1
|
Jeon JH, Maki M, Chiang YC, Kim SC. Inferring complex evolutionary history of the closely related East Asian wild roses in Rosa sect. Synstylae (Rosaceae) based on genomic evidence from conserved orthologues. ANNALS OF BOTANY 2025; 135:417-436. [PMID: 39292610 PMCID: PMC11897602 DOI: 10.1093/aob/mcae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND AIMS The section Synstylae in the genus Rosa (Rosaceae) comprises 25-36 species and includes several major progenitors of modern rose cultivars. East Asian Synstylae species have recently diverged and are closely related, but their phylogenetic relationships remain unclear. In the present study, we employed conserved orthologue set (COS) markers and genome-wide nuclear orthologues to elucidate their phylogenetic relationships and unravel their complex evolutionary history. METHODS Utilizing eight Rosaceae COS (RosCOS) markers, we analysed a total of 137 accessions representing 15 East Asian Synstylae taxa to establish a robust phylogenetic framework and reconstruct ancestral areas. Furthermore, we constructed the species tree for eight representative species and estimated their divergence times based on 1683 genome-wide orthologues. The species tree-gene tree coalescence time comparison, Patterson's D, f4-ratio and f-branch statistics were analysed to identify incomplete lineage sorting (ILS), genetic introgression and reticulation events using conserved orthologue data. KEY RESULTS RosCOS markers and genome-wide orthologues effectively resolved a robust phylogeny of East Asian Rosa sect. Synstylae. Species divergence times estimated with genome-wide orthologues indicated that East Asian Synstylae species have recently diverged, with an estimated crown age of ~2 Mya. The rampant gene tree discordance indicated the possibility of ILS and/or genetic introgression. In the section Synstylae, deeper coalescence in the gene trees compared to the species tree suggested ILS as a source of gene tree discordance. Further, Patterson's D and f-branch statistics indicated that several lineages in the section were involved in genetic introgression. CONCLUSIONS We have unravelled the complex evolutionary history of East Asian Rosa sect. Synstylae, including recent species divergences, ILS and genetic introgression. Coupled with the geographical and ecological complexity of East Asia, ILS and genetic introgression may have contributed to the rapid diversification of East Asian Synstylae species by permitting adaptation to diverse environments.
Collapse
Affiliation(s)
- Ji-Hyeon Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Masayuki Maki
- Department of Ecological Developmental Adaptability Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
2
|
Yang J, Park CG, Cho MS, Kim SC. Wasabi Gone Wild? Origin and Characterization of the Complete Plastomes of Ulleung Island Wasabi ( Eutrema japonicum; Brassicaceae) and Other Cultivars in Korea. Genes (Basel) 2024; 15:457. [PMID: 38674391 PMCID: PMC11049635 DOI: 10.3390/genes15040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Korean wasabi occurs naturally on the young oceanic, volcanic Ulleung Island off the east coast of the Korean Peninsula. Although the Ulleung Island wasabi is reported as Eutrema japonicum and has been suggested to be morphologically identical to cultivars in Korea, very little is known about its taxonomic identity and relationship with other cultivars. In this study, we sequenced the complete chloroplast DNA sequences of three naturally occurring Ulleung Island wasabi plants and six cultivars ('Daewang', 'Daruma', 'Micado', 'Orochi', 'Green Thumb', and 'Shogun') from continental Korea and determined the taxonomic identity of Korean wasabi on Ulleung Island. The size and organization of the complete chloroplast genomes of the nine accessions were nearly identical to those of previously reported wasabi cultivars. In addition, phylogenetic analysis based on the complete plastomes suggested that Ulleung Island wasabi most likely comprises various wasabi cultivars with three chlorotypes ('Shogun', 'Green Thumb', and a unique Chusan type). Based on the complete plastomes, we identified eight chlorotypes for the major wasabi cultivars and the Ulleung Island wasabi. Two major groups (1-'Mazuma' and 'Daruma', and 2-'Fujidaruma'/'Shimane No. 3'/Ulleung Island wasabi/five cultivars in Korea) were also identified based on mother line genealogical history. Furthermore, different types of variations (mutations, insertions/deletions (indels), mononucleotide repeats, and inversions) in plastomes were identified to distinguish different cultivar lines and five highly divergent hotspots. The nine newly obtained complete plastomes are valuable organelle genomic resources for species identification and infraspecific phylogeographic studies on wild and cultivated wasabi.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea;
| | - Cheon Gyoo Park
- Gangwondo Agricultural Research and Extension Services, Wild Vegetable Reseaerch Institute, Alpine Agricultural Experiment Station, Taebaek-si 26046, Republic of Korea;
| | - Myong-Suk Cho
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea;
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea;
| |
Collapse
|
3
|
