1
|
Keller J, Danis J, Krehl I, Girousi E, Satoh TK, Meier-Schiesser B, Kemény L, Széll M, Wong WWL, Pascolo S, French LE, Kündig TM, Mellett M. LL37 complexed to double-stranded RNA induces RIG-I-like receptor signalling and Gasdermin E activation facilitating IL-36γ release from keratinocytes. Cell Death Dis 2025; 16:198. [PMID: 40121229 PMCID: PMC11929817 DOI: 10.1038/s41419-025-07537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The Interleukin-36 (IL-36) cytokine family have emerged as important players in mounting an inflammatory response at epithelial barriers and tailoring appropriate adaptive immune responses. As members of the Interleukin-1 superfamily, IL-36 cytokines lack a signal peptide for conventional secretion and require extracellular proteolysis to generate bioactive cytokines. Although the IL-36 family plays an important role in the pathogenesis of plaque and pustular psoriasis, little is known about the release mechanisms of these cytokines from keratinocytes and the physiological stimuli involved. Nucleic acid released from damaged or dying keratinocytes initiates early inflammatory signals that result in the breaking of tolerance associated with psoriasis pathogenesis onset. Cathelicidin peptide, LL37 binds to DNA or double-stranded RNA (dsRNA) and activates a type I Interferon responses in plasmacytoid dendritic cells and keratinocytes. Here, we demonstrate that LL37 binds to dsRNA and induces IL-36γ release from human primary keratinocytes. LL37/dsRNA complexes activate RIG-I-like Receptor signalling, resulting in Caspase-3 and Gasdermin E (GSDME) cleavage. Subsequent GSDME pore formation facilitates IL-36γ release. This response is magnified by priming with psoriasis-associated cytokines, IL-17A and IFNγ. IL-36γ release in this manner is largely independent of cell death in primary keratinocytes and lacked extracellular proteolysis of IL-36γ. Conversely, transfection of keratinocytes directly with dsRNA synthetic analogue, Poly(I:C) induces NLRP1 inflammasome activation, which facilitates IL-36γ expression and release in a GSDMD-dependent manner. Inflammasome-associated cell death also enables extracellular processing of IL-36γ by the release of keratinocyte-derived proteases. These data highlight the distinct responses triggered by dsRNA sensors in keratinocytes. Depending on the inflammatory context and magnitude of the exogenous threat, keratinocytes will release IL-36γ coupled with cell death and extracellular cleavage or release the inactive pro-form, which requires subsequent processing by neutrophil proteases to unleash full biological activity, as occurring in psoriatic skin. Cytoplasmic sensing of dsRNA in keratinocytes mediates IL-36γ release via caspase activity and GSDM pore formation Keratinocytes release IL-36γ upon stimulation with intracellular dsRNA alone or complexed to the psoriasis-associated cathelicidin anti-microbial peptide LL37. Left: Transfected dsRNA triggers NLRP1 inflammasome assembly and IL-1β release, which can enhance IL-36γ expression, resulting in IL-36γ release and extracellular cleavage by released proteases. Right: LL37/dsRNA complexes activate a MDA5-MAVS pathway facilitating the release of IL-36γ through Caspase-3 activation and GSDME pore formation.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Judit Danis
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Department of Immunology, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Isabella Krehl
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Eleftheria Girousi
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital, LMU Münich, Germany
| | - Barbara Meier-Schiesser
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Lajos Kemény
- Department of Immunology, University of Szeged, Szeged, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- HCEMM-USZ Skin Research Group, University of Szeged, Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Functional Clinical Genetics Research Group, University of Szeged, Szeged, Hungary
| | - W Wei-Lynn Wong
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Münich, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, USA
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland.
| |
Collapse
|
2
|
Radić M, Belančić A, Đogaš H, Vučković M, Sener YZ, Sener S, Fajkić A, Radić J. Cardiometabolic Risk in Psoriatic Arthritis: A Hidden Burden of Inflammation and Metabolic Dysregulation. Metabolites 2025; 15:206. [PMID: 40137170 PMCID: PMC11943837 DOI: 10.3390/metabo15030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease that extends beyond musculoskeletal and dermatologic involvement to elevate cardiometabolic risk. Emerging evidence highlights the critical role of systemic inflammation in metabolic dysregulation, accelerating insulin resistance, dyslipidemia, and oxidative stress, all of which contribute to the increased burden of cardiovascular disease in PsA. This review explores the intricate interplay between inflammatory mediators-such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-17 (IL-17),-adipokine imbalances, and lipid metabolism abnormalities, all of which foster endothelial dysfunction and atherosclerosis. The dysregulation of adipokines, including leptin, adiponectin, and resistin, further perpetuates inflammatory cascades, exacerbating cardiovascular risk. Additionally, the metabolic alterations seen in PsA, particularly insulin resistance and lipid dysfunction, not only contribute to cardiovascular comorbidities but also impact disease severity and therapeutic response. Understanding these mechanistic links is imperative for refining risk stratification strategies and tailoring interventions. By integrating targeted immunomodulatory therapies with metabolic and cardiovascular risk management, a more comprehensive approach to PsA treatment can be achieved. Future research must focus on elucidating shared inflammatory and metabolic pathways, enabling the development of innovative therapeutic strategies to mitigate both systemic inflammation and cardiometabolic complications in PsA.
