1
|
Liu Y, Sun Y, Cheng S. Advances in the use of organoids in endometrial diseases. Int J Gynaecol Obstet 2024; 166:502-511. [PMID: 38391201 DOI: 10.1002/ijgo.15422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
The endometrium undergoes cyclical changes in response to hormones and there is a certain degree of heterogeneity among individuals. In vivo identification of the physiologic changes of the endometrium and the pathologic process of related diseases is challenging. There have been recent advances in the use of organoids that mimic the characteristics of the corresponding organs and the morphologic, functional, and personalized characteristics involved in different stages of diseases. In this paper, we discuss the process of creating endometrial organoids, cell sources, types of extracellular matrices, and their application in the study of physiologic endometrial states and various diseases.
Collapse
Affiliation(s)
- Yaofang Liu
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Sun
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shaolong Cheng
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Gabriel V, Zdyrski C, Sahoo DK, Ralston A, Wickham H, Bourgois-Mochel A, Ahmed B, Merodio MM, Paukner K, Piñeyro P, Kopper J, Rowe EW, Smith JD, Meyerholz D, Kol A, Viall A, Elbadawy M, Mochel JP, Allenspach K. Adult Animal Stem Cell-Derived Organoids in Biomedical Research and the One Health Paradigm. Int J Mol Sci 2024; 25:701. [PMID: 38255775 PMCID: PMC10815683 DOI: 10.3390/ijms25020701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Preclinical biomedical research is limited by the predictiveness of in vivo and in vitro models. While in vivo models offer the most complex system for experimentation, they are also limited by ethical, financial, and experimental constraints. In vitro models are simplified models that do not offer the same complexity as living animals but do offer financial affordability and more experimental freedom; therefore, they are commonly used. Traditional 2D cell lines cannot fully simulate the complexity of the epithelium of healthy organs and limit scientific progress. The One Health Initiative was established to consolidate human, animal, and environmental health while also tackling complex and multifactorial medical problems. Reverse translational research allows for the sharing of knowledge between clinical research in veterinary and human medicine. Recently, organoid technology has been developed to mimic the original organ's epithelial microstructure and function more reliably. While human and murine organoids are available, numerous other organoids have been derived from traditional veterinary animals and exotic species in the last decade. With these additional organoid models, species previously excluded from in vitro research are becoming accessible, therefore unlocking potential translational and reverse translational applications of animals with unique adaptations that overcome common problems in veterinary and human medicine.
Collapse
Affiliation(s)
- Vojtech Gabriel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | | | - Dipak K. Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Abigail Ralston
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Hannah Wickham
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Basant Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Maria M. Merodio
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Karel Paukner
- Atherosclerosis Research Laboratory, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Eric W. Rowe
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Jodi D. Smith
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - David Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA;
| | - Amir Kol
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Austin Viall
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Mohamed Elbadawy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| | - Karin Allenspach
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| |
Collapse
|
3
|
Penning LC, van den Boom R. Companion animal organoid technology to advance veterinary regenerative medicine. Front Vet Sci 2023; 10:1032835. [PMID: 37008367 PMCID: PMC10063859 DOI: 10.3389/fvets.2023.1032835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
First year medical and veterinary students are made very aware that drugs can have very different effects in various species or even in breeds of one specific species. On the other hand, the “One Medicine” concept implies that therapeutic and technical approaches are exchangeable between man and animals. These opposing views on the (dis)similarities between human and veterinary medicine are magnified in regenerative medicine. Regenerative medicine promises to stimulate the body's own regenerative capacity via activation of stem cells and/or the application of instructive biomaterials. Although the potential is enormous, so are the hurdles that need to be overcome before large scale clinical implementation is realistic. It is in the advancement of regenerative medicine that veterinary regenerative medicine can play an instrumental and crucial role. This review describes the discovery of (adult) stem cells in domesticated animals, mainly cats and dogs. The promise of cell-mediated regenerative veterinary medicine is compared to the actual achievements, and this will lead to a set of unanswered questions (controversies, research gaps, potential developments in relation to fundamental, pre-clinical, and clinical research). For veterinary regenerative medicine to have impact, either for human medicine and/or for domesticated animals, answering these questions is pivotal.
