1
|
Kumar RR, Agarwal N, Shree A, Gorain JK, Rahul E, Ganguly S, Bakhshi S, Sharma U. Decoding the immune landscape in Ewing sarcoma pathogenesis: The role of tumor infiltrating immune cells and immune milieu. J Bone Oncol 2025; 52:100678. [PMID: 40242222 PMCID: PMC12002756 DOI: 10.1016/j.jbo.2025.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Ewing sarcoma (EwS) is the second most prevalent pediatric bone malignancy, characterized by its aggressive behavior and unfavorable prognosis. The tumor microenvironment (TME) of EwS is shaped by immunosuppressive components, including myeloid-derived suppressor cells, tumor-associated macrophages, and immune checkpoint molecules such as PD-1/PD-L1 and HLA-G. These elements impair anti-tumor immune responses by modulating the function of tumor-infiltrating immune cells, such as regulatory T cells (Tregs), CD8+ T cells, and natural killer cells. Chemokines, including CXCL9 and CXCL12, and cytokines, such as transforming growth factor-beta and interleukin-10, further contribute to immune suppression and promote metastatic dissemination. Recent advances in immunotherapy have highlighted the therapeutic potential of modulating immune cells and signaling pathways to enhance anti-tumor immunity. This review provides a comprehensive analysis of the complex immune landscape within the EwS TME, focusing on the mechanistic roles of key immune components and their potential as therapeutic targets. Understanding these interactions could pave the way for innovative treatment strategies to improve clinical outcomes in patients with EwS.
Collapse
Affiliation(s)
- Rajiv Ranjan Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Nikita Agarwal
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Akshi Shree
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
- Department of Biomedical Science, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi 110096, India
| | - Jaya Kanta Gorain
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ekta Rahul
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi 110001, India
| | - Shuvadeep Ganguly
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Uttam Sharma
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Kret ZS, Sweder RJ, Pollock R, Tinoco G. Potential Mechanisms for Immunotherapy Resistance in Adult Soft-Tissue Sarcoma. Target Oncol 2025:10.1007/s11523-025-01145-5. [PMID: 40289241 DOI: 10.1007/s11523-025-01145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
Soft-tissue sarcomas represent a diverse group of rare malignancies originating from mesenchymal tissue, accounting for less than 1% of adult cancers in the USA. With over 13,000 new cases and around 5350 deaths annually, patients with metastatic soft-tissue sarcomas face limited therapeutic options and an estimated median overall survival of 18 months. While immunotherapy has demonstrated effectiveness in several cancers, its application in soft-tissue sarcomas remains challenging owing to the tumors' largely "cold" immunological environment, characterized by low levels of tumor-infiltrating lymphocytes and a lack of soft-tissue sarcoma-specific biomarkers. This review examines potential mechanisms underlying immunotherapy resistance in soft-tissue sarcomas, including the complex interplay between innate and adaptive immunity, the tumor microenvironment, and the role of immune-related genes. Despite preliminary findings suggesting correlations between immune profiles and histological subtypes, consistent biomarkers for predicting immunotherapeutic responses across soft-tissue sarcoma types are absent. Emerging strategies focus on converting "cold" tumors to "hot" tumors, enhancing their susceptibility to immunologic activation. While research is ongoing, personalized treatment approaches may offer hope for overcoming the inherent heterogeneity and resistance seen in soft-tissue sarcomas, ultimately aiming to improve outcomes for affected patients.
Collapse
Affiliation(s)
- Zaina S Kret
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ryan J Sweder
- The Ohio State University College of Arts and Sciences and College of Medicine, Columbus, OH, USA
| | - Raphael Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gabriel Tinoco
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 1800 Cannon Drive, 1240 Lincoln Tower, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Liao H, Fang Y, Li D, Pan Y, Niu Z, Fu T, Wu Z, Sheng J, Dong Y, Han S, Qi Q, Liu Y. Tislelizumab combined with GT chemotherapy for intimal sarcoma of inferior vena cava: A case report. Medicine (Baltimore) 2024; 103:e38056. [PMID: 38788046 PMCID: PMC11124635 DOI: 10.1097/md.0000000000038056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024] Open
Abstract
RATIONALE Intimal sarcoma of inferior vena cava (IVC) is a rare soft tissue sarcoma with no typical symptoms and specific imaging features in the early stage, and there is a lack of standardized treatment and methods. PATIENT CONCERNS A 54-year-old female patient presented to Fenghua District People's Hospital with a post-active cough and hemoptysis and was subsequently referred to our hospital. DIAGNOSES The patient was pathologically diagnosed as intimal sarcoma of IVC complicating multiple intrapulmonary metastases. Chest CT revealed left lung malignant tumor with multiple intrapulmonary metastases; while enhanced upper abdominal CT showed cancer embolus of IVC with extension to right atrium and bilateral renal veins. Besides, hematoxylin and eosin staining suggested intimal sarcoma of veins. Immunohistochemical staining showed positivity for PD-L1, Ki-67, CD31, Desmin and ERG. INTERVENTIONS The patient initially received GT chemotherapy (gemcitabine injection + docetaxel). Then, immunotherapy (tislelizumab) was added based on the results of genetic testing (TP53 gene mutation). OUTCOMES The disease was stabilized after receiving the treatment. LESSONS Given the lack of characteristic clinical manifestations in patients with intimal sarcoma of IVC, imaging examination combined with immunohistochemical index were helpful for diagnosis of intimal sarcoma of IVC. Furthermore, the combination of tislelizumab and GT chemotherapy was feasible in such patients with positive PD-L1 expression and TP53 mutation.
Collapse
Affiliation(s)
- Haihong Liao
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, Zhejiang, China
- The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yong Fang
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Da Li
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuefen Pan
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Zhongfeng Niu
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianhong Fu
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhuoxuan Wu
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jin Sheng
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yong Dong
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuwen Han
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Yulong Liu
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Abd Elmoneim HM, Huwait HF, Nafady-Hego H, Mohamed FA. PROGNOSTIC IMPLICATIONS OF PD-L1 EXPRESSION AND LOSS OF PTEN IN PATIENTS WITH RHABDOMYOSARCOMA, EWING'S SARCOMA AND OSTEOSARCOMA. Exp Oncol 2023; 45:337-350. [PMID: 38186021 DOI: 10.15407/exp-oncology.2023.03.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND In children, osteosarcoma (OS), Ewing's sarcoma (ES), and rhabdomyosarcoma (RMS) are the most common sarcomas. A link between the anti-programmed death ligand-1 PD-L1 and the tumor suppressor phosphatase and tensin homologue (PTEN) expression has been described in many tumors. The aim of this work is to determine clinicopathological relationships and the possible prognostic significance of PD-L1 and PTEN expression in rhabdomyosarcoma (RMS), Ewing's sarcoma (ES), and osteosarcoma (OS). MATERIALS AND METHODS Expression of PD-L1 and PTEN were examined by immunohistochemistry in 45 archival RMS, ES, and OS cases. RESULTS The positive expression of PD-L1 was found in 16.7% and 31.6% of ES and OS, respectively. The negative PD-L1 was related to a substantially longer survival in ES cases (p = 0.045), but positive PD-L1 expression was significantly associated with the increased tumor stage and vascular invasion in the OS cases (p = 0.005 and p = 0.002), respectively. On the other hand, PTEN loss was strongly associated with deep tumor, high tumor grade, and recurrence in RMS (p = 0.002, p = 0.045, and p = 0.026, respectively). However, PTEN loss was significantly absent in ES as tumor grade increased (p = 0.031). It is noteworthy that tumor recurrence, the loss of PTEN, and positive PD-L1 were all considered predictive factors in OS patients (p = 0.045, p = 0.032, and p = 0.02, respectively). CONCLUSIONS In children, OS and ES have positive PD-L1 expression, which has an independent unfavorable prognostic effect and raises the possibility of using PD-L1 as a therapeutic target. OS, ES, and RMS prognosis are all predicted by PTEN loss.
