decrease in ROS level was noticed in neutrophils from HSV-1-infected gp91-/- mice than in C57BL/6J (B6) mice, suggesting NOX2 is not the major contributor in generating ROS in neutrophils. Next, we used diphenyleneiodonium (DPI), a flavoenzyme inhibitor, to pharmacologically manipulate the ROS levels in HSV-1-infected mice. Surprisingly, the neutrophils from peripheral blood and corneas of the DPI-treated group exhibited an increased level of ROS than the vehicle-treated group of infected B6 mice. Excessive ROS is known to cause cell death. Accordingly, DPI treatment resulted in a significant decrease in neutrophil frequency in peripheral blood and corneas of infected mice and was associated with reduced corneal pathology. Together, our results suggest that regulating ROS levels in neutrophils can ameliorate HSK severity. IMPORTANCE Neutrophils are one of the primary immune cell types involved in causing tissue damage after corneal HSV-1 infection. This study demonstrates that intracellular ROS production in the neutrophils in HSK lesions is not NOX2 dependent. Furthermore, manipulating ROS levels in neutrophils ameliorates the severity of HSK lesions. Our findings suggest that excessive intracellular ROS in neutrophils disrupt redox homeostasis and affect their survival, resulting in a decrease in HSK lesion severity.
Collapse
Affiliation(s)
- Mashidur Rana
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pratima K. Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Anish Chakraborty
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
12
|
Small Noncoding RNA (sncRNA1) within the Latency-Associated Transcript Modulates Herpes Simplex Virus 1 Virulence and the Host Immune Response during Acute but Not Latent Infection. J Virol 2022; 96:e0005422. [DOI: 10.1128/jvi.00054-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HSV-1 latency-associated transcript (LAT) plays a major role in establishing latency and reactivation; however, the mechanism by which LAT controls these processes is largely unknown. In this study, we sought to establish the role of the small noncoding RNA1 (sncRNA1) encoded within LAT during HSV-1 ocular infection. Our results suggest that sncRNA1 has a protective role during acute ocular infection by modulating the innate immune response to infection.
Collapse
|
13
|
Jaggi U, Matundan HH, Yu J, Hirose S, Mueller M, Wormley FL, Ghiasi H. Essential role of M1 macrophages in blocking cytokine storm and pathology associated with murine HSV-1 infection. PLoS Pathog 2021; 17:e1009999. [PMID: 34653236 PMCID: PMC8550391 DOI: 10.1371/journal.ppat.1009999] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation. Macrophages circulating in the blood or present in different tissues constitute an important barrier against infection. We previously showed that the absence of M2 macrophages does not impact HSV-1 infectivity in vivo. However, in this study we demonstrated an essential role of M1 macrophages in protection from primary HSV-1 replication, death, and eye disease but not in latency-reactivation.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Jack Yu
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Mathias Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Floyd L. Wormley
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Oyler-Yaniv J, Oyler-Yaniv A, Maltz E, Wollman R. TNF controls a speed-accuracy tradeoff in the cell death decision to restrict viral spread. Nat Commun 2021; 12:2992. [PMID: 34016976 PMCID: PMC8137918 DOI: 10.1038/s41467-021-23195-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rapid death of infected cells is an important antiviral strategy. However, fast decisions that are based on limited evidence can be erroneous and cause unnecessary cell death and subsequent tissue damage. How cells optimize their death decision making strategy to maximize both speed and accuracy is unclear. Here, we show that exposure to TNF, which is secreted by macrophages during viral infection, causes cells to change their decision strategy from "slow and accurate" to "fast and error-prone". Mathematical modeling combined with experiments in cell culture and whole organ culture show that the regulation of the cell death decision strategy is critical to prevent HSV-1 spread. These findings demonstrate that immune regulation of cellular cognitive processes dynamically changes a tissues' tolerance for self-damage, which is required to protect against viral spread.