Collapse
Affiliation(s)
- Mislav Radić
- Department of Internal Medicine, Division of Rheumatology, Allergology and Clinical Immunology, Center of Excellence for Systemic Sclerosis in Croatia, University Hospital of Split, 21000 Split, Croatia;
- Internal Medicine Department, School of Medicine, University of Split, 21000 Split, Croatia
| | - Andrej Belančić
- Department of Basic and Clinical Pharmacology with Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Hana Đogaš
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia;
| | - Marijana Vučković
- Department of Internal Medicine, Division of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia;
| | - Yusuf Ziya Sener
- Department of Pediatric Rheumatology, Sophia Children’s Hospital, Erasmus University Medical Center, 3000 CB Rotterdam, The Netherlands;
| | - Seher Sener
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, 3000 CB Rotterdam, The Netherlands;
| | - Almir Fajkić
- Department of Pathophysiology, Faculty of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Josipa Radić
- Internal Medicine Department, School of Medicine, University of Split, 21000 Split, Croatia
- Department of Internal Medicine, Division of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia;
| |
Collapse
|
3
|
Garand M, Huang SSY, Dineen B, Glass IA, Eghtesady P. Differential Regulation of Immune-Related Genes in the Developing Heart. Pediatr Cardiol 2025; 46:442-457. [PMID: 38480572 DOI: 10.1007/s00246-024-03441-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/02/2024] [Indexed: 02/02/2025]
Abstract
In many congenital heart defects, it can be difficult to ascertain primary pathology from secondary consequences from altered flow through the developing heart. The molecular differences between the growing right and left ventricles (RV and LV, respectively) following the completion of septation and the impact of sex on these mechanisms have not been investigated. We analyzed RNA-seq data derived from twelve RV and LVs, one with Hypoplastic Left Heart Syndrome (HLHS), to compare the transcriptomic landscape between the ventricles during development. Differential gene expression analysis revealed a large proportion of genes unique to either the RV or LV as well as sex bias. Our GO enrichment and network analysis strategy highlighted the differential role of immune functions between the RV and LV in the developing heart. Comparatively, RNA-seq analysis of data from C57Bl6/J mice hearts collected at E14 resulted in the enrichment of similar processes related to T cells and leukocyte migration and activation. Differential gene expression analysis of an HLHS case highlighted significant downregulation of chromatin organization pathways and upregulation of genes involved in muscle organ development. This analysis also identified previously unreported upregulation of genes involved in IL-17 production pathways. In conclusion, differences exist between the gene expression profiles of RV versus LV with the expression of immune-related genes being significantly different between these two chambers. The pathogenesis of HLHS may involve alterations in the expression of chromatin and muscle gene organization as well as upregulation of the IL-17 response pathway.
Collapse
Affiliation(s)
- Mathieu Garand
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Susie S Y Huang
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian Dineen
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ian A Glass
- Department of Pediatrics and Medicine, University of Washington, Seattle, WA, USA
| | - Pirooz Eghtesady
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Svraka L, Abdallah HB, Johansen C. When recombinant proteins go wrong: The hidden pitfall of recombinant protein contamination. Cytokine 2025; 186:156830. [PMID: 39675101 DOI: 10.1016/j.cyto.2024.156830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Recombinant proteins are critical tools in research; however, their purity is often assumed rather than verified, leading to potential experimental errors. This study aimed to investigate the inflammatory role of recombinant human IL-17F in dermal fibroblasts. Unexpectedly, we discovered with Western blot that recombinant IL-17F from the supplier was contaminated with IL-4, leading to unintended stimulatory effects such as STAT6 phosphorylation and gene induction of CCL26 and IL4R. This contamination led to misinterpretation of data, loss of research time, and erroneous conclusions about IL-17F activity. These findings underscore the critical need for stringent quality control in recombinant protein production and highlight the risks of relying on single-source suppliers. Researchers should remain cautious about potential contamination, ideally validating proteins from multiple suppliers. Our experience illustrates a broader requirement for suppliers to strengthen quality assurance measures, as contaminants can propagate misleading data in the literature and undermine research reproducibility.
Collapse
Affiliation(s)
- Lejla Svraka
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Huynh TNM, Yamazaki F, Konrad RJ, Nishikawa Y, Tanaka A, Son Y, Ozaki Y, Takehana K, Tanizaki H. Circulating CD31 and resistin levels reflect different stages of coronary atherosclerosis in patients with psoriasis. J Dermatol 2025; 52:67-78. [PMID: 39436026 DOI: 10.1111/1346-8138.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/24/2024] [Accepted: 08/18/2024] [Indexed: 10/23/2024]
Abstract
Psoriasis is a skin disease with a complicated pathophysiology that includes an extensive inflammatory cytokine network. Nevertheless, the relationship between psoriasis severity, cytokine levels, and coronary artery atherosclerosis remains poorly understood. Our aim was to find serum markers as potential candidates for cardiovascular disease (CVD) risk monitoring in patients with psoriasis. Therefore, we examined coronary artery atherosclerosis via coronary computed tomography angiography (CCTA), serum cytokine levels via multiple immunoassays, and the patients' psoriasis state. Our findings reveal for the first time that the mainstream psoriasis cytokines interleukin 17A (IL-17A), IL-19, and IL-36 in the sera of Japanese patients with psoriasis showed a linear regression association with the Psoriasis Area and Severity Index score. Furthermore, the serum level of IL-19 was remarkably correlated to Th2-related serum cytokines such as IL-4 and IL-17E. When we investigated potential markers to monitor CVD in patients with psoriasis, circulating cluster of differentiation 31 (CD31) and resistin, but not psoriasis-related cytokines, were expressed differently at each stage of coronary atherosclerosis by CCTA. CD31 and resistin levels rose dramatically in individuals with psoriasis vulgaris (PV) and noncalcified atherosclerosis. In contrast, CD31 was negatively correlated with the coronary artery calcification score (CACS) in patients with PV, whereas resistin was inversely correlated with CACS in patients with psoriatic arthritis. In conclusion, the axis of IL-17A, IL-19, and IL-36 remains associated with the severity of psoriasis during the chronic phase of the disease, regardless of the application of topical or systemic treatment. Monitoring the levels of these cytokines can accurately determine the severity of skin inflammation. Resistin and CD31 are linked to coronary artery lesions and might be good candidates for tracking the progression of coronary atherosclerosis in patients with psoriasis.