Collapse
Affiliation(s)
- H M Abd Elmoneim
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - H F Huwait
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - H Nafady-Hego
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- Laboratory Department, Al Tahrir Medical Center, Doha, Qatar
| | - Fez A Mohamed
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Rock A, Uche A, Yoon J, Agulnik M, Chow W, Millis S. Bioinformatic Analysis of Recurrent Genomic Alterations and Corresponding Pathway Alterations in Ewing Sarcoma. J Pers Med 2023; 13:1499. [PMID: 37888109 PMCID: PMC10608227 DOI: 10.3390/jpm13101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Ewing Sarcoma (ES) is an aggressive, mesenchymal malignancy associated with a poor prognosis in the recurrent or metastatic setting with an estimated overall survival (OS) of <30% at 5 years. ES is characterized by a balanced, reciprocal chromosomal translocation involving the EWSR1 RNA-binding protein and ETS transcription factor gene (EWS-FLI being the most common). Interestingly, murine ES models have failed to produce tumors phenotypically representative of ES. Genomic alterations (GA) in ES are infrequent and may work synergistically with EWS-ETS translocations to promote oncogenesis. Aberrations in fibroblast growth factor receptor (FGFR4), a receptor tyrosine kinase (RTK) have been shown to contribute to carcinogenesis. Mouse embryonic fibroblasts (MEFs) derived from knock-in strain of homologous Fgfr4G385R mice display a transformed phenotype with enhanced TGF-induced mammary carcinogenesis. The association between the FGFRG388R SNV in high-grade soft tissue sarcomas has previously been demonstrated conferring a statistically significant association with poorer OS. How the FGFR4G388R SNV specifically relates to ES has not previously been delineated. To further define the genomic landscape and corresponding pathway alterations in ES, comprehensive genomic profiling (CGP) was performed on the tumors of 189 ES patients. The FGFR4G388R SNV was identified in a significant proportion of the evaluable cases (n = 97, 51%). In line with previous analyses, TP53 (n = 36, 19%), CDK2NA/B (n = 33, 17%), and STAG2 (n = 22, 11.6%) represented the most frequent alterations in our cohort. Co-occurrence of CDK2NA and STAG2 alterations was observed (n = 5, 3%). Notably, we identified a higher proportion of TP53 mutations than previously observed. The most frequent pathway alterations affected MAPK (n = 89, 24% of pathological samples), HRR (n = 75, 25%), Notch1 (n = 69, 23%), Histone/Chromatin remodeling (n = 57, 24%), and PI3K (n = 64, 20%). These findings help to further elucidate the genomic landscape of ES with a novel investigation of the FGFR4G388R SNV revealing frequent aberration.
Collapse
Affiliation(s)
- Adam Rock
- City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (J.Y.); (M.A.)
| | - An Uche
- Alameda Health System, 1411 E. 31st St., Oakland, CA 94602, USA;
| | - Janet Yoon
- City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (J.Y.); (M.A.)
| | - Mark Agulnik
- City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (J.Y.); (M.A.)
| | - Warren Chow
- UCI Health, 101 The City Drive, South Orange, CA 92868, USA;
| | - Sherri Millis
- Foundation Medicine, Inc., 150 Second St., Cambridge, MA 02141, USA;
| |
Collapse
|
6
|
Siozopoulou V, Smits E, Zwaenepoel K, Liu J, Pouliakis A, Pauwels PA, Marcq E. PD-1, PD-L1, IDO, CD70 and microsatellite instability as potential targets to prevent immune evasion in sarcomas. Immunotherapy 2023; 15:1257-1273. [PMID: 37661910 DOI: 10.2217/imt-2022-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Background: Soft tissue and bone sarcomas are rare entities, hence, standardized therapeutic strategies are difficult to assess. Materials & methods: Immunohistochemistry was performed on 68 sarcoma samples to assess the expression of PD-1, PD-L1, IDO and CD70 in different tumor compartments and molecular analysis was performed to assess microsatellite instability status. Results: PD-1/PD-L1, IDO and CD70 pathways are at play in the immune evasion of sarcomas in general. Soft tissue sarcomas more often show an inflamed phenotype compared with bone sarcomas. Specific histologic sarcoma types show high expression levels of different markers. Finally, this is the first presentation of a microsatellite instability-high Kaposi sarcoma. Discussion/conclusion: Immune evasion occurs in sarcomas. Specific histologic types might benefit from immunotherapy, for which further investigation is needed.
Collapse
Affiliation(s)
- Vasiliki Siozopoulou
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| | - Evelien Smits
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Karen Zwaenepoel
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jimmy Liu
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Abraham Pouliakis
- Second Department of Pathology, National & Kapodistrian University of Athens, "Attikon" University Hospital, Athens, 12464, Greece
| | - Patrick A Pauwels
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| | - Elly Marcq
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
7
|
Nishio J, Nakayama S. Biology and Management of High-Grade Myxofibrosarcoma: State of the Art and Future Perspectives. Diagnostics (Basel) 2023; 13:3022. [PMID: 37835765 PMCID: PMC10572210 DOI: 10.3390/diagnostics13193022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Myxofibrosarcoma (MFS) is one of the most common adult soft tissue sarcomas, typically arising in the extremities. Histologically, MFS is classified into three grades: low, intermediate, and high. Histological grades correlate with distant metastases and tumor-associated mortality. The diagnosis of MFS is challenging due to a lack of well-characterized immunohistochemical markers. High-grade MFS displays highly complex karyotypes with multiple copy number alterations. Recent integrated genomic studies have shown the predominance of somatic copy number aberrations. However, the molecular pathogenesis of high-grade MFS remains poorly understood. The standard treatment for localized MFS is surgical resection. The systemic treatment options for advanced disease are limited. This review provides an updated overview of the clinical and imaging features, pathogenesis, histopathology, and treatment of high-grade MFS.
Collapse
Affiliation(s)
- Jun Nishio
- Section of Orthopaedic Surgery, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Shizuhide Nakayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| |
Collapse
|
8
|
Zhang Y, Zhang X, Li F, Lin C, Zhang D, Duan B, Zhao Y, Li X, Xu D, Cheng J, Zhao L, Wang J, Wang W. Expression profiles of the CD274 and PLEKHH2 gene and association of its polymorphism with hematologic parameters in sheep. Vet Immunol Immunopathol 2023; 259:110597. [PMID: 37094535 DOI: 10.1016/j.vetimm.2023.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
CD274 and PLEKHH2 genes have been identified as immune- and multiple diseases-related genes, and have recently garnered significant interest. However, their role in regulating immune functions in sheep remains largely unexplored. In this study, we aimed to investigate the effects of polymorphisms in CD274 and PLEKHH2 on hematologic parameters in 915 sheep. Our results showed that the CD274 and PLEKHH2 genes were most highly expressed in the spleen and tail fat, respectively, as determined by qRT-PCR. We also identified a G to A mutation (g 0.11858 G > A) in the exon 4 region of CD274, and a C to G mutation (g 0.38384 C > G) in the intron 8 region of PLEKH2. Association analysis revealed that CD274 g 0.11858 G > A was significantly associated with RBC, HCT, MCHC, and MCV (P < 0.05), while PLEKHH2 g 0.38384 C > G was significantly associated with HCT, MPV, MCHC, and MCV (P < 0.05). These results suggest that CD274 and PLEKHH2 genes may play a role in regulating blood physiological indicators and could be potential functional candidates for influencing immune traits in sheep breeding programs.
