1
|
Dora D, Revisnyei P, Pasic A, Galffy G, Dulka E, Mihucz A, Roskó B, Szincsak S, Iliuk A, Weiss GJ, Lohinai Z. Host and bacterial urine proteomics might predict treatment outcomes for immunotherapy in advanced non-small cell lung cancer patients. Front Immunol 2025; 16:1543817. [PMID: 40297587 PMCID: PMC12035445 DOI: 10.3389/fimmu.2025.1543817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Urine samples are non-invasive approaches to study potential circulating biomarkers from the host organism. Specific proteins cross the bloodstream through the intestinal barrier and may also derive from gut microbiota. In this study, we aimed to evaluate the predictive role of the host and bacterial urine extracellular vesicle (EV) proteomes in patients with non-small cell lung cancer (NSCLC) treated with anti-PD1 immunotherapy. Methods We analyzed the urine EV proteome of 33 advanced-stage NSCLC patients treated with anti-PD1 immunotherapy with LC-MS/MS, stratifying patients according to long (>6 months) and short (≤6 months) progression-free survival (PFS). Gut microbial communities on a subcohort of 23 patients were also analyzed with shotgun metagenomics. Internal validation was performed using the Random Forest (RF) machine learning (ML) algorithm. RF was validated with a non-linear Bayesian ML model. Gene enrichment, and pathway analysis of host urine proteins were analyzed using the Reactome and Gene Ontology databases. Results We identified human (n=3513), bacterial (n=2647), fungal (n=19), and viral (n=4) proteins. 186 human proteins showed differential abundance (p<0.05) according to PFS groups, 101 being significantly more abundant in patients with short PFS and n=85 in patients with long PFS. We found several pathways that were significantly enriched in patients with short PFS (vs long PFS). Multivariate Cox regression showed that human urine proteins MPP5, IGKV6-21, NT5E, and KRT27 were strongly associated with long PFS, and LMAN2, NUTF2, NID1, TNC, IGF1, BCR, GPHN, and PPBP showed the strongest association with short PFS. We revealed that an increased bacterial/host protein ratio in the urine is more frequent in patients with long PFS. Increased abundance of E. coli and E. faecalis proteins in the urine positively correlates with their gut metagenomic abundance. RF ML model supported the reliability in predicting PFS for critical human urine proteins (AUC=0.89), accuracy (95%) and Bacterial proteins (AUC=0.74). Conclusion To our knowledge, this is the first study to depict the predictive role of the host and bacterial urine proteome in anti-PD1-treated advanced NSCLC.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Peter Revisnyei
- Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
- HUN-REN-BME Information Systems Research Group, Budapest, Hungary
| | - Alija Pasic
- Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Edit Dulka
- County Hospital of Torokbalint, Torokbalint, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Brigitta Roskó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Sara Szincsak
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN, United States
| | - Glen J. Weiss
- Department of Medicine, UMass Chan Medical School, Worcester, MA, United States
| | - Zoltan Lohinai
- County Hospital of Torokbalint, Torokbalint, Hungary
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Köhler B, Bes M, Chan HLY, Esteban JI, Piratvisuth T, Sukeepaisarnjaroen W, Tanwandee T, Thongsawat S, Mang A, Morgenstern D, Swiatek-de Lange M, Dayyani F. A new biomarker panel for differential diagnosis of cholangiocarcinoma: Results from an exploratory analysis. Int J Biol Markers 2024; 39:107-117. [PMID: 38549363 DOI: 10.1177/03936155241235185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Diagnosis of cholangiocarcinoma (CCA) can be challenging due to unclear imaging criteria and difficulty obtaining adequate tissue biopsy. Although serum cancer antigen 19-9 and carcinoembryonic antigen have been proposed as potential diagnostic aids, their use remains limited by insufficient sensitivity and specificity. This exploratory analysis aimed to identify individual- and combinations of serum biomarkers to distinguish CCA from hepatocellular carcinoma (HCC) and chronic liver disease (CLD) controls using samples from a published study. METHODS This prospective, multicenter, case-control study included patients aged ≥18 years at high-risk of HCC. Serum and ethylene diamine tetraacetic acid-plasma samples were collected prior to any treatment and confirmed diagnosis of HCC or CCA. Fourteen biomarkers (measured by electrochemiluminescence immunoassays or enzyme-linked immunosorbent assays) were subjected to univariate analysis and 13 included in a multivariate analysis (per selected combinations and exhaustive search). RESULTS Overall, 55 CCA, 306 HCC, and 733 CLD control samples were analyzed. For distinguishing CCA from HCC, alpha-fetoprotein and matrix metalloproteinase-2 (MMP-2) showed the best individual performance (area under the curve (AUC) 86.6% and 84.4%, respectively); tissue inhibitor of metalloproteinase-1 (TIMP-1) was most able to distinguish CCA from CLD (AUC 94.5%) and from HCC + CLD (AUC 88.6%). The combination of MMP-2 and TIMP-1 was the best-performing two-marker panel, with AUC >90% for all comparisons. CONCLUSION MMP-2 and TIMP-1 are promising biomarkers that could support differential diagnosis of CCA. Incorporating these assays into the diagnostic algorithm could provide additional diagnostic information in a non-invasive, rapid manner, and could supplement existing diagnostic methods.