Collapse
Affiliation(s)
| | - Fumikazu Yamazaki
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Department of Dermatology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Yumiko Nishikawa
- Japan Drug Development and Medical Affairs, Eli Lilly Japan K.K, Hyogo, Japan
| | - Akihiro Tanaka
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Yonsu Son
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Yoshio Ozaki
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Kazuya Takehana
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Cardiology, Department of Medicine II, Kansai Medical University, Osaka, Japan
| | - Hideaki Tanizaki
- Department of Dermatology, Kansai Medical University, Osaka, Japan
- Psoriasis Center, Kansai Medical University, Osaka, Japan
| |
Collapse
|
6
|
Ferrara F, Verduci C, Laconi E, Mangione A, Dondi C, Del Vecchio M, Carlevatti V, Zovi A, Capuozzo M, Langella R. Current therapeutic overview and future perspectives regarding the treatment of psoriasis. Int Immunopharmacol 2024; 143:113388. [PMID: 39405929 DOI: 10.1016/j.intimp.2024.113388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease affecting millions of people worldwide, characterized by rapid proliferation of keratinocytes, immune cell infiltration, and systemic inflammation. Over time, treatment strategies have evolved significantly from traditional topical therapies and phototherapy to advanced systemic options such as biologics and, more recently, oral small molecule drugs. This review aims to provide an in-depth examination of current psoriasis therapies, with a focus on biologics, oral small molecules, and new and emerging treatments. Several classes of biologic therapies have received regulatory approval for psoriasis, including inhibitors of TNF-α, IL-12/23, IL-17, and IL-23. Biologics have transformed psoriasis care, offering improved disease management and quality of life for patients, with generally favorable safety profiles. However, challenges such as high cost, potential immunogenicity and complexity of administration have sparked interest in alternative treatment options. Oral small molecules, particularly Janus kinase (JAK) inhibitors, have gained attention for their efficacy and ease of use, being orally administered drugs. These drugs mark a shift in therapeutic paradigms by providing an oral option that precisely targets specific signaling pathways. In addition to existing therapies, this review also highlights emerging treatments that could shape the future of psoriasis care, including new small-molecule inhibitors. Early clinical trials suggest that these agents could improve treatment outcomes for psoriasis patients. Current research is increasingly focused on understanding disease recurrence, particularly the influence of tissue-resident memory T cells (TRMs). Avoiding the proliferation of these cells may be crucial in attenuating recurrence. In particular, interleukin-23 (IL-23), produced by CD301b+ cells, has been linked to stimulation of TRM cell proliferation in the skin. This finding highlights that IL-23 inhibitors and treatments targeting CD301b+ cells are promising strategies for maintaining remission and preventing relapse. In summary, the landscape of psoriasis treatments is advancing rapidly, with an increasing focus on personalized, patient-specific therapies. Research is expected to continue to refine and improve therapeutic approaches for this complex disease.
Collapse
Affiliation(s)
- Francesco Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell'amicizia Street 72, Nola (NA), Italy.
| | - Chiara Verduci
- IRCCS Humanitas Research Hospital, Manzoni Street 56, 20089 Rozzano, Milan, Italy
| | - Emanuela Laconi
- Pharmaceutical Department, ASST Nord Milano, E. Bassini Hospital, Massimo Gorki Street 50, 20092 Cinisello Balsamo (MI), Italy.
| | - Andrea Mangione
- Pharmaceutical Department, ASST Valle Olona, Busto Arsizio Hospital, Arnaldo da Brescia 1 Street, 21052 Busto Arsizio (VA), Italy
| | - Chiara Dondi
- Pharmaceutical Department, ASST Ovest Milanese, Legnano Hospital, Papa Giovanni Paolo II Street, 20025 Legnano (MI), Italy
| | - Marta Del Vecchio
- Pharmaceutical Department, ASST Ovest Milanese, Legnano Hospital, Papa Giovanni Paolo II Street, 20025 Legnano (MI), Italy
| | - Veronica Carlevatti
- Hospital Pharmacy Department, ASST Fatebenefratelli-Sacco, V. Buzzi Hospital, Castelvetro Street 28, 20154 Milano (MI), Italy.
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| | - Maurizio Capuozzo
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell'amicizia Street 72, Nola (NA), Italy.
| | - Roberto Langella
- Italian Society of Hospital Pharmacy (SIFO), SIFO Secretariat of the Lombardy Region, Via Carlo Farini, 81, Milan 20159, Italy
| |
Collapse
|
7
|
Ma X, Zhang S, Ren X, Feng Y, Li H, Chen S, Xu J, Wang Y, Peng GY, Yan Q, Jia H, Xia S, Cui X, Chen X, Pan X, Wang S, Yu H, Wei X, Li M, Liu B, Xu J, Qian Q, Zhu X, Zhan Y, Lu L. Dual blockade of IL-17A and IL-36 pathways via a bispecific antibody exhibits enhanced anti-inflammatory potency. Front Immunol 2024; 15:1434127. [PMID: 39600699 PMCID: PMC11590123 DOI: 10.3389/fimmu.2024.1434127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
Antibody drugs targeting single inflammatory cytokines have revolutionized the treatment of immune-mediated inflammatory diseases. To investigate whether dual targeting interleukin-17 (IL-17) and IL-36 enhances anti-inflammatory activity, bispecific Ab HB0043 was generated by linking the single chain fragment variables (scFvs) from humanized anti-IL-36R antibody (HB0034) to the C-terminus of the heavy chain of anti-IL-17A IgG1 (HB0017) Fc using a flexible peptide linker. HB0043 largely maintained the binding affinities and biological activities of the two parent monoclonal antibodies (mAbs) in vitro. IL-17 and IL-36 cooperated to amplify the expression of pro-inflammatory and pro-fibrotic genes in normal human dermal fibroblasts (NHDF). However, HB0043 more effectively blocked IL-6 and IL-8 production in NHDF stimulated by IL-17A and IL-36 compared to two monoclonal antibodies. In a mouse model of Oxazolone (OXA)-induced atopic dermatitis and Imiquimod (IMQ)-induced skin inflammation, administration of both anti-IL17A mAb HB0017 and anti-mouse IL-36R surrogate antibody HB0034SA showed improved effectiveness in alleviating skin thickening and inflammation based on histological assessment. Further, in cynomolgus monkeys, HB0043 showed no enhanced target-related toxicity compared with the two parental mAbs in vivo and with a moderate increase in production of anti-drug antibodies. Together, dual blockade of IL-17A and IL-36R in the form of a bispecific antibody may have advantages in blocking the overlapping and non-overlapping functions of these two cytokines in skin inflammation that could not optimally be curtailed with single mAbs. In conclusion, as monotherapy may reach therapeutic celling for certain difficult-to-treat inflammatory and fibrotic diseases, dual targeting could potentially pave a way to combat these diseases.