Collapse
Affiliation(s)
- Yukun Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fadi Li
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Deyin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Benzhen Duan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Molecular Virology, MOE & NHC, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China
| | - Yuan Zhao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Xiaolong Li
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Dan Xu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Jiangbo Cheng
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Weimin Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
9
|
Posner A, Sivakumaran T, Pattison A, Etemadmoghadam D, Thio N, Wood C, Fisher K, Webb S, DeFazio A, Wilcken N, Gao B, Karapetis CS, Singh M, Collins IM, Richardson G, Steer C, Warren M, Karanth N, Fellowes A, Fox SB, Hicks RJ, Schofield P, Bowtell D, Prall OWJ, Tothill RW, Mileshkin L. Immune and genomic biomarkers of immunotherapy response in cancer of unknown primary. J Immunother Cancer 2023; 11:jitc-2022-005809. [PMID: 36720497 PMCID: PMC10098268 DOI: 10.1136/jitc-2022-005809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cancer of unknown primary (CUP) is a heterogeneous group of metastatic cancers where a primary tissue of origin (TOO) is uncertain. Most patients with CUP have limited treatment options and poor survival outcomes. Immune checkpoint inhibitors (ICIs) can be efficacious in some patients with CUP, but the optimal predictive biomarkers are unknown. We therefore assessed immune and genomic biomarkers as well as predicted TOO in patients with CUP, including a subset treated with ICIs. METHODS Patients with CUP were subject to gene-expression profiling (GEP) and DNA panel sequencing. Immune and stromal-related gene expression was explored by NanoString, including genes associated with immunotherapy response (IR) in other solid malignancies. ICI responsive cancer types were assigned based on Food and Drug Administration-approved indications, and either detection of a latent primary tumor or the TOO was suspected based on genomics informed pathology review. Tumor mutation burden (TMB) and gene mutations were also assessed. RESULTS A total of 219 patients with CUP were included, 215 assessed for TOO in a previous study, with the majority (163) receiving both RNA and DNA tests. Of GEP profiled cases, 33% (59/175) had a high IR gene-expression score. Of the DNA sequenced cases, 16% (32/203) had high TMB (>10 mutations/Mb), including two with mismatch repair deficiency. Low correlation was observed between TMB and an IR score (R=0.26, p<0.001). Among 110 CUPs with a latent primary or suspected TOO, 47% (52/110) belonged to ICI-responsive cancer types. More than half of the CUPs had at least one feature that may predict ICI response (high IR score, high TMB, ICI-responsive cancer type). Among patients with CUP treated with ICIs, 8/28 (29%) responded (2 complete responses and 6 partial responses). Among non-responders, 9 had stable and 11 had progressive disease. All responders had a high IR score (7/8) and/or high TMB (3/8), while most (5/8) belonged to ICI-responsive cancer types. These features were detected at a lower frequency in non-responders and mostly in patients with stable disease. CONCLUSIONS A significant fraction of CUP tumors had genomic features previously associated with ICI response. High IR score was the most sensitive predictive feature of ICI response, warranting evaluation in a larger patient series.
Collapse
Affiliation(s)
- Atara Posner
- Department of Clinical Pathology and Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tharani Sivakumaran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Pattison
- Department of Clinical Pathology and Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Niko Thio
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Colin Wood
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Krista Fisher
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Samantha Webb
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Anna DeFazio
- Department of Gynaecological Oncology, and Westmead Institute for Medical Research, Westmead Hospital, Westmead, New South Wales, Australia.,The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Nicholas Wilcken
- Department of Medical Oncology, Westmead Hospital The Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - Bo Gao
- Department of Medical Oncology, Westmead Hospital The Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - Christos S Karapetis
- Department of Medical Oncology and Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - Madhu Singh
- Department of Medical Oncology, Barwon Health Cancer Services, Geelong, Victoria, Australia
| | - Ian M Collins
- Department of Medical Oncology and SouthWest HealthCare, Deakin University - Warrnambool Campus, Warrnambool, Victoria, Australia
| | - Gary Richardson
- Medical Oncology, Cabrini Health, Malvern, Victoria, Australia
| | - Christopher Steer
- Border Medical Oncology, Albury Wodonga Regional Cancer Centre, Albury, Victoria, Australia
| | - Mark Warren
- Medical Oncology, Bendigo Health, Bendigo, Victoria, Australia
| | - Narayan Karanth
- Division of Medicine, Top End Health and Hospital Services, Alan Walker Cancer Centre, Darwin, Northern Territory, Australia
| | - Andrew Fellowes
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stephen B Fox
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Rodney J Hicks
- St Vincent's Hospital Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Penelope Schofield
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Behavioural Sciences Unit, Health Services Research and Implementation Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Bowtell
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Owen W J Prall
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Richard William Tothill
- Department of Clinical Pathology and Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Linda Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Traweek RS, Cope BM, Roland CL, Keung EZ, Nassif EF, Erstad DJ. Targeting the MDM2-p53 pathway in dedifferentiated liposarcoma. Front Oncol 2022; 12:1006959. [PMID: 36439412 PMCID: PMC9684653 DOI: 10.3389/fonc.2022.1006959] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 10/12/2023] Open
Abstract
Dedifferentiated liposarcoma (DDLPS) is an aggressive adipogenic cancer with poor prognosis. DDLPS tumors are only modestly sensitive to chemotherapy and radiation, and there is a need for more effective therapies. Genetically, DDLPS is characterized by a low tumor mutational burden and frequent chromosomal structural abnormalities including amplification of the 12q13-15 chromosomal region and the MDM2 gene, which are defining features of DDLPS. The MDM2 protein is an E3 ubiquitin ligase that targets the tumor suppressor, p53, for proteasomal degradation. MDM2 amplification or overexpression in human malignancies is associated with cell-cycle progression and worse prognosis. The MDM2-p53 interaction has thus garnered interest as a therapeutic target for DDLPS and other malignancies. MDM2 binds p53 via a hydrophobic protein interaction that is easily accessible with synthetic analogues. Multiple agents have been developed, including Nutlins such as RG7112 and small molecular inhibitors including SAR405838 and HDM201. Preclinical in vitro and animal models have shown promising results with MDM2 inhibition, resulting in robust p53 reactivation and cancer cell death. However, multiple early-phase clinical trials have failed to show a benefit with MDM2 pathway inhibition for DDLPS. Mechanisms of resistance are being elucidated, and novel inhibitors and combination therapies are currently under investigation. This review provides an overview of these strategies for targeting MDM2 in DDLPS.
Collapse
Affiliation(s)
- Raymond S. Traweek
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brandon M. Cope
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina L. Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Emily Z. Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elise F. Nassif
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Derek J. Erstad
- Division of Surgical Oncology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Lazcano R, Barreto CM, Salazar R, Carapeto F, Traweek RS, Leung CH, Gite S, Mehta J, Ingram DR, Wani KM, Vu KAT, Parra ER, Lu W, Zhou J, Witt RG, Cope B, Thirasastr P, Lin HY, Scally CP, Conley AP, Ratan R, Livingston JA, Zarzour AM, Ludwig J, Araujo D, Ravi V, Patel S, Benjamin R, Wargo J, Wistuba II, Somaiah N, Roland CL, Keung EZ, Solis L, Wang WL, Lazar AJ, Nassif EF. The immune landscape of undifferentiated pleomorphic sarcoma. Front Oncol 2022; 12:1008484. [PMID: 36313661 PMCID: PMC9597628 DOI: 10.3389/fonc.2022.1008484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Undifferentiated pleomorphic sarcoma (UPS) can be associated with a relatively dense immune infiltration. Immune checkpoint inhibitors (anti-PD1, anti-PDL1, and anti-CTLA4) are effective in 20% of UPS patients. We characterize the immune microenvironment of UPS and its association with oncologic outcomes. Material and methods Surgically resected UPS samples were stained by immunohistochemistry (IHC) for the following: tumor-associated immune cells (CD3, CD8, CD163, CD20), immune checkpoints (stimulatory: OX40, ICOS; inhibitory: PD-L1, LAG3, IDO1, PD1), and the adenosine pathway (CD73, CD39). Sections were reviewed for the presence of lymphoid aggregates (LA). Clinical data were retrospectively obtained for all samples. The Wilcoxon rank-sum and Kruskal-Wallis tests were used to compare distributions. Correlations between biomarkers were measured by Spearman correlation. Univariate and multivariate Cox models were used to identify biomarkers associated with overall survival (OS) and disease-free survival (DFS). Unsupervised clustering was performed, and Kaplan-Meier curves and log-rank tests used for comparison of OS and DFS between immune clusters. Results Samples analyzed (n=105) included 46 primary tumors, 34 local recurrences, and 25 metastases. LA were found in 23% (n=10/43), 17% (n=4/24), and 30% (n=7/23) of primary, recurrent, and metastatic samples, respectively. In primary UPS, CD73 expression was significantly higher after preoperative radiation therapy (p=0.009). CD39 expression was significantly correlated with PD1 expression (primary: p=0.002, recurrent: p=0.004, metastatic: p=0.001), PD-L1 expression (primary: p=0.009), and CD3+ cell densities (primary: p=0.016, recurrent: p=0.043, metastatic: p=0.028). In recurrent tumors, there was a strong correlation between CD39 and CD73 (p=0.015), and both were also correlated with CD163+ cell densities (CD39 p=0.013; CD73 p<0.001). In multivariate analyses, higher densities of CD3+ and CD8+ cells (Cox Hazard Ratio [HR]=0.33; p=0.010) were independently associated with OS (CD3+, HR=0.19, p<0.001; CD8+, HR= 0.33, p=0.010) and DFS (CD3+, HR=0.34, p=0.018; CD8+, HR=0.34, p= 0.014). Unsupervised clustering of IHC values revealed three immunologically distinct clusters: immune high, intermediate, and low. In primary tumors, these clusters were significantly associated with OS (log-rank p<0.0001) and DFS (p<0.001). Conclusion We identified three immunologically distinct clusters of UPS Associated with OS and DFS. Our data support further investigations of combination anti-PD-1/PD-L1 and adenosine pathway inhibitors in UPS.
