1
|
Dabravolski SA, Isayenkov SV. Expansins in Salt and Drought Stress Adaptation: From Genome-Wide Identification to Functional Characterisation in Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:1327. [PMID: 40364355 PMCID: PMC12073716 DOI: 10.3390/plants14091327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
Expansins are cell wall-modifying proteins that play a pivotal role in plant growth, development, and stress adaptation to abiotic stress. This manuscript explores the functions of expansins in salt and drought stress responses across multiple plant species, highlighting their involvement in cell wall loosening, transcriptional regulation, ion and osmotic homeostasis, and phytohormone signalling. Genome-wide identification and expression analyses revealed differential regulation of expansin genes under abiotic stress conditions. In Nicotiana tabacum, overexpression of NtEXPA4 and NtEXPA11 promoted root elongation and ion homeostasis, improving salt and drought tolerance. Similarly, Brassica rapa BrEXLB1 was found to modulate root architecture and phytohormone-mediated stress responses. In Oryza sativa, OsEXPA7 was linked to cation exchange and auxin signalling under salt stress conditions. Conversely, in Populus trichocarpa, PtEXPA6 exhibited a negative regulatory role in salt stress tolerance, highlighting species-specific differences in expansin function. Expansins also contribute to reactive oxygen species (ROS) homeostasis, as observed in transgenic plants with increased activities of SOD, POD, APX, and CAT, which reduced oxidative damage under stress. Additionally, enhanced accumulation of soluble sugars and proline in expansin-overexpressing plants suggests their involvement in osmotic adjustment mechanisms. The interplay between expansins and ABA, auxins, and ethylene further underscores their role in integrating mechanical and hormonal stress responses. Despite substantial progress, limitations remain in understanding the broader regulatory networks influenced by expansins. Future research should focus on elucidating their downstream molecular targets, transcriptional interactions, and functional diversity across different plant species. Expansins represent promising candidates for improving crop resilience to environmental stress, making them valuable targets for future breeding and biotechnological approaches.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
| |
Collapse
|
2
|
Zhang L, Fu X, Ye J, Chen S, Jin J, Liu W, Zhang Z, Zhou L, Chen S, Fang W, Song A, Chen F. CmbZIP19 inhibits lateral bud elongation via the brassinolide pathway in chrysanthemum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70080. [PMID: 40086797 DOI: 10.1111/tpj.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Branching is the main factor that determines plant architecture and is closely related to plant adaptation to the environment. Cold stress can inhibit lateral bud elongation in plants, but the underlying mechanism is still unclear. Here, we report that the cold stress-induced bZIP family transcription factor CmbZIP19 inhibits lateral bud elongation in chrysanthemum. We identified the target gene of CmbZIP19 as the brassinolide (BR) synthesis-related gene CmDWF1 by integrating RNA-seq and DAP-seq data. CmbZIP19 can directly bind to the ZDRE-like motif in the promoter region of CmDWF1, thereby inhibiting the expression of CmDWF1. We confirmed that CmDWF1 can promote the lateral branch elongation of chrysanthemum by genetic transformation. The branching phenotype of CmbZIP19-RNAi plants could be restituted by BR treatment. Taken together, the results suggest that CmbZIP19 modulates plant architecture by suppressing BR synthesis.
Collapse
Affiliation(s)
- Lingling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianrong Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingxuan Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaocong Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaohe Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Zhang J, Dong T, Zhu M, Du D, Liu R, Yu Q, Sun Y, Zhang Z. Transcriptome- and genome-wide systematic identification of expansin gene family and their expression in tuberous root development and stress responses in sweetpotato ( Ipomoea batatas). FRONTIERS IN PLANT SCIENCE 2024; 15:1412540. [PMID: 38966148 PMCID: PMC11223104 DOI: 10.3389/fpls.2024.1412540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 07/06/2024]
Abstract
Introduction Expansins (EXPs) are essential components of the plant cell wall that function as relaxation factors to directly promote turgor-driven expansion of the cell wall, thereby controlling plant growth and development and diverse environmental stress responses. EXPs genes have been identified and characterized in numerous plant species, but not in sweetpotato. Results and methods In the present study, a total of 59 EXP genes unevenly distributed across 14 of 15 chromosomes were identified in the sweetpotato genome, and segmental and tandem duplications were found to make a dominant contribution to the diversity of functions of the IbEXP family. Phylogenetic analysis showed that IbEXP members could be clustered into four subfamilies based on the EXPs from Arabidopsis and rice, and the regularity of protein motif, domain, and gene structures was consistent with this subfamily classification. Collinearity analysis between IbEXP genes and related homologous sequences in nine plants provided further phylogenetic insights into the EXP gene family. Cis-element analysis further revealed the potential roles of IbEXP genes in sweetpotato development and stress responses. RNA-seq and qRT-PCR analysis of eight selected IbEXPs genes provided evidence of their specificity in different tissues and showed that their transcripts were variously induced or suppressed under different hormone treatments (abscisic acid, salicylic acid, jasmonic acid, and 1-aminocyclopropane-1-carboxylic acid) and abiotic stresses (low and high temperature). Discussion These results provide a foundation for further comprehensive investigation of the functions of IbEXP genes and indicate that several members of this family have potential applications as regulators to control plant development and enhance stress resistance in plants.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Dan Du
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Ranran Liu
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Qianqian Yu
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Yueying Sun
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Zhihuan Zhang
- Institute of Biotechnology, Qingdao Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
4
|
Wang L, Zhang T, Li C, Zhou C, Liu B, Wu Y, He F, Xu Y, Li F, Feng X. Overexpression of Wild Soybean Expansin Gene GsEXLB14 Enhanced the Tolerance of Transgenic Soybean Hairy Roots to Salt and Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1656. [PMID: 38931088 PMCID: PMC11207530 DOI: 10.3390/plants13121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
As a type of cell-wall-relaxing protein that is widely present in plants, expansins have been shown to actively participate in the regulation of plant growth and responses to environmental stress. Wild soybeans have long existed in the wild environment and possess abundant resistance gene resources, which hold significant value for the improvement of cultivated soybean germplasm. In our previous study, we found that the wild soybean expansin gene GsEXLB14 is specifically transcribed in roots, and its transcription level significantly increases under salt and drought stress. To further identify the function of GsEXLB14, in this study, we cloned the CDS sequence of this gene. The transcription pattern of GsEXLB14 in the roots of wild soybean under salt and drought stress was analyzed by qRT-PCR. Using an Agrobacterium rhizogenes-mediated genetic transformation, we obtained soybean hairy roots overexpressing GsEXLB14. Under 150 mM NaCl- and 100 mM mannitol-simulated drought stress, the relative growth values of the number, length, and weight of transgenic soybean hairy roots were significantly higher than those of the control group. We obtained the transcriptomes of transgenic and wild-type soybean hairy roots under normal growth conditions and under salt and drought stress through RNA sequencing. A transcriptomic analysis showed that the transcription of genes encoding expansins (EXPB family), peroxidase, H+-transporting ATPase, and other genes was significantly upregulated in transgenic hairy roots under salt stress. Under drought stress, the transcription of expansin (EXPB/LB family) genes increased in transgenic hairy roots. In addition, the transcription of genes encoding peroxidases, calcium/calmodulin-dependent protein kinases, and dehydration-responsive proteins increased significantly. The results of qRT-PCR also confirmed that the transcription pattern of the above genes was consistent with the transcriptome. The differences in the transcript levels of the above genes may be the potential reason for the strong tolerance of soybean hairy roots overexpressing the GsEXLB14 gene under salt and drought stress. In conclusion, the expansin GsEXLB14 can be used as a valuable candidate gene for the molecular breeding of soybeans.