Collapse
Affiliation(s)
- Bruno Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Marta Bes
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Transfusion Safety Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Henry Lik-Yuen Chan
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region of China
| | - Juan Ignacio Esteban
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| | | | - Tawesak Tanwandee
- Division of Gastroenterology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Satawat Thongsawat
- Department of Internal Medicine, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, Chiang Mai, Thailand
| | - Anika Mang
- Roche Diagnostics GmbH, Penzberg, Germany
| | | | | | - Farshid Dayyani
- Department of Medicine, Division of Hematology/Oncology, University of California in Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Zhou L, Lu X, Wang X, Huang Z, Wu Y, Zhou L, Meng L, Fu Q, Xia L, Meng S. A Pilot Urinary Proteome Study Reveals Widespread Influences of Circadian Rhythm Disruption by Sleep Deprivation. Appl Biochem Biotechnol 2024; 196:1992-2011. [PMID: 37458940 DOI: 10.1007/s12010-023-04666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 04/23/2024]
Abstract
It is widely accepted that circadian rhythm disruption caused short- or long-term adverse effects on health. Although many previous studies have focused on exploration of the molecular mechanisms, there is no rapid, convenient, and non-invasive method to reveal the influence on health after circadian rhythm disruption. Here, we performed a high-resolution mass spectrometry-based data-independent acquisition (DIA) quantitative urinary proteomic approach in order to explore whether urine could reveal stress changes to those brought about by circadian rhythm disruption after sleep deprivation. After sleep deprivation, the subjects showed a significant increase in both systolic and diastolic blood pressure compared with routine sleep. More than 2000 proteins were quantified and they contained specific proteins for various organs throughout the body. And a total of 177 significantly up-regulated proteins and 68 significantly down-regulated proteins were obtained after sleep deprivation. These differentially expressed proteins (DEPs) were associated with multiple organs and pathways, which reflected widespread influences of sleep deprivation. Besides, machine learning identified a panel of five DEPs (CD300A, SCAMP3, TXN2, EFEMP1, and MYH11) that can effectively discriminate circadian rhythm disruption. Taken together, our results validate the value of urinary proteome in predicting and diagnosing the changes by circadian rhythm disruption.
Collapse
Affiliation(s)
- Li Zhou
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyu Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoling Wang
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhixi Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunzhe Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liyang Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liyuan Meng
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Fu
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shuang Meng
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Chen YT, Liao WR, Wang HT, Chen HW, Chen SF. Targeted protein quantitation in human body fluids by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2379-2403. [PMID: 35702881 DOI: 10.1002/mas.21788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Human body fluids (biofluids) contain various proteins, some of which reflect individuals' physiological conditions or predict diseases. Therefore, the analysis of biofluids can provide substantial information on novel biomarkers for clinical diagnosis and prognosis. In the past decades, mass spectrometry (MS)-based technologies have been developed as proteomic strategies not only for the identification of protein biomarkers but also for biomarker verification/validation in body fluids for clinical applications. The main advantage of targeted MS-based methodologies is the accurate and specific simultaneous quantitation of multiple biomarkers with high sensitivity. Here, we review MS-based methodologies that are currently used for the targeted quantitation of protein components in human body fluids, especially in plasma, urine, cerebrospinal fluid, and saliva. In addition, the currently used MS-based methodologies are summarized with a specific focus on applicable clinical sample types, MS configurations, and acquisition modes.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Rou Liao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hsueh-Ting Wang
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiao-Wei Chen
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
5
|
Jordaens S, Zwaenepoel K, Tjalma W, Deben C, Beyers K, Vankerckhoven V, Pauwels P, Vorsters A. Urine biomarkers in cancer detection: A systematic review of preanalytical parameters and applied methods. Int J Cancer 2023; 152:2186-2205. [PMID: 36647333 DOI: 10.1002/ijc.34434] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023]
Abstract
The aim of this review was to explore the status of urine sampling as a liquid biopsy for noninvasive cancer research by reviewing used preanalytical parameters and protocols. We searched two main health sciences databases, PubMed and Web of Science. From all eligible publications (2010-2022), information was extracted regarding: (a) study population characteristics, (b) cancer type, (c) urine preanalytics, (d) analyte class, (e) isolation method, (f) detection method, (g) comparator used, (h) biomarker type, (i) conclusion and (j) sensitivity and specificity. The search query identified 7835 records, of which 924 unique publications remained after screening the title, abstract and full text. Our analysis demonstrated that many publications did not report information about the preanalytical parameters of their urine samples, even though several other studies have shown the importance of standardization of sample handling. Interestingly, it was noted that urine is used for many cancer types and not just cancers originating from the urogenital tract. Many different types of relevant analytes have been shown to be found in urine. Additionally, future considerations and recommendations are discussed: (a) the heterogeneous nature of urine, (b) the need for standardized practice protocols and (c) the road toward the clinic. Urine is an emerging liquid biopsy with broad applicability in different analytes and several cancer types. However, standard practice protocols for sample handling and processing would help to elaborate the clinical utility of urine in cancer research, detection and disease monitoring.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Novosanis NV, Wijnegem, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Wiebren Tjalma
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Multidisciplinary Breast Clinic, Gynecological Oncology Unit, Department of Obstetrics and Gynecology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | | | - Vanessa Vankerckhoven
- Novosanis NV, Wijnegem, Belgium.,Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Alex Vorsters
- Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Alsaleh M, Sithithaworn P, Khuntikeo N, Loilome W, Yongvanit P, Hughes T, O'Connor T, Andrews RH, Wadsworth CA, Williams R, Koomson L, Cox IJ, Holmes E, Taylor-Robinson SD. Urinary Metabolic Profiling of Liver Fluke-Induced Cholangiocarcinoma-A Follow-Up Study. J Clin Exp Hepatol 2023; 13:203-217. [PMID: 36950498 PMCID: PMC10025591 DOI: 10.1016/j.jceh.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background/Aims Global liquid chromatography mass spectrometry (LC-MS) profiling in a Thai population has previously identified a urinary metabolic signature in Opisthorchis viverrini-induced cholangiocarcinoma (CCA), primarily characterised by disturbance in acylcarnitine, bile acid, steroid, and purine metabolism. However, the detection of thousands of analytes by LC-MS in a biological sample in a single experiment potentially introduces false discovery errors. To verify these observed metabolic perturbations, a second validation dataset from the same population was profiled in a similar fashion. Methods Reverse-phase ultra-performance liquid-chromatography mass spectrometry was utilised to acquire the global spectral profile of 98 spot urine samples (from 46 healthy volunteers and 52 CCA patients) recruited from Khon Kaen, northeast Thailand (the highest incidence of CCA globally). Results Metabolites were differentially expressed in the urinary profiles from CCA patients. High urinary elimination of bile acids was affected by the presence of obstructive jaundice. The urine metabolome associated with non-jaundiced CCA patients showed a distinctive pattern, similar but not identical to published studies. A panel of 10 metabolites achieved a diagnostic accuracy of 93.4% and area under the curve value of 98.8% (CI = 96.3%-100%) for the presence of CCA. Conclusions Global characterisation of the CCA urinary metabolome identified several metabolites of biological interest in this validation study. Analyses of the diagnostic utility of the discriminant metabolites showed excellent diagnostic potential. Further larger scale studies are required to confirm these findings internationally, particularly in comparison to sporadic CCA, not associated with liver fluke infestation.