Collapse
Affiliation(s)
- Xiaojuan Ma
- Rheumatology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Shuang Zhang
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xiaochen Ren
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yujie Feng
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Hui Li
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Shi Chen
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Jingen Xu
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yanting Wang
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Guo-yuan Peng
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Qingran Yan
- Rheumatology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Huifeng Jia
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Simin Xia
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xiaopei Cui
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xiaofang Chen
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xianfei Pan
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Shaojie Wang
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Haijia Yu
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xiaoyue Wei
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Mingwei Li
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Bei Liu
- Rheumatology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Jingyue Xu
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Qiaoxia Qian
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xiangyang Zhu
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yifan Zhan
- Department of Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Liangjing Lu
- Rheumatology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
8
|
Chen BL, Liu QW, Dong XW, Bai YP. Biologics for generalized pustular psoriasis: a systematic review and single-arm meta-analysis. Front Immunol 2024; 15:1462158. [PMID: 39469713 PMCID: PMC11513292 DOI: 10.3389/fimmu.2024.1462158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Generalized pustular psoriasis (GPP) is a rare and potentially life-threatening auto-inflammatory disease. Currently, there are no consensus-based guidelines or universally accepted treatments. Biologics represent a potential therapeutic option. This study systematically assessed the efficacy and safety of biologics in GPP. Methods Relevant studies from three databases were systematically searched until June 28, 2024. Statistical information, including the single-arm proportion rate of the outcomes and 95% confidence intervals (CIs), was analyzed to determine treatment effects. Heterogeneity was assessed using I² values, and subgroup analyses were performed based on drug targets and treatment durations. Data were quantitatively synthesized using a random-effects meta-analysis. Analyses were performed using R statistical software version 4.4.0. Results A total of 329 patients from 16 studies were included. The proportion of responders treated with IL-36 inhibitors and IL-17 inhibitors is higher than those treated with TNF-α inhibitors and IL-23 inhibitors. IL-36 inhibitors appear to achieve the highest response rates between 4 and 8 weeks, while IL-17 inhibitors, TNF-alpha inhibitors, and IL-23 inhibitors show a gradual increase in response rates up to 12 weeks. IL-36 inhibitors achieve a 40% (95% CI: 27%-54%) GPPASI75 response rate and a 55% (95% CI: 41%-68%) GPPGA (0,1) response rate within 2 weeks, significantly outperforming other biologics. The recurrence rates of GPP within 52 weeks, ranked from highest to lowest, are: IL-36 inhibitors (21% [95% CI: 9%-28%]), TNF-alpha inhibitors (20% [95% CI: 2%-46%]), IL-17 inhibitors (15% [95% CI: 1%-37%]), and IL-23 inhibitors (5% [95% CI: 0%-29%]). Additionally, 6% (95% CI: 1%-11%) of patients experienced severe adverse events. Discussion This meta-analysis highlights the efficacy and safety of biologics in patients with GPP, offering valuable evidence to guide future clinical practice. IL-36 inhibitors show a faster and more substantial clinical response in GPP compared to other biologics. Further research is necessary to assess their role in specific subpopulations and to evaluate their potential long-term effects on flare prevention.
Collapse
Affiliation(s)
- Bai-lin Chen
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Dermatology Department, National Center for Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qian-wei Liu
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Dermatology Department, National Center for Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiao-wan Dong
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Dermatology Department, National Center for Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yan-ping Bai
- Dermatology Department, National Center for Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
9
|
Ferrara F, Verduci C, Laconi E, Mangione A, Dondi C, Del Vecchio M, Carlevatti V, Zovi A, Capuozzo M, Langella R. Therapeutic Advances in Psoriasis: From Biologics to Emerging Oral Small Molecules. Antibodies (Basel) 2024; 13:76. [PMID: 39311381 PMCID: PMC11417777 DOI: 10.3390/antib13030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Psoriasis is a persistent, inflammatory condition affecting millions globally, marked by excessive keratinocyte proliferation, immune cell infiltration, and widespread inflammation. Over the years, therapeutic approaches have developed significantly, shifting from conventional topical treatments and phototherapy to more sophisticated systemic interventions such as biologics and, recently, oral small-molecule drugs. This review seeks to present a comprehensive investigation of the existing psoriasis treatment options, focusing on biologic agents, oral small molecules, and emerging treatments. Several categories of biologic treatments have received regulatory approval for psoriasis, including TNF-α, IL-17, IL-12/23, and IL-23 inhibitors. Biologics have revolutionized the treatment of psoriasis. These targeted therapies offer significant improvement in disease control and quality of life, with acceptable safety profiles. However, limitations such as cost, potential immunogenicity, and administration challenges have driven the exploration of alternative treatment modalities. Oral small molecules, particularly inhibitors of Janus kinase (JAK), have emerged as options due to their convenience and efficacy. These agents represent a paradigm shift in the management of the condition, offering oral administration and targeted action on specific signaling pathways. In addition to existing therapies, the review explores emerging treatments that hold promise for the future of psoriasis care. These include innovative small-molecule inhibitors. Early-stage clinical trials suggest these agents may enhance outcomes for psoriasis patients. In conclusion, the therapeutic landscape of psoriasis is rapidly evolving, emphasizing targeted, patient-centered treatments. Ongoing research and development are expected to lead to more personalized and effective management strategies for this complex condition.
Collapse
Affiliation(s)
- Francesco Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia Street 72, 80035 Nola, Italy;
| | - Chiara Verduci
- IRCCS Humanitas Research Hospital, Manzoni Street 56, 20089 Rozzano, Italy;
| | - Emanuela Laconi
- Pharmaceutical Department, ASST Nord Milano, E. Bassini Hospital, Massimo Gorki Street 50, 20092 Cinisello Balsamo, Italy;
| | - Andrea Mangione
- Pharmaceutical Department, ASST Valle Olona, Busto Arsizio Hospital, Arnaldo da Brescia 1 Street, 21052 Busto Arsizio, Italy;
| | - Chiara Dondi
- Pharmaceutical Department, ASST Ovest Milanese, Legnano Hospital, Papa Giovanni Paolo II Street, 20025 Legnano, Italy; (C.D.); (M.D.V.)
| | - Marta Del Vecchio
- Pharmaceutical Department, ASST Ovest Milanese, Legnano Hospital, Papa Giovanni Paolo II Street, 20025 Legnano, Italy; (C.D.); (M.D.V.)
