1
|
Araujo David B, Atif J, Vargas E Silva Castanheira F, Yasmin T, Guillot A, Ait Ahmed Y, Peiseler M, Hommes JW, Salm L, Brundler MA, Surewaard BGJ, Elhenawy W, MacParland S, Ginhoux F, McCoy K, Kubes P. Kupffer cell reverse migration into the liver sinusoids mitigates neonatal sepsis and meningitis. Sci Immunol 2024; 9:eadq9704. [PMID: 39485859 DOI: 10.1126/sciimmunol.adq9704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
In adults, liver-resident macrophages, or Kupffer cells (KCs), reside in the sinusoids and sterilize circulating blood by capturing rapidly flowing microbes. We developed quantitative intravital imaging of 1-day-old mice combined with transcriptomics, genetic manipulation, and in vivo infection assays to interrogate increased susceptibility of newborns to bloodstream infections. Whereas 1-day-old KCs were better at catching Escherichia coli in vitro, we uncovered a critical 1-week window postpartum when KCs have limited access to blood and must translocate from liver parenchyma into the sinusoids. KC migration was independent of the microbiome but depended on macrophage migration inhibitory factor, its receptor CD74, and the adhesion molecule CD44. On the basis of our findings, we propose a model of progenitor macrophage seeding of the liver sinusoids via a reverse transmigration process from liver parenchyma. These results also illustrate the importance of developing newborn mouse models to understand newborn immunity and disease.
Collapse
Affiliation(s)
- Bruna Araujo David
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jawairia Atif
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Fernanda Vargas E Silva Castanheira
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Tamanna Yasmin
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Yeni Ait Ahmed
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Moritz Peiseler
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Josefien W Hommes
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lilian Salm
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Marie-Anne Brundler
- Department of Pathology and Laboratory Medicine and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Bas G J Surewaard
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Wael Elhenawy
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Antimicrobial Resistance, One Health Consortium, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Striving for Pandemic Preparedness, Alberta Research Consortium, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Sonya MacParland
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
- Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Kathy McCoy
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Paul Kubes
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
2
|
Fidanza M, Hibbert J, Acton E, Harbeson D, Schoeman E, Skut P, Woodman T, Eynaud A, Hartnell L, Brook B, Cai B, Lo M, Falsafi R, Hancock REW, Chiume-Kayuni M, Lufesi N, Popescu CR, Lavoie PM, Strunk T, Currie AJ, Kollmann TR, Amenyogbe N, Lee AH. Angiogenesis-associated pathways play critical roles in neonatal sepsis outcomes. Sci Rep 2024; 14:11444. [PMID: 38769383 PMCID: PMC11106288 DOI: 10.1038/s41598-024-62195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Neonatal sepsis is a major cause of childhood mortality. Limited diagnostic tools and mechanistic insights have hampered our abilities to develop prophylactic or therapeutic interventions. Biomarkers in human neonatal sepsis have been repeatedly identified as associated with dysregulation of angiopoietin signaling and altered arachidonic acid metabolism. We here provide the mechanistic evidence in support of the relevance for these observations. Angiopoetin-1 (Ang-1), which promotes vascular integrity, was decreased in blood plasma of human and murine septic newborns. In preclinical models, administration of Ang-1 provided prophylactic protection from septic death. Arachidonic acid metabolism appears to be functionally connected to Ang-1 via reactive oxygen species (ROS) with a direct role of nitric oxide (NO). Strengthening this intersection via oral administration of arachidonic acid and/or the NO donor L-arginine provided prophylactic as well as therapeutic protection from septic death while also increasing plasma Ang-1 levels among septic newborns. Our data highlight that targeting angiogenesis-associated pathways with interventions that increase Ang-1 activity directly or indirectly through ROS/eNOS provide promising avenues to prevent and/or treat severe neonatal sepsis.