Collapse
Affiliation(s)
- Linlin Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Tong Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Cuiting Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Changjun Zhou
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163316, China; (C.Z.); (B.L.); (Y.W.)
| | - Bing Liu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163316, China; (C.Z.); (B.L.); (Y.W.)
| | - Yaokun Wu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163316, China; (C.Z.); (B.L.); (Y.W.)
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Yongqing Xu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Wang YL, Li L, Paudel BR, Zhao JL. Genomic Insights into High-Altitude Adaptation: A Comparative Analysis of Roscoea alpina and R. purpurea in the Himalayas. Int J Mol Sci 2024; 25:2265. [PMID: 38396942 PMCID: PMC10889555 DOI: 10.3390/ijms25042265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Environmental stress at high altitudes drives the development of distinct adaptive mechanisms in plants. However, studies exploring the genetic adaptive mechanisms of high-altitude plant species are scarce. In the present study, we explored the high-altitude adaptive mechanisms of plants in the Himalayas through whole-genome resequencing. We studied two widespread members of the Himalayan endemic alpine genus Roscoea (Zingiberaceae): R. alpina (a selfing species) and R. purpurea (an outcrossing species). These species are distributed widely in the Himalayas with distinct non-overlapping altitude distributions; R. alpina is distributed at higher elevations, and R. purpurea occurs at lower elevations. Compared to R. purpurea, R. alpina exhibited higher levels of linkage disequilibrium, Tajima's D, and inbreeding coefficient, as well as lower recombination rates and genetic diversity. Approximately 96.3% of the genes in the reference genome underwent significant genetic divergence (FST ≥ 0.25). We reported 58 completely divergent genes (FST = 1), of which only 17 genes were annotated with specific functions. The functions of these genes were primarily related to adapting to the specific characteristics of high-altitude environments. Our findings provide novel insights into how evolutionary innovations promote the adaptation of mountain alpine species to high altitudes and harsh habitats.
Collapse
Affiliation(s)
- Ya-Li Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| | - Li Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| | - Babu Ram Paudel
- Research Centre for Applied Science and Technology, Tribhuvan University, Kirtipur 44613, Nepal
| | - Jian-Li Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| |
Collapse
|
6
|
Li Y, Li B, Pang Q, Lou Y, Wang D, Wang Z. Identification and expression analysis of expansin gene family in Salvia miltiorrhiza. Chin Med 2024; 19:22. [PMID: 38311790 PMCID: PMC10838462 DOI: 10.1186/s13020-023-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Expansins (EXP) are important enzymes that are involved in the extension of plant cells and regulation of root configurations, which play important roles in resisting various stresses. As a model medicinal plant, Salvia miltiorrhiza is well recognized for treating coronary heart disease, myocardial infection, and other cardiovascular and cerebrovascular diseases; however, the SmEXP gene family has not yet been analyzed. METHODS The SmEXP family was systematically analyzed using bioinformatics. Quantitative real-time PCR was employed to analyze the tissue expression patterns of the SmEXP family, as well as its expression under abscisic acid (ABA) treatment and abiotic stress. Subcellular localization assay revealed the localization of SmEXLA1, SmEXLB1, and SmEXPA2. RESULTS This study identified 29 SmEXP that belonged to four different subfamilies. SmEXP promoter analysis suggested that it may be involved in the growth, development, and stress adaptation of S. miltiorrhiza. An analysis of the expression patterns of SmEXP revealed that ABA, Cu2+, and NaCl had regulatory effects on its expression. A subcellular localization assay showed that SmEXLA1 and SmEXLB1 were located on the nucleus and cell membrane, while SmEXPA2 was located on the cell wall. CONCLUSION For this study, the SmEXP family was systematically analyzed for the first time, which lays a foundation for further elucidating its physiological and biological functionality.
Collapse
Affiliation(s)
- Yunyun Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Bin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, China
| | - Qiyue Pang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Yaoyu Lou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
7
|
Chen Z, Shen D, Shi Y, Chen Y, He H, Jiang J, Wang F, Jiang J, Wang X, Li X, Zeng W. Genome-Wide Identification of Expansins in Rubus chingii and Profiling Analysis during Fruit Ripening and Softening. PLANTS (BASEL, SWITZERLAND) 2024; 13:431. [PMID: 38337963 PMCID: PMC10857257 DOI: 10.3390/plants13030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Improving fruit size or weight, firmness, and shelf life is a major target for horticultural crop breeding. It is associated with the depolymerization and rearrangement of cell components, including pectin, hemicellulose, cellulose, and other structural (glyco)proteins. Expansins are structural proteins to loosen plant cell wall polysaccharides in a pH-dependent manner and play pivotal roles in the process of fruit development, ripening, and softening. Rubus chingii Hu, a unique Chinese red raspberry, is a prestigious pharmaceutical and nutraceutical dual-function food with great economic value. Thirty-three RchEXPs were predicted by genome-wide identification in this study, containing twenty-seven α-expansins (EXPAs), three β-expansins (EXPBs), one expansin-like A (EXPLA), and two expansin-like B (EXPLBs). Subsequently, molecular characteristics, gene structure and motif compositions, phylogenetic relationships, chromosomal location, collinearity, and regulatory elements were further profiled. Furthermore, transcriptome sequencing (RNA-seq) and real-time quantitative PCR assays of fruits from different developmental stages and lineages showed that the group of RchEXPA5, RchEXPA7, and RchEXPA15 were synergistically involved in fruit expanding and ripening, while another group of RchEXPA6 and RchEXPA26 might be essential for fruit ripening and softening. They were regulated by both abscisic acid and ethylene and were collinear with phylogenetic relationships in the same group. Our new findings laid the molecular foundation for improving the fruit texture and shelf life of R. chingii medicinal and edible fruit.
Collapse
Affiliation(s)
- Zhen Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (Z.C.); (D.S.); (Y.S.); (X.W.)
| | - Danwei Shen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (Z.C.); (D.S.); (Y.S.); (X.W.)
| | - Yujie Shi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (Z.C.); (D.S.); (Y.S.); (X.W.)
| | - Yiquan Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (Z.C.); (D.S.); (Y.S.); (X.W.)
| | - Honglian He
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (Z.C.); (D.S.); (Y.S.); (X.W.)
| | - Junfeng Jiang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (Z.C.); (D.S.); (Y.S.); (X.W.)
| | - Fan Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (Z.C.); (D.S.); (Y.S.); (X.W.)
| | - Jingyong Jiang
- Institute of Horticulture, Taizhou Academy of Agricultural Sciences, Linhai 317000, China;
| | - Xiaoyan Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (Z.C.); (D.S.); (Y.S.); (X.W.)
| | - Xiaobai Li
- Institute of Horticulture, Zhejiang Academy of Agricultral Sciences, Hangzhou 310021, China
| | - Wei Zeng
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (Z.C.); (D.S.); (Y.S.); (X.W.)