| | - Veronica Carlevatti
- Hospital Pharmacy Department, ASST Fatebenefratelli-Sacco, V. Buzzi Hospital, Castelvetro Street 28, 20154 Milano, Italy;
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy;
| | - Maurizio Capuozzo
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia Street 72, 80035 Nola, Italy;
| | - Roberto Langella
- Italian Society of Hospital Pharmacy (SIFO), SIFO Secretariat of the Lombardy Region, Via Carlo Farini 81, 20159 Milan, Italy;
| |
Collapse
|
10
|
Sieminska I, Pieniawska M, Grzywa TM. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin Rev Allergy Immunol 2024; 66:164-191. [PMID: 38642273 PMCID: PMC11193704 DOI: 10.1007/s12016-024-08991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Psoriasis is one of the most common inflammatory skin diseases with a chronic, relapsing-remitting course. The last decades of intense research uncovered a pathological network of interactions between immune cells and other types of cells in the pathogenesis of psoriasis. Emerging evidence indicates that dendritic cells, TH17 cells, and keratinocytes constitute a pathogenic triad in psoriasis. Dendritic cells produce TNF-α and IL-23 to promote T cell differentiation toward TH17 cells that produce key psoriatic cytokines IL-17, IFN-γ, and IL-22. Their activity results in skin inflammation and activation and hyperproliferation of keratinocytes. In addition, other cells and signaling pathways are implicated in the pathogenesis of psoriasis, including TH9 cells, TH22 cells, CD8+ cytotoxic cells, neutrophils, γδ T cells, and cytokines and chemokines secreted by them. New insights from high-throughput analysis of lesional skin identified novel signaling pathways and cell populations involved in the pathogenesis. These studies not only expanded our knowledge about the mechanisms of immune response and the pathogenesis of psoriasis but also resulted in a revolution in the clinical management of patients with psoriasis. Thus, understanding the mechanisms of immune response in psoriatic inflammation is crucial for further studies, the development of novel therapeutic strategies, and the clinical management of psoriasis patients. The aim of the review was to comprehensively present the dysregulation of immune response in psoriasis with an emphasis on recent findings. Here, we described the role of immune cells, including T cells, B cells, dendritic cells, neutrophils, monocytes, mast cells, and innate lymphoid cells (ILCs), as well as non-immune cells, including keratinocytes, fibroblasts, endothelial cells, and platelets in the initiation, development, and progression of psoriasis.
Collapse
Affiliation(s)
- Izabela Sieminska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz M Grzywa
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland.
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
11
|
Kischkel B, Dos Santos JC, Lopes-Bezerra L, Taborda CP, Joosten LAB. Human interleukin-36γ plays a crucial role in cytokine induction during Sporothrix brasiliensis and S. schenckii infection in keratinocytes and PBMCs. Microb Pathog 2024; 188:106550. [PMID: 38262494 DOI: 10.1016/j.micpath.2024.106550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Cytokines of the interleukin (IL)-1 superfamily including the different IL-36 isoforms, have been reported as mediators of acute and chronic inflammation in human skin diseases, such as psoriasis. Here, we demonstrated for the first time that Sporothrix schenckii and S. brasiliensis, the fungi that cause subcutaneous infection sporotrichosis, can induce the expression of IL-36α, IL-36γ and IL-36Ra in human keratinocytes and primary peripheral blood mononuclear cells (PBMCs). Specifically, IL-36γ was differentially expressed by keratinocytes stimulated with Sporothrix yeasts when compared to the commensal microorganism Staphylococcus epidermidis. The exposure of keratinocytes to 24 h or 7-days culture supernatant of PBMCs stimulated with Sporothrix induced higher IL-36γ production compared to direct stimulation of keratinocytes with the live fungus. We identified that IL-36γ mRNA expression in keratinocytes is increased in the presence of IL-17, TNF, IL-1β and IL-1α and these cytokines may act synergistically to maintain IL-36γ production. Lastly, using a cohort of 164 healthy individuals, we showed that individuals carrying variants of the IL36G gene (rs11690399 and rs11683399) exhibit increased IL-36γ production as well as increased innate cytokine production after Sporothrix exposure. Importantly, stimulation of PBMCs with recombinant IL-36γ increased the production of IL-1β and IL-6, while IL-36Ra were able to decrease the concentration of these cytokines. Our findings contribute to the understanding of the pathogenesis of sporotrichosis and suggest that IL-36γ may be involved in maintaining the cytokine loop that leads to tissue destruction by exacerbating the immune response in sporotrichosis. Of high interest, we present the IL-36 signalling pathway as a potential new therapeutic target.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Internal Medicine, Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands; Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jéssica C Dos Santos
- Department of Internal Medicine, Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Leila Lopes-Bezerra
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Departamento de Dermatologia, LIM53, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
12
|
Calabrese L, Falco GM, Caldarola G, Stefani AD, D'Agostino M, Peris K, De Simone C. Paradoxe Hautreaktion auf Certolizumab mit Überlappung neutrophiler Dermatosen. J Dtsch Dermatol Ges 2024; 22:438-441. [PMID: 38450954 DOI: 10.1111/ddg.15305_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/20/2023] [Indexed: 03/08/2024]
Affiliation(s)
- Laura Calabrese
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Gennaro Marco Falco
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Giacomo Caldarola
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Alessandro Di Stefani
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Magda D'Agostino
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Ketty Peris
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Clara De Simone
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| |
Collapse
|
13
|
Calabrese L, Falco GM, Caldarola G, Stefani AD, D'Agostino M, Peris K, De Simone C. Paradoxical skin reaction to certolizumab, an overlap of neutrophilic dermatoses. J Dtsch Dermatol Ges 2024; 22:438-441. [PMID: 38335324 DOI: 10.1111/ddg.15305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/20/2023] [Indexed: 02/12/2024]
Affiliation(s)
- Laura Calabrese
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Gennaro Marco Falco
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Giacomo Caldarola
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Alessandro Di Stefani
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Magda D'Agostino
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Ketty Peris
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Clara De Simone
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| |
Collapse
|
14
|
Ahmad F, Alam MA, Ansari AW, Jochebeth A, Leo R, Al-Abdulla MN, Al-Khawaga S, AlHammadi A, Al-Malki A, Al Naama K, Ahmad A, Buddenkotte J, Steinhoff M. Emerging Role of the IL-36/IL-36R Axis in Multiple Inflammatory Skin Diseases. J Invest Dermatol 2024; 144:206-224. [PMID: 38189700 DOI: 10.1016/j.jid.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