Collapse
Affiliation(s)
| | - Julie Hibbert
- Westfarmers Center of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Erica Acton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Danny Harbeson
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | | | | | - Tabitha Woodman
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | | | - Lucy Hartnell
- Telethon Kids Institute, Perth, WA, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Byron Brook
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Mandy Lo
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Reza Falsafi
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Msandeni Chiume-Kayuni
- Department of Pediatrics, Kamuzu Central Hospital, Lilongwe, Malawi
- Kamuzu University of Health Sciences, Lilongwe, Malawi
| | - Norman Lufesi
- Department of Curative and Medical Rehabilitation, Ministry of Health, Lilongwe, Malawi
| | - Constantin R Popescu
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, Université Laval, Québec, QC, Canada
| | - Pascal M Lavoie
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Tobias Strunk
- Telethon Kids Institute, Perth, WA, Australia
- Westfarmers Center of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA, Australia
- Neonatal Directorate, King Edward Memorial Hospital, Perth, WA, Australia
| | - Andrew J Currie
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia.
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth, WA, Australia.
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada.
| | - Nelly Amenyogbe
- Telethon Kids Institute, Perth, WA, Australia.
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada.
| | - Amy H Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.
| |
Collapse
|
3
|
Vintrych P, Al-Obeidallah M, Horák J, Chvojka J, Valešová L, Nalos L, Jarkovská D, Matějovič M, Štengl M. Modeling sepsis, with a special focus on large animal models of porcine peritonitis and bacteremia. Front Physiol 2023; 13:1094199. [PMID: 36703923 PMCID: PMC9871395 DOI: 10.3389/fphys.2022.1094199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Infectious diseases, which often result in deadly sepsis or septic shock, represent a major global health problem. For understanding the pathophysiology of sepsis and developing new treatment strategies, reliable and clinically relevant animal models of the disease are necessary. In this review, two large animal (porcine) models of sepsis induced by either peritonitis or bacteremia are introduced and their strong and weak points are discussed in the context of clinical relevance and other animal models of sepsis, with a special focus on cardiovascular and immune systems, experimental design, and monitoring. Especially for testing new therapeutic strategies, the large animal (porcine) models represent a more clinically relevant alternative to small animal models, and the findings obtained in small animal (transgenic) models should be verified in these clinically relevant large animal models before translation to the clinical level.
Collapse
Affiliation(s)
- Pavel Vintrych
- Department of Cardiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Mahmoud Al-Obeidallah
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jan Horák
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jiří Chvojka
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Lenka Valešová
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Lukáš Nalos
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Dagmar Jarkovská
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Martin Matějovič
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Milan Štengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,*Correspondence: Milan Štengl,
| |
Collapse
|
4
|
Campion S, Inselman A, Hayes B, Casiraghi C, Joseph D, Facchinetti F, Salomone F, Schmitt G, Hui J, Davis-Bruno K, Van Malderen K, Morford L, De Schaepdrijver L, Wiesner L, Kourula S, Seo S, Laffan S, Urmaliya V, Chen C. The benefits, limitations and opportunities of preclinical models for neonatal drug development. Dis Model Mech 2022; 15:dmm049065. [PMID: 35466995 PMCID: PMC9066504 DOI: 10.1242/dmm.049065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased research to improve preclinical models to inform the development of therapeutics for neonatal diseases is an area of great need. This article reviews five common neonatal diseases - bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, perinatal hypoxic-ischemic encephalopathy and neonatal sepsis - and the available in vivo, in vitro and in silico preclinical models for studying these diseases. Better understanding of the strengths and weaknesses of specialized neonatal disease models will help to improve their utility, may add to the understanding of the mode of action and efficacy of a therapeutic, and/or may improve the understanding of the disease pathology to aid in identification of new therapeutic targets. Although the diseases covered in this article are diverse and require specific approaches, several high-level, overarching key lessons can be learned by evaluating the strengths, weaknesses and gaps in the available models. This Review is intended to help guide current and future researchers toward successful development of therapeutics in these areas of high unmet medical need.
