1
|
González-Román P, Hernández-Oaxaca D, Bustamante-Brito R, Rogel MA, Martínez-Romero E. On the Origins of Symbiotic Fungi in Carmine Cochineals and Their Function in the Digestion of Plant Polysaccharides. INSECTS 2024; 15:783. [PMID: 39452359 PMCID: PMC11508352 DOI: 10.3390/insects15100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
The cochineal insect Dactylopius coccus Costa (Hemiptera) has cultural and economic value because it produces carminic acid that is used commercially. In this study, distinct fungi were cultured from dissected tissue and identified as Penicillium, Coniochaeta, Arthrinium, Cladosporium, Microascus, Aspergillus, and Periconia. Fungi were microscopically observed inside cochineals in the gut, fat body, and ovaries. Since cochineals spend their lives attached to cactus leaves and use the sap as feed, they can obtain fungi from cacti plants. Indeed, we obtained Penicillium, Aspergillus, and Cladosporium fungi from cacti that were identical to those inside cochineals, supporting their plant origin. Fungi could be responsible for the degrading activities in the insect guts, since cellulase, pectinase, and amylase enzymatic activities in insect guts decreased in fungicide-treated cochineals. Our findings set the basis for the further study of the interactions between insects, fungi, and their host plants.
Collapse
Affiliation(s)
| | | | | | | | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM Universidad SN, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
2
|
Cerqueira AES, Lima HS, Silva LCF, Veloso TGR, de Paula SO, Santana WC, da Silva CC. Melipona stingless bees and honey microbiota reveal the diversity, composition, and modes of symbionts transmission. FEMS Microbiol Ecol 2024; 100:fiae063. [PMID: 38650068 PMCID: PMC11217820 DOI: 10.1093/femsec/fiae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/08/2023] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
The Melipona gut microbiota differs from other social bees, being characterized by the absence of crucial corbiculate core gut symbionts and a high occurrence of environmental strains. We studied the microbial diversity and composition of three Melipona species and their honey to understand which strains are obtained by horizontal transmission (HT) from the pollination environment, represent symbionts with HT from the hive/food stores or social transmission (ST) between nestmates. Bees harbored higher microbial alpha diversity and a different and more species-specific bacterial composition than honey. The fungal communities of bee and honey samples are also different but less dissimilar. As expected, the eusocial corbiculate core symbionts Snodgrassella and Gilliamella were absent in bees that had a prevalence of Lactobacillaceae - including Lactobacillus (formerly known as Firm-5), Bifidobacteriaceae, Acetobacteraceae, and Streptococcaceae - mainly strains close to Floricoccus, a putative novel symbiont acquired from flowers. They might have co-evolved with these bees via ST, and along with environmental Lactobacillaceae and Pectinatus (Veillonellaceae) strains obtained by HT, and Metschnikowia and Saccharomycetales yeasts acquired by HT from honey or the pollination environment, including plants/flowers, possibly compose the Melipona core microbiota. This work contributes to the understanding of Melipona symbionts and their modes of transmission.
Collapse
Affiliation(s)
- Alan Emanuel Silva Cerqueira
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
- Department of Integrative Biology, The University of Texas at Austin, 2506 Speedway, NMS 4.216, Austin, TX, United States
| | - Helena Santiago Lima
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| | - Lívia Carneiro Fidélis Silva
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| | - Tomás Gomes Reis Veloso
- Laboratorio de Associações Micorrízicas, Universidade Federal de Viçosa, Departamento de Microbiologia, Av. P.H. Rolfs, s/n – Campus Universitário, Bioagro – sala 313, Viçosa – Minas Gerais, Brazil
| | - Sérgio Oliveira de Paula
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 241, Viçosa – Minas Gerais, Brazil
| | - Weyder Cristiano Santana
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Rod. MG 230 Km 08 - Campus Universitário, Rio Paranaíba – Minas Gerais, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa,Av. P.H. Rolfs, s/n – Campus Universitário, Viçosa – Minas Gerais, Brazil
| | - Cynthia Canêdo da Silva
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| |
Collapse
|
3
|
Rosa CA, Lachance MA, Limtong S, Santos ARO, Landell MF, Gombert AK, Morais PB, Sampaio JP, Gonçalves C, Gonçalves P, Góes-Neto A, Santa-Brígida R, Martins MB, Janzen DH, Hallwachs W. Yeasts from tropical forests: Biodiversity, ecological interactions, and as sources of bioinnovation. Yeast 2023; 40:511-539. [PMID: 37921426 DOI: 10.1002/yea.3903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.