Lee M, Lee HY, Kang JS, Lee H, Park KJ, Park JY, Yang TJ. Authentication of Allium ulleungense, A. microdictyon and A. ochotense based on super-barcoding of plastid genome and 45S nrDNA. PLoS One 2023; 18:e0294457. [PMID: 37983242 PMCID: PMC10659177 DOI: 10.1371/journal.pone.0294457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Allium ulleungense (AU) and A. microdictyon (AM) are valuable medicinal and edible vegetables, referred to as mountain garlic in Korea. The identification of AU, AM and a neighboring species A. ochotense (AO) is difficult because of their morphological similarities. We collected samples from three species and 46 cultivated collections to understand the genetic diversity of these valuable Allium species. Among them, we sequenced six collections, including three species and three cultivating collections to obtain data from the plastid genome (plastome) and nuclear 45S ribosomal DNA (nrDNA) for super-barcoding. The AM and AO showed around 60 single nucleotide polymorphisms (SNPs) and 39 Insertion/Deletion (InDels) in the plastome but no variations in the nrDNA sequences. Conversely, the AU and AM showed more than 170 SNPs and 80 InDels in the plastomes, and 20 SNPs and 1 InDel were found in the 45S nrDNA sequences. Among the three cultivating collections, one TB collection was determined to be the AU type in both plastome and nrDNA sequences. However, the other two collections, JB and SA, showed the AM type plastome but were heterozygous in the 45S nrDNA sequences, indicating both AU and AM types (putative AM x AU hybrid). Ten molecular markers were developed based on sequence variations to identify these three species and assess their genetic diversity. A total of 49 collections were genotyped using the ten developed markers and classified into five groups: 14 AU, 22 AM, 1 AO, 3 putative AM x AU hybrids, and 9 putative AU x AM hybrid collections. Super-barcoding with plastomes and nrDNAs revealed the genetic diversity of the three Allium species and putative hybrids between species. The newly developed markers will facilitate species and hybrid identification, thereby benefiting marker-assisted molecular breeding of Allium species.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Agriculture, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyo Young Lee
- Gangwondo State Agricultural Research & Extension Services, Wild Vegetable Research Institute, Pyeongchang-gun, Gangwon State, Republic of Korea
| | - Jong-Soo Kang
- Department of Agriculture, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeji Lee
- Department of Agriculture, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ki-Jin Park
- Gangwondo State Agricultural Research & Extension Services, Wild Vegetable Research Institute, Pyeongchang-gun, Gangwon State, Republic of Korea
| | - Jee Young Park
- Department of Agriculture, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Donhouedé JCF, Marques I, Salako KV, Assogbadjo AE, Ribeiro N, Ribeiro-Barros AIF. Genetic and morphological diversity in populations of Annona senegalensis Pers. occurring in Western (Benin) and Southern (Mozambique) Africa. PeerJ 2023; 11:e15767. [PMID: 37576509 PMCID: PMC10416773 DOI: 10.7717/peerj.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Background Understanding morpho-genetic diversity and differentiation of species with relatively large distributions is crucial for the conservation and sustainable management of their genetic resources. The present study focused on Annona senegalensis Pers., an important multipurpose wild plant, distributed exclusively in natural ecosystems but facing several threats. The study assessed the genetic and morphological diversity, structure, and differentiation of the species in populations from Western (Benin) and Southern (Mozambique) Africa. The material was evaluated to ascertain the environmental (climatic) determinants of the variation within this species. Methods Four sub-populations comprised of 154 individuals were phenotyped based on nineteen plant, fruit, and leaf morphological traits and further genotyped using ten polymorphic nuclear microsatellite (nSSR) markers. Results The results indicated strong differences in plant, fruit, and leaf morphological traits between Western and Southern populations. Furthermore, the studied populations were characterized by high genetic diversity, with an average genetic diversity index of 1.02. Western populations showed higher heterozygosity values (0.61-0.71) than Southern populations (0.41-0.49). Western and Southern populations were clearly differentiated into two different genetic groups, with further genetic subdivisions reflecting four sub-populations. Genetic variation between regions (populations) was higher (69.1%) than among (21.3%) and within (9.6%) sub-populations. Four distinct morphological clusters were obtained, which were strongly associated with the four genetic groups representing each sub-population. Climate, mainly precipitation and temperature indexes, explained the relatively higher variation found in morphological traits from Western (40.47%) in relation to Southern (27.98%) populations. Our study suggests that both environmental and genetic dynamics play an important role in the development of morphological variation in A. senegalensis.