Collapse
Key Words
- ANOVA, analysis of variance
- BCAA, branched chain amino acids
- CCA, cholangiocarcinoma
- CID, collision-induced dissociation
- CT, computed tomography
- CV-ANOVA, ANOVA of cross-validated residuals
- DDA, data-dependent acquisition
- ESI −, electrospray ionisation negative mode
- ESI, electrospray ionisation
- ESI +, electro spray ionisation positive mode
- LC-MS, liquid chromatography mass spectroscopy
- MRI, magnetic resonance imaging
- NMR, nuclear magnetic resonance
- OPLS-DA, orthogonal projections to latent structures discriminant analysis
- QC, quality control
- ROC, receiver operating characteristic
- RP, reverse phase
- TOF, time of flight
- UPLC, ultra-performance liquid chromatography
- biomarkers
- cholangiocarcinoma
- dCCA, distal cholangiocarcinoma
- iCCA, intrahepatic cholangiocarcinoma
- liver fluke
- mass spectroscopy
- pCCA, perihilar cholangiocarcinoma
Collapse
Affiliation(s)
- Munirah Alsaleh
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Paiboon Sithithaworn
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Puangrat Yongvanit
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thomas Hughes
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Thomas O'Connor
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Ross H. Andrews
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Christopher A. Wadsworth
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Roger Williams
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, United Kingdom
- Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Larry Koomson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Isobel Jane Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, United Kingdom
- Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Simon D. Taylor-Robinson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| |
Collapse
|
7
|
Liu Y, Pan X, Bao Y, Wei L, Gao Y. Many kinds of oxidized proteins are present more in the urine of the elderly. Clin Proteomics 2022; 19:22. [PMID: 35733114 PMCID: PMC9214981 DOI: 10.1186/s12014-022-09360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Many studies have shown an association between aging and oxidation. To our knowledge, there have been no studies exploring aging-related urine proteome modifications. The purpose of this study was to explore differences in global chemical modifications of urinary protein at different ages. METHODS Discovery (n=38) cohort MS data including children, young and old groups were downloaded from three published studies, and this data was analyzed using open-pFind for identifying modifications. Verification cohort human samples (n=28) including young, middle-aged, and old groups, rat samples (n=7) at three-time points after birth, adulthood, and old age were collected and processed in the laboratory simultaneously based on label-free quantification combined with pFind. RESULTS Discovery cohort: there were 28 kinds of differential oxidations in the old group that were higher than those in the young or children group in. Verification cohort: there were 17 kinds of differential oxidations of 49 oxidized proteins in the middle and old groups, which were significantly higher than those in the young group. Both oxidations and oxidized proteins distinguished different age groups well. There were also 15 kinds of differential oxidations in old age higher than others in the rat cohort. The results showed that the validation experiment was basically consistent with the results of the discovery experiment, showing that the level of oxidized proteins in urine increased significantly with age. CONCLUSIONS Our study is the first to show that oxidative proteins occur in urine and that oxidations are higher in older than younger ages. Perhaps improving the degree of excretion of oxidative protein in vivo through the kidney is helpful for maintaining the homeostasis of the body's internal environment, delaying aging and the occurrence of senile diseases.