Collapse
Affiliation(s)
- Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University, Kasetsart University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Ana R O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Melissa F Landell
- Setor de Genética, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Andreas K Gombert
- Department of Engineering and Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Paula B Morais
- Laboratório de Microbiologia Ambiental e Biotecnologia, Campus de Palmas, Universidade Federal do Tocantins, Palmas, Tocantins, Brazil
| | - José P Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Aristóteles Góes-Neto
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Tejerina MR, Cabana MJ, Cruz NM, Enríquez PA, Benitez-Ahrendts MR, Fonseca MI. Fungal microbiota isolated from native stingless bee species inhibited pathogens of Apis mellifera. Fungal Biol 2023; 127:1267-1275. [PMID: 37821148 DOI: 10.1016/j.funbio.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 10/13/2023]
Abstract
Social bees can establish interactions with microorganisms to keep their colonies free of pathogens and parasites by developing different protection strategies. We explored the fungal microbiota isolated from three species of stingless bees, Tetragonisca fiebrigi, Plebeias sp., and Scaptotrigona jujuyensis, and its potential ability to suppress pathogenic microorganisms of A. mellifera, namely Paenibacillus larvae, Ascosphaera apis and Aspergillus flavus, which were tested and evaluated. Six filamentous fungal strains, Trametes hirsuta, Alternaria alternata, Curvularia spicifera, Skeletocutis sp., Alternaria tenuissima, Monascus spp., as well as the yeast Wickerhamomyces anomalus, were selected for trials and isolated from the heads of foraging bees. The fungal strains were identified by macroscopic and microscopic taxonomic characteristics and by sequencing of the ITS1-5.8S-ITS2 region of ribosomal DNA. All fungal strains inhibited these pathogens of A. mellifera. We also evaluated the effect of the secondary metabolites extracted with and without ethanol. Both metabolites showed antimicrobial properties, and our results suggest that fungi isolated from stingless bees produce bioactive compounds with antibacterial and antifungal effects that could be used to treat Apis mellifera colony diseases and maintain colony health.
Collapse
Affiliation(s)
- Marcos Raúl Tejerina
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina; Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, Jujuy, Argentina.
| | - María José Cabana
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Nancy Marina Cruz
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Pablo Adrián Enríquez
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Marcelo Rafael Benitez-Ahrendts
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina; Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, Jujuy, Argentina
| | - María Isabel Fonseca
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Biotecnología "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Misiones, Argentina; CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Vocadlova K, Lüddecke T, Patras MA, Marner M, Hartwig C, Benes K, Matha V, Mraz P, Schäberle TF, Vilcinskas A. Extracts of Talaromyces purpureogenus Strains from Apis mellifera Bee Bread Inhibit the Growth of Paenibacillus spp. In Vitro. Microorganisms 2023; 11:2067. [PMID: 37630627 PMCID: PMC10459140 DOI: 10.3390/microorganisms11082067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Honey bees coexist with fungi that colonize hive surfaces and pollen. Some of these fungi are opportunistic pathogens, but many are beneficial species that produce antimicrobial compounds for pollen conservation and the regulation of pathogen populations. In this study, we tested the in vitro antimicrobial activity of Talaromyces purpureogenus strains isolated from bee bread against Paenibacillus alvei (associated with European foulbrood disease) and three Aspergillus species that cause stonebrood disease. We found that methanol extracts of T. purpureogenus strains B18 and B195 inhibited the growth of P. alvei at a concentration of 0.39 mg/mL. Bioactivity-guided dereplication revealed that the activity of the crude extracts correlated with the presence of diketopiperazines, a siderophore, and three unknown compounds. We propose that non-pathogenic fungi such as Talaromyces spp. and their metabolites in bee bread could be an important requirement to prevent disease. Agricultural practices involving the use of fungicides can disrupt the fungal community and thus negatively affect the health of bee colonies.