Collapse
Affiliation(s)
- Janine Conforte Fifonssi Donhouedé
- Laboratoire d’Écologie Appliquée, Faculty of Agronomic Sciences, University of Abomey-Calavi, Cotonou, Benin
- Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, Maputo, Mozambique
- Laboratoire de Biomathématiques et d’Estimations Forestières, Faculty of Agronomic Sciences, University of Abomey-Calavi, Cotonou, Bénin
| | - Isabel Marques
- Forest Research Center (CEF), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Kolawolé Valère Salako
- Laboratoire de Biomathématiques et d’Estimations Forestières, Faculty of Agronomic Sciences, University of Abomey-Calavi, Cotonou, Bénin
| | - Achille Ephrem Assogbadjo
- Laboratoire d’Écologie Appliquée, Faculty of Agronomic Sciences, University of Abomey-Calavi, Cotonou, Benin
- Laboratoire de Biomathématiques et d’Estimations Forestières, Faculty of Agronomic Sciences, University of Abomey-Calavi, Cotonou, Bénin
| | - Natasha Ribeiro
- Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, Maputo, Mozambique
| | - Ana IF Ribeiro-Barros
- Forest Research Center (CEF), School of Agriculture, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
5
|
Kim Y, Kim SH, Yang J, Cho MS, Koldaeva M, Ito T, Maki M, Kim SC. Plastome-based backbone phylogeny of East Asian Phedimus (Subgenus Aizoon: Crassulaceae), with special emphasis on Korean endemics. FRONTIERS IN PLANT SCIENCE 2023; 14:1089165. [PMID: 36998693 PMCID: PMC10043388 DOI: 10.3389/fpls.2023.1089165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Although the monophyly of Phedimus has been strongly demonstrated, the species relationships among approximately 20 species of Phedimus have been difficult to determine because of the uniformity of their floral characteristics and extreme variation of their vegetative characters, often accompanied by high polyploid and aneuploid series and diverse habitats. In this study, we assembled 15 complete chloroplast genomes of Phedimus species from East Asia and generated a plastome-based backbone phylogeny of the subgenus Aizoon. As a proxy for nuclear phylogeny, we reconstructed the nuclear ribosomal DNA internal transcribed spacer (nrDNA ITS) phylogeny independently. The 15 plastomes of subg. Aizoon were highly conserved in structure and organization; hence, the complete plastome phylogeny fully resolved the species relationships with strong support. We found that P. aizoon and P. kamtschaticus were polyphyletic and morphologically distinct or ambiguous species, and they most likely evolved from the two species complex. The crown age of subg. Aizoon was estimated to be 27 Ma, suggesting its origin to be in the late Oligocene; however, the major lineages were diversified during the Miocene. The two Korean endemics, P. takesimensis and P. zokuriensis, were inferred to have originated recently during the Pleistocene, whereas the other endemic, P. latiovalifolium, originated in the late Miocene. Several mutation hotspots and seven positively selected chloroplast genes were identified in the subg. Aizoon.