Collapse
Affiliation(s)
- Yongtao Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, 100875, China
| | - Xuanzhen Pan
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, 100875, China
| | - Yijin Bao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, 100875, China
| | - Lilong Wei
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
8
|
Rajczewski AT, Jagtap PD, Griffin TJ. An overview of technologies for MS-based proteomics-centric multi-omics. Expert Rev Proteomics 2022; 19:165-181. [PMID: 35466851 PMCID: PMC9613604 DOI: 10.1080/14789450.2022.2070476] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Mass spectrometry-based proteomics reveals dynamic molecular signatures underlying phenotypes reflecting normal and perturbed conditions in living systems. Although valuable on its own, the proteome has only one level of moleclar information, with the genome, epigenome, transcriptome, and metabolome, all providing complementary information. Multi-omic analysis integrating information from one or more of these other domains with proteomic information provides a more complete picture of molecular contributors to dynamic biological systems. AREAS COVERED Here, we discuss the improvements to mass spectrometry-based technologies, focused on peptide-based, bottom-up approaches that have enabled deep, quantitative characterization of complex proteomes. These advances are facilitating the integration of proteomics data with other 'omic information, providing a more complete picture of living systems. We also describe the current state of bioinformatics software and approaches for integrating proteomics and other 'omics data, critical for enabling new discoveries driven by multi-omics. EXPERT COMMENTARY Multi-omics, centered on the integration of proteomics information with other 'omic information, has tremendous promise for biological and biomedical studies. Continued advances in approaches for generating deep, reliable proteomic data and bioinformatics tools aimed at integrating data across 'omic domains will ensure the discoveries offered by these multi-omic studies continue to increase.
Collapse
Affiliation(s)
- Andrew T. Rajczewski
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA,Coauthor, Research Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA,Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| |
Collapse
|
9
|
Gray ME, Johnson ZR, Modak D, Tamilselvan E, Tyska MJ, Sotomayor M. Heterophilic and homophilic cadherin interactions in intestinal intermicrovillar links are species dependent. PLoS Biol 2021; 19:e3001463. [PMID: 34871294 PMCID: PMC8691648 DOI: 10.1371/journal.pbio.3001463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2021] [Accepted: 10/30/2021] [Indexed: 11/19/2022] Open
Abstract
Enterocytes are specialized epithelial cells lining the luminal surface of the small intestine that build densely packed arrays of microvilli known as brush borders. These microvilli drive nutrient absorption and are arranged in a hexagonal pattern maintained by intermicrovillar links formed by 2 nonclassical members of the cadherin superfamily of calcium-dependent cell adhesion proteins: protocadherin-24 (PCDH24, also known as CDHR2) and the mucin-like protocadherin (CDHR5). The extracellular domains of these proteins are involved in heterophilic and homophilic interactions important for intermicrovillar function, yet the structural determinants of these interactions remain unresolved. Here, we present X-ray crystal structures of the PCDH24 and CDHR5 extracellular tips and analyze their species-specific features relevant for adhesive interactions. In parallel, we use binding assays to identify the PCDH24 and CDHR5 domains involved in both heterophilic and homophilic adhesion for human and mouse proteins. Our results suggest that homophilic and heterophilic interactions involving PCDH24 and CDHR5 are species dependent with unique and distinct minimal adhesive units.
Collapse
Affiliation(s)
- Michelle E. Gray
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Zachary R. Johnson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Debadrita Modak
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Elakkiya Tamilselvan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Marcos Sotomayor
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kulyyassov A, Fresnais M, Longuespée R. Targeted liquid chromatography-tandem mass spectrometry analysis of proteins: Basic principles, applications, and perspectives. Proteomics 2021; 21:e2100153. [PMID: 34591362 DOI: 10.1002/pmic.202100153] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is now the main analytical method for the identification and quantification of peptides and proteins in biological samples. In modern research, identification of biomarkers and their quantitative comparison between samples are becoming increasingly important for discovery, validation, and monitoring. Such data can be obtained following specific signals after fragmentation of peptides using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) methods, with high specificity, accuracy, and reproducibility. In addition, these methods allow measurement of the amount of post-translationally modified forms and isoforms of proteins. This review article describes the basic principles of MRM assays, guidelines for sample preparation, recent advanced MRM-based strategies, applications and illustrative perspectives of MRM/PRM methods in clinical research and molecular biology.
Collapse
Affiliation(s)
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
11
|
Loilome W, Dokduang H, Suksawat M, Padthaisong S. Therapeutic challenges at the preclinical level for targeted drug development for Opisthorchis viverrini-associated cholangiocarcinoma. Expert Opin Investig Drugs 2021; 30:985-1006. [PMID: 34292795 DOI: 10.1080/13543784.2021.1955102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a malignant tumor of bile duct epithelium with the highest incidence found in Thailand. Some patients are considered suitable for adjuvant therapy and surgical resection is currently the curative treatment for CCA patients. Tumor recurrence is still a hurdle after treatment; hence, finding novel therapeutic strategies to combat CCA is necessary for improving outcome for patients. AREAS COVERED We discuss targeted therapies and other novel treatment approaches which include protein kinase inhibitors, natural products, amino acid transporter-based inhibitors, immunotherapy, and drug repurposing. We also examine the challenges of tumor heterogeneity, cancer stem cells (CSCs), the tumor microenvironment, exosomes, multiomics studies, and the potential of precision medicine. EXPERT OPINION Because CCA is difficult to diagnose at the early stage, the traditional treatment approaches are not effective for many patients and most tumors recur. Consequently, researchers are exploring multi-aspect molecular carcinogenesis to uncover molecular targets for further development of novel targeted drugs.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hasaya Dokduang
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sureerat Padthaisong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
12
|
Wei J, Gao Y. Early disease biomarkers can be found using animal models urine proteomics. Expert Rev Proteomics 2021; 18:363-378. [PMID: 34058951 DOI: 10.1080/14789450.2021.1937133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Early disease detection is a prerequisite for early intervention. Urine is not subjected to homeostatic control, and therefore, it accumulates very early changes associated with disease processes, some of which may be used as biomarkers. Animal models must be used to identify urinary changes associated with very early stages of diseases to avoid potential interfering factors and obtain urine samples at a sufficiently early time point before pathological or clinical manifestations occur. AREAS COVERED We reviewed recent (from 2009-2020) urine proteome studies using animal models of many diseases. We focused on early changes in urine proteome of animal models, particularly changes occurring prior to alterations in blood tests, light microscopy observations and clinical manifestations. Additional studies relevant to the topic were also extracted from the references of the cited papers. Changes in the urine proteome at different disease stages and the ability of the urine proteome to differentiate among different animal models are also discussed in this review. EXPERT COMMENTARY Urine proteomes of animal models may reflect early changes that occur even before changes in blood parameters, light microscopy observations and clinical manifestations, suggesting the potential use of urinary biomarkers for the very early detection of human diseases.