Collapse
|
4
|
Diessler ME, Hernández R, Gomez Castro G, Barbeito CG. Decidual cells and decidualization in the carnivoran endotheliochorial placenta. Front Cell Dev Biol 2023; 11:1134874. [PMID: 37009475 PMCID: PMC10060884 DOI: 10.3389/fcell.2023.1134874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Decidualization is considered a distinctive feature of eutherian pregnancy, and has appeared during evolution along with the development of invasive forms of placentation, as the endotheliochorial placenta. Although decidualization is not massive in carnivores, as it is in most species developing hemochorial placentas, isolated or grouped cells regarded as decidual have been documented and characterized, mainly in bitches and queens. For the majority of the remaining species of the order, data in the bibliography are fragmentary. In this article, general morphological aspects of decidual stromal cells (DSCs), their time of appearance and lasting, data about the expression of cytoskeletal proteins and molecules considered as markers of decidualization were reviewed. From the data reviewed, it follows that carnivoran DSCs take part either in the secretion of progesterone, prostaglandins, relaxin, among other substances, or at least in the signaling pathways triggered by them. Beyond their physiological roles, some of those molecules are already being used, or are yet under study, for the non-invasive endocrine monitoring and reproductive control of domestic and wild carnivores. Only insulin-like growth factor binding protein 1, among the main decidual markers, has been undoubtedly demonstrated in both species. Laminin, on the contrary, was found only in feline DSCs, and prolactin was preliminary reported in dogs and cats. Prolactin receptor, on the other hand, was found in both species. While canine DSCs are the only placental cell type expressing the nuclear progesterone receptor (PGR), that receptor has not been demonstrated neither in feline DSCs, nor in any other cell in the queen placenta, although the use of PGR blockers leads to abortion. Against this background, and from the data gathered so far, it is unquestionable that DSCs in carnivorans do play a pivotal role in placental development and health. The knowledge about placental physiology is critical for medical care and breeding management, primarily in domestic carnivores; it is also absolutely crucial for a conservation approach in the management of endangered carnivore species.
Collapse
Affiliation(s)
- Mónica Elizabeth Diessler
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- *Correspondence: Mónica Elizabeth Diessler,
| | - Rocío Hernández
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
| | - Gimena Gomez Castro
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| |
Collapse
|
5
|
Caipa Garcia AL, Arlt VM, Phillips DH. Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis. Mutagenesis 2022; 37:143-154. [PMID: 34147034 PMCID: PMC9071088 DOI: 10.1093/mutage/geab023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Advances in three-dimensional (3D) cell culture technology have led to the development of more biologically and physiologically relevant models to study organ development, disease, toxicology and drug screening. Organoids have been derived from many mammalian tissues, both normal and tumour, from adult stem cells and from pluripotent stem cells. Tissue organoids can retain many of the cell types and much of the structure and function of the organ of origin. Organoids derived from pluripotent stem cells display increased complexity compared with organoids derived from adult stem cells. It has been shown that organoids express many functional xenobiotic-metabolising enzymes including cytochrome P450s (CYPs). This has benefitted the drug development field in facilitating pre-clinical testing of more personalised treatments and in developing large toxicity and efficacy screens for a range of compounds. In the field of environmental and genetic toxicology, treatment of organoids with various compounds has generated responses that are close to those obtained in primary tissues and in vivo models, demonstrating the biological relevance of these in vitro multicellular 3D systems. Toxicological investigations of compounds in different tissue organoids have produced promising results indicating that organoids will refine future studies on the effects of environmental exposures and carcinogenic risk to humans. With further development and standardised procedures, advancing our understanding on the metabolic capabilities of organoids will help to validate their use to investigate the modes of action of environmental carcinogens.
Collapse
Affiliation(s)
- Angela L Caipa Garcia
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| |
Collapse
|
6
|
Thompson RE, Bouma GJ, Hollinshead FK. The Roles of Extracellular Vesicles and Organoid Models in Female Reproductive Physiology. Int J Mol Sci 2022; 23:ijms23063186. [PMID: 35328607 PMCID: PMC8954697 DOI: 10.3390/ijms23063186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Culture model systems that can recapitulate the anatomy and physiology of reproductive organs, such as three-dimensional (3D) organoid culture systems, limit the cost and welfare concerns associated with a research animal colony and provide alternative approaches to study specific processes in humans and animals. These 3D models facilitate a greater understanding of the physiological role of individual cell types and their interactions than can be accomplished with traditional monolayer culture systems. Furthermore, 3D culture systems allow for the examination of specific cellular, molecular, or hormonal interactions, without confounding factors that occur with in vivo models, and provide a powerful approach to study physiological and pathological reproductive conditions. The goal of this paper is to review and compare organoid culture systems to other in vitro cell culture models, currently used to study female reproductive physiology, with an emphasis on the role of extracellular vesicle interactions. The critical role of extracellular vesicles for intercellular communication in physiological processes, including reproduction, has been well documented, and an overview of the roles of extracellular vesicles in organoid systems will be provided. Finally, we will propose future directions for understanding the role of extracellular vesicles in normal and pathological conditions of reproductive organs, utilizing 3D organoid culture systems.
Collapse
|
7
|
Improved Models of Human Endometrial Organoids Based on Hydrogels from Decellularized Endometrium. J Pers Med 2021; 11:jpm11060504. [PMID: 34205034 PMCID: PMC8229407 DOI: 10.3390/jpm11060504] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Organoids are three-dimensional (3D) multicellular tissue models that mimic their corresponding in vivo tissue. Successful efforts have derived organoids from primary tissues such as intestine, liver, and pancreas. For human uterine endometrium, the recent generation of 3D structures from primary endometrial cells is inspiring new studies of this important tissue using precise preclinical models. To improve on these 3D models, we decellularized pig endometrium containing tissue-specific extracellular matrix and generated a hydrogel (EndoECM). Next, we derived three lines of human endometrial organoids and cultured them in optimal and suboptimal culture expansion media with or without EndoECM (0.01 mg/mL) as a soluble additive. We characterized the resultant organoids to verify their epithelial origin, long-term chromosomal stability, and stemness properties. Lastly, we determined their proliferation potential under different culture conditions using proliferation rates and immunohistochemical methods. Our results demonstrate the importance of a bioactive environment for the maintenance and proliferation of human endometrial organoids.