Collapse
Affiliation(s)
- Rossana Lazcano
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carmelia M. Barreto
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ruth Salazar
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fernando Carapeto
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Raymond S. Traweek
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cheuk H. Leung
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Swati Gite
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jay Mehta
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Davis R. Ingram
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Khalida M. Wani
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kim-Anh T. Vu
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin R. Parra
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wei Lu
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianling Zhou
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Russell G. Witt
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brandon Cope
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Prapassorn Thirasastr
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Heather Y. Lin
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christopher P. Scally
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anthony P. Conley
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ravin Ratan
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - J. Andrew Livingston
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexandra M. Zarzour
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joseph Ludwig
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dejka Araujo
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vinod Ravi
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shreyaskumar Patel
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Benjamin
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer Wargo
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ignacio I. Wistuba
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Division of Pathology and Laboratory Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Neeta Somaiah
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina L. Roland
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Emily Z. Keung
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Luisa Solis
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wei-Lien Wang
- Division of Pathology and Laboratory Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Alexander J. Lazar
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Division of Pathology and Laboratory Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elise F. Nassif
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Elise F. Nassif,
| |
Collapse
|
12
|
Yamashita A, Suehara Y, Hayashi T, Takagi T, Kubota D, Sasa K, Hasegawa N, Ishijima M, Yao T, Saito T. Molecular and clinicopathological analysis revealed an immuno-checkpoint inhibitor as a potential therapeutic target in a subset of high-grade myxofibrosarcoma. Virchows Arch 2022; 481:1-17. [PMID: 35705750 DOI: 10.1007/s00428-022-03358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to identify differences in genetic alterations between low- and high-grade lesions in myxofibrosarcoma (MFS) and to examine the efficacy of immune checkpoint inhibitors in 45 patients with MFS. First, genetic differences between low- and high-grade components within the same tumor were analyzed in 11 cases using next-generation sequencing. Based on the obtained data, Sanger sequencing was performed for TP53 mutations in the remaining 34 patients. Loss of heterozygosity (LOH) analysis was performed at the TP53 and RB1 loci. Immunohistochemistry was performed for FGFR3, KIT, MET, programmed death receptor ligand 1 (PD-L1), CD8, FOXP3, and mismatch repair proteins. The microsatellite instability status was also evaluated in all cases. TP53 deleterious mutations and LOH at TP53 and RB1 loci were detected significantly more frequently in high-grade than in low-grade MFS (P = 0.0423, 0.0455, and 0.0455, respectively). LOH at the RB1 locus was significantly associated with shorter recurrence-free survival in both univariate and multivariate analyses. TP53 alterations, such as mutation and LOH, were more frequently observed in low-grade areas within high-grade MFS than in pure low-grade MFS. The positive PD-L1 expression rate was 35.6% (16/45), and all these 16 cases were high-grade. A high density of both CD8+ and FOXP3+ tumor-infiltrating lymphocytes was associated with PD-L1 positivity. LOH at the RB1 locus was identified an independent adverse prognostic factor for recurrence-free survival in patients with MFS. Immune checkpoint inhibitors may be a therapeutic option for a subset of high-grade MFS.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Takagi
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Kubota
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Keita Sasa
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuhiko Hasegawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan. .,Intractable Disease Research Center, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
13
|
Extracellular Vesicle-Mediated IL-1 Signaling in Response to Doxorubicin Activates PD-L1 Expression in Osteosarcoma Models. Cells 2022; 11:cells11061042. [PMID: 35326493 PMCID: PMC8946890 DOI: 10.3390/cells11061042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of programmed cell death ligand 1 (PD-L1) in tumors is associated with tumor cell escape from T-cell cytotoxicity, and is considered a crucial effector in chemoresistance and tumor relapse. Although PD-L1 induction has been observed in patients after chemotherapy treatment, the mechanism by which the drug activates PD-L1 expression remains elusive. Here, we identified the extracellular vesicles (EVs) as a molecular mediator that determines the effect of doxorubicin on PD-L1 expression in osteosarcoma models. Mechanistically, doxorubicin dependently stimulates the release of extracellular vesicles, which mediate autocrine/paracrine signals in osteosarcoma cells. The recipient cells were stimulated by these EVs and acquired the ability to promote the expression of inflammatory cytokines interleukin (IL)-1β and IL-6. In response to doxorubicin, IL-1β, but not IL-6, allowed- osteosarcoma cells to promote the expression of PD-L1, and the elimination of IL-1β/IL-1 receptor signaling with IL-1 receptor antagonist reduced PD-L1 expression. Together, these findings provided insights into the role of EV release in response to chemotherapy that mediates PD-L1 expression via the IL-1 signaling pathway, and suggested that the combination of a drug targeting IL-1 or PD-L1 with chemotherapy could be an effective treatment option for osteosarcoma patients.
Collapse
|
14
|
Zhang Y, Chen Y, Papakonstantinou A, Tsagkozis P, Linder-Stragliotto C, Haglund F. Evaluation of PD-L1 Expression in Undifferentiated Pleomorphic Sarcomas, Liposarcomas and Chondrosarcomas. Biomolecules 2022; 12:292. [PMID: 35204793 PMCID: PMC8961782 DOI: 10.3390/biom12020292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) such as PD1/PD-L1 blockers are an established treatment for many solid cancers. There are currently no approved ICIs for sarcomas, but satisfactory results have been seen in some patients with disseminated disease in certain histological types. Most studies on PD-L1 in sarcoma have used small specimens and there are no clear cutoff values for scoring. We investigated PD-L1 immunoreactivity in high-grade chondrosarcomas (CS), abdominal liposarcoma (LS) and undifferentiated pleomorphic sarcomas (UPS). In total, 230 tumors were stained with SP142 and SP263 assays and evaluated by two clinical pathologists. Immunoreactivity in tumor and immune cells was correlated with clinical outcome. Overall, ≥1% PD-L1 immunoreactivity in tumor cells was found in 11 CS, 26 LS and 59 UPS (SP142 assay) and in 10 CS, 26 LS and 77 UPS (SP263 assay). Most tumors exhibited ≤10% PD-L1 immunoreactivity, but a subset across all three subtypes had >50%. Kaplan-Meier survival analysis showed no significant difference in metastasis-free or overall survival in relation to PD-L1 immunoreactivity in tumor or immune cells for any subtype. As there is a lack of clinical data regarding PD-L1/PD-1 status and therapy response, it is not currently possible to establish clear cutoff values. Patients with high (>50%) PD-L1 immunoreactivity in tumor cells (TC) with the SP263 assay would be a logical group to investigate for potentially beneficial PD1/PD-L1-targeted treatment.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Pathology and Cancer Diagnostics, Radiumhemmet, Karolinska University Hospital Solna, 171 64 Solna, Sweden;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Solna, Sweden; (Y.C.); (A.P.)