Collapse
Affiliation(s)
- Jing Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| |
Collapse
|
13
|
Wongin S, Wangdee C, Nantavisai S, Banlunara W, Nakbunnum R, Waikakul S, Chotiyarnwong P, Roytrakul S, Viravaidya-Pasuwat K. Evaluation of osteochondral-like tissues using human freeze-dried cancellous bone and chondrocyte sheets to treat osteochondral defects in rabbits. Biomater Sci 2021; 9:4701-4716. [PMID: 34019604 DOI: 10.1039/d1bm00239b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human freeze-dried cancellous bone combined with human chondrocyte sheets have recently been used to construct an osteochondral-like tissue, which resembled a cartilage layer on a subchondral bone layer. Nevertheless, the efficacy of these human tissues in a xenogeneic model has been rarely reported. Therefore, this study aimed to evaluate the potential of human freeze-dried cancellous bones combined with human chondrocyte sheets for the treatment of osteochondral defects in rabbits. The key roles of the extracellular matrix (ECM) and released cytokines in these tissues in osteochondral repair were also assessed. Triple-layered chondrocyte sheets were constructed using a temperature-responsive culture surface. Then, they were placed onto cancellous bone to form chondrocyte sheet-cancellous bone tissues. The immunostaining of collagen type II (COL2) and the proteomic analysis of the human tissues were carried out before the transplantation. In our in vitro study, the triple-layered chondrocyte sheets adhered well on the cancellous bone, and the COL2 expression was apparent throughout the tissue structures. From the proteomic analysis results, it was found that the major function of the secreted proteins found in these tissues was protein binding. The distinct pathways were focal adhesion and the ECM-receptor interaction pathways. Among the highly expressed proteins, laminin-alpha 5 (LAMA5) and fibronectin (FN) not only played roles in the protein binding and ECM-receptor interaction, but also were involved in the cytokine-mediated signaling pathway. At 12 weeks after xenogeneic transplantation, compared to the control group, the defects treated with the chondrocyte sheets showed more hyaline-like cartilage tissue, as indicated by the abundance of safranin-O and COL2 with a partial collagen type I (COL1) expression. At 4, 8, and 12 weeks, compared to the defects treated with the cancellous bone, the staining of safranin-O and COL2 was more apparent in the defects treated with the chondrocyte sheet-cancellous bone tissues. Therefore, the human chondrocyte sheets and chondrocyte sheet-cancellous bone tissues provide a potential treatment for rabbit femoral condyle defect. LAMA5 and FN found in these human xenografts and their culture media might play key roles in the ECM-receptor interaction and might be involved in the cytokine-mediated signaling pathway during tissue repair.
Collapse
Affiliation(s)
- Sopita Wongin
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| | - Chalika Wangdee
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Sirirat Nantavisai
- Special Task Force for Activating Research (STAR) in Biology of Embryo and Stem Cell Research in Veterinary Science, Veterinary Stem Cells and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Rapeepat Nakbunnum
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Saranatra Waikakul
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Pojchong Chotiyarnwong
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, 12120, Thailand.
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand. and Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
14
|
Virreira Winter S, Karayel O, Strauss MT, Padmanabhan S, Surface M, Merchant K, Alcalay RN, Mann M. Urinary proteome profiling for stratifying patients with familial Parkinson's disease. EMBO Mol Med 2021; 13:e13257. [PMID: 33481347 PMCID: PMC7933820 DOI: 10.15252/emmm.202013257] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of Parkinson's disease (PD) is increasing but the development of novel treatment strategies and therapeutics altering the course of the disease would benefit from specific, sensitive, and non-invasive biomarkers to detect PD early. Here, we describe a scalable and sensitive mass spectrometry (MS)-based proteomic workflow for urinary proteome profiling. Our workflow enabled the reproducible quantification of more than 2,000 proteins in more than 200 urine samples using minimal volumes from two independent patient cohorts. The urinary proteome was significantly different between PD patients and healthy controls, as well as between LRRK2 G2019S carriers and non-carriers in both cohorts. Interestingly, our data revealed lysosomal dysregulation in individuals with the LRRK2 G2019S mutation. When combined with machine learning, the urinary proteome data alone were sufficient to classify mutation status and disease manifestation in mutation carriers remarkably well, identifying VGF, ENPEP, and other PD-associated proteins as the most discriminating features. Taken together, our results validate urinary proteomics as a valuable strategy for biomarker discovery and patient stratification in PD.