Collapse
Affiliation(s)
- Yongsung Kim
- Department of Islands and Coast Biodiversity, Division of Botany, Honam National Institute of Biological Resources, Mokpo, Republic of Korea
| | - Seon-Hee Kim
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| | - Myong-Suk Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Marina Koldaeva
- Botanical Garden-Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Takuro Ito
- Botanical Gardens, Tohoku University, Sendai, Japan
| | | | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Distinctive origin and evolution of endemic thistle of Korean volcanic island: Structural organization and phylogenetic relationships with complete chloroplast genome. PLoS One 2023; 18:e0277471. [PMID: 36913349 PMCID: PMC10010555 DOI: 10.1371/journal.pone.0277471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/28/2022] [Indexed: 03/14/2023] Open
Abstract
Unlike other Cirsium in Korea, Cirsium nipponicum (Island thistle) is distributed only on Ulleung Island, a volcanic island off the east coast of the Korean Peninsula, and a unique thistle with none or very small thorns. Although many researchers have questioned the origin and evolution of C. nipponicum, there is not much genomic information to estimate it. We thus assembled the complete chloroplast of C. nipponicum and reconstructed the phylogenetic relationships within the genus Cirsium. The chloroplast genome was 152,586 bp, encoding 133 genes consisting of 8 rRNA genes, 37 tRNA genes, and 88 protein-coding genes. We found 833 polymorphic sites and eight highly variable regions in chloroplast genomes of six Cirsium species by calculating nucleotide diversity, as well as 18 specific variable regions distinguished C. nipponicum from other Cirsium. As a result of phylogenetic analysis, C. nipponicum was closer to C. arvense and C. vulgare than native Cirsium in Korea: C. rhinoceros and C. japonicum. These results indicate that C. nipponicum is likely introduced through the north Eurasian root, not the mainland, and evolved independently in Ulleung Island. This study contributes to further understanding the evolutionary process and the biodiversity conservation of C. nipponicum on Ulleung Island.
Collapse
|
7
|
Dong S, Zhou M, Zhu J, Wang Q, Ge Y, Cheng R. The complete chloroplast genomes of Tetrastigma hemsleyanum (Vitaceae) from different regions of China: molecular structure, comparative analysis and development of DNA barcodes for its geographical origin discrimination. BMC Genomics 2022; 23:620. [PMID: 36028808 PMCID: PMC9412808 DOI: 10.1186/s12864-022-08755-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetrastigma hemsleyanum is a valuable traditional Chinese medicinal plant widely distributed in the subtropical areas of China. It belongs to the Cayratieae tribe, family Vitaceae, and exhibited significant anti-tumor and anti-inflammatory activities. However, obvious differences were observed on the quality of T. hemsleyanum root from different regions, requiring the discrimination strategy for the geographical origins. RESULT This study characterized five complete chloroplast (cp) genomes of T. hemsleynum samples from different regions, and conducted a comparative analysis with other representing species from family Vitaceae to reveal the structural variations, informative markers and phylogenetic relationships. The sequenced cp genomes of T. hemsleyanum exhibited a conserved quadripartite structure with full length ranging from 160,124 bp of Jiangxi Province to 160,618 bp of Zhejiang Province. We identified 112 unique genes (80 protein-coding, 28 tRNA and 4 rRNA genes) in the cp genomes of T. hemsleyanum with highly similar gene order, content and structure. The IR contraction/expansion events occurred on the junctions of ycf1, rps19 and rpl2 genes with different degrees, causing the differences of genome sizes in T. hemsleyanum and Vitaceae plants. The number of SSR markers discovered in T. hemsleyanum was 56-57, exhibiting multiple differences among the five geographic groups. Phylogenetic analysis based on conserved cp genome proteins strongly grouped the five T. hemsleyanum species into one clade, showing a sister relationship with T. planicaule. Comparative analysis of the cp genomes from T. hemsleyanum and Vitaceae revealed five highly variable spacers, including 4 intergenic regions and one protein-coding gene (ycf1). Furthermore, five mutational hotspots were observed among T. hemsleyanum cp genomes from different regions, providing data for designing DNA barcodes trnL and trnN. The combination of molecular markers of trnL and trnN clustered the T. hemsleyanum samples from different regions into four groups, thus successfully separating specimens of Sichuan and Zhejiang from other areas. CONCLUSION Our study obtained the chloroplast genomes of T. hemsleyanum from different regions, and provided a potential molecular tracing tool for determining the geographical origins of T. hemsleyanum, as well as important insights into the molecular identification approach and and phylogeny in Tetrastigma genus and Vitaceae family.