Collapse
Affiliation(s)
- Sarah Campion
- Pfizer Worldwide Research, Development, and Medical, Groton, CT 06340, USA
| | - Amy Inselman
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Systems Biology, Jefferson, AR 72079, USA
| | - Belinda Hayes
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Costanza Casiraghi
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - David Joseph
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Fabrizio Salomone
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Georg Schmitt
- Pharma Research and Early Development, Roche Innovation Center Basel, Pharmaceutical Sciences, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Julia Hui
- Bristol Myers Squibb, Nonclinical Research and Development, Summit, NJ 07901, USA
| | - Karen Davis-Bruno
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Karen Van Malderen
- Federal Agency for Medicines and Health Products (FAMHP), Department DG PRE authorization, 1210 Brussels, Belgium
| | - LaRonda Morford
- Eli Lilly, Global Regulatory Affairs, Indianapolis, IN 46285, USA
| | | | - Lutz Wiesner
- Federal Institute for Drugs and Medical Devices, Clinical Trials, 53175 Bonn, Germany
| | - Stephanie Kourula
- Janssen R&D, Drug Metabolism & Pharmacokinetics, 2340 Beerse, Belgium
| | - Suna Seo
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Susan Laffan
- GlaxoSmithKline, Non-Clinical Safety, Collegeville, PA 19406, USA
| | | | - Connie Chen
- Health and Environmental Sciences Institute, Washington, DC 20005, USA
| |
Collapse
|
5
|
Stevens NE, van Wolfswinkel M, Bao W, Ryan FJ, Brook B, Amenyogbe N, Marshall HS, Lynn MA, Kollmann TR, Tumes DJ, Lynn DJ. Immunisation with the BCG and DTPw vaccines induces different programs of trained immunity in mice. Vaccine 2022; 40:1594-1605. [PMID: 33895015 DOI: 10.1016/j.vaccine.2021.03.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 11/15/2022]
Abstract
In addition to providing pathogen-specific immunity, vaccines can also confer nonspecific effects (NSEs) on mortality and morbidity unrelated to the targeted disease. Immunisation with live vaccines, such as the BCG vaccine, has generally been associated with significantly reduced all-cause infant mortality. In contrast, some inactivated vaccines, such as the diphtheria, tetanus, whole-cell pertussis (DTPw) vaccine, have been controversially associated with increased all-cause mortality especially in female infants in high-mortality settings. The NSEs associated with BCG have been attributed, in part, to the induction of trained immunity, an epigenetic and metabolic reprograming of innate immune cells, increasing their responsiveness to subsequent microbial encounters. Whether non-live vaccines such as DTPw induce trained immunity is currently poorly understood. Here, we report that immunisation of mice with DTPw induced a unique program of trained immunity in comparison to BCG immunised mice. Altered monocyte and DC cytokine responses were evident in DTPw immunised mice even months after vaccination. Furthermore, splenic cDCs from DTPw immunised mice had altered chromatin accessibility at loci involved in immunity and metabolism, suggesting that these changes were epigenetically mediated. Interestingly, changing the order in which the BCG and DTPw vaccines were co-administered to mice altered subsequent trained immune responses. Given these differences in trained immunity, we also assessed whether administration of these vaccines altered susceptibility to sepsis in two different mouse models. Immunisation with either BCG or a DTPw-containing vaccine prior to the induction of sepsis did not significantly alter survival. Further studies are now needed to more fully investigate the potential consequences of DTPw induced trained immunity in different contexts and to assess whether other non-live vaccines also induce similar changes.
Collapse
Affiliation(s)
- Natalie E Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Marjolein van Wolfswinkel
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; University of Applied Sciences Leiden, Zernikedreef 11, 2333 CK Leiden, the Netherlands
| | - Winnie Bao
- Department of Peadiatrics, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Byron Brook
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada; Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| | - Helen S Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Hospital, North Adelaide, SA 5006, Australia; Child and Adolescent Health, Robinson Research Institute, The University of Adelaide, North Adelaide, SA 5006, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Tobias R Kollmann
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada; Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| | - Damon J Tumes
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
6
|
Braxton AM, Creisher PS, Ruiz-Bedoya CA, Mulka KR, Dhakal S, Ordonez AA, Beck SE, Jain SK, Villano JS. Hamsters as a Model of Severe Acute Respiratory Syndrome Coronavirus-2. Comp Med 2021; 71:398-410. [PMID: 34588095 PMCID: PMC8594257 DOI: 10.30802/aalas-cm-21-000036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/02/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), rapidly spread across the world in late 2019, leading to a pandemic. While SARS-CoV-2 infections predominately affect the respiratory system, severe infections can lead to renal and cardiac injury and even death. Due to its highly transmissible nature and severe health implications, animal models of SARS-CoV-2 are critical to developing novel therapeutics and preventatives. Syrian hamsters (Mesocricetus auratus) are an ideal animal model of SARS-CoV-2 infections because they recapitulate many aspects of human infections. After inoculation with SARS-CoV-2, hamsters become moribund, lose weight, and show varying degrees of respiratory disease, lethargy, and ruffled fur. Histopathologically, their pulmonary lesions are consistent with human infections including interstitial to broncho-interstitial pneumonia, alveolar hemorrhage and edema, and granulocyte infiltration. Similar to humans, the duration of clinical signs and pulmonary pathology are short lived with rapid recovery by 14 d after infection. Immunocompromised hamsters develop more severe infections and mortality. Preclinical studies in hamsters have shown efficacy of therapeutics, including convalescent serum treatment, and preventatives, including vaccination, in limiting or preventing clinical disease. Although hamster studies have contributed greatly to our understanding of the pathogenesis and progression of disease after SARS-CoV-2 infection, additional studies are required to better characterize the effects of age, sex, and virus variants on clinical outcomes in hamsters. This review aims to describe key findings from studies of hamsters infected with SARS-CoV-2 and to highlight areas that need further investigation.