| |
Collapse
|
8
|
Hu Y, Li Y, Zhu B, Huang W, Chen J, Wang F, Chen Y, Wang M, Lai H, Zhou Y. Genome-wide identification of the expansin gene family in netted melon and their transcriptional responses to fruit peel cracking. FRONTIERS IN PLANT SCIENCE 2024; 15:1332240. [PMID: 38322822 PMCID: PMC10846642 DOI: 10.3389/fpls.2024.1332240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Introduction Fruit cracking not only affects the appearance of netted melons (Cucumis melo L. var. reticulatus Naud.) but also decreases their marketability. Methods Herein, to comprehensively understand the role of expansin (EXP) proteins in netted melon, bioinformatics methods were employed to discover the EXP gene family in the melon genome and analyze its characteristic features. Furthermore, transcriptomics analysis was performed to determine the expression patterns of melon EXP (CmEXP) genes in crack-tolerant and crack-susceptible netted melon varieties. Discussion Thirty-three CmEXP genes were identified. Chromosomal location analysis revealed that CmEXP gene distribution was uneven on 12 chromosomes. In addition, phylogenetic tree analysis revealed that CmEXP genes could be categorized into four subgroups, among which the EXPA subgroup had the most members. The same subgroup members shared similar protein motifs and gene structures. Thirteen duplicate events were identified in the 33 CmEXP genes. Collinearity analysis revealed that the CmEXP genes had 50, 50, and 44 orthologous genes with EXP genes in cucumber, watermelon, and Arabidopsis, respectively. However, only nine orthologous EXP genes were observed in rice. Promoter cis-acting element analysis demonstrated that numerous cis-acting elements in the upstream promoter region of CmEXP genes participate in plant growth, development, and environmental stress responses. Transcriptomics analysis revealed 14 differentially expressed genes (DEGs) in the non-cracked fruit peels between the crack-tolerant variety 'Xizhoumi 17' (N17) and the crack-susceptible variety 'Xizhoumi 25' (N25). Among the 14 genes, 11 were upregulated, whereas the remaining three were downregulated in N17. In the non-cracked (N25) and cracked (C25) fruit peels of 'Xizhoumi 25', 24 DEGs were identified, and 4 of them were upregulated, whereas the remaining 20 were downregulated in N25. In the two datasets, only CmEXPB1 exhibited consistently upregulated expression, indicating its importance in the fruit peel crack resistance of netted melon. Transcription factor prediction revealed 56 potential transcription factors that regulate CmEXPB1 expression. Results Our study findings enrich the understanding of the CmEXP gene family and present candidate genes for the molecular breeding of fruit peel crack resistance of netted melon.
Collapse
Affiliation(s)
- Yanping Hu
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Haikou, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
- The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, Haikou, China
| | - Yuxin Li
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Haikou, China
- The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, Haikou, China
| | - Baibi Zhu
- The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, Haikou, China
| | - Wenfeng Huang
- The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, Haikou, China
| | - Jianjun Chen
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Feng Wang
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Yisong Chen
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
- The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, Haikou, China
| | - Min Wang
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
- The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, Haikou, China
| | - Hanggui Lai
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Haikou, China
| | - Yang Zhou
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Haikou, China
| |
Collapse
|
9
|
Kitavi M, Gemenet DC, Wood JC, Hamilton JP, Wu S, Fei Z, Khan A, Buell CR. Identification of genes associated with abiotic stress tolerance in sweetpotato using weighted gene co-expression network analysis. PLANT DIRECT 2023; 7:e532. [PMID: 37794882 PMCID: PMC10546384 DOI: 10.1002/pld3.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/22/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Sweetpotato, Ipomoea batatas (L.), a key food security crop, is negatively impacted by heat, drought, and salinity stress. The orange-fleshed sweetpotato cultivar "Beauregard" was exposed to heat, salt, and drought treatments for 24 and 48 h to identify genes responding to each stress condition in leaves. Analysis revealed both common (35 up regulated, 259 down regulated genes in the three stress conditions) and unique sets of up regulated (1337 genes by drought, 516 genes by heat, and 97 genes by salt stress) and down regulated (2445 genes by drought, 678 genes by heat, and 204 genes by salt stress) differentially expressed genes (DEGs) suggesting common, yet stress-specific transcriptional responses to these three abiotic stressors. Gene Ontology analysis of down regulated DEGs common to both heat and salt stress revealed enrichment of terms associated with "cell population proliferation" suggestive of an impact on the cell cycle by the two stress conditions. To identify shared and unique gene co-expression networks under multiple abiotic stress conditions, weighted gene co-expression network analysis was performed using gene expression profiles from heat, salt, and drought stress treated 'Beauregard' leaves yielding 18 co-expression modules. One module was enriched for "response to water deprivation," "response to abscisic acid," and "nitrate transport" indicating synergetic crosstalk between nitrogen, water, and phytohormones with genes encoding osmotin, cell expansion, and cell wall modification proteins present as key hub genes in this drought-associated module. This research lays the groundwork for exploring to a further degree, mechanisms for abiotic stress tolerance in sweetpotato.
Collapse
Affiliation(s)
- Mercy Kitavi
- Research Technology Support Facility (RTSF)Michigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Dorcus C. Gemenet
- International Potato CenterLimaPeru
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF HouseNairobiKenya
| | - Joshua C. Wood
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - John P. Hamilton
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Shan Wu
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Awais Khan
- International Potato CenterLimaPeru
- Present address:
Plant Pathology and Plant‐Microbe Biology Section, School of Integrative Plant ScienceCornell UniversityGenevaNew YorkUSA
| | - C. Robin Buell
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Institute of Plant Breeding, Genetics, & GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
10
|
Li M, Liu T, Cao R, Cao Q, Tong W, Song W. Evolution and Expression of the Expansin Genes in Emmer Wheat. Int J Mol Sci 2023; 24:14120. [PMID: 37762423 PMCID: PMC10531347 DOI: 10.3390/ijms241814120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Expansin proteins, a crucial class of intracellular proteins, are known to play a vital role in facilitating processes like cell wall relaxation and cell growth. Recent discoveries have revealed that expansin proteins also have significant functions in plant growth, development, and response to resistance. However, the expansin gene family, particularly in emmer wheat, has not been thoroughly studied, particularly in terms of evolution. In this study, we identified 63 TdEXPs and 49 TtEXPs from the latest genome versions of wild emmer wheat (WEW) and durum wheat (DW), respectively. The physicochemical properties of the encoded expansin proteins exhibited minimal differences, and the gene structures remained relatively conserved. Phylogenetic analysis categorized the proteins into three subfamilies, namely EXPA, EXPB, and EXLA, in addition to the EXLB subfamily. Furthermore, codon preference analysis revealed an increased usage frequency of the nucleotide "T" in expansin proteins throughout the evolution of WEW and DW. Collinearity analysis demonstrated higher orthology between the expansin proteins of WEW and DW, with a Ka/Ks ratio ranging from 0.4173 to 0.9494, indicating purifying selection during the evolution from WEW to DW. Haplotype analysis of the expansin gene family identified five genes in which certain haplotypes gradually became dominant over the course of evolution, enabling adaptation for survival and improvement. Expression pattern analysis indicated tissue-specific expression of expansin genes in emmer wheat, and some of these genes were quantified through qRT-PCR to assess their response to salt stress. These comprehensive findings present the first systematic analysis of the expansin protein gene family during the evolution from WEW to DW, providing a foundation for further understanding the functions and biological roles of expansin protein genes in emmer wheat.