Collapse
Affiliation(s)
- Sebastian Virreira Winter
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Ozge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Maximilian T Strauss
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | | | | | - Roy N Alcalay
- Department of NeurologyColumbia UniversityNew YorkNYUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
15
|
Kalecki J, Iskierko Z, Cieplak M, Sharma PS. Oriented Immobilization of Protein Templates: A New Trend in Surface Imprinting. ACS Sens 2020; 5:3710-3720. [PMID: 33225686 PMCID: PMC7771019 DOI: 10.1021/acssensors.0c01634] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
In this Review, we have summarized recent trends in protein template imprinting. We emphasized a new trend in surface imprinting, namely, oriented protein immobilization. Site-directed proteins were assembled through specially selected functionalities. These efforts resulted in a preferably oriented homogeneous protein construct with decreased protein conformation changes during imprinting. Moreover, the maximum functionality for protein recognition was utilized. Various strategies were exploited for oriented protein immobilization, including covalent immobilization through a boronic acid group, metal coordinating center, and aptamer-based immobilization. Moreover, we have discussed the involvement of semicovalent as well as covalent imprinting. Interestingly, these approaches provided additional recognition sites in the molecular cavities imprinted. Therefore, these molecular cavities were highly selective, and the binding kinetics was improved.
Collapse
Affiliation(s)
- Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
16
|
Debernardi S, O’Brien H, Algahmdi AS, Malats N, Stewart GD, Plješa-Ercegovac M, Costello E, Greenhalf W, Saad A, Roberts R, Ney A, Pereira SP, Kocher HM, Duffy S, Blyuss O, Crnogorac-Jurcevic T. A combination of urinary biomarker panel and PancRISK score for earlier detection of pancreatic cancer: A case-control study. PLoS Med 2020; 17:e1003489. [PMID: 33301466 PMCID: PMC7758047 DOI: 10.1371/journal.pmed.1003489] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/23/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with around 9% of patients surviving >5 years. Asymptomatic in its initial stages, PDAC is mostly diagnosed late, when already a locally advanced or metastatic disease, as there are no useful biomarkers for detection in its early stages, when surgery can be curative. We have previously described a promising biomarker panel (LYVE1, REG1A, and TFF1) for earlier detection of PDAC in urine. Here, we aimed to establish the accuracy of an improved panel, including REG1B instead of REG1A, and an algorithm for data interpretation, the PancRISK score, in additional retrospectively collected urine specimens. We also assessed the complementarity of this panel with CA19-9 and explored the daily variation and stability of the biomarkers and their performance in common urinary tract cancers. METHODS AND FINDINGS Clinical specimens were obtained from multiple centres: Barts Pancreas Tissue Bank, University College London, University of Liverpool, Spanish National Cancer Research Center, Cambridge University Hospital, and University of Belgrade. The biomarker panel was assayed on 590 urine specimens: 183 control samples, 208 benign hepatobiliary disease samples (of which 119 were chronic pancreatitis), and 199 PDAC samples (102 stage I-II and 97 stage III-IV); 50.7% were from female individuals. PDAC samples were collected from patients before treatment. The samples were assayed using commercially available ELISAs. Statistical analyses were performed using non-parametric Kruskal-Wallis tests adjusted for multiple comparisons, and multiple logistic regression. Training and validation datasets for controls and PDAC samples were obtained after random division of the whole available dataset in a 1:1 ratio. The substitution of REG1A with REG1B enhanced the performance of the panel to detect resectable PDAC. In a comparison of controls and PDAC stage I-II samples, the areas under the receiver operating characteristic curve (AUCs) increased from 0.900 (95% CI 0.843-0.957) and 0.926 (95% CI 0.843-1.000) in the training (50% of the dataset) and validation sets, respectively, to 0.936 in both the training (95% CI 0.903-0.969) and the validation (95% CI 0.888-0.984) datasets for the new panel including REG1B. This improved panel showed both sensitivity (SN) and specificity (SP) to be >85%. Plasma CA19-9 enhanced the performance of this panel in discriminating PDAC I-II patients from controls, with AUC = 0.992 (95% CI 0.983-1.000), SN = 0.963 (95% CI 0.913-1.000), and SP = 0.967 (95% CI 0.924-1.000). We demonstrate that the biomarkers do not show significant daily variation, and that they are stable for up to 5 days at room temperature. The main limitation of our study is the low number of stage I-IIA PDAC samples (n = 27) and lack of samples from individuals with hereditary predisposition to PDAC, for which specimens collected from control individuals were used as a proxy. CONCLUSIONS We have successfully validated our urinary biomarker panel, which was improved by substituting REG1A with REG1B. At a pre-selected cutoff of >80% SN and SP for the affiliated PancRISK score, we demonstrate a clinically applicable risk stratification tool with a binary output for risk of developing PDAC ('elevated' or 'normal'). PancRISK provides a step towards precision surveillance for PDAC patients, which we will test in a prospective clinical study, UroPanc.