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Solna, Sweden; (Y.C.); (A.P.)
| | - Andri Papakonstantinou
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Solna, Sweden; (Y.C.); (A.P.)
- Department of Breast Cancer, Endocrine Tumors and Sarcomas, Karolinska University Hospital, 171 64 Solna, Sweden;
| | - Panagiotis Tsagkozis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Solna, Sweden;
- Department of Orthopedics, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Christina Linder-Stragliotto
- Department of Breast Cancer, Endocrine Tumors and Sarcomas, Karolinska University Hospital, 171 64 Solna, Sweden;
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Solna, Sweden;
| | - Felix Haglund
- Department of Pathology and Cancer Diagnostics, Radiumhemmet, Karolinska University Hospital Solna, 171 64 Solna, Sweden;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Solna, Sweden; (Y.C.); (A.P.)
| |
Collapse
|
15
|
Tomassen T, Weidema ME, Hillebrandt-Roeffen MHS, van der Horst C, Desar IME, Flucke UE, Versleijen-Jonkers YMH. Analysis of PD-1, PD-L1, and T-cell infiltration in angiosarcoma pathogenetic subgroups. Immunol Res 2022; 70:256-268. [PMID: 35043369 PMCID: PMC8916989 DOI: 10.1007/s12026-021-09259-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2024]
Abstract
Angiosarcoma (AS) is a rare malignancy with a poor prognosis. It can develop spontaneously or due to previous radiotherapy (RT), ultraviolet (UV) radiation, or lymphoedema (Stewart Treves AS). Novel therapeutic approaches are needed, but progress is hindered because of the heterogeneity and rarity of AS. In order to explore the potential of immune checkpoint inhibition (ICI), we investigated the protein expression of programmed cell death 1 (PD-1), programmed death-ligand 1 (PD-L1), and CD8 + T cells in 165 AS cases in relation to AS subgroups based on clinical classification and in relation to whole-genome methylation profiling based clusters (A1, A2, B1, B2). High PD-L1 and PD-1 expression were predominantly shown in UV-associated, visceral, and soft tissue AS. RT-associated AS showed predominantly high PD-1 expression. CD8 + T cell infiltration was present in the majority of AS samples. Within the UV-associated AS, two different clusters can be distinguished by DNA methylation profiling. Cases in cluster A1 showed higher PD-1 (p = 0.015), PD-L1 (p = 0.015), and CD8 + T cells (p = 0.008) compared to those in cluster B2, suggesting that these UV-AS tumors are more immunogenic than B2 tumors showing a difference even within one subgroup. In soft tissue AS, combined PD-1 and PD-L1 expression showed a trend toward poor survival (p = 0.051), whereas in UV-associated AS, PD-1 expression correlated with better survival (p = 0.035). In conclusion, we show the presence of PD-1, PD-L1, and CD8 + T cells in the majority of AS but reveal differences between and within AS subgroups, providing prognostic information and indicating to be predictive for ICI.
Collapse
Affiliation(s)
- T Tomassen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M E Weidema
- Department of Medical Oncology (Internal Postal Code: 452), Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - M H S Hillebrandt-Roeffen
- Department of Medical Oncology (Internal Postal Code: 452), Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - C van der Horst
- Department of Medical Oncology (Internal Postal Code: 452), Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - I M E Desar
- Department of Medical Oncology (Internal Postal Code: 452), Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - U E Flucke
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Yvonne M H Versleijen-Jonkers
- Department of Medical Oncology (Internal Postal Code: 452), Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Roulleaux Dugage M, Nassif EF, Italiano A, Bahleda R. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Front Immunol 2021; 12:775761. [PMID: 34925348 PMCID: PMC8678134 DOI: 10.3389/fimmu.2021.775761] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Anti-PD-(L)1 therapies yield a disappointing response rate of 15% across soft-tissue sarcomas, even if some subtypes benefit more than others. The proportions of TAMs and TILs in their tumor microenvironment are variable, and this heterogeneity correlates to histotype. Tumors with a richer CD8+ T cell, M1 macrophage, and CD20+ cells infiltrate have a better prognosis than those infiltrated by M0/M2 macrophages and a high immune checkpoint protein expression. PD-L1 and CD8+ infiltrate seem correlated to response to immune checkpoint inhibitors (ICI), but tertiary lymphoid structures have the best predictive value and have been validated prospectively. Trials for combination therapies are ongoing and focus on the association of ICI with chemotherapy, achieving encouraging results especially with pembrolizumab and doxorubicin at an early stage, or ICI with antiangiogenics. A synergy with oncolytic viruses is seen and intratumoral talimogene laherpavec yields an impressive 35% ORR when associated to pembrolizumab. Adoptive cellular therapies are also of great interest in tumors with a high expression of cancer-testis antigens (CTA), such as synovial sarcomas or myxoid round cell liposarcomas with an ORR ranging from 20 to 50%. It seems crucial to adapt the design of clinical trials to histology. Leiomyosarcomas are characterized by complex genomics but are poorly infiltrated by immune cells and do not benefit from ICI. They should be tested with PIK3CA/AKT inhibition, IDO blockade, or treatments aiming at increasing antigenicity (radiotherapy, PARP inhibitors). DDLPS are more infiltrated and have higher PD-L1 expression, but responses to ICI remain variable across clinical studies. Combinations with MDM2 antagonists or CDK4/6 inhibitors may improve responses for DDLPS. UPS harbor the highest copy number alterations (CNA) and mutation rates, with a rich immune infiltrate containing TLS. They have a promising 15-40% ORR to ICI. Trials for ICB should focus on immune-high UPS. Association of ICI with FGFR inhibitors warrants further exploration in the immune-low group of UPS. Finally translocation-related sarcomas are heterogeneous, and although synovial sarcomas a poorly infiltrated and have a poor response rate to ICI, ASPS largely benefit from ICB monotherapy or its association with antiangiogenics agents. Targeting specific neoantigens through vaccine or adoptive cellular therapies is probably the most promising approach in synovial sarcomas.
Collapse
Affiliation(s)
- Matthieu Roulleaux Dugage
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Elise F. Nassif
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Italiano
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- Département d’Oncologie Médicale, Institut Bergonié, Bordeaux, France
| | - Rastislav Bahleda
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
17
|
Gong TJ, Tang F, Zheng CX, Wang J, Wang YT, Zhang YH, Luo Y, Zhou Y, Min L, Tu CQ. Case Report: Pulmonary Metastases From Epithelioid Sarcoma in Extremity Favourably Responding to Immunotherapy With Camrelizumab. Front Oncol 2021; 11:728437. [PMID: 34692503 PMCID: PMC8526861 DOI: 10.3389/fonc.2021.728437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
Epithelioid sarcoma (ES) is a rare soft tissue sarcoma (STS), with limited therapies available for metastatic disease. Here, we describe a case of a 30-year-old male with ES of the left knee and underwent surgery and radiation therapy for the primary disease. After 2 years, he had local recurrence and underwent extensive resection surgery; however, adjuvant chemotherapies were delayed due to recurrent wound infection. Nine months after the second surgery, progressive disease was confirmed after detection of metastases to the lungs and inguinal lymph nodes. Amputation was performed for the local recurrence, followed by inguinal lymph nodes dissection. Pazopanib was transiently administered but discontinued as a result of wound dehiscence. The tumour specimens were detected with unexpected high level of PD-L1 expression and tumoural infiltrating lymphocytes. Subsequently, he received camrelizumab 2.0 mg/kg every 21 days for 18 cycles with rapid remission of the pulmonary metastases. This promising response to camrelizumab indicates that immunotherapies may be an alternative choice for patients with metastatic ES in lung based on analysing the tumour immune microenvironment.