IL-36 is a most recent member of the IL-1 cytokine family, primarily expressed at barrier sites of the body such as the skin, lungs, and intestine. It plays a vital role in inflammation and is implicated in the development of various cutaneous; intestinal; and pulmonary disorders, including psoriasis, inflammatory bowel disease, and chronic obstructive pulmonary disease. IL-36 comprises 4 isoforms: the proinflammatory IL-36α, IL-36β, and IL-36γ and the anti-inflammatory IL-36R antagonist. An imbalance between proinflammatory and anti-inflammatory IL-36 isoforms can contribute to the inflammatory fate of cells and tissues. IL-36 cytokines signal through an IL-36R heterodimer mediating their function through canonical signaling cacade, including the NF-B pathway. Prominent for its role in psoriasis, IL-36 has recently been associated with disease mechanisms in atopic dermatitis, hidradenitis suppurativa, neutrophilic dermatoses, autoimmune blistering disease, and Netherton syndrome. The major cutaneous source of IL-36 cytokines is keratinocytes, pointing to its role in the communication between the epidermis, innate (neutrophils, dendritic cells) immune system, and adaptive (T helper [Th]1 cells, Th17) immune system. Thus, cutaneous IL-36 signaling is crucial for the immunopathological outcome of various skin diseases. Consequently, the IL-36/IL-36R axis has recently been recognized as a promising drug target for the treatment of inflammatory disorders beyond psoriasis. This review summarizes the current update on IL-36 cytokines in inflammatory skin diseases.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Wahid Ansari
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rari Leo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Khalifa Al Naama
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jörg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Medical School, Qatar University, Doha, Qatar; Weill Cornell Medicine, Weill Cornell University, New York, New York, USA; Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
15
|
Han D, Li F, Zhao Y, Wang B, Wang J, Liu B, Mou K, Meng L, Zheng Y, Lu S, Zhu W, Zhou Y. IL-21 promoting angiogenesis contributes to the development of psoriasis. FASEB J 2024; 38:e23375. [PMID: 38102968 DOI: 10.1096/fj.202201709rrrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Elevated IL-21 expression which can effectively induce Th17 cell differentiation has been implicated in the pathogenesis of psoriasis, but its role in angiogenesis remains poorly understood. METHODS PASI and PSI score assessment was applied to evaluate the severity of psoriatic lesions. The expression of IL-21, IL-21 receptor (IL-21R), CD31, VEGFA, MMP-9, and ICAM-1 in skin was determined by immunohistochemistry or quantitative real-time polymerase chain reaction. The serum level of IL-21 was measured by enzyme-linked immunosorbent assay (ELISA). Then, their correlation was analyzed statistically. Human umbilical vein endothelial cells (HUVECs) cocultured with conditional medium from normal human epidermal keratinocytes (NHEKs) were treated with IL-21 and/or M5 cocktail (mixture of IL-1α, IL-17A, IL-22, TNF-α, and oncostatin M). The migration and tube formation of HUVECs were detected, and the levels of VEGFA, MMP-9, and ICAM-1 in NHEKs were measured by Western blotting or ELISA. RESULTS Increased IL-21 and IL-21R expression was observed in psoriatic sera or skin specimens, with IL-21R mainly locating in keratinocytes and IL-21 in immune cells. Pearson analysis showed significantly positive correlation between IL-21/IL-21R and erythema scores/microvessel density in psoriatic lesions. Moreover, the expression of proangiogenic genes, VEGFA, ICAM-1, and MMP-9 was upregulated in skins of psoriasis. Additionally, in M5 microenvironment, migration and tube formation could be magnified in HUVECs using IL-21 pre-treated NHEK medium. Mechanically, the co-stimulation of IL-21 and M5 to NEHKs increased the expression of ICAM-1. CONCLUSION IL-21 could regulate keratinocytes to secrete ICAM-1, thereby promoting angiogenesis in psoriasis.
Collapse
Affiliation(s)
- Dan Han
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fei Li
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyuan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bei Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yan Zhou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Bombassaro A, Figueiredo JM, Taborda CP, Joosten LAB, Vicente VA, Queiroz-Telles F, Meis JF, Kischkel B. Skin innate immune response against fungal infections and the potential role of trained immunity. Mycoses 2024; 67. [PMID: 38282360 DOI: 10.1111/myc.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024]
Abstract
Fungal skin infections are distributed worldwide and can be associated with economic and social traits. The immune response related to skin cells is complex and its understanding is essential to the comprehension of each cell's role and the discovery of treatment alternatives. The first studies of trained immunity (TI) described the ability of monocytes, macrophages and natural killer (NK) cells to develop a memory-like response. However, the duration of TI does not reflect the shorter lifespan of these cells. These conclusions supported later studies showing that TI can be observed in stem and haematopoietic cells and, more recently, also in non-immune skin cells such as fibroblasts, highlighting the importance of resident cells in response to skin disorders. Besides, the participation of less studied proinflammatory cytokines in the skin immune response, such as IL-36γ, shed light into a new possibility of inflammatory pathway blockade by drugs. In this review, we will discuss the skin immune response associated with fungal infections, the role of TI in skin and clinical evidence supporting opportunities and challenges of TI and other inflammatory responses in the pathogenesis of fungal skin infections.
Collapse
Affiliation(s)
- Amanda Bombassaro
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Julia Marcondes Figueiredo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Dermatology, LIM53, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vania A Vicente
- Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Flavio Queiroz-Telles
- Department of Public Health, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, Cologne, Germany
| | - Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Chen Y, Tai Z, Zhu C, Yu Q, Zhu Q, Chen Z. Vascular Endothelial Growth Factor A VEGFA Inhibition: An Effective Treatment Strategy for Psoriasis. Int J Mol Sci 2023; 25:59. [PMID: 38203230 PMCID: PMC10778864 DOI: 10.3390/ijms25010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Psoriasis is an inflammatory skin disease mediated by the immune system and characterized by an inflammatory ring, also known as an epithelial immune microenvironment (EIME). The interaction between the epithelial tissue of the skin and the immune system has a crucial role in the immune cycle of psoriasis. Although the formation of new blood vessels in skin lesions provides energy support for the proliferation of epidermal keratinocytes, the role of angiogenesis in psoriasis has not been extensively studied. Vascular endothelial growth factor A (VEGFA) is a key regulator of angiogenesis that has an important role in the development of psoriasis. VEGFA promotes angiogenesis and directly stimulates epidermal keratinocytes and infiltrating immune cells, thus contributing to the progression of psoriasis. Measuring VEGFA levels to identify angiogenic characteristics in psoriasis patients may be a predictive biomarker for disease severity and response to anti-angiogenic therapy. Clinical data have shown that anti-angiogenic therapy can improve skin lesions in psoriasis patients. Therefore, this study aimed to uncover the underestimated role of blood vessels in psoriasis, explore the relationship between VEGFA and keratinocytes in the EIME, and inspire innovative drug therapies for the treatment of psoriasis.