Collapse
Affiliation(s)
| | | | | | | | - Wei Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (M.L.); (T.L.); (R.C.); (Q.C.)
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (M.L.); (T.L.); (R.C.); (Q.C.)
| |
Collapse
|
11
|
Guo F, Guo J, El-Kassaby YA, Wang G. Genome-Wide Identification of Expansin Gene Family and Their Response under Hormone Exposure in Ginkgo biloba L. Int J Mol Sci 2023; 24:ijms24065901. [PMID: 36982974 PMCID: PMC10053239 DOI: 10.3390/ijms24065901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Expansins are pH-dependent enzymatic proteins that irreversibly and continuously facilitate cell-wall loosening and extension. The identification and comprehensive analysis of Ginkgo biloba expansins (GbEXPs) are still lacking. Here, we identified and investigated 46 GbEXPs in Ginkgo biloba. All GbEXPs were grouped into four subgroups based on phylogeny. GbEXPA31 was cloned and subjected to a subcellular localization assay to verify our identification. The conserved motifs, gene organization, cis-elements, and Gene Ontology (GO) annotation were predicted to better understand the functional characteristics of GbEXPs. The collinearity test indicated segmental duplication dominated the expansion of the GbEXPA subgroup, and seven paralogous pairs underwent strong positive selection during expansion. A majority of GbEXPAs were mainly expressed in developing Ginkgo kernels or fruits in transcriptome and real-time quantitative PCR (qRT-PCR). Furthermore, GbEXLA4, GbEXLA5, GbEXPA5, GbEXPA6, GbEXPA8, and GbEXPA24 were inhibited under the exposure of abiotic stresses (UV-B and drought) and plant hormones (ABA, SA, and BR). In general, this study expanded our understanding for expansins in Ginkgo tissues' growth and development and provided a new basis for studying GbEXPs in response to exogenous phytohormones.
Collapse
Affiliation(s)
- Fangyun Guo
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Guo
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Guibin Wang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Daldoul S, Hanzouli F, Hamdi Z, Chenenaoui S, Wetzel T, Nick P, Mliki A, Gargouri M. The root transcriptome dynamics reveals new valuable insights in the salt-resilience mechanism of wild grapevine ( Vitis vinifera subsp . sylvestris). FRONTIERS IN PLANT SCIENCE 2022; 13:1077710. [PMID: 36570937 PMCID: PMC9780605 DOI: 10.3389/fpls.2022.1077710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Most of elite cultivated grapevine varieties (Vitis vinifera L.), conventionally grafted on rootstocks, are becoming more and more affected by climate changes, such as increase of salinity. Therefore, we revisited the valuable genetic resources of wild grapevines (V. sylvestris) to elaborate strategies for a sustainable viticulture. METHODS Here, we compared physiological and biochemical responses of two salt-tolerant species: a wild grapevine genotype "Tebaba" from our previous studies and the conventional rootstock "1103 Paulsen". Interestingly, our physio-biochemical results showed that under 150mM NaCl, "Tebaba" maintains higher leaf osmotic potential, lower Na+/K+ ratio and a significant peaked increase of polyphenol content at the first 8h of salinity stress. This behavior allowed to hypothesis a drastic repatterning of metabolism in "Tebaba's" roots following a biphasic response. In order to deepen our understanding on the "Tebaba" salt tolerance mechanism, we investigated a time-dependent transcriptomic analysis covering three sampling times, 8h, 24h and 48h. RESULTS The dynamic analysis indicated that "Tebaba" root cells detect and respond on a large scale within 8h to an accumulation of ROS by enhancing a translational reprogramming process and inducing the transcripts of glycolytic metabolism and flavonoids biosynthesis as a predominate non-enzymatic scavenging process. Afterwards, there is a transition to a largely gluconeogenic stage followed by a combined response mechanism based on cell wall remodeling and lignin biosynthesis with an efficient osmoregulation between 24 and 48 h. DISCUSSION This investigation explored for the first time in depth the established cross-talk between the physiological, biochemical and transcriptional regulators contributing to propose a hypothetical model of the dynamic salt mechanism tolerance of wild grapevines. In summary, these findings allowed further understanding of the genetic regulation mechanism of salt-tolerance in V. sylvestris and identified specific candidate genes valuable for appropriate breeding strategies.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Faouzia Hanzouli
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Zohra Hamdi
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Synda Chenenaoui
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Thierry Wetzel
- DLR Rheinpfalz, Institute of Plant Protection, Neustadt an der Weinstrasse, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
13
|
Samalova M, Gahurova E, Hejatko J. Expansin-mediated developmental and adaptive responses: A matter of cell wall biomechanics? QUANTITATIVE PLANT BIOLOGY 2022; 3:e11. [PMID: 37077967 PMCID: PMC10095946 DOI: 10.1017/qpb.2022.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
Biomechanical properties of the cell wall (CW) are important for many developmental and adaptive responses in plants. Expansins were shown to mediate pH-dependent CW enlargement via a process called CW loosening. Here, we provide a brief overview of expansin occurrence in plant and non-plant species, their structure and mode of action including the role of hormone-regulated CW acidification in the control of expansin activity. We depict the historical as well as recent CW models, discuss the role of expansins in the CW biomechanics and address the developmental importance of expansin-regulated CW loosening in cell elongation and new primordia formation. We summarise the data published so far on the role of expansins in the abiotic stress response as well as the rather scarce evidence and hypotheses on the possible mechanisms underlying expansin-mediated abiotic stress resistance. Finally, we wrap it up by highlighting possible future directions in expansin research.
Collapse
Affiliation(s)
- Marketa Samalova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Evelina Gahurova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Ortiz D, Salas-Fernandez MG. Dissecting the genetic control of natural variation in sorghum photosynthetic response to drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3251-3267. [PMID: 34791180 PMCID: PMC9126735 DOI: 10.1093/jxb/erab502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Drought stress causes crop yield losses worldwide. Sorghum is a C4 species tolerant to moderate drought stress, and its extensive natural variation for photosynthetic traits under water-limiting conditions can be exploited for developing cultivars with enhanced stress tolerance. The objective of this study was to discover genes/genomic regions that control the sorghum photosynthetic capacity under pre-anthesis water-limiting conditions. We performed a genome-wide association study for seven photosynthetic gas exchange and chlorophyll fluorescence traits during three periods of contrasting soil volumetric water content (VWC): control (30% VWC), drought (15% VWC), and recovery (30% VWC). Water stress was imposed with an automated irrigation system that generated a controlled dry-down period for all plants, to perform an unbiased genotypic comparison. A total of 60 genomic regions were associated with natural variation in one or more photosynthetic traits in a particular treatment or with derived variables. We identified 33 promising candidate genes with predicted functions related to stress signaling, oxidative stress protection, hormonal response to stress, and dehydration protection. Our results provide new knowledge about the natural variation and genetic control of sorghum photosynthetic response to drought with the ultimate goal of improving its adaptation and productivity under water stress scenarios.