Collapse
Affiliation(s)
- Katerina Vocadlova
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
| | - Tim Lüddecke
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
| | - Maria A. Patras
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
| | - Christoph Hartwig
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
| | - Karel Benes
- OncoRa s.r.o., Nemanicka 2722, 37001 Ceske Budejovice, Czech Republic
| | - Vladimir Matha
- Retorta s.r.o., Tresnova 316, 37382 Borsov nad Vltavou, Czech Republic
| | - Petr Mraz
- Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Studentska 1668, 37005 Ceske Budejovice, Czech Republic
| | - Till F. Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| |
Collapse
|
6
|
de Paula GT, Melo WGDP, de Castro I, Menezes C, Paludo CR, Rosa CA, Pupo MT. Further evidences of an emerging stingless bee-yeast symbiosis. Front Microbiol 2023; 14:1221724. [PMID: 37637114 PMCID: PMC10450959 DOI: 10.3389/fmicb.2023.1221724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Symbiotic interactions between microorganisms and social insects have been described as crucial for the maintenance of these multitrophic systems, as observed for the stingless bee Scaptotrigona depilis and the yeast Zygosaccharomyces sp. SDBC30G1. The larvae of S. depilis ingest fungal filaments of Zygosaccharomyces sp. SDBC30G1 to obtain ergosterol, which is the precursor for the biosynthesis of ecdysteroids that modulate insect metamorphosis. In this work, we find a similar insect-microbe interaction in other species of stingless bees. We analyzed brood cell samples from 19 species of stingless bees collected in Brazil. The osmophilic yeast Zygosaccharomyces spp. was isolated from eight bee species, namely Scaptotrigona bipunctata, S. postica, S. tubiba, Tetragona clavipes, Melipona quadrifasciata, M. fasciculata, M. bicolor, and Partamona helleri. These yeasts form pseudohyphae and also accumulate ergosterol in lipid droplets, similar to the pattern observed for S. depilis. The phylogenetic analyses including various Zygosaccharomyces revealed that strains isolated from the brood cells formed a branch separated from the previously described Zygosaccharomyces species, suggesting that they are new species of this genus and reinforcing the symbiotic interaction with the host insects.
Collapse
Affiliation(s)
- Gabriela Toninato de Paula
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Weilan Gomes da Paixão Melo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Center for Agricultural and Natural Sciences and Letters, State University of the Tocantina Region of Maranhão, Estreito, Brazil
| | - Ivan de Castro
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Camila Raquel Paludo
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mônica Tallarico Pupo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Rutkowski D, Weston M, Vannette RL. Bees just wanna have fungi: a review of bee associations with nonpathogenic fungi. FEMS Microbiol Ecol 2023; 99:fiad077. [PMID: 37422442 PMCID: PMC10370288 DOI: 10.1093/femsec/fiad077] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Bee-fungus associations are common, and while most studies focus on entomopathogens, emerging evidence suggests that bees associate with a variety of symbiotic fungi that can influence bee behavior and health. Here, we review nonpathogenic fungal taxa associated with different bee species and bee-related habitats. We synthesize results of studies examining fungal effects on bee behavior, development, survival, and fitness. We find that fungal communities differ across habitats, with some groups restricted mostly to flowers (Metschnikowia), while others are present almost exclusively in stored provisions (Zygosaccharomyces). Starmerella yeasts are found in multiple habitats in association with many bee species. Bee species differ widely in the abundance and identity of fungi hosted. Functional studies suggest that yeasts affect bee foraging, development, and pathogen interactions, though few bee and fungal taxa have been examined in this context. Rarely, fungi are obligately beneficial symbionts of bees, whereas most are facultative bee associates with unknown or ecologically contextual effects. Fungicides can reduce fungal abundance and alter fungal communities associated with bees, potentially disrupting bee-fungi associations. We recommend that future study focus on fungi associated with non-honeybee species and examine multiple bee life stages to document fungal composition, abundance, and mechanistic effects on bees.
Collapse
Affiliation(s)
- Danielle Rutkowski
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Makena Weston
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Rachel L Vannette
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
8
|
Haag KL, Caesar L, da Silveira Regueira-Neto M, de Sousa DR, Montenegro Marcelino V, de Queiroz Balbino V, Torres Carvalho A. Temporal Changes in Gut Microbiota Composition and Pollen Diet Associated with Colony Weakness of a Stingless Bee. MICROBIAL ECOLOGY 2023; 85:1514-1526. [PMID: 35513592 DOI: 10.1007/s00248-022-02027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/25/2022] [Indexed: 05/10/2023]
Abstract
Compared to honeybees and bumblebees, the effect of diet on the gut microbiome of Neotropical corbiculate bees such as Melipona spp. is largely unknown. These bees have been managed for centuries, but recently an annual disease is affecting M. quadrifasciata, an endangered species kept exclusively by management in Southern Brazil. Here we report the results of a longitudinal metabarcoding study involving the period of M. quadrifasciata colony weakness, designed to monitor the gut microbiota and diet changes preceding an outbreak. We found increasing amounts of bacteria associated to the gut of forager bees 2 months before the first symptoms have been recorded. Simultaneously, forager bees showed decreasing body weight. The accelerated growth of gut-associated bacteria was uneven among taxa, with Bifidobacteriaceae dominating, and Lactobacillaceae decreasing in relative abundance within the bacterial community. Dominant fungi such as Candida and Starmerella also decreased in numbers, and the stingless bee obligate symbiont Zygosaccharomyces showed the lowest relative abundance during the outbreak period. Such changes were associated with pronounced diet shifts, i.e., the rise of Eucalyptus spp. pollen amount in forager bees' guts. Furthermore, there was a negative correlation between the amount of Eucalyptus pollen in diets and the abundance of some bacterial taxa in the gut-associated microbiota. We conclude that diet and subsequent interactions with the gut microbiome are key environmental components of the annual disease and propose the use of diet supplementation as means to sustain the activity of stingless bee keeping as well as native bee pollination services.