Collapse
Affiliation(s)
- Jennifer Oyler-Yaniv
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Alon Oyler-Yaniv
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Evan Maltz
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Roy Wollman
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, University of California UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California UCLA, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Induction of Durable Antitumor Response by a Novel Oncolytic Herpesvirus Expressing Multiple Immunomodulatory Transgenes. Biomedicines 2020; 8:biomedicines8110484. [PMID: 33182232 PMCID: PMC7695276 DOI: 10.3390/biomedicines8110484] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy is a promising new tool for cancer treatment, but direct lytic destruction of tumor cells is not sufficient and must be accompanied by strong immune activation to elicit anti-tumor immunity. We report here the creation of a novel replication-competent recombinant oncolytic herpes simplex virus type 1 (VG161) that carries genes coding for IL-12, IL-15, and IL-15 receptor alpha subunit, along with a peptide fusion protein capable of disrupting PD-1/PD-L1 interactions. The VG161 virus replicates efficiently and exhibits robust cytotoxicity in multiple tumor cell lines. Moreover, the encoded cytokines and the PD-L1 blocking peptide work cooperatively to boost immune cell function. In vivo testing in syngeneic CT26 and A20 tumor models reveals superior efficacy when compared to a backbone virus that does not express exogenous genes. Intratumoral injection of VG161 induces abscopal responses in non-injected distal tumors and grants resistance to tumor re-challenge. The robust anti-tumor effect of VG161 is associated with T cell and NK cell tumor infiltration, expression of Th1 associated genes in the injection site, and increased frequency of splenic tumor-specific T cells. VG161 also displayed a superb safety profile in GLP acute and repeated injection toxicity studies performed using cynomolgus monkeys. Overall, we demonstrate that VG161 can induce robust oncolysis and stimulate a robust anti-tumor immune response without sacrificing safety.
Collapse
|
16
|
Jaggi U, Yang M, Matundan HH, Hirose S, Shah PK, Sharifi BG, Ghiasi H. Increased phagocytosis in the presence of enhanced M2-like macrophage responses correlates with increased primary and latent HSV-1 infection. PLoS Pathog 2020; 16:e1008971. [PMID: 33031415 PMCID: PMC7575112 DOI: 10.1371/journal.ppat.1008971] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
After HSV-1 infection, macrophages infiltrate early into the cornea, where they play an important role in HSV-1 infection. Macrophages are divided into M1 or M2 groups based on their activation. M1 macrophages are pro-inflammatory, while M2 macrophages are anti-inflammatory. Macrophage phenotypes can shift between M1 or M2 in vitro and in vivo following treatment with specific cytokines. In this study we looked at the effect of M2 macrophages on HSV-1 infectivity using mice either lacking M2 (M2-/-) or overexpressing M2 (M2-OE) macrophages. While presence or absence of M2 macrophages had no effect on eye disease, we found that over expression of M2 macrophages was associated with increased phagocytosis, increased primary virus replication, increased latency, and increased expression of pro- and anti-inflammatory cytokines. In contrast, in mice lacking M2 macrophages following infection phagocytosis, replication, latency, and cytokine expression were similar to wild type mice. Our results suggest that enhanced M2 responses lead to higher phagocytosis, which affected both primary and latent infection but not reactivation.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| | - Mingjie Yang
- Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Smidt Heart Institute, and Department of Surgery, Los Angeles, CA United States of America
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| | - Prediman K. Shah
- Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Smidt Heart Institute, and Department of Surgery, Los Angeles, CA United States of America
| | - Behrooz G. Sharifi
- Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Smidt Heart Institute, and Department of Surgery, Los Angeles, CA United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| |
Collapse
|
17
|
Dhanushkodi NR, Srivastava R, Prakash S, Roy S, Coulon PGA, Vahed H, Nguyen AM, Salazar S, Nguyen L, Amezquita C, Ye C, Nguyen V, BenMohamed L. High Frequency of Gamma Interferon-Producing PLZF loRORγt lo Invariant Natural Killer 1 Cells Infiltrating Herpes Simplex Virus 1-Infected Corneas Is Associated with Asymptomatic Ocular Herpesvirus Infection. J Virol 2020; 94:e00140-20. [PMID: 32102882 PMCID: PMC7163123 DOI: 10.1128/jvi.00140-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Invariant natural killer (iNKT) cells are among the first innate immune cells to elicit early protective immunity that controls invading viral pathogens. The role of the iNKT cell subsets iNKT1, iNKT2, and iNKT17 in herpesvirus immunity remains to be fully elucidated. In this study, we examined the protective role of cornea-resident iNKT cell subsets using the mouse model of ocular herpesvirus infection and disease. Wild-type (WT) C57BL/6 (B6) mice and CD1d knockout (KO) mice were infected ocularly with herpes simplex virus 1 (HSV-1) (strain McKrae). Cornea, spleen, and