Collapse
Affiliation(s)
- Tao-Jun Gong
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Tang
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuan-Xi Zheng
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Tian Wang
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Han Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Luo
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhou
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, China
| | - Chong-Qi Tu
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
van Oost S, Meijer DM, Kuijjer ML, Bovée JVMG, de Miranda NFCC. Linking Immunity with Genomics in Sarcomas: Is Genomic Complexity an Immunogenic Trigger? Biomedicines 2021; 9:1048. [PMID: 34440251 PMCID: PMC8391750 DOI: 10.3390/biomedicines9081048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Sarcomas comprise a collection of highly heterogeneous malignancies that can be grossly grouped in the categories of sarcomas with simple or complex genomes. Since the outcome for most sarcoma patients has barely improved in the last decades, there is an urgent need for improved therapies. Immunotherapy, and especially T cell checkpoint blockade, has recently been a game-changer in cancer therapy as it produced significant and durable treatment responses in several cancer types. Currently, only a small fraction of sarcoma patients benefit from immunotherapy, supposedly due to a general lack of somatically mutated antigens (neoantigens) and spontaneous T cell immunity in most cancers. However, genomic events resulting from chromosomal instability are frequent in sarcomas with complex genomes and could drive immunity in those tumors. Improving our understanding of the mechanisms that shape the immune landscape of sarcomas will be crucial to overcoming the current challenges of sarcoma immunotherapy. This review focuses on what is currently known about the tumor microenvironment in sarcomas and how this relates to their genomic features. Moreover, we discuss novel therapeutic strategies that leverage the tumor microenvironment to increase the clinical efficacy of immunotherapy, and which could provide new avenues for the treatment of sarcomas.
Collapse
Affiliation(s)
- Siddh van Oost
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Debora M. Meijer
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Marieke L. Kuijjer
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
- Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Noel F. C. C. de Miranda
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| |
Collapse
|
19
|
Nishio J, Nakayama S, Nabeshima K, Yamamoto T. Biology and Management of Dedifferentiated Liposarcoma: State of the Art and Perspectives. J Clin Med 2021; 10:3230. [PMID: 34362013 PMCID: PMC8348700 DOI: 10.3390/jcm10153230] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Dedifferentiated liposarcoma (DDL) is defined as the transition from well-differentiated liposarcoma (WDL)/atypical lipomatous tumor (ALT) to non-lipogenic sarcoma, which arises mostly in the retroperitoneum and deep soft tissue of proximal extremities. It is characterized by a supernumerary ring and giant marker chromosomes, both of which contain amplified sequences of 12q13-15 including murinedouble minute 2 (MDM2) and cyclin-dependent kinase 4 (CDK4) cell cycle oncogenes. Detection of MDM2 (and/or CDK4) amplification serves to distinguish DDL from other undifferentiated sarcomas. Recently, CTDSP1/2-DNM3OS fusion genes have been identified in a subset of DDL. However, the genetic events associated with dedifferentiation of WDL/ALT remain to be clarified. The standard treatment for localized DDL is surgery, with or without radiotherapy. In advanced disease, the standard first-line therapy is an anthracycline-based regimen, with either single-agent anthracycline or anthracycline in combination with the alkylating agent ifosfamide. Unfortunately, this regimen has not necessarily led to a satisfactory clinical outcome. Recent advances in the understanding of the pathogenesis of DDL may allow for the development of more-effective innovative therapeutic strategies. This review provides an overview of the current knowledge on the clinical presentation, pathogenesis, histopathology and treatment of DDL.
Collapse
Affiliation(s)
- Jun Nishio
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.N.); (T.Y.)
| | - Shizuhide Nakayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.N.); (T.Y.)
| | - Kazuki Nabeshima
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Takuaki Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.N.); (T.Y.)
| |
Collapse
|
20
|
Toward a Personalized Therapy in Soft-Tissue Sarcomas: State of the Art and Future Directions. Cancers (Basel) 2021; 13:cancers13102359. [PMID: 34068344 PMCID: PMC8153286 DOI: 10.3390/cancers13102359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022] Open
Abstract
Soft-tissue sarcomas are rare tumors characterized by pathogenetic, morphological, and clinical intrinsic variability. Median survival of patients with advanced tumors are usually chemo- and radio-resistant, and standard treatments yield low response rates and poor survival results. The identification of defined genomic alterations in sarcoma could represent the premise for targeted treatments. Summarizing, soft-tissue sarcomas can be differentiated into histotypes with reciprocal chromosomal translocations, with defined oncogenic mutations and complex karyotypes. If the latter are improbably approached with targeted treatments, many suggest that innovative therapies interfering with the identified fusion oncoproteins and altered pathways could be potentially resolutive. In most cases, the characteristic genetic signature is discouragingly defined as "undruggable", which poses a challenge for the development of novel pharmacological approaches. In this review, a summary of genomic alterations recognized in most common soft-tissue sarcoma is reported together with current and future therapeutic opportunities.
Collapse
|
21
|
Vargas AC, Chan NL, Wong DD, Zaborowski M, Fuchs TL, Ahadi M, Clarkson A, Sioson L, Sheen A, Maclean F, Bonar F, Cheah A, Jones M, Chou A, Gill AJ. DNA damage-inducible transcript 3 immunohistochemistry is highly sensitive for the diagnosis of myxoid liposarcoma but care is required in interpreting the significance of focal expression. Histopathology 2021; 79:106-116. [PMID: 33465826 DOI: 10.1111/his.14339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/24/2020] [Accepted: 01/16/2021] [Indexed: 12/28/2022]
Abstract
AIMS Myxoid liposarcoma (MLPS) is characterised by DNA damage-inducible transcript 3 (DDIT3) gene rearrangements, confirmation of which is commonly used diagnostically. Recently, DDIT3 immunohistochemistry (IHC) has been reported to be highly sensitive and, when strict criteria are employed, specific for the diagnosis of MLPS. The aim of this study was to independently investigate DDIT3 IHC as a diagnostic marker for MLPS. METHODS AND RESULTS DDIT3 IHC was performed on 52 MLPS and on 152 mimics on whole sections, and on 515 non-MLPS sarcomas in tissue microarray format. Only one MLPS (which had undergone acid-based decalcification) was completely negative. With inclusion of this case if any nuclear expression is considered to indicate positivity, the overall sensitivity of DDIT3 is 98% (51 of 52 cases) and the specificity is 94% (633 of 667 non-MLPS cases are negative). If a cut-off of >10% of neoplastic cells is required for positivity, then the sensitivity remains 98% (51/52) and the specificity is 98.5% (657 of 667 non-MLPS cases are negative). If a cut-off of >50% of cells is required for positivity, then the sensitivity is 96% (50 of 52 cases) but the specificity improves to 100%. CONCLUSIONS Diffuse nuclear DDIT3 expression occurs in the overwhelming majority of MLPSs, and can be used to confirm the diagnosis in most cases without the need for molecular testing. A complete absence of expression argues strongly against MLPS, and almost completely excludes this diagnosis, particularly if there is consideration of technical factors such as decalcification. The significance of focal DDIT3 expression should be interpreted in the morphological and clinical context, although most tumours showing only focal expression are not MLPS.