Collapse
Affiliation(s)
- Shujie Dong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Manjia Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinxing Zhu
- Bureau of Agricultural and Rural Affairs of Suichang, Suichang, China
| | - Qirui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqing Ge
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Rubin Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
8
|
Cho MS, Takayama K, Yang J, Maki M, Kim SC. Genome-Wide Single Nucleotide Polymorphism Analysis Elucidates the Evolution of Prunus takesimensis in Ulleung Island: The Genetic Consequences of Anagenetic Speciation. FRONTIERS IN PLANT SCIENCE 2021; 12:706195. [PMID: 34539700 PMCID: PMC8445234 DOI: 10.3389/fpls.2021.706195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Of the two major speciation modes of endemic plants on oceanic islands, cladogenesis and anagenesis, the latter has been recently emphasized as an effective mechanism for increasing plant diversity in isolated, ecologically homogeneous insular settings. As the only flowering cherry occurring on Ulleung Island in the East Sea (concurrently known as Sea of Japan), Prunus takesimensis Nakai has been presumed to be derived through anagenetic speciation on the island. Based on morphological similarities, P. sargentii Rehder distributed in adjacent continental areas and islands has been suggested as a purported continental progenitor. However, the overall genetic complexity and resultant non-monophyly of closely related flowering cherries have hindered the determination of their phylogenetic relationships as well as the establishment of concrete continental progenitors and insular derivative relationships. Based on extensive sampling of wild flowering cherries, including P. takesimensis and P. sargentii from Ulleung Island and its adjacent areas, the current study revealed the origin and evolution of P. takesimensis using multiple molecular markers. The results of phylogenetic reconstruction and population genetic structure analyses based on single nucleotide polymorphisms detected by multiplexed inter-simple sequence repeat genotyping by sequencing (MIG-seq) and complementary cpDNA haplotypes provided evidence for (1) the monophyly of P. takesimensis; (2) clear genetic differentiation between P. takesimensis (insular derivative) and P. sargentii (continental progenitor); (3) uncertain geographic origin of P. takesimensis, but highly likely via single colonization from the source population of P. sargentii in the Korean Peninsula; (4) no significant reduction in genetic diversity in anagenetically derived insular species, i.e., P. takesimensis, compared to its continental progenitor P. sargentii; (5) no strong population genetic structuring or geographical patterns in the insular derivative species; and (6) MIG-seq method as an effective tool to elucidate the complex evolutionary history of plant groups.
Collapse
Affiliation(s)
- Myong-Suk Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea
| | | | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
9
|
Gil HY, Maki M, Pimenova EA, Taran A, Kim SC. Origin of the critically endangered endemic species Scrophularia takesimensis (Scrophulariaceae) on Ulleung Island, Korea: implications for conservation. JOURNAL OF PLANT RESEARCH 2020; 133:765-782. [PMID: 32815044 DOI: 10.1007/s10265-020-01221-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Scrophularia takesimensis is a critically endangered endemic species of Ulleung Island, Korea. A previous molecular phylogenetic study based on nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences with very limited sampling suggested that it is most closely related to the clade comprising S. alata and S. grayanoides. To determine the origin of S. takesimensis, we sampled a total of 171 accessions including S. takesimensis (9 populations and 63 individuals) and two closely related species, S. alata (11 populations and 68 individuals) and S. grayanoides (5 populations and 40 individuals) from eastern Asia and sequenced ITS and two chloroplast DNA (cpDNA) non-coding regions. Previously sequenced representative species of Scrophularia (109 taxa for ITS and 80 taxa for cpDNA) were combined with our data set and analyzed. While the global scale ITS phylogenetic tree suggests monophyly for each of the three eastern Asian species, S. takesimensis appears to be more closely related (albeit weakly) to a clade containing eastern North American/Caribbean species than to either S. alata or S. grayanoides. By contrast, the global scale cpDNA phylogenetic tree demonstrates that the eastern North America/Caribbean clade is sister to a clade comprising the three eastern Asian species. In addition, the monophyletic S. takesimensis is deeply embedded within paraphyletic S. alata, sharing its most recent common ancestor with populations from Japan/Sakhalin. Two divergent, geographically structured cp haplotype groups within S. takesimensis suggest at least two independent introductions from different source areas. A new and accurate chromosome number of S. takesimensis (2n = 94) is reported and some conservation strategies are discussed.