Collapse
Affiliation(s)
- Diego Ortiz
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- Instituto Nacional de Tecnologia Agropecuaria, Manfredi, Cordoba 5988, Argentina
| | | |
Collapse
|
15
|
Characterization of the Cell Wall Component through Thermogravimetric Analysis and Its Relationship with an Expansin-like Protein in Deschampsia antarctica. Int J Mol Sci 2022; 23:ijms23105741. [PMID: 35628551 PMCID: PMC9143908 DOI: 10.3390/ijms23105741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Deschampsia antarctica Desv. (Poaceae) is one of the two vascular plants that have colonized the Antarctic Peninsula, which is usually exposed to extreme environmental conditions. To support these conditions, the plant carries out modifications in its morphology and metabolism, such as modifications to the cell wall. Thus, we performed a comparative study of the changes in the physiological properties of the cell-wall-associated polysaccharide contents of aerial and root tissues of the D. antarctica via thermogravimetric analysis (TGA) combined with a computational approach. The result showed that the thermal stability was lower in aerial tissues with respect to the root samples, while the DTG curve describes four maximum peaks of degradation, which occurred between 282 and 358 °C. The carbohydrate polymers present in the cell wall have been depolymerized showing mainly cellulose and hemicellulose fragments. Additionally, a differentially expressed sequence encoding for an expansin-like (DaEXLA2), which is characterized by possessing cell wall remodeling function, was found in D. antarctica. To gain deep insight into a probable mechanism of action of the expansin protein identified, a comparative model of the structure was carried out. DaEXLA2 protein model displayed two domains with an open groove in the center. Finally, using a cell wall polymer component as a ligand, the protein-ligand interaction was evaluated by molecular dynamic (MD) simulation. The MD simulations showed that DaEXLA2 could interact with cellulose and XXXGXXXG polymers. Finally, the cell wall component description provides the basis for a model for understanding the changes in the cell wall polymers in response to extreme environmental conditions.
Collapse
|
16
|
Fradera-Soler M, Grace OM, Jørgensen B, Mravec J. Elastic and collapsible: current understanding of cell walls in succulent plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2290-2307. [PMID: 35167681 PMCID: PMC9015807 DOI: 10.1093/jxb/erac054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/11/2022] [Indexed: 05/11/2023]
Abstract
Succulent plants represent a large functional group of drought-resistant plants that store water in specialized tissues. Several co-adaptive traits accompany this water-storage capacity to constitute the succulent syndrome. A widely reported anatomical adaptation of cell walls in succulent tissues allows them to fold in a regular fashion during extended drought, thus preventing irreversible damage and permitting reversible volume changes. Although ongoing research on crop and model species continuously reports the importance of cell walls and their dynamics in drought resistance, the cell walls of succulent plants have received relatively little attention to date, despite the potential of succulents as natural capital to mitigate the effects of climate change. In this review, we summarize current knowledge of cell walls in drought-avoiding succulents and their effects on tissue biomechanics, water relations, and photosynthesis. We also highlight the existing knowledge gaps and propose a hypothetical model for regulated cell wall folding in succulent tissues upon dehydration. Future perspectives of methodological development in succulent cell wall characterization, including the latest technological advances in molecular and imaging techniques, are also presented.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Correspondence: or
| | | | | | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Correspondence: or
| |
Collapse
|
17
|
Narváez-Barragán DA, Tovar-Herrera OE, Guevara-García A, Serrano M, Martinez-Anaya C. Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility. FRONTIERS IN PLANT SCIENCE 2022; 13:969343. [PMID: 36082287 PMCID: PMC9445675 DOI: 10.3389/fpls.2022.969343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 05/13/2023]
Abstract
Cell wall integrity is tightly regulated and maintained given that non-physiological modification of cell walls could render plants vulnerable to biotic and/or abiotic stresses. Expansins are plant cell wall-modifying proteins active during many developmental and physiological processes, but they can also be produced by bacteria and fungi during interaction with plant hosts. Cell wall alteration brought about by ectopic expression, overexpression, or exogenous addition of expansins from either eukaryote or prokaryote origin can in some instances provide resistance to pathogens, while in other cases plants become more susceptible to infection. In these circumstances altered cell wall mechanical properties might be directly responsible for pathogen resistance or susceptibility outcomes. Simultaneously, through membrane receptors for enzymatically released cell wall fragments or by sensing modified cell wall barrier properties, plants trigger intracellular signaling cascades inducing defense responses and reinforcement of the cell wall, contributing to various infection phenotypes, in which expansins might also be involved. Here, we review the plant immune response activated by cell wall surveillance mechanisms, cell wall fragments identified as responsible for immune responses, and expansin's roles in resistance and susceptibility of plants to pathogen attack.
Collapse
Affiliation(s)
| | | | | | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | |
Collapse
|
18
|
Arslan B, İncili ÇY, Ulu F, Horuz E, Bayarslan AU, Öçal M, Kalyoncuoğlu E, Baloglu MC, Altunoglu YC. Comparative genomic analysis of expansin superfamily gene members in zucchini and cucumber and their expression profiles under different abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2739-2756. [PMID: 35035133 PMCID: PMC8720134 DOI: 10.1007/s12298-021-01108-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 05/25/2023]
Abstract
UNLABELLED Zucchini and cucumber belong to the Cucurbitaceae family, a group of economical and nutritious food plants that is consumed worldwide. Expansin superfamily proteins are generally localized in the cell wall of plants and are known to possess an effect on cell wall modification by causing the expansion of this region. Although the whole genome sequences of cucumber and zucchini plants have been resolved, the determination and characterization of expansin superfamily members in these plants using whole genomic data have not been implemented yet. In the current study, a genome-wide analysis of zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) genomes was performed to determine the expansin superfamily genes. In total, 49 and 41 expansin genes were identified in zucchini and cucumber genomes, respectively. All expansin superfamily members were subjected to further bioinformatics analysis including gene and protein structure, ontology of the proteins, phylogenetic relations and conserved motifs, orthologous relations with other plants, targeting miRNAs of those genes and in silico gene expression profiles. In addition, various abiotic stress responses of zucchini and cucumber expansin genes were examined to determine their roles in stress tolerance. CsEXPB-04 and CsEXPA-11 from cucumber and CpEXPA-20 and CpEXPLA-14 from zucchini can be candidate genes for abiotic stress response and tolerance in addition to their roles in the normal developmental processes, which are supported by the gene expression analysis. This work can provide new perspectives for the roles of expansin superfamily genes and offers comprehensive knowledge for future studies investigating the modes of action of expansin proteins. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01108-w.