Collapse
Affiliation(s)
- Karen Luisa Haag
- Department of Genetics and Program of Post Graduation in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Lílian Caesar
- Department of Genetics and Program of Post Graduation in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Dayana Rosalina de Sousa
- Department of Agronomy and Program of Post Graduation in Entomology, Federal Rural University of Pernambuco, Recife, PA, Brazil
| | - Victor Montenegro Marcelino
- Department of Genetics and Program of Post Graduation in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Program of Post Graduation in Bioinformatics, Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande Do Norte, Natal, Brazil
| | | | - Airton Torres Carvalho
- Department of Biosciences, Center of Biological and Health Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| |
Collapse
|
9
|
Santos ACC, Borges LDF, Rocha NDC, de Carvalho Azevedo VA, Bonetti AM, Dos Santos AR, da Rocha Fernandes G, Dantas RCC, Ueira-Vieira C. Bacteria, yeasts, and fungi associated with larval food of Brazilian native stingless bees. Sci Rep 2023; 13:5147. [PMID: 36991089 PMCID: PMC10060228 DOI: 10.1038/s41598-023-32298-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Stingless bees are a diverse group with a relevant role in pollinating native species. Its diet is rich in carbohydrates and proteins, by collecting pollen and nectar supplies the development of its offspring. Fermentation of these products is associated with microorganisms in the colony. However, the composition of microorganisms that comprise this microbiome and its fundamental role in colony development is still unclear. To characterize the colonizing microorganisms of larval food in the brood cells of stingless bees Frieseomelitta varia, Melipona quadrifasciata, Melipona scutellaris, and Tetragonisca angustula, we have utilized molecular and culture-based techniques. Bacteria of the phyla Firmicutes, Proteobacteria, Actinobacteria, and fungi of the phyla Ascomycota, Basidiomycota, Mucoromycota, and Mortierellomycota were found. Diversity analysis showed that F. varia had a greater diversity of bacteria in its microbiota, and T. angustula had a greater diversity of fungi. The isolation technique allowed the identification of 189 bacteria and 75 fungi. In summary, this research showed bacteria and fungi associated with the species F. varia, M. quadrifasciata, M. scutellaris, and T. angustula, which may play an essential role in the survival of these organisms. Besides that, a biobank with bacteria and fungus isolates from LF of Brazilian stingless bees was created, which can be used for different studies and the prospection of biotechnology compounds.
Collapse
Affiliation(s)
- Ana Carolina Costa Santos
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.
| | | | - Nina Dias Coelho Rocha
- Laboratory of Molecular and Cellular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Molecular and Cellular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Bonetti
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | | | | | | - Carlos Ueira-Vieira
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
10
|
Crude Extracts of Talaromyces Strains (Ascomycota) Affect Honey Bee ( Apis mellifera) Resistance to Chronic Bee Paralysis Virus. Viruses 2023; 15:v15020343. [PMID: 36851556 PMCID: PMC9958978 DOI: 10.3390/v15020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Viruses contribute significantly to the global decline of honey bee populations. One way to limit the impact of such viruses is the introduction of natural antiviral compounds from fungi as a component of honey bee diets. Therefore, we examined the effect of crude organic extracts from seven strains of the fungal genus Talaromyces in honey bee diets under laboratory conditions. The strains were isolated from bee bread prepared by honey bees infected with chronic bee paralysis virus (CBPV). The antiviral effect of the extracts was also quantified in vitro using mammalian cells as a model system. We found that three extracts (from strains B13, B18 and B30) mitigated CBPV infections and increased the survival rate of bees, whereas other extracts had no effect (B11 and B49) or were independently toxic (B69 and B195). Extract B18 inhibited the replication of feline calicivirus and feline coronavirus (FCoV) in mammalian cells, whereas extracts B18 and B195 reduced the infectivity of FCoV by ~90% and 99%, respectively. Our results show that nonpathogenic fungi (and their products in food stores) offer an underexplored source of compounds that promote disease resistance in honey bees.