Collapse
Affiliation(s)
- Hee-Young Gil
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
- DMZ Botanic Garden, Korea National Arboretum, 916-70, Punchbowl-ro, Haean-myeon, 24564, Yanggu, South Korea
| | - Masayuki Maki
- Division of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | | | - Aleksandr Taran
- Sakhalin Branch of Botanical Garden-Institute FEB RAS, Yuzhno-Sakhalinsk, Russia
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea.
| |
Collapse
|
10
|
Park S, Park S. Large-scale phylogenomics reveals ancient introgression in Asian Hepatica and new insights into the origin of the insular endemic Hepatica maxima. Sci Rep 2020; 10:16288. [PMID: 33004955 PMCID: PMC7529770 DOI: 10.1038/s41598-020-73397-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022] Open
Abstract
Hepatica maxima is native to Ulleungdo, which is one of the oceanic islands in Korea, and it likely originated via anagenetic speciation from the Korean mainland species H. asiatica. However, the relationships among the Asian lineages remain unresolved. Phylogenomics based on plant genomes can provide new insights into the evolutionary history of plants. We first generated plastid, mitochondrial and transcriptome sequences of the insular endemic species H. maxima. Using the genomic data for H. maxima, we obtained a phylogenomic dataset consisting of 76 plastid, 37 mitochondrial and 413 nuclear genes from Asian Hepatica and two outgroups. Coalescent- and concatenation-based methods revealed cytonuclear and organellar discordance in the lineage. The presence of gynodioecy with cytoplasmic male sterility in Asian Hepatica suggests that the discordance is correlated with potential disruption of linkage disequilibrium between the organellar genomes. Species network analyses revealed a deep history of hybridization and introgression in Asian Hepatica. We discovered that ancient and recent introgression events occurred throughout the evolutionary history of the insular endemic species H. maxima. The introgression may serve as an important source of genetic variation to facilitate adaptation to the Ulleungdo environment.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.,Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
11
|
Chloroplast DNA insights into the phylogenetic position and anagenetic speciation of Phedimus takesimensis (Crassulaceae) on Ulleung and Dokdo Islands, Korea. PLoS One 2020; 15:e0239734. [PMID: 32986762 PMCID: PMC7521733 DOI: 10.1371/journal.pone.0239734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/13/2020] [Indexed: 11/19/2022] Open
Abstract
Phedimus takesimensis (Ulleungdo flat-leaved stonecrop) is endemic to Ulleung and Dokdo Islands off the east coast of the Korean Peninsula. It was suggested that P. takesimensis originated via anagenetic speciation from the continental progenitor species P. kamtchaticus or P. aizoon. However, little is known of the phylogenetic relationships and population genetic structure among species of Phedimus in the Korean Peninsula and Ulleung/Dokdo Islands. We inferred the phylogenetic relationships among congeneric species in Korea based on nuclear ribosomal DNA internal transcribed spacer and chloroplast noncoding regions. We also sampled extensively for P. takesimensis on Ulleung Island and the continental species, P. kamtschaticus and P. aizoon, to assess the genetic consequences of anagenetic speciation. We found (1) the monophyly of P. takesimensis, (2) no apparent reduction in genetic diversity in anagenetically derived P. takesimensis compared to the continental progenitor species, (3) apparent population genetic structuring of P. takesimensis, and (4) two separate colonization events for the origin of the Dokdo Island population. This study contributes to our understanding of the genetic consequences of anagenetic speciation on Ulleung Island.