Collapse
Affiliation(s)
| | | | | | | | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Y.C.); (Z.T.); (C.Z.); (Q.Y.)
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Y.C.); (Z.T.); (C.Z.); (Q.Y.)
| |
Collapse
|
18
|
Fischer B, Kübelbeck T, Kolb A, Ringen J, Waisman A, Wittmann M, Karbach S, Kölsch SM, Kramer D. IL-17A-driven psoriasis is critically dependent on IL-36 signaling. Front Immunol 2023; 14:1256133. [PMID: 38162658 PMCID: PMC10754973 DOI: 10.3389/fimmu.2023.1256133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Plaque psoriasis is an autoinflammatory and autoimmune skin disease, affecting 1-3% of the population worldwide. Previously, high levels of IL-36 family cytokines were found in psoriatic skin lesions, thereby contributing to keratinocyte hyperproliferation and infiltration of immune cells such as neutrophils. While treatment with anti-IL36 receptor (IL36R) antibodies was recently approved for generalized pustular psoriasis (GPP), it remains unclear, if targeting the IL36R might also inhibit plaque psoriasis. Here we show that antibody-mediated inhibition of IL36R is sufficient to suppress imiquimod-induced psoriasis-like skin inflammation and represses the disease's development in a model that depends on IL-17A overexpression in the skin. Importantly, treatment with anti-IL36R antibodies inhibited skin inflammation and attenuated psoriasis-associated, systemic inflammation. This is possibly due to a widespread effect of IL36R inhibition, which not only suppresses pro-inflammatory gene expression in keratinocytes, but also the activation of other immune cells such as T-cells or dendritic cells. In conclusion, we propose that inhibition of the IL-36 signaling pathway might constitute an attractive, alternative approach for treating IL-17A-driven psoriasis and psoriasis-linked comorbidities.
Collapse
Affiliation(s)
- Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Tanja Kübelbeck
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Antonia Kolb
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Julia Ringen
- Center for Cardiology- Cardiology I, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ari Waisman
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Miriam Wittmann
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Susanne Karbach
- Center for Cardiology- Cardiology I, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) – Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stephan Marcus Kölsch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Medical Affairs, Ingelheim am Rhein, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
19
|
Kang P, Chen J, Wang S, Zhang S, Li S, Guo S, Song P, Liu L, Wang G, Gao T, Zhang W, Li C. Advanced Glycation End Products-Induced Activation of Keratinocytes: A Mechanism Underlying Cutaneous Immune Response in Psoriasis. J Innate Immun 2023; 15:876-892. [PMID: 37989127 PMCID: PMC10715758 DOI: 10.1159/000534639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/15/2023] [Indexed: 11/23/2023] Open
Abstract
Psoriasis is a common inflammatory skin disease, in which epidermal keratinocytes play a vital role in its pathogenesis by acting both as the responder and as the accelerator to the cutaneous psoriatic immune response. Advanced glycation end products (AGEs) are a class of proinflammatory metabolites that are commonly accumulating in cardiometabolic disorders. Recent studies have also observed the increased level of AGEs in the serum and skin of psoriasis patients, but the role of AGEs in psoriatic inflammation has not been well investigated. In the present study, we initially detected abnormal accumulation of AGEs in epidermal keratinocytes of psoriatic lesions collected from psoriasis patients. Furthermore, AGEs promoted the proliferation of keratinocytes via upregulated Keratin 17 (K17)-mediated p27KIP1 inhibition followed by accelerated cell cycle progression. More importantly, AGEs facilitated the production of interleukin-36 alpha (IL-36α) in keratinocytes, which could enhance T helper 17 (Th17) immune response. In addition, the induction of both K17 and IL-36α by AGEs in keratinocytes was dependent on the activation of signal transducer and activator of transcription 1/3 (STAT1/3) signaling pathways. At last, the effects of AGEs on keratinocytes were mediated by the receptor for AGEs (RAGE). Taken together, these findings support that AGEs potentiate the innate immune function of keratinocytes, which contributes to the formation of psoriatic inflammation. Our study implicates AGEs as a potential pathogenic link between psoriasis and cardiometabolic comorbidities.
Collapse
Affiliation(s)
- Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiyu Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shaolong Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Nagarajan MB, Ainscough AJ, Reynolds DS, Uzel SGM, Bjork JW, Baker BA, McNulty AK, Woulfe SL, Lewis JA. Biomimetic human skin model patterned with rete ridges. Biofabrication 2023; 16:015006. [PMID: 37734324 DOI: 10.1088/1758-5090/acfc29] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Rete ridges consist of undulations between the epidermis and dermis that enhance the mechanical properties and biological function of human skin. However, most human skin models are fabricated with a flat interface between the epidermal and dermal layers. Here, we report a micro-stamping method for producing human skin models patterned with rete ridges of controlled geometry. To mitigate keratinocyte-induced matrix degradation, telocollagen-fibrin matrices with and without crosslinks enable these micropatterned features to persist during longitudinal culture. Our human skin model exhibits an epidermis that includes the following markers: cytokeratin 14, p63, and Ki67 in the basal layer, cytokeratin 10 in the suprabasal layer, and laminin and collagen IV in the basement membrane. We demonstrated that two keratinocyte cell lines, one from a neonatal donor and another from an adult diabetic donor, are compatible with this model. We tested this model using an irritation test and showed that the epidermis prevents rapid penetration of sodium dodecyl sulfate. Gene expression analysis revealed differences in keratinocytes obtained from the two donors as well as between 2D (control) and 3D culture conditions. Our human skin model may find potential application for drug and cosmetic testing, disease and wound healing modeling, and aging studies.