Collapse
Key Words
- ace2, angiotensin-converting enzyme 2
- covid-19, coronavirus disease 2019
- ct, computed tomography
- dpi, days post inoculation
- 18f-fdg, fluorine-18-fluorodeoxyglucose
- 18f-fds, fluorine-18-fluorodeoxysorbitol
- ggo, ground glass opacity
- ifny, interferon gamma
- il, interleukin
- il2rg ko, interleukin 2 receptor gamma chain knockout
- in, intranasal
- mo, months
- oc, intraocular
- pfu, plaque-forming units
- rag2 ko, recombination activating gene 2 knockout
- sars-cov, severe acute respiratory syndrome
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- tcid50, 50% tissue culture infective dose
- tmprss2, transmembrane protease serine 2
- tnf, tumor necrosis factor
- wk, weeks
Collapse
Affiliation(s)
- Alicia M Braxton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick S Creisher
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Camilo A Ruiz-Bedoya
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katie R Mulka
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Alvaro A Ordonez
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanjay K Jain
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jason S Villano
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Calderon DP, Schiff ND. Objective and graded calibration of recovery of consciousness in experimental models. Curr Opin Neurol 2021; 34:142-149. [PMID: 33278146 PMCID: PMC7866679 DOI: 10.1097/wco.0000000000000895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Experimental preclinical models of recovery of consciousness (ROC) and anesthesia emergence are crucial for understanding the neuronal circuits restoring arousal during coma emergence. Such models can also potentially help to better understand how events during coma emergence facilitate or hinder recovery from brain injury. Here we provide an overview of current methods used to assess ROC/level of arousal in animal models. This exposes the need for objective approaches to calibrate arousal levels. We outline how correlation of measured behaviors and their reestablishment at multiple stages with cellular, local and broader neuronal networks, gives a fuller understanding of ROC. RECENT FINDINGS Animals emerging from diverse coma-like states share a dynamic process of cortical and behavioral recovery that reveals distinct states consistently sequenced from low-to-high arousal level and trackable in nonhuman primates and rodents. Neuronal activity modulation of layer V-pyramidal neurons and neuronal aggregates within the brainstem and thalamic nuclei play critical roles at specific stages to promote restoration of a conscious state. SUMMARY A comprehensive, graded calibration of cortical, physiological, and behavioral changes in animal models is undoubtedly needed to establish an integrative framework. This approach reveals the contribution of local and systemic neuronal circuits to the underlying mechanisms for recovering consciousness.
Collapse
Affiliation(s)
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
8
|
Gao S, Calderon DP. Robust alternative to the righting reflex to assess arousal in rodents. Sci Rep 2020; 10:20280. [PMID: 33219247 PMCID: PMC7679463 DOI: 10.1038/s41598-020-77162-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
The righting reflex (RR) is frequently used to assess level of arousal and applied to animal models of a range of neurological disorders. RR produces a binary result that, when positive, is used to infer restoration of consciousness, often without further behavioral corroboration. We find that RR is an unreliable metric for arousal/recovery of consciousness. Instead, cortical activity and motor behavior that accompany RR are a non-binary, superior criterion that accurately calibrates and establishes level of arousal in rodents.
Collapse
Affiliation(s)
- Sijia Gao
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA
- School of Electrical and Computer Engineering, Cornell University, New York, NY, 10044, USA
| | - Diany Paola Calderon
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|