Collapse
|
11
|
Cui P, Wu H, Jiang T, Tao J, Zhu Z, Liu P, Yu L, Zhang Y. Diversity and antibacterial potential of the Actinobacteria associated with Apis mellifera ligustica. Front Microbiol 2022; 13:1056176. [PMID: 36590398 PMCID: PMC9800615 DOI: 10.3389/fmicb.2022.1056176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Insect-associated Actinobacteria are a potentially rich source of novel natural products with antibacterial activity. Here, the community composition of Actinobacteria associated with Apis mellifera ligustica was investigated by integrated culture-dependent and independent methods. A total of 61 strains of Streptomyces genera were isolated from the honeycomb, larva, and different anatomical parts of the honeybee's body using the culture-dependent method. Amplicon sequencing analyses revealed that the actinobacterial communities were dominated by the family of Bifidobacteriaceae and Microbacteriaceae in the honeybee gut, and Nocardiaceae and Pseudonocardiaceae in the honeycomb, whereas only Streptomyces genera were isolated by the culture-dependent method. Culture-independent analyses showed more diverse actinobacterial communities than those of culture-dependent methods. The antibacterial bioassay showed that most crude extracts of representative isolates exhibited antibacterial activities. Among them, the crude extract of Streptomyces sp. FCF01 showed the best antibacterial activities against Staphylococcus aureus, Micrococcus tetragenus, and Pseudomonas syringae pv. actinidiae (Psa) with the disc diameter of inhibition zone diameter (IZD) of 23.00, 15.00, and 13.33 mm, respectively. Chemical analysis of Streptomyces sp. FCF01 led to the isolation of three secondary metabolites, including mayamycin (1), mayamycin B (2), and N-(2-Hydroxyphenyl) acetamide (3). Among them, compound 1 displayed strong antibacterial activity against S. aureus, M. tetragenus, and Psa with minimum inhibitory concentrations (MIC) values of 6.25, 12.5, and 6.25 μg/ml, respectively. In addition, two novel derivative compounds 1a and 1b were synthesized by acetylation of compound 1. Both compounds 1a and 1b displayed similar antibacterial activities with those of metabolite 1. These results indicated that Streptomyces species associated with honeybees had great potential in finding antibiotics.
Collapse
Affiliation(s)
- Pu Cui
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Haoyang Wu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Taoshan Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jian Tao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhiwei Zhu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Peng Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Linsheng Yu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yinglao Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China,*Correspondence: Yinglao Zhang,
| |
Collapse
|
12
|
Rosa-Fontana AS, Dorigo AS, Malaquias JB, Pachú JKS, Nocelli RCF, Tosi S, Malaspina O. Fungivorous mites enhance the survivorship and development of stingless bees even when exposed to pesticides. Sci Rep 2022; 12:20948. [PMID: 36470975 PMCID: PMC9722777 DOI: 10.1038/s41598-022-25482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Stingless bees are the largest group of eusocial bees in the world. They play an essential role as crop pollinators and have been considered for inclusion in pesticide risk assessments (RAs). Beyond the mutualism involving stingless bee larvae and fungi, the fungivorous mite Proctotydaeus (Neotydeolus) alvearii proved to be interesting for studies of associations with stingless bees. Their presence is related to colony strength and health, showing a permanent-host-association level. Here, we tested whether the coexistence with P. (N.) alvearii affects stingless bee larvae survivorship and development, including when fed pesticide-dosed food. We chose dimethoate, the reference standard for toxicity tests, and thiamethoxam, widely used in neotropical crops and listed to be reassessed in RAs. Bees associated with the mites showed higher larval survivorship rates, even in the dosed ones, and revealed changes in the developmental time and body size. Our study represents the first approach to stingless bee responses to the coexistence of fungivorous mites inside brood cells, leading us to believe that these mites play a beneficial role in stingless bees, including when they are exposed to pesticides.