Collapse
Affiliation(s)
- Büşra Arslan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Çınar Yiğit İncili
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Ferhat Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Erdoğan Horuz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Aslı Ugurlu Bayarslan
- Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu, Turkey
| | - Mustafa Öçal
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Elif Kalyoncuoğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
19
|
Morales-Quintana L, Barrera A, Hereme R, Jara K, Rivera-Mora C, Valenzuela-Riffo F, Gundel PE, Pollmann S, Ramos P. Molecular and structural characterization of expansins modulated by fungal endophytes in the Antarctic Colobanthus quitensis (Kunth) Bartl. Exposed to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:465-476. [PMID: 34717178 DOI: 10.1016/j.plaphy.2021.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Expansins are proteins involved in cell wall metabolism that play an important role in plant growth, development, fruit ripening and abiotic stress tolerance. In the present study, we analyzed putative expansins that respond to drought stress. Five expansin genes were identified in cDNA libraries isolated from Colobanthus quitensis gown either with or without endophytic fungi under hydric stress. A differential transcript abundance was observed by qPCR analysis upon drought stress. To compare these expansin genes, and to suggest a possible mechanism of action at the molecular level, the structural model of the deduced proteins was obtained by comparative modeling methodology. The structures showed two domains and an open groove on the surface of the proteins was observed in the five structural models. The proteins were evaluated in terms of their protein-ligand interactions using four different ligands. The results suggested differences in their mode of protein-ligand interaction, in particular concerning the residues involved in the protein-ligand interaction. The presented evidence supports the participation of some members of the expansin multiprotein family in the response to drought stress in C. quitensis and suggest that the response is modulated by endophytic fungi.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédica, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, 3467987, Chile
| | - Andrea Barrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Rasme Hereme
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Karla Jara
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | | | - Pedro E Gundel
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; IFEVA (Facultad de Agronomía, Universidad de Buenos Aires - CONICET), Argentina
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Patricio Ramos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Centro de Biotecnología de los Recursos Naturales (CenBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
20
|
Brasileiro ACM, Lacorte C, Pereira BM, Oliveira TN, Ferreira DS, Mota APZ, Saraiva MAP, Araujo ACG, Silva LP, Guimaraes PM. Ectopic expression of an expansin-like B gene from wild Arachis enhances tolerance to both abiotic and biotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1681-1696. [PMID: 34231270 DOI: 10.1111/tpj.15409] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 05/15/2023]
Abstract
Plant expansins are structural cell wall-loosening proteins implicated in several developmental processes and responses to environmental constraints and pathogen infection. To date, there is limited information about the biological function of expansins-like B (EXLBs), one of the smallest and less-studied subfamilies of plant expansins. In the present study, we conducted a functional analysis of the wild Arachis AdEXLB8 gene in transgenic tobacco (Nicotiana tabacum) plants to clarify its putative role in mediating defense responses to abiotic and biotic stresses. First, its cell wall localization was confirmed in plants expressing an AdEXLB8:eGFP fusion protein, while nanomechanical assays indicated cell wall reorganization and reassembly due to AdEXLB8 overexpression without compromising the phenotype. We further demonstrated that AdEXLB8 increased tolerance not only to isolated abiotic (drought) and biotic (Sclerotinia sclerotiorum and Meloidogyne incognita) stresses but also to their combination. The jasmonate and abscisic acid signaling pathways were clearly favored in transgenic plants, showing an activated antioxidative defense system. In addition to modifications in the biomechanical properties of the cell wall, we propose that AdEXLB8 overexpression interferes with phytohormone dynamics leading to a defense primed state, which culminates in plant defense responses against isolated and combined abiotic and biotic stresses.
Collapse
Affiliation(s)
| | | | - Bruna M Pereira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Thais N Oliveira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Deziany S Ferreira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, Brazil
| | - Ana P Z Mota
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | - Ana C G Araujo
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Luciano P Silva
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | |
Collapse
|
21
|
Thompson DS, Islam A. Plant Cell Wall Hydration and Plant Physiology: An Exploration of the Consequences of Direct Effects of Water Deficit on the Plant Cell Wall. PLANTS (BASEL, SWITZERLAND) 2021; 10:1263. [PMID: 34206199 PMCID: PMC8309141 DOI: 10.3390/plants10071263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.
Collapse
Affiliation(s)
- David Stuart Thompson
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| | | |
Collapse
|
22
|
Leschevin M, Ismael M, Quero A, San Clemente H, Roulard R, Bassard S, Marcelo P, Pageau K, Jamet E, Rayon C. Physiological and Biochemical Traits of Two Major Arabidopsis Accessions, Col-0 and Ws, Under Salinity. FRONTIERS IN PLANT SCIENCE 2021; 12:639154. [PMID: 34234793 PMCID: PMC8256802 DOI: 10.3389/fpls.2021.639154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 06/01/2023]
Abstract
Salinity affects plant growth and development as shown with the glycophyte model plant, Arabidopsis thaliana (Arabidopsis). Two Arabidopsis accessions, Wassilewskija (Ws) and Columbia (Col-0), are widely used to generate mutants available from various Arabidopsis seed resources. However, these two ecotypes are known to be salt-sensitive with different degrees of tolerance. In our study, 3-week-old Col-0 and Ws plants were treated with and without 150 mM NaCl for 48, 72, or 96 h, and several physiological and biochemical traits were characterized on shoots to identify any specific traits in their tolerance to salinity. Before salt treatment was carried out, a different phenotype was observed between Col-0 and Ws, whose main inflorescence stem became elongated in contrast to Col-0, which only displayed rosette leaves. Our results showed that Col-0 and Ws were both affected by salt stress with limited growth associated with a reduction in nutrient uptake, a degradation of photosynthetic pigments, an increase in protein degradation, as well as showing changes in carbohydrate metabolism and cell wall composition. These traits were often more pronounced in Col-0 and occurred usually earlier than in Ws. Tandem Mass Tags quantitative proteomics data correlated well with the physiological and biochemical results. The Col-0 response to salt stress was specifically characterized by a greater accumulation of osmoprotectants such as anthocyanin, galactinol, and raffinose; a lower reactive oxygen detoxification capacity; and a transient reduction in galacturonic acid content. Pectin degradation was associated with an overaccumulation of the wall-associated kinase 1, WAK1, which plays a role in cell wall integrity (CWI) upon salt stress exposure. Under control conditions, Ws produced more antioxidant enzymes than Col-0. Fewer specific changes occurred in Ws in response to salt stress apart from a higher number of different fascilin-like arabinogalactan proteins and a greater abundance of expansin-like proteins, which could participate in CWI. Altogether, these data indicate that Col-0 and Ws trigger similar mechanisms to cope with salt stress, and specific changes are more likely related to the developmental stage than to their respective genetic background.
Collapse
Affiliation(s)
- Maïté Leschevin
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Marwa Ismael
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Anthony Quero
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | | | - Romain Roulard
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Solène Bassard
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP Université de Picardie Jules Verne, Amiens, France
| | - Karine Pageau
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Elisabeth Jamet
- LRSV, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Catherine Rayon
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
23
|
Zhang B, Chang L, Sun W, Ullah A, Yang X. Overexpression of an expansin-like gene, GhEXLB2 enhanced drought tolerance in cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:468-475. [PMID: 33752135 DOI: 10.1016/j.plaphy.2021.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/08/2021] [Indexed: 05/27/2023]
Abstract
Expansins are nonenzymatic cell wall proteins that play significant role in plant development as well as stress responses. Hereby, an expansin-like gene, GhEXLB2 was isolated from a cotton (Gossypium hirsutum L.) protoplast with suppression subtractive hybridization to characterize and study its responses against abiotic stresses. GhEXLB2 is the cell-wall localized protein. The expression of GhEXLB2 level was significantly high under polyethylene glycol and salt treatments. GhEXLB2 was further characterized in vitro by cloning and transformation into cotton. Cotton plants overexpressing GhEXLB2 showed enhanced drought tolerance at germination, seedling and flowering stages. After polyethylene glycol (PEG) treatment at germination stage, the length of main root and hypocotyl of overexpressing lines was significantly longer than YZ1 (wild type) and RNAi lines. In addition, H2O2 and malondialdehyde (MDA) contents were lower, while superoxide dismutase (SOD) and peroxidase (POD) activity was detected higher in overexpressing seedlings. On the other hand, higher SOD and POD activity was detected in overexpressing lines than WT plants in soil. In addition, water use efficiency (WUE), soluble sugar, and chlorophyll contents were also significantly greater in overexpressing plants. The present study revealed that GhEXLB2 play crucial role in enhancing drought resistivity in cotton.