Collapse
Affiliation(s)
- Ana Cristina Vargas
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia.,Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Noni L Chan
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Daniel D Wong
- Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, WA, Australia.,School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Matthew Zaborowski
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Talia L Fuchs
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Mahsa Ahadi
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Adele Clarkson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Loretta Sioson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Amy Sheen
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Fiona Maclean
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia.,Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Fiona Bonar
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia.,Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alison Cheah
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Martin Jones
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Angela Chou
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
22
|
Establishment of an Academic Tissue Microarray Platform as a Tool for Soft Tissue Sarcoma Research. Sarcoma 2021; 2021:6675260. [PMID: 34413700 PMCID: PMC8369337 DOI: 10.1155/2021/6675260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcoma (STS) is a heterogeneous family of rare mesenchymal tumors, characterized by histopathological and molecular diversity. Tissue microarray (TMA) is a tool that allows performing research in orphan diseases in a more efficient and cost-effective way. TMAs are paraffin blocks consisting of multiple small representative tissue cores from biological samples, for example, from multiple donors, diverse sites of disease, or multiple different diseases. In 2015, we began constructing TMAs using archival tumor material from STS patients. Specimens were well annotated in terms of histopathological diagnosis, treatment, and clinical follow-up of the tissue donors. Each TMA block contains duplicate or triplicate 1.0–1.5 mm tissue cores from representative tumor areas selected by sarcoma pathologists. The construction of TMAs was performed with TMA Grand Master (3DHistech). So far, we have established disease-specific TMAs from 7 STS subtypes: gastrointestinal stromal tumor (72 cases included in the array), alveolar soft part sarcoma (n = 12 + 47), clear cell sarcoma (n = 22 + 32), leiomyosarcoma (n = 55), liposarcoma (n = 42), inflammatory myofibroblastic tumor (n = 12 + 21), and alveolar rhabdomyosarcoma (n = 24). We also constructed a multisarcoma TMA covering a representative number of important histopathological subtypes on arrays for screening purposes, namely, angiosarcoma, dedifferentiated liposarcoma, pleomorphic liposarcoma, and myxoid liposarcoma, leiomyosarcoma, malignant peripheral nerve sheath tumor, myxofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, and undifferentiated pleomorphic sarcoma, with 7–11 individual cases per subtype. We are currently expanding the list of TMAs with additional sarcoma entities, considering the heterogeneity of this family of tumors. Our extensive STS TMA platform is suitable for rapid and cost-effective morphological, immunohistochemical, and molecular characterization of the tumor as well as for the identification of potential novel diagnostic markers and drug targets. It is readily available for collaborative projects with research partners.
Collapse
|
23
|
Advani D, Sharma S, Kumari S, Ambasta RK, Kumar P. Precision Oncology, Signaling and Anticancer Agents in Cancer Therapeutics. Anticancer Agents Med Chem 2021; 22:433-468. [PMID: 33687887 DOI: 10.2174/1871520621666210308101029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global alliance for genomics and healthcare facilities provides innovational solutions to expedite research and clinical practices for complex and incurable health conditions. Precision oncology is an emerging field explicitly tailored to facilitate cancer diagnosis, prevention and treatment based on patients' genetic profile. Advancements in "omics" techniques, next-generation sequencing, artificial intelligence and clinical trial designs provide a platform for assessing the efficacy and safety of combination therapies and diagnostic procedures. METHOD Data were collected from Pubmed and Google scholar using keywords: "Precision medicine", "precision medicine and cancer", "anticancer agents in precision medicine" and reviewed comprehensively. RESULTS Personalized therapeutics including immunotherapy, cancer vaccines, serve as a groundbreaking solution for cancer treatment. Herein, we take a measurable view of precision therapies and novel diagnostic approaches targeting cancer treatment. The contemporary applications of precision medicine have also been described along with various hurdles identified in the successful establishment of precision therapeutics. CONCLUSION This review highlights the key breakthroughs related to immunotherapies, targeted anticancer agents, and target interventions related to cancer signaling mechanisms. The success story of this field in context to drug resistance, safety, patient survival and in improving quality of life is yet to be elucidated. We conclude that, in the near future, the field of individualized treatments may truly revolutionize the nature of cancer patient care.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| |
Collapse
|
24
|
Ramanayake N, Vargas AC, Talbot J, Bonar F, Wong DD, Wong D, Mahar A, Karim R, Luk PP, Selinger C, Sioson L, Gill AJ, Maclean F. NKX3.1 immunohistochemistry is highly specific for the diagnosis of mesenchymal chondrosarcomas: experience in the Australian population. Pathology 2021; 53:705-712. [PMID: 33640159 DOI: 10.1016/j.pathol.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
Mesenchymal chondrosarcoma (MC) is a rare sarcoma that typically arises in adolescents and young adults and characteristically harbours a HEY1-NCOA2 gene fusion. A recent study has shown that NKX3.1 immunohistochemistry (IHC) is highly specific and sensitive in MCs. NKX3.1 is a nuclear marker expressed in prostatic tissue and is widely used in most laboratories to determine prostatic origin of metastatic tumours. In the current study we investigated whether this stain can be used in the diagnostic workup of MC, as it may assist in triaging cases for further molecular testing, by assessing its expression in a cohort of MCs and in a wide spectrum of sarcoma types. Furthermore, we aimed to elucidate if expression of NKX3.1 by MCs is related to androgen receptor (AR) expression. We identified NKX3.1 positive nuclear staining in 9 of 12 individual patients of MC (n=20 of 25 samples when taking into account separate episodes). Four of the five negative specimens had been previously subjected to acid-based decalcification. NKX3.1 was negative in 536 samples from 16 non-MC sarcomas derived from largely tissue microarrays (TMAs). Overall, we identified 80% sensitivity and 100% specificity for NKX3.1 IHC in MCs. The sensitivity increased to 95.2% when acid-based decalcified specimens were excluded from the analysis. No correlation between NKX3.1 expression and AR IHC was identified. In summary, our findings indicate that NKX3.1 nuclear positivity is highly sensitive and specific for MC, provided that ethylenediaminetetraacetic acid (EDTA)-based rather than acid-based decalcification is used for sample processing. NKX3.1 IHC in the right clinical and histopathological setting can potentially be sufficient for the diagnosis of MC, reserving molecular confirmation only for equivocal cases.
Collapse
Affiliation(s)
- Nimeka Ramanayake
- Department of Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia.
| | - Ana Cristina Vargas
- Department of Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia; Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; University of Sydney, Sydney, NSW, Australia
| | - Joel Talbot
- Department of Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Fiona Bonar
- Department of Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Daniel D Wong
- Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, WA, Australia; School of Medicine, The University of Western Australia, Crawley, WA, Australia
| | - David Wong
- Mater Health Services, Duncombe Building, South Brisbane, Qld, Australia
| | - Annabelle Mahar
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Rooshdiya Karim
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Peter P Luk
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Christina Selinger
- Royal College of Pathologists of Australasia, Surry Hills, NSW, Australia
| | - Loretta Sioson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; University of Sydney, Sydney, NSW, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Fiona Maclean
- Department of Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia; Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
25
|
Lambden JP, Kelsten MF, Schulte BC, Abbinanti S, Hayes JP, Villaflor V, Agulnik M. Metastatic Myxofibrosarcoma with Durable Response to Temozolomide Followed by Atezolizumab: A Case Report. Oncologist 2021; 26:549-553. [PMID: 33594725 DOI: 10.1002/onco.13728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Myxofibrosarcoma (MFS) is a well-recognized histotype of soft tissue sarcomas that generally presents with localized disease. Herein, we describe the case of a patient with metastatic MFS who experienced durable response to sixth-line therapy with temozolomide. Upon further progression, his tumor was notable for a high tumor mutational burden, and he was subsequently treated with seventh-line immunotherapy, atezolizumab, achieving a second durable response. This case highlights the role of immunotherapy after administration of alkylating agents. Review of the literature indicates that recurrent tumors treated with alkylating agents often experience hypermutation as a means of developing resistance and that checkpoint inhibitors are subsequently effective in these tumors. KEY POINTS: To the authors' knowledge, this is the first report of a patient with myxofibrosarcoma with high tumor mutational burden after administration of temozolomide monotherapy. Hypermutation may be a resistance mechanism for patients with soft tissue sarcoma who develop resistance to alkylating agents. Checkpoint inhibition may be effective therapy in patients with soft tissue sarcoma with high tumor mutational burden as a consequence of alternate systemic therapy resistance.