liver were harvested at 0, 2, 5, 8, and 14 days postinfection (p.i.), and the frequency and function of the three major iNKT cell subsets were analyzed and correlated with symptomatic and asymptomatic corneal herpesvirus infections. The profiles of 16 major pro- and anti-inflammatory cytokines were analyzed in corneal lysates using Western blot and Luminex assays. Early during ocular herpesvirus infection (i.e., day 2), the gamma interferon (IFN-γ)-producing PLZFloRORγtlo (promyelocytic leukemia zinc finger, retinoic acid-related orphan receptor gT) iNKT1 cell subset was the predominant iNKT cell subset in infected asymptomatic corneas. Moreover, compared to the asymptomatic corneas of HSV-1-infected WT mice, the symptomatic corneas CD1d KO mice, with iNKT cell deficiency, had increased levels of the inflammatory cytokine interleukin-6 (IL-6) and decreased levels of IL-12, IFN-γ, and the JAK1, STAT1, NF-κB, and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways. Our findings suggest that IFN-γ-producing PLZFloRORγtlo iNKT1 cells play a role in the protective innate immune response against symptomatic ocular herpes.IMPORTANCE We investigated the protective role of iNKT cell subsets in asymptomatic ocular herpesvirus infection. We found that early during ocular herpesvirus infection (i.e., on day 2 postinfection), IFN-γ-producing PLZFloRORγtlo iNKT1 cells were the predominant iNKT cell subset in infected corneas of asymptomatic B6 mice (with little to no corneal herpetic disease), compared to corneas of symptomatic mice (with severe corneal herpetic disease). Moreover, compared to asymptomatic corneas of wild-type (WT) B6 mice, the symptomatic corneas of CD1d KO mice, which lack iNKT cells, showed (i) decreases in the levels of IFN-γ and IL-12, (ii) an increase in the level of the inflammatory cytokine IL-6; and (iii) downregulation of the JAK1, STAT1, NF-κB, and ERK1/2 pathways. The findings suggest that early during ocular herpesvirus infection, cornea-resident IFN-γ-producing PLZFloRORγtlo iNKT1 cells provide protection from symptomatic ocular herpes.
Collapse
Affiliation(s)
- Nisha R Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Pierre-Gregoire A Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Angela M Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Stephanie Salazar
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Lan Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Cassandra Amezquita
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Caitlin Ye
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Vivianna Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Medicine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
18
|
Absence of Signal Peptide Peptidase, an Essential Herpes Simplex Virus 1 Glycoprotein K Binding Partner, Reduces Virus Infectivity In Vivo. J Virol 2019; 93:JVI.01309-19. [PMID: 31511378 DOI: 10.1128/jvi.01309-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
We previously reported that herpes simplex virus (HSV) glycoprotein K (gK) binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. Binding of gK to SPP is required for HSV-1 infectivity in vitro SPP is a member of the γ-secretase family, and mice lacking SPP are embryonic lethal. To determine how SPP affects HSV-1 infectivity in vivo, the SPP gene was deleted using a tamoxifen-inducible Cre recombinase driven by the ubiquitously expressed ROSA26 promoter. SPP mRNA was reduced by more than 93% in the cornea and trigeminal ganglia (TG) and by 99% in the liver of tamoxifen-injected mice, while SPP protein expression was reduced by 90% compared to the level in control mice. Mice lacking SPP had significantly less HSV-1 replication in the eye as well as reduced gK, UL20, ICP0, and gB transcripts in the cornea and TG compared to levels in control mice. In addition, reduced infiltration of CD45+, CD4+, CD8+, F4/80+, CD11c+, and NK1.1+ T cells was observed in the cornea and TG of SPP-inducible knockout mice compared to that in control mice. Finally, in the absence of SPP, latency was significantly reduced in SPP-inducible knockout mice compared to that in control mice. Thus, in this study we have generated SPP-inducible knockout mice and shown that the absence of SPP affects virus replication in the eye of ocularly infected mice and that this reduction is correlated with the interaction of gK and SPP. These results suggest that blocking this interaction may have therapeutic potential in treating HSV-1-associated eye disease.IMPORTANCE Glycoprotein K (gK) is an essential and highly conserved HSV-1 protein. Previously, we reported that gK binds to SPP, an endoplasmic reticulum (ER) protein, and blocking this binding reduces virus infectivity in vitro and also affects gK and UL20 subcellular localization. To evaluate the function of gK binding to SPP in vivo, we generated SPP-inducible knockout mice and observed the following in the absence of SPP: (i) that significantly less HSV-1 replication was seen in ocularly infected mice than in control mice; (ii) that expression of various HSV-1 genes and cellular infiltrates in the eye and trigeminal ganglia of infected mice was less than that in control mice; and (iii) that latency was significantly reduced in infected mice. Thus, blocking of gK binding to SPP may be a useful tool to control HSV-1-induced eye disease in patients with herpes stromal keratitis (HSK).
Collapse
|