Collapse
Affiliation(s)
- Boyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Li Chang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Abid Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Department of Botany, University of Malakand, Chakdara Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan.
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
24
|
Two Expansin Genes, AtEXPA4 and AtEXPB5, Are Redundantly Required for Pollen Tube Growth and AtEXPA4 Is Involved in Primary Root Elongation in Arabidopsis thaliana. Genes (Basel) 2021; 12:genes12020249. [PMID: 33578704 PMCID: PMC7916401 DOI: 10.3390/genes12020249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation.
Collapse
|
25
|
Jin KM, Zhuo RY, Xu D, Wang YJ, Fan HJ, Huang BY, Qiao GR. Genome-Wide Identification of the Expansin Gene Family and Its Potential Association with Drought Stress in Moso Bamboo. Int J Mol Sci 2020; 21:E9491. [PMID: 33327419 PMCID: PMC7764852 DOI: 10.3390/ijms21249491] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023] Open
Abstract
Expansins, a group of cell wall-loosening proteins, are involved in cell-wall loosening and cell enlargement in a pH-dependent manner. According to previous study, they were involved in plant growth and abiotic stress responses. However, information on the biological function of the expansin gene in moso bamboo is still limited. In this study, we identified a total of 82 expansin genes in moso bamboo, clustered into four subfamilies (α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA) and expansin-like B (EXPB)). Subsequently, the molecular structure, chromosomal location and phylogenetic relationship of the expansin genes of Phyllostachys edulis (PeEXs) were further characterized. A total of 14 pairs of tandem duplication genes and 31 pairs of segmented duplication genes were also identified, which may promote the expansion of the expansin gene family. Promoter analysis found many cis-acting elements related to growth and development and stress response, especially abscisic acid response element (ABRE). Expression pattern revealed that most PeEXs have tissue expression specificity. Meanwhile, the expression of some selected PeEXs was significantly upregulated mostly under abscisic acid (ABA) and polyethylene glycol (PEG) treatment, which implied that these genes actively respond to expression under abiotic stress. This study provided new insights into the structure, evolution and function prediction of the expansin gene family in moso bamboo.
Collapse
Affiliation(s)
- Kang-Ming Jin
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (K.-M.J.); (R.-Y.Z.); (D.X.); (Y.-J.W.); (H.-J.F.); (B.-Y.H.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ren-Ying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (K.-M.J.); (R.-Y.Z.); (D.X.); (Y.-J.W.); (H.-J.F.); (B.-Y.H.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Dong Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (K.-M.J.); (R.-Y.Z.); (D.X.); (Y.-J.W.); (H.-J.F.); (B.-Y.H.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yu-Jun Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (K.-M.J.); (R.-Y.Z.); (D.X.); (Y.-J.W.); (H.-J.F.); (B.-Y.H.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Hui-Jin Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (K.-M.J.); (R.-Y.Z.); (D.X.); (Y.-J.W.); (H.-J.F.); (B.-Y.H.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Bi-Yun Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (K.-M.J.); (R.-Y.Z.); (D.X.); (Y.-J.W.); (H.-J.F.); (B.-Y.H.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Gui-Rong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (K.-M.J.); (R.-Y.Z.); (D.X.); (Y.-J.W.); (H.-J.F.); (B.-Y.H.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
26
|
Mayorga-Gómez A, Nambeesan SU. Temporal expression patterns of fruit-specific α- EXPANSINS during cell expansion in bell pepper (Capsicum annuum L.). BMC PLANT BIOLOGY 2020; 20:241. [PMID: 32466743 PMCID: PMC7254744 DOI: 10.1186/s12870-020-02452-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Expansins (EXPs) facilitate non-enzymatic cell wall loosening during several phases of plant growth and development including fruit growth, internode expansion, pollen tube growth, leaf and root development, and during abiotic stress responses. In this study, the spatial and temporal expression patterns of C. annuum α- EXPANSIN (CaEXPA) genes were characterized. Additionally, fruit-specific CaEXPA expression was correlated with the rate of cell expansion during bell pepper fruit development. RESULTS Spatial expression patterns revealed that CaEXPA13 was up-regulated in vegetative tissues and flowers, with the most abundant expression in mature leaves. Expression of CaEXPA4 was associated with stems and roots. CaEXPA3 was expressed abundantly in flower at anthesis suggesting a role for CaEXPA3 in flower development. Temporal expression analysis revealed that 9 out of the 21 genes were highly expressed during fruit development. Of these, expression of six genes, CaEXPA5, CaEXPA7, CaEXPA12, CaEXPA14 CaEXPA17 and CaEXPA19 were abundant 7 to 21 days after anthesis (DAA), whereas CaEXPA6 was strongly expressed between 14 and 28 DAA. Further, this study revealed that fruit growth and cell expansion occur throughout bell pepper development until ripening, with highest rates of fruit growth and cell expansion occurring between 7 and 14 DAA. The expression of CaEXPA14 and CaEXPA19 positively correlated with the rate of cell expansion, suggesting their role in post-mitotic cell expansion-mediated growth of the bell pepper fruit. In this study, a ripening specific EXP transcript, CaEXPA9 was identified, suggesting its role in cell wall disassembly during ripening. CONCLUSIONS This is the first genome-wide study of CaEXPA expression during fruit growth and development. Identification of fruit-specific EXPAs suggest their importance in facilitating cell expansion during growth and cell wall loosening during ripening in bell pepper. These EXPA genes could be important targets for future manipulation of fruit size and ripening characteristics.
Collapse
Affiliation(s)
- Andrés Mayorga-Gómez
- Department of Horticulture, University of Georgia, 120 Carlton Street, Athens, GA, 30602, USA
| | - Savithri U Nambeesan
- Department of Horticulture, University of Georgia, 120 Carlton Street, Athens, GA, 30602, USA.
| |
Collapse
|
27
|
Liu W, Lyu T, Xu L, Hu Z, Xiong X, Liu T, Cao J. Complex Molecular Evolution and Expression of Expansin Gene Families in Three Basic Diploid Species of Brassica. Int J Mol Sci 2020; 21:ijms21103424. [PMID: 32408673 PMCID: PMC7279145 DOI: 10.3390/ijms21103424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Expansins are a kind of structural proteins of the plant cell wall, and they enlarge cells by loosening the cell walls. Therefore, expansins are involved in many growth and development processes. The complete genomic sequences of Brassica rapa, Brassica oleracea and Brassica nigra provide effective platforms for researchers to study expansin genes, and can be compared with analogues in Arabidopsis thaliana. This study identified and characterized expansin families in B. rapa, B. oleracea, and B. nigra. Through the comparative analysis of phylogeny, gene structure, and physicochemical properties, the expansin families were divided into four subfamilies, and then their expansion patterns and evolution details were explored accordingly. Results showed that after the three species underwent independent evolution following their separation from A. thaliana, the expansin families in the three species had increased similarities but fewer divergences. By searching divergences of promoters and coding sequences, significant positive correlations were revealed among orthologs in A. thaliana and the three basic species. Subsequently, differential expressions indicated extensive functional divergences in the expansin families of the three species, especially in reproductive development. Hence, these results support the molecular evolution of basic Brassica species, potential functions of these genes, and genetic improvement of related crops.