Collapse
Affiliation(s)
- Silvana Debernardi
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Harrison O’Brien
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Asma S. Algahmdi
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nuria Malats
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid Spain
| | - Grant D. Stewart
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Marija Plješa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Eithne Costello
- Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - William Greenhalf
- Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Amina Saad
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Rhiannon Roberts
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Alexander Ney
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Stephen P. Pereira
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Hemant M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Stephen Duffy
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Oleg Blyuss
- School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, United Kingdom
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child Health, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Tatjana Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
Wongin S, Narkbunnam R, Waikakul S, Chotiyarnwong P, Aresanasuwan T, Roytrakul S, Viravaidya-Pasuwat K. Construction and Evaluation of Osteochondral-Like Tissue Using Chondrocyte Sheet and Cancellous Bone. Tissue Eng Part A 2020; 27:282-295. [PMID: 32718279 DOI: 10.1089/ten.tea.2020.0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The manipulation of human chondrocyte sheets in target areas frequently results in their tearing because they are thin and fragile. In this study, human cancellous bones were used as a supporting material to create chondrocyte sheet-cancellous bone tissues, and their properties were evaluated. Using cell sheet technology, human chondrocytes were constructed into triple-layered chondrocyte sheets that displayed chondrogenic properties. After transferring the chondrocyte sheets onto cancellous bones, the top area of the chondrocyte sheet-cancellous bone tissues exhibited a smooth surface topography without cell sheet floating within 7 days of culture. The immunofluorescence staining of collagen type II (COL2A1) and fibronectin (FN1) was also performed and examined. Using the shotgun proteomic analysis, the proteins associated with cell adhesion, extracellular matrix (ECM) organization, cell-substrate junction assembly, and cell adhesion mediated by integrin were observed in the chondrocyte sheets, cancellous bones, and chondrocyte sheet-cancellous bone tissues. Three integrin members, including integrin β4 (ITGB4), ITGB6, and ITGB8, were found in the chondrocyte sheets. Only ITGB8 was found in the chondrocyte sheets and chondrocyte sheet-cancellous bone tissues. During 48 h, the mean velocity of the individual cell migration was low, which did not affect the structure and chondrogenic properties of the chondrocyte sheets. Staining of the filamentous actin (F-actin) cytoskeleton in the migratory cells also provided a better understanding of the dynamic communication between the cell cytoskeleton and adhesion molecules through ITGB8, which may play a key role in the attachment of the chondrocyte sheets and the synthesis of the cartilage ECM. Therefore, we suggest that cancellous bone could be used as a supporting material to construct chondrocyte sheet-cancellous bone tissues for potential treatment of osteochondral lesions. Impact Statement We proposed a method to construct an osteochondral-like tissue by placing human chondrocyte sheets onto cancellous bone. The stationary chondrocyte sheets and the low mean velocity of the individual cell migration on the cancellous bone with the expression of COL2A1 indicated that the cancellous bone served as an appropriate supporting material. Moreover, the cellular mechanism for the adhesion of the chondrocyte sheets on the cancellous bone based on ITGB8-mediated adhesion through the rearrangement of filamentous actin provided a better understanding to improve the construction of osteochondral-like tissues, and to predict the repair mechanism in osteoarthritis therapy.
Collapse
Affiliation(s)
- Sopita Wongin
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Rapeepat Narkbunnam
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saranatra Waikakul
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pojchong Chotiyarnwong
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyawan Aresanasuwan
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
18
|
Tang J, Wang Y, Luo Y, Fu J, Zhang Y, Li Y, Xiao Z, Lou Y, Qiu Y, Zhu F. Computational advances of tumor marker selection and sample classification in cancer proteomics. Comput Struct Biotechnol J 2020; 18:2012-2025. [PMID: 32802273 PMCID: PMC7403885 DOI: 10.1016/j.csbj.2020.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer proteomics has become a powerful technique for characterizing the protein markers driving transformation of malignancy, tracing proteome variation triggered by therapeutics, and discovering the novel targets and drugs for the treatment of oncologic diseases. To facilitate cancer diagnosis/prognosis and accelerate drug target discovery, a variety of methods for tumor marker identification and sample classification have been developed and successfully applied to cancer proteomic studies. This review article describes the most recent advances in those various approaches together with their current applications in cancer-related studies. Firstly, a number of popular feature selection methods are overviewed with objective evaluation on their advantages and disadvantages. Secondly, these methods are grouped into three major classes based on their underlying algorithms. Finally, a variety of sample separation algorithms are discussed. This review provides a comprehensive overview of the advances on tumor maker identification and patients/samples/tissues separations, which could be guidance to the researches in cancer proteomics.
Collapse
Key Words
- ANN, Artificial Neural Network
- ANOVA, Analysis of Variance
- CFS, Correlation-based Feature Selection
- Cancer proteomics
- Computational methods
- DAPC, Discriminant Analysis of Principal Component
- DT, Decision Trees
- EDA, Estimation of Distribution Algorithm
- FC, Fold Change
- GA, Genetic Algorithms
- GR, Gain Ratio
- HC, Hill Climbing
- HCA, Hierarchical Cluster Analysis
- IG, Information Gain
- LDA, Linear Discriminant Analysis
- LIMMA, Linear Models for Microarray Data
- MBF, Markov Blanket Filter
- MWW, Mann–Whitney–Wilcoxon test
- OPLS-DA, Orthogonal Partial Least Squares Discriminant Analysis
- PCA, Principal Component Analysis
- PLS-DA, Partial Least Square Discriminant Analysis
- RF, Random Forest
- RF-RFE, Random Forest with Recursive Feature Elimination
- SA, Simulated Annealing
- SAM, Significance Analysis of Microarrays
- SBE, Sequential Backward Elimination
- SFS, and Sequential Forward Selection
- SOM, Self-organizing Map
- SU, Symmetrical Uncertainty
- SVM, Support Vector Machine
- SVM-RFE, Support Vector Machine with Recursive Feature Elimination
- Sample classification
- Tumor marker selection
- sPLSDA, Sparse Partial Least Squares Discriminant Analysis
- t-SNE, Student t Distribution
- χ2, Chi-square