Collapse
|
12
|
Yang J, Kang GH, Pak JH, Kim SC. Characterization and Comparison of Two Complete Plastomes of Rosaceae Species ( Potentilla dickinsii var. glabrata and Spiraea insularis) Endemic to Ulleung Island, Korea. Int J Mol Sci 2020; 21:E4933. [PMID: 32668601 PMCID: PMC7404287 DOI: 10.3390/ijms21144933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Potentilla dickinsii var. glabrata and Spiraea insularis in the family Rosaceae are species endemic to Ulleung Island, Korea, the latter of which is listed as endangered. In this study, we characterized the complete plastomes of these two species and compared these with previously reported plastomes of other Ulleung Island endemic species of Rosaceae (Cotoneaster wilsonii, Prunus takesimensis, Rubus takesimensis, and Sorbus ulleungensis). The highly conserved complete plastomes of P. dickinsii var. glabrata and S. insularis are 158,637 and 155,524 base pairs with GC contents of 37% and 36.9%, respectively. Comparative phylogenomic analysis identified three highly variable intergenic regions (trnT-UGU/trnL-UAA, rpl32/trnL-UAG, and ndhF/rpl32) and one variable genic region (ycf1). Only 14 of the 75 protein-coding genes have been subject to strong purifying selection. Phylogenetic analysis of 23 representative plastomes within the Rosaceae supported the monophyly of Potentilla and the sister relationship between Potentilla and Fragaria and indicated that S. insularis is sister to a clade containing Cotoneaster, Malus, Pyrus, and Sorbus. The plastome resources generated in this study will contribute to elucidating the plastome evolution of insular endemic Rosaceae on Ulleung Island and also in assessing the genetic consequences of anagenetic speciation for various endemic lineages on the island.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea;
| | - Gi-Ho Kang
- Baekdudaegan National Arboretum, 1501 Chunyang-ro, Chungyang-myeon, Bonghwa-gun, Gyeongsangbuk-do 36209, Korea;
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea;
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do 16419, Korea
| |
Collapse
|
13
|
Yang J, Takayama K, Pak JH, Kim SC. Comparison of the Whole-Plastome Sequence between the Bonin Islands Endemic Rubus boninensis and Its Close Relative, Rubus trifidus (Rosaceae), in the Southern Korean Peninsula. Genes (Basel) 2019; 10:E774. [PMID: 31581648 PMCID: PMC6826710 DOI: 10.3390/genes10100774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/03/2022] Open
Abstract
Rubus boninensis is a rare endemic species found on the Bonin Islands with a very restricted distribution. It is morphologically most closely related to Rubus trifidus, occurring widely in the southern Korean peninsula and Japan. This species pair provides a good example of anagenetic speciation on an oceanic island in the northwestern Pacific Ocean-R. trifidus as a continental progenitor and R. boninensis as an insular derivative species. In this study, we firstly characterized the complete plastome of R. boninensis and R. trifidus and compared this species pair to another anagenetically derived species pair (R. takesimensis-R. crataegifolius). The complete plastome of R. trifidus was 155,823 base pairs (bp) long, slightly longer (16 bp) than that of R. boninensis (155,807 bp). No structural or content rearrangements were found between the species pair. Eleven hotspot regions, including trnH/psbA, were identified between R. trifidus and R. boninensis. Phylogenetic analysis of 19 representative plastomes within the family Rosaceae suggested sister relationships between R. trifidus and R. boninensis, and between R. crataegifolius and R. takesimensis. The plastome resources generated by the present study will help elucidate plastome evolution and resolve phylogenetic relationships within highly complex and reticulated lineages of the genus Rubus.
Collapse
Affiliation(s)
- JiYoung Yang
- Department of Biology, Research Institute for Dok-do and Ulleung-do Island, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea.
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Jae-Hong Pak
- Department of Biology, Research Institute for Dok-do and Ulleung-do Island, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea.
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|