Collapse
Affiliation(s)
- Weimiao Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Tianqi Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Liai Xu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-8898-2597
| |
Collapse
|
28
|
The Expression of Potato Expansin A3 ( StEXPA3) and Extensin4 ( StEXT4) Genes with Distribution of StEXPAs and HRGPs-Extensin Changes as an Effect of Cell Wall Rebuilding in Two Types of PVY NTN- Solanum tuberosum Interactions. Viruses 2020; 12:v12010066. [PMID: 31948116 PMCID: PMC7020060 DOI: 10.3390/v12010066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/06/2023] Open
Abstract
The plant cell wall acts not only as a physical barrier, but also as a complex and dynamic structure that actively changes under different biotic and abiotic stress conditions. The question is, how are the different cell wall compounds modified during different interactions with exogenous stimuli such as pathogens? Plants exposed to viral pathogens respond to unfavorable conditions on multiple levels. One challenge that plants face under viral stress is the number of processes required for differential cell wall remodeling. The key players in these conditions are the cell wall genes and proteins, which can be regulated in specific ways during the interactions and have direct influences on the rebuilding of the cell wall structure. The cell wall modifications occurring in plants during viral infection remain poorly described. Therefore, this study focuses on cell wall dynamics as an effect of incompatible interactions between the potato virus Y (PVYNTN) and resistant potatoes (hypersensitive plant), as well as compatible (susceptible plant) interactions. Our analysis describes, for the first time, the expression of the potato expansin A3 (StEXPA3) and potato extensin 4 (StEXT4) genes in PVYNTN-susceptible and -resistant potato plant interactions. The results indicated a statistically significant induction of the StEXPA3 gene during a susceptible response. By contrast, we demonstrated the predominantly gradual activation of the StEXT4 gene during the hypersensitive response to PVYNTN inoculation. Moreover, the in situ distributions of expansins (StEXPAs), which are essential cell wall-associated proteins, and the hydroxyproline-rich glycoprotein (HRGP) extensin were investigated in two types of interactions. Furthermore, cell wall loosening was accompanied by an increase in StEXPA deposition in a PVYNTN-susceptible potato, whereas the HRGP content dynamically increased during the hypersensitive response, when the cell wall was reinforced. Ultrastructural localization and quantification revealed that the HRGP extensin was preferably located in the apoplast, but deposition in the symplast was also observed in resistant plants. Interestingly, during the hypersensitive response, StEXPA proteins were mainly located in the symplast area, in contrast to the susceptible potato where StEXPA proteins were mainly observed in the cell wall. These findings revealed that changes in the intracellular distribution and abundance of StEXPAs and HRGPs can be differentially regulated, depending on different types of PVYNTN–potato plant interactions, and confirmed the involvement of apoplast and symplast activation as a defense response mechanism.
Collapse
|
29
|
Chen Y, Li C, Yi J, Yang Y, Lei C, Gong M. Transcriptome Response to Drought, Rehydration and Re-Dehydration in Potato. Int J Mol Sci 2019; 21:E159. [PMID: 31881689 PMCID: PMC6981527 DOI: 10.3390/ijms21010159] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022] Open
Abstract
Potato is an important food crop and its production is susceptible to drought. Drought stress in crop growth is usually multiple- or long-term. In this study, the drought tolerant potato landrace Jancko Sisu Yari was treated with drought stress, rehydration and re-dehydration, and RNA-seq was applied to analyze the characteristics of gene regulation during these treatments. The results showed that drought-responsive genes mainly involved photosynthesis, signal transduction, lipid metabolism, sugar metabolism, wax synthesis, cell wall regulation, osmotic adjustment. Potato also can be recovered well in the re-emergence of water through gene regulation. The recovery of rehydration mainly related to patatin, lipid metabolism, sugar metabolism, flavonoids metabolism and detoxification besides the reverse expression of the most of drought-responsive genes. The previous drought stress can produce a positive responsive ability to the subsequent drought by drought hardening. Drought hardening was not only reflected in the drought-responsive genes related to the modified structure and cell components, but also in the hardening of gene expression or the "memory" of drought-responsive genes. Abundant genes involved photosynthesis, signal transduction, sugar metabolism, protease and protease inhibitors, flavonoids metabolism, transporters and transcription factors were subject to drought hardening or memorized drought in potato.
Collapse
Affiliation(s)
- Yongkun Chen
- School of Life Sciences, Yunnan Normal University, Kunming 650550, China
| | - Canhui Li
- Joint Academy of Potato Science, Yunnan Normal University, Kunming 650550, China
| | - Jing Yi
- School of Life Sciences, Yunnan Normal University, Kunming 650550, China
| | - Yu Yang
- School of Life Sciences, Yunnan Normal University, Kunming 650550, China
| | - Chunxia Lei
- School of Life Sciences, Yunnan Normal University, Kunming 650550, China
| | - Ming Gong
- School of Life Sciences, Yunnan Normal University, Kunming 650550, China
| |
Collapse
|
30
|
RNA-seq Analysis of Salt-Stressed Versus Non Salt-Stressed Transcriptomes of Chenopodium quinoa Landrace R49. Genes (Basel) 2019; 10:genes10121042. [PMID: 31888133 PMCID: PMC6947843 DOI: 10.3390/genes10121042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.), a model halophytic crop species, was used to shed light on salt tolerance mechanisms at the transcriptomic level. An RNA-sequencing analysis of genotype R49 at an early vegetative stage was performed by Illumina paired-ends method comparing high salinity and control conditions in a time-course pot experiment. Genome-wide transcriptional salt-induced changes and expression profiling of relevant salt-responsive genes in plants treated or not with 300 mM NaCl were analyzed after 1 h and 5 days. We obtained up to 49 million pairs of short reads with an average length of 101 bp, identifying a total of 2416 differentially expressed genes (DEGs) based on the treatment and time of sampling. In salt-treated vs. control plants, the total number of up-regulated and down-regulated genes was 945 and 1471, respectively. The number of DEGs was higher at 5 days than at 1 h after salt treatment, as reflected in the number of transcription factors, which increased with time. We report a strong transcriptional reprogramming of genes involved in biological processes like oxidation-reduction, response to stress and response to abscisic acid (ABA), and cell wall organization. Transcript analyses by real-time RT- qPCR supported the RNA-seq results and shed light on the contribution of roots and shoots to the overall transcriptional response. In addition, it revealed a time-dependent response in the expression of the analyzed DEGs, including a quick (within 1 h) response for some genes, suggesting a "stress-anticipatory preparedness" in this highly salt-tolerant genotype.
Collapse
|