Collapse
Affiliation(s)
- Jing Tang
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianbo Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziyu Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Yunqing Qiu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Feng Zhu
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Na Nakorn P, Pannengpetch S, Isarankura-Na-Ayudhya P, Thippakorn C, Lawung R, Sathirapongsasuti N, Kitiyakara C, Sritara P, Vathesatogkit P, Isarankura-Na-Ayudhya C. Roles of kininogen-1, basement membrane specific heparan sulfate proteoglycan core protein, and roundabout homolog 4 as potential urinary protein biomarkers in diabetic nephropathy. EXCLI JOURNAL 2020; 19:872-891. [PMID: 32665774 PMCID: PMC7355151 DOI: 10.17179/excli2020-1396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
Diabetic nephropathy, a major complication of diabetes mellitus (DM), is increasing worldwide and the large majority of patients have type 2 DM. Microalbuminuria has been used as a diagnostic marker of diabetic nephropathy. But owing to its insufficient sensitivity and specificity, other biomarkers are being sought. In addition, the pathophysiology of diabetic nephropathy is not fully understood and declines in renal function occur even without microalbuminuria. In this study, we investigated urinary proteins from three study groups (controls, and type 2 diabetic subjects with or without microalbuminuria). Non-targeted label-free Nano-LC QTOF analysis was conducted to discover underlying mechanisms and protein networks, and targeted label-free Nano-LC QTOF with SWATH was performed to qualify discovered protein candidates. Twenty-eight proteins were identified as candidates and functionally analyzed via String DB, gene ontology and pathway analysis. Four predictive mechanisms were analyzed: i) response to stimulus, ii) platelet activation, signaling and aggregation, iii) ECM-receptor interaction, and iv) angiogenesis. These mechanisms can provoke kidney dysfunction in type 2 diabetic patients via endothelial cell damage and glomerulus structural alteration. Based on these analyses, three proteins (kininogen-1, basement membrane-specific heparan sulfate proteoglycan core protein, and roundabout homolog 4) were proposed for further study as potential biomarkers. Our findings provide insights that may improve methods for both prevention and diagnosis of diabetic nephropathy.
Collapse
Affiliation(s)
- Piyada Na Nakorn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supitcha Pannengpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakornpathom, Thailand
| | | | - Chadinee Thippakorn
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakornpathom, Thailand
| | - Ratana Lawung
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Nuankanya Sathirapongsasuti
- Section for Translational Medicine, Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piyamitr Sritara
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prin Vathesatogkit
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
20
|
Van Gool A, Corrales F, Čolović M, Krstić D, Oliver-Martos B, Martínez-Cáceres E, Jakasa I, Gajski G, Brun V, Kyriacou K, Burzynska-Pedziwiatr I, Wozniak LA, Nierkens S, Pascual García C, Katrlik J, Bojic-Trbojevic Z, Vacek J, Llorente A, Antohe F, Suica V, Suarez G, t'Kindt R, Martin P, Penque D, Martins IL, Bodoki E, Iacob BC, Aydindogan E, Timur S, Allinson J, Sutton C, Luider T, Wittfooth S, Sammar M. Analytical techniques for multiplex analysis of protein biomarkers. Expert Rev Proteomics 2020; 17:257-273. [PMID: 32427033 DOI: 10.1080/14789450.2020.1763174] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways. Hence, capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biomedical research. AREAS COVERED We here review multiple methods that are suitable for robust, high throughput, standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innovative developments in immunoassays, the vanguard of methods in clinical laboratories, and mass spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques are discussed with potentially improved protein capture, separation, and detection that will further boost multiplex analyses. EXPERT COMMENTARY The development of clinically applied multiplex protein biomarker assays is essential as multi-protein signatures provide more comprehensive information about biological systems than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the effect of personalized medicine.
Collapse
Affiliation(s)
- Alain Van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Fernado Corrales
- Functional Proteomics Laboratory, Centro Nacional De Biotecnología , Madrid, Spain
| | - Mirjana Čolović
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences, University of Belgrade , Belgrade, Serbia
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade , Belgrade, Serbia
| | - Begona Oliver-Martos
- Neuroimmunology and Neuroinflammation Group. Instituto De Investigación Biomédica De Málaga-IBIMA. UGC Neurociencias, Hospital Regional Universitario De Málaga , Malaga, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias I Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, and Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma De Barcelona , Cerdanyola Del Vallès, Spain
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb , Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health , Zagreb, Croatia
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE , Grenoble, France
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Biology, The Cyprus School of Molecular Medicine/The Cyprus Institute of Neurology and Genetics , Nicosia, Cyprus
| | - Izabela Burzynska-Pedziwiatr
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Lucyna Alicja Wozniak
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Stephan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology , Utrecht, The Netherlands
| | - César Pascual García
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST) , Belvaux, Luxembourg
| | - Jaroslav Katrlik
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences , Bratislava, Slovakia
| | - Zanka Bojic-Trbojevic
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy - INEP, University of Belgrade , Belgrade, Serbia
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital , Oslo, Norway
| | - Felicia Antohe
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Viorel Suica
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Guillaume Suarez
- Center for Primary Care and Public Health (Unisanté), University of Lausanne , Lausanne, Switzerland
| | - Ruben t'Kindt
- Research Institute for Chromatography (RIC) , Kortrijk, Belgium
| | - Petra Martin
- Department of Medical Oncology, Midland Regional Hospital Tullamore/St. James's Hospital , Dublin, Ireland
| | - Deborah Penque
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ines Lanca Martins
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Eda Aydindogan
- Department of Chemistry, Graduate School of Sciences and Engineering, Koç University , Istanbul, Turkey
| | - Suna Timur
- Institute of Natural Sciences, Department of Biochemistry, Ege University , Izmir, Turkey
| | | | | | - Theo Luider
- Department of Neurology, Erasmus MC , Rotterdam, The Netherlands
| | | | - Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College , Karmiel, Israel
| |
Collapse
|