Collapse
Affiliation(s)
- Jason P Lambden
- McGaw Medical Center of Northwestern University, Chicago, Illinois, USA
| | - Max F Kelsten
- McGaw Medical Center of Northwestern University, Chicago, Illinois, USA
| | - Brian C Schulte
- McGaw Medical Center of Northwestern University, Chicago, Illinois, USA
| | - Susan Abbinanti
- McGaw Medical Center of Northwestern University, Chicago, Illinois, USA
| | - John P Hayes
- McGaw Medical Center of Northwestern University, Chicago, Illinois, USA
| | | | - Mark Agulnik
- City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
26
|
Candidate Biomarkers for Specific Intraoperative Near-Infrared Imaging of Soft Tissue Sarcomas: A Systematic Review. Cancers (Basel) 2021; 13:cancers13030557. [PMID: 33535618 PMCID: PMC7867119 DOI: 10.3390/cancers13030557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Near-infrared imaging of tumors during surgery facilitates the oncologic surgeon to distinguish malignant from healthy tissue. The technique is based on fluorescent tracers binding to tumor biomarkers on malignant cells. Currently, there are no clinically available fluorescent tracers that specifically target soft tissue sarcomas. This review searched the literature to find candidate biomarkers for soft tissue sarcomas, based on clinically used therapeutic antibodies. The search revealed 7 biomarkers: TEM1, VEGFR-1, EGFR, VEGFR-2, IGF-1R, PDGFRα, and CD40. These biomarkers are abundantly present on soft tissue sarcoma tumor cells and are already being targeted with humanized monoclonal antibodies. The conjugation of these antibodies with a fluorescent dye will yield in specific tracers for image-guided surgery of soft tissue sarcomas to improve the success rates of tumor resections. Abstract Surgery is the mainstay of treatment for localized soft tissue sarcomas (STS). The curative treatment highly depends on complete tumor resection, as positive margins are associated with local recurrence (LR) and prognosis. However, determining the tumor margin during surgery is challenging. Real-time tumor-specific imaging can facilitate complete resection by visualizing tumor tissue during surgery. Unfortunately, STS specific tracers are presently not clinically available. In this review, STS-associated cell surface-expressed biomarkers, which are currently already clinically targeted with monoclonal antibodies for therapeutic purposes, are evaluated for their use in near-infrared fluorescence (NIRF) imaging of STS. Clinically targeted biomarkers in STS were extracted from clinical trial registers and a PubMed search was performed. Data on biomarker characteristics, sample size, percentage of biomarker-positive STS samples, pattern of biomarker expression, biomarker internalization features, and previous applications of the biomarker in imaging were extracted. The biomarkers were ranked utilizing a previously described scoring system. Eleven cell surface-expressed biomarkers were identified from which 7 were selected as potential biomarkers for NIRF imaging: TEM1, VEGFR-1, EGFR, VEGFR-2, IGF-1R, PDGFRα, and CD40. Promising biomarkers in common and aggressive STS subtypes are TEM1 for myxofibrosarcoma, TEM1, and PDGFRα for undifferentiated soft tissue sarcoma and EGFR for synovial sarcoma.
Collapse
|
27
|
Will Next-Generation Immunotherapy Overcome the Intrinsic Diversity and Low Immunogenicity of Sarcomas to Improve Clinical Benefit? Cancers (Basel) 2020; 12:cancers12113392. [PMID: 33207697 PMCID: PMC7697818 DOI: 10.3390/cancers12113392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are a rare type of a heterogeneous group of tumours arising from mesenchymal cells that form connective tissues. Surgery is the most common treatment for these tumours, but additional neoadjuvant or adjuvant chemotherapy or radiation therapies may be necessary. Unfortunately, a significant proportion of patients treated with conventional therapies will develop metastatic disease that is resistant to therapies. Currently, there is an urgent need to develop more effective and durable therapies for the treatment of sarcomas. In recent years immunotherapies have revolutionised the treatment of a variety of cancers by restoring patient anti-tumour immune responses or through the adoptive infusion of immune effectors able to kill and eliminate malignant cells. The clinicopathologic and genetic heterogeneity of sarcomas, together with the generally low burden of somatic mutations potentially generating neoantigens, are currently limited to broad application of immunotherapy for patients with sarcomas. Nevertheless, a better understanding of the microenvironmental factors hampering the efficacy of immunotherapy and the identification of new and suitable therapeutic targets may help to overcome current limitations. Moreover, the recent advances in the development of immunotherapies based on the direct exploitation or targeting of T cells and/or NK cells may offer new opportunities to improve the treatment of sarcomas, particularly those showing recurrence or resistance to standard of care treatments.
Collapse
|
28
|
Zaborowski M, Vargas AC, Pulvers J, Clarkson A, de Guzman D, Sioson L, Maclean F, Chou A, Gill AJ. When used together SS18-SSX fusion-specific and SSX C-terminus immunohistochemistry are highly specific and sensitive for the diagnosis of synovial sarcoma and can replace FISH or molecular testing in most cases. Histopathology 2020; 77:588-600. [PMID: 32559341 DOI: 10.1111/his.14190] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
AIMS Synovial sarcoma is defined by recurrent t(X;18)(p11;q11) translocations creating SS18-SSX1, SS18-SSX2 or SS18-SSX4 fusions. Recently, a novel rabbit monoclonal antibody designed to identify these fusions (SS18-SSX, clone E9X9V) was proposed to be highly specific (100%), but not completely sensitive (95%) for this diagnosis. Another antibody designed to identify the C-terminal end of SSX (SSX_CT, clone E5A2C) was proposed to be highly sensitive (100%), but not completely specific (96%). We sought to validate these antibodies in an independent cohort. METHODS AND RESULTS We performed immunohistochemistry for SS18-SSX and SSX_CT on 39 synovial sarcoma samples from 25 patients with confirmed gene rearrangements. Thirty-four (87%) and 36 (92%) were positive for SS18-SSX and SSX_CT, respectively. False-negative staining was associated with suboptimally handled small biopsies and decalcified specimens, even when staining was diffuse and strong in subsequent optimally processed excisions and non-decalcified areas. None of 580 non-synovial sarcoma tumours (76 whole sections, 504 TMA samples) were positive for SS18-SSX (100% specificity), whereas 39 (93% specificity) were positive for SSX_CT. CONCLUSIONS SS18-SSX fusion-specific IHC is 87-95% sensitive for the diagnosis of synovial sarcoma and highly (perhaps perfectly) specific. Therefore, positive SS18-SSX staining definitively confirms the diagnosis of synovial sarcoma. SSX_CT is less specific (93-96%) but highly sensitive (92%, but approaching 100% when suboptimally processed biopsies and decalcified specimens are excluded). Negative SSX_CT staining may therefore have an ancillary role as a rule-out test for synovial sarcoma. We caution that both antibodies are prone to false-negative staining in decalcified specimens.
Collapse
Affiliation(s)
- Matthew Zaborowski
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Ana C Vargas
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| | - Jeremy Pulvers
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Adele Clarkson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Danica de Guzman
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Loretta Sioson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Fiona Maclean
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia.,Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Angela Chou
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Martín-Broto J, Moura DS, Van Tine BA. Facts and Hopes in Immunotherapy of Soft-Tissue Sarcomas. Clin Cancer Res 2020; 26:5801-5808. [PMID: 32601077 DOI: 10.1158/1078-0432.ccr-19-3335] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Sarcomas are mesenchymal tumors, encompassing more than 175 subtypes, each one with their own genetic complexities. As a result, immunotherapy approaches have not been universally successful across the wide range of diverse subtypes. The actual state of science and the current clinical data utilizing immunotherapy within the soft-tissue sarcomas (STS) will be detailed in this review. More precisely, the review will focus on: (i) the role of the immune microenvironment in the development and activity of new therapeutic approaches; (ii) the recent identification of the sarcoma immune class (SIC) groups, especially group SIC E with its B-cell signature that predicts immunotherapy response; (iii) the clinical trials using PD-1 and/or CTLA-4 inhibitors, which serves as reference for response data, (iv) the promising clinical activity from the combination of anti-angiogenics agents with PD-1 inhibitors, (v) the adapted T-cell therapies for synovial sarcoma that target either NY-ESO or MAGEA4; and (vi) the role for localized therapy using the virotherapy T-VEC with PD-1 inhibitors. Herein, we present the facts and the hopes for the patients with sarcoma, as the field is rapidly advancing its understanding of what and where to use the various types of immunotherapies.
Collapse
Affiliation(s)
- Javier Martín-Broto
- University Hospital Virgen del Rocio, Seville, Spain.,Institute of Biomedicine of Seville (HUVR; CSIC; US), Seville, Spain
| | - David S Moura
- Institute of Biomedicine of Seville (HUVR; CSIC; US), Seville, Spain
| | - Brian A Van Tine
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri. .,Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|