Collapse
|
8
|
Paulson EE, Comizzoli P. Endometrial receptivity and embryo implantation in carnivores-commonalities and differences with other mammalian species. Biol Reprod 2021; 104:771-783. [PMID: 33412583 DOI: 10.1093/biolre/ioab001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/12/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Endometrial receptivity and embryo implantation processes are a major point of pregnancy failure in many mammalian species, including humans. Although reproductive biology in many carnivore species remains enigmatic, the few that have been studied so far are invaluable comparative models. The goals of this review are to (1) summarize current data on the mechanisms involved in uterine receptivity and embryo implantation in carnivores, including commonalities and differences with other mammalian species and (2) identify research priorities to better understand a key phenomenon in a critical group of mammals. Besides unique reproductive traits in some carnivores (induced vs. spontaneous ovulation in cats, ovulation at the germinal vesicle stage in dogs), preimplantation embryo development is comparable with other orders. However, the timing of implantation varies, especially in species having an embryonic diapause. Mechanisms involved in endometrial receptivity and decidualization still remain to be fully understood, but specific markers have already been identified. Importantly, the use of endogenous hormones to control the ovarian activity may impact endometrial receptivity and subsequent embryo implantation. Next, research efforts should take advantage of advanced technologies to further study embryo implantation in carnivores and to provide more relevant models to reproductive medicine or for the conservation of rare and endangered species.
Collapse
Affiliation(s)
- Erika Elinor Paulson
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| |
Collapse
|
9
|
Alavije AA, Barati F, Barati M, Nazari H, Karimi I. Polyethersulfone/MWCNT nanocomposite scaffold for endometrial cell culture: preparation, characterization, and in vitroinvestigation. Biomed Phys Eng Express 2021; 7. [PMID: 35014622 DOI: 10.1088/2057-1976/abd67f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/23/2020] [Indexed: 11/12/2022]
Abstract
Endometrial cell culture is a method for investigating physiological or pathological conditions or simulatingin vivoconditions for embryo culture. The natural function of the endometrium depends on a polarized epithelium and 3D stromal compartments. The polymer-based scaffolds of simple polyethersulfone (PES), laser scratched PES (PES-LS), and multiwall carbon nanotubes (MWCNT) composited PES (PES-MWCNT) were prepared and used for bovine endometrial cells (bECs) culture. For better investigation of the relationship between physical structure and cell growth behavior, the surface morphologies of the scaffolds were evaluated by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) techniques. Three synthesized membranes (PES, PES-LS, and PES-MWCNT) were evaluated for the cell morphology, viability and, doubling time. Results showed acceptable physical and chemical fabrication of the polymers with no significant differences in the proportions of live cells to primary cultured cells, dead to live cells, and the cell doubling time among groups during the experiment (P > 0.05). Total cell count (live and dead cells) was significantly different on Day 2 among types of polymers. The results showed the comparable potential of the PES-MWCNT membrane for the bECs culture.
Collapse
Affiliation(s)
- Ali Alirezaei Alavije
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Farid Barati
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Mohammad Barati
- Department of Applied Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Hasan Nazari
- Institute of Farm Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Iraj Karimi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
10
|
Wilsterman K, Bao X, Estrada AD, Comizzoli P, Bentley GE. Sex steroids influence organizational but not functional decidualization of feline endometrial cells in a 3D culture system†. Biol Reprod 2020; 101:906-915. [PMID: 31359037 DOI: 10.1093/biolre/ioz145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 07/24/2019] [Indexed: 01/23/2023] Open
Abstract
Successful implantation requires complex signaling between the uterine endometrium and the blastocyst. Prior to the blastocyst reaching the uterus, the endometrium is remodeled by sex steroids and other signals to render the endometrium receptive. In vitro models have facilitated major advances in our understanding of endometrium preparation and endometrial-blastocyst communication in mice and humans, but these systems have not been widely adapted for use in other models which might generate a deeper understanding of these processes. The objective of our study was to use a recently developed, three-dimensional culture system to identify specific roles of female sex steroids in remodeling the organization and function of feline endometrial cells. We treated endometrial cells with physiologically relevant concentrations of estradiol and progesterone, either in isolation or in combination, for 1 week. We then examined size and density of three-dimensional structures, and quantified expression of candidate genes known to vary in response to sex steroid treatments and that have functional relevance to the decidualization process. Combined sex steroid treatments recapitulated organizational patterns seen in vivo; however, sex steroid manipulations did not induce expected changes to expression of decidualization-related genes. Our results demonstrate that sex steroids may not be sufficient for complete decidualization and preparation of the feline endometrium, thereby highlighting key areas of opportunity for further study and suggesting some unique functions of felid uterine tissues.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Xinmiao Bao
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Allegra D Estrada
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, USA
| | - George E Bentley
- Integrative Biology, University of California Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|