Collapse
Affiliation(s)
- Annelise S. Rosa-Fontana
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| | - Adna Suelen Dorigo
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| | - José Bruno Malaquias
- grid.11899.380000 0004 1937 0722Escola Superior de Agricultura “Luiz de Queiroz”, University of Sao Paulo, Piracicaba, SP Brazil
| | - Jéssica K. S. Pachú
- grid.11899.380000 0004 1937 0722Escola Superior de Agricultura “Luiz de Queiroz”, University of Sao Paulo, Piracicaba, SP Brazil
| | - Roberta C. F. Nocelli
- grid.411247.50000 0001 2163 588XCentre of Agrarian Science, Federal University of Sao Carlos, Araras, SP Brazil ,grid.7605.40000 0001 2336 6580Department of Agricultural, Forest, and Food Sciences, University of Torino, Grugliasco, Italy
| | - Simone Tosi
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest, and Food Sciences, University of Torino, Grugliasco, Italy
| | - Osmar Malaspina
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| |
Collapse
|
13
|
Dallagnol AM, Dallagnol VC, Vignolo GM, Lopes NP, Brunetti AE. Flavonoids and Phenylethylamides Are Pivotal Factors Affecting the Antimicrobial Properties of Stingless Bee Honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12596-12603. [PMID: 36154047 DOI: 10.1021/acs.jafc.2c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite the recent approval of stingless bee honey to the Argentine Food Code, there are still many gaps in information. Likely, the main reason for this is that multiple ecological and chemical factors influence their production and antimicrobial properties. This work combined metabolomic, microbiological, and physicochemical analyses to characterize the honey ofTetragonisca fiebrigifrom Northeastern Argentina. The antimicrobial activity tests showed that honey samples (n = 24) inhibited some Gram-positive and Gram-negative bacteria at different sensitivity levels. Furthermore, samples selected for their high bioactivity revealed crystallizations, a positive correlation with fungal growth, and the presence of flavonoids. The major polyphenols annotated by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis and supported by metabolomic tools were quercetin 3,4'-dimethyl ether, pachypodol, jaceoside, irigenin trimethyl ether, corymboside, chrysoeriol 7-neohesperidoside, and corymboside. In contrast, samples missing antimicrobial activity did not crystallize, lacked flavonoids, and were enriched in phenylethylamides. Based on these findings, we discuss the significance of flavonoids and phenylethylamides on honey's antimicrobial activity and food quality and how they may indeed reflect essential parameters of the hive, such as microbial balance and eubiosis.
Collapse
Affiliation(s)
- Andrea Micaela Dallagnol
- Laboratorio de Microbiología de Alimentos y Biotecnología Dr. Fernando O. Benassi, Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN, UNaM), Ruta 12, Km 7,5, Posadas CP 3300, Misiones, Argentina
- Instituto de Materiales de Misiones (IMAM, UNaM-CONICET), Felix de Azara 1552, Posadas CP 3300, Misiones, Argentina
| | - Verónica Cristina Dallagnol
- Instituto de Materiales de Misiones (IMAM, UNaM-CONICET), Felix de Azara 1552, Posadas CP 3300, Misiones, Argentina
| | - Graciela Margarita Vignolo
- Centro de Referencia para Lactobacilos (CERELA, CONICET). Chacabuco 145, San Miguel de Tucumán CP 4000, Tucumán, Argentina
| | - Norberto Peporine Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Andrés Eduardo Brunetti
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS, UNaM-CONICET), Félix de Azara 1552, Posadas CP 3300, Misiones, Argentina
| |
Collapse
|
14
|
Yeasts from the nests of two Amazonian stingless bees: screening and PCR-RFLP molecular analysis. Symbiosis 2022. [DOI: 10.1007/s13199-022-00865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Antimicrobial activity of supernatants produced by bacteria isolated from Brazilian stingless bee's larval food. BMC Microbiol 2022; 22:127. [PMID: 35549853 PMCID: PMC9097392 DOI: 10.1186/s12866-022-02548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background The discovery of new molecules with antimicrobial properties has been a promising approach, mainly when related to substances produced by bacteria. The use of substances produced by bees has evidenced the antimicrobial action in different types of organisms. Thus, the use of bacteria isolated from larval food of stingless bees opens the way for the identification of the new molecules. The effect of supernatants produced by these bacteria was evaluated for their ability to inhibit the growth of bacteria of clinical interest. Furthermore, their effects were evaluated when used in synergy with antibiotics available in the pharmaceutical industry. Results A few supernatants showed an inhibitory effect against susceptible and multiresistant strains in the PIC assay and the modulation assay. Emphasizing the inhibitory effect on multidrug-resistant strains, 7 showed an effect on multidrug-resistant Escherichia coli (APEC), Klebsiella pneumoniae carbapenemase (KPC), multidrug-resistant Pseudomonas aeruginosa, and multidrug-resistant Staphylococcus aureus (MRSA) in the PIC assay. Of the supernatants analyzed, some presented synergism for more than one species of multidrug-resistant bacteria. Nine had a synergistic effect with ampicillin on E. coli (APEC) or S. aureus (MRSA), 5 with penicillin G on E. coli (APEC) or KPC, and 3 with vancomycin on KPC. Conclusion In summary, the results indicate that supernatants produced from microorganisms can synthesize different classes of molecules with potent antibiotic activity against multiresistant bacteria. Thus, suggesting the use of these microorganisms for use clinical tests to isolate the molecules produced and their potential for use.
Collapse
|
16
|
de Sousa LP. Bacterial communities of indoor surface of stingless bee nests. PLoS One 2021; 16:e0252933. [PMID: 34242231 PMCID: PMC8270128 DOI: 10.1371/journal.pone.0252933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Microbes have been identified as fundamental for the good health of bees, acting as pathogens, protective agent against infection/inorganic toxic compounds, degradation of recalcitrant secondary plant metabolites, definition of social group membership, carbohydrate metabolism, honey and bee pollen production. However, study of microbiota associated with bees have been largely confined to the honeybees and solitary bees. Here, I characterized the microbiota of indoor surface nest of four brazilian stingless bee species (Apidae: Meliponini) with different construction behaviors and populations. Bees that use predominantly plant material to build the nest (Frieseomelitta varia and Tetragonisca angustula) have a microbiome dominated by bacteria found in the phylloplane and flowers such as Pseudomonas sp. and Sphingomonas sp. Species that use mud and feces (Trigona spinipes) possess a microbiome dominated by coliforms such as Escherichia coli and Alcaligenes faecalis. Melipona quadrifasciata, which uses both mud / feces and plant resin, showed a hybrid microbiome with microbes found in soil, feces and plant material. These findings indicate that indoor surface microbiome varies widely among bees and reflects the materials used in the construction of the nests.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Department of Genetic, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
17
|
Tang QH, Miao CH, Chen YF, Dong ZX, Cao Z, Liao SQ, Wang JX, Wang ZW, Guo J. The composition of bacteria in gut and beebread of stingless bees (Apidae: Meliponini) from tropics Yunnan, China. Antonie van Leeuwenhoek 2021; 114:1293-1305. [PMID: 34110551 DOI: 10.1007/s10482-021-01602-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022]
Abstract
Stingless bees are the main pollinators in tropical and subtropical regions. However, there are only a few studies on the structure and composition of bacteria in the gut and beebread of stingless bees, especially in China. To address this shortage of information, we characterized the microbiota of three common species of stingless bees (Lepidotrigona terminata, Lepidotrigona ventralis and Tetragonula pagdeni) and beebread samples of T. pagdeni. The results showed that the gut of stingless bees contained a set of dominant bacteria, including Acetobacter-like, Snodgrassella, Lactobacillus, Psychrobacter, Pseudomonas, Bifidobacterium and other species. The gut microbiota structures of the three stingless bees were different, and the abundances of bacterial species in the gut varied between communities of the same bee species. The reasons for this are manifold and may include food preference, age and genetic differences. In addition, the abundances of Lactobacillus, Carnimonas, Escherichia-Shigella, Acinetobacter and other species were high in the beebread of stingless bees. In conclusion, our findings reveal the bacteria composition and structure of the gut and beebread of stingless bees in China and deepen our understanding of the dominant bacteria of the gut and beebread of stingless bees.
Collapse
Affiliation(s)
- Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chun-Hui Miao
- Sericulture and Apiculture Reserach Institute, Yunnan Academy of Agriculutral Sciences, Mengzi, China
| | - Yi-Fei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhe Cao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shi-Qun Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jia-Xuan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong, 650000, China.
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
18
|
de Paula GT, Menezes C, Pupo MT, Rosa CA. Stingless bees and microbial interactions. CURRENT OPINION IN INSECT SCIENCE 2021; 44:41-47. [PMID: 33271364 DOI: 10.1016/j.cois.2020.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Stingless bees (Meliponini) are a monophyletic group of eusocial insects inhabiting tropical and subtropical regions. These insects represent the most abundant and diversified group of corbiculate bees. Meliponini mostly rely on fermentation by symbiont microbes to preserve honey and transform pollen in stored food. Bee nests harbor diverse microbiota that includes bacteria, yeasts, filamentous fungi, and viruses. These microorganisms may interact with the bees through symbiotic relationships, or they may act as food for the insects, or produce biomolecules that aid in the biotransformation of bee products, such as honey and bee bread. Certain microbial species can also produce antimicrobial compounds that inhibit opportunistic bee pathogens.
Collapse
Affiliation(s)
- Gabriela Toninato de Paula
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP, Brazil
| | - Cristiano Menezes
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, SP, Brazil
| | - Mônica Tallarico Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP, Brazil
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
19
|
Menegatti C, Fukuda TTH, Pupo MT. Chemical Ecology in Insect-microbe Interactions in the Neotropics. PLANTA MEDICA 2021; 87:38-48. [PMID: 32854122 DOI: 10.1055/a-1229-9435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Small molecules frequently mediate symbiotic interactions between microorganisms and their hosts. Brazil harbors the highest diversity of insects in the world; however, just recently, efforts have been directed to deciphering the chemical signals involved in the symbioses of microorganisms and social insects. The current scenario of natural products research guided by chemical ecology is discussed in this review. Two groups of social insects have been prioritized in the studies, fungus-farming ants and stingless bees, leading to the identification of natural products involved in defensive and nutritional symbioses. Some of the compounds also present potential pharmaceutical applications as antimicrobials, and this is likely related to their ecological roles. Microbial symbioses in termites and wasps are suggested promising sources of biologically active small molecules. Aspects related to public policies for insect biodiversity preservation are also highlighted.
Collapse
Affiliation(s)
- Carla Menegatti
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Taise T H Fukuda
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mônica T Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
20
|
Antioxidant-Based Medicinal Properties of Stingless Bee Products: Recent Progress and Future Directions. Biomolecules 2020; 10:biom10060923. [PMID: 32570769 PMCID: PMC7356725 DOI: 10.3390/biom10060923] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
Stingless bees are a type of honey producers that commonly live in tropical countries. Their use for honey is being abandoned due to its limited production. However, the recent improvements in stingless bee honey production, particularly in South East Asia, have brought stingless bee products back into the picture. Although there are many stingless bee species that produce a wide spread of products, known since old eras in traditional medicine, the modern medical community is still missing more investigational studies on stingless bee products. Whereas comprehensive studies in the current era attest to the biological and medicinal properties of honeybee (Apis mellifera) products, the properties of stingless bee products are less known. This review highlights for the first time the medicinal benefits of stingless bee products (honey, propolis, pollen and cerumen), recent investigations and promising future directions. This review emphasizes the potential antioxidant properties of these products that in turn play a vital role in preventing and treating diseases associated with oxidative stress, microbial infections and inflammatory disorders. Summarizing all these data and insights in one manuscript may increase the commercial value of stingless bee products as a food ingredient. This review will also highlight the utility of stingless bee products in the context of medicinal and therapeutic properties, some of which are yet to be discovered.
Collapse
|
21
|
Menegatti C, Lourenzon VB, Rodríguez-Hernández D, da Paixão Melo WG, Ferreira LLG, Andricopulo AD, do Nascimento FS, Pupo MT. Meliponamycins: Antimicrobials from Stingless Bee-Associated Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2020; 83:610-616. [PMID: 32073851 DOI: 10.1021/acs.jnatprod.9b01011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Social insects establish complex interactions with microorganisms, some of which play defensive roles in colony protection. The important role of pollinators such as the stingless bee Melipona scutellaris in nature encouraged us to pursue efforts to study its associated microbiota. Here we describe the discovery of two novel cyclic hexadepsipeptides, meliponamycin A (1) and meliponamycin B (2), from Streptomyces sp. ICBG1318 isolated from M. scutellaris nurse bees. Their structures were established by interpretation of NMR and MS data, and the absolute configuration of the constituent amino acids was determined by the advanced Marfey's method. Compounds 1 and 2 showed strong activity against the entomopathogen Paenibacillus larvae and human pathogens Staphylococcus aureus and Leishmania infantum.
Collapse
Affiliation(s)
- Carla Menegatti
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Vitor Bruno Lourenzon
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Diego Rodríguez-Hernández
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Weilan Gomes da Paixão Melo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone, 1100, 13563-120, São Carlos, SP, Brazil
| | - Adriano Defini Andricopulo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone, 1100, 13563-120, São Carlos, SP, Brazil
| | - Fabio Santos do Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Mônica Tallarico Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|