Collapse
Affiliation(s)
- Maxwell B Nagarajan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Alexander J Ainscough
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Daniel S Reynolds
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Sebastien G M Uzel
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Jason W Bjork
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Bryan A Baker
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Amy K McNulty
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Susan L Woulfe
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| |
Collapse
|
21
|
Kodali N, Blanchard I, Kunamneni S, Lebwohl MG. Current management of generalized pustular psoriasis. Exp Dermatol 2023; 32:1204-1218. [PMID: 36779681 DOI: 10.1111/exd.14765] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
Generalized pustular psoriasis (GPP) is a rare subset of psoriasis involving episodes of sterile pustules accompanied by inflammation and, often, systemic involvement. The inflammatory nature of GPP has potential for severe multisystem complications including high-output cardiac failure, infections, digestive system issues, and disfiguring or lethal acute flare episodes. The disease tends to have higher prevalence in females and Asians. The IL-1/IL-36 inflammatory pathway is a critical facet of GPP's pathology. Genetic mutations that are associated with GPP include modifications of Interleukin 36 Receptor Antagonist (IL36RN), Caspase Recruitment Domain Family Member 14 (CARD14), Adaptor Related Protein Complex 1 Subunit Sigma 3 (AP1S3), Myeloperoxidase (MPO) and Serpin Peptidase Inhibitor Clade A Member 3 (SERPINA3) genes. Treatment guidelines for GPP are not well-entrenched. Currently, only one GPP-specific treatment, the interleukin-36 receptor antagonist (IL-36Ra) spesolimab, has been approved for use in the United States. Additional anti-IL-36 pathway therapies are currently being developed. Other treatment options include other biologic therapies such as IL-17 inhibitors, IL-23 inhibitors and TNFα inhibitors. Non-biologic therapeutic options include retinoids, cyclosporine and methotrexate. Treatment options differ throughout the world; most countries utilize retinoids, cyclosporine and methotrexate as first-line non-biologic options. China and United Kingdom have no GPP-specific biologic therapies approved for use, while several biologic therapies are approved for use in Japan. This review aims to serve as an update on the current global management of GPP while also including relevant aspects of disease pathogenesis, diagnosis, clinical presentation, histopathology, aetiology and epidemiology.
Collapse
Affiliation(s)
- Nilesh Kodali
- Department of Education, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Isabella Blanchard
- Department of Education, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Sruthi Kunamneni
- Department of Education, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Mark G Lebwohl
- Dermatology, The Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
22
|
Maglie R, Mercurio L, Morelli M, Madonna S, Salemme A, Baffa ME, Quintarelli L, Di Zenzo GM, Antiga E, Albanesi C. Interleukin-36 cytokines are overexpressed in the skin and sera of patients with bullous pemphigoid. Exp Dermatol 2023. [PMID: 36940975 DOI: 10.1111/exd.14791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/22/2023]
Abstract
Bullous pemphigoid (BP) is an autoimmune bullous disease, characterized by autoantibodies targeting BP180 and BP230. The role of interleukin (IL)-36, a potent chemoattractant for granulocytes, in BP remains elusive.The expression of IL-36 cytokines (IL-36α, β, γ) and their antagonists (IL-36Ra and IL-38) was analysed in the skin and serum samples of patients with BP (n = 31), psoriasis (n = 10) and healthy controls (HC) (n = 14) by quantitative polymerase chain reaction and enzyme linked immunosorbent assay, respectively. Skin and serum levels of all cytokines were correlated with the Bullous Pemphigoid Disease Area Index (BPDAI) score and with the serum concentration of pathogenic antibodies.IL-36α, IL-36β, IL-36γ and IL-36Ra were significantly (p < 0.05) overexpressed in BP skin compared to HC, without remarkable differences relative to psoriasis skin. The expression of IL-38 was significantly (p < 0.05) higher in BP compared to psoriasis skin.IL-36α and γ, but not β, serum concentrations were significantly (p < 0.05) higher in BP compared to HC. IL-36γ was significantly (p < 0.05) more expressed in the serum of psoriasis patients than BP. The serum concentration of IL-36Ra and IL-38 were similar between BP and HC, while IL-38 serum levels were significantly (p < 0.05) higher in BP compared to psoriasis patients. Serum IL-36α correlated significantly with BPDAI (r = 0.5 p = 0.001).IL-36 agonists are increased in BP patients, both locally and systemically. Serum IL-36α might represent a potential biomarker for BP. An inefficient balance between IL-36 agonists and antagonists is likely to occur during BP inflammation.
Collapse
Affiliation(s)
- Roberto Maglie
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Laura Mercurio
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Martina Morelli
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Stefania Madonna
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Adele Salemme
- Molecular and Cell Biology laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Maria E Baffa
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Lavinia Quintarelli
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Giovanni M Di Zenzo
- Molecular and Cell Biology laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Emiliano Antiga
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Cristina Albanesi
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| |
Collapse
|
23
|
Baker KJ, Brint E, Houston A. Transcriptomic and functional analyses reveal a tumour-promoting role for the IL-36 receptor in colon cancer and crosstalk between IL-36 signalling and the IL-17/ IL-23 axis. Br J Cancer 2023; 128:735-747. [PMID: 36482185 PMCID: PMC9977920 DOI: 10.1038/s41416-022-02083-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The interleukin (IL)-36 cytokines are a sub-family of the IL-1 family which are becoming increasingly implicated in the pathogenesis of inflammatory diseases and malignancies. Initial studies of IL-36 signalling in tumorigenesis identified an immune-mediated anti-tumorigenic function for these cytokines. However, more recent studies have shown IL-36 cytokines also contribute to the pathogenesis of lung and colorectal cancer (CRC). METHODS The aim of this study was to investigate IL-36 expression in CRC using transcriptomic datasets and software such as several R packages, Cytoscape, GEO2R and AnalyzeR. Validation of results was completed by qRT-PCR on both cell lines and a patient cohort. Cellular proliferation was assessed by flow cytometry and resazurin reduction. RESULTS We demonstrate that IL-36 gene expression increases with CRC development. Decreased tumoral IL-36 receptor expression was shown to be associated with improved patient outcome. Our differential gene expression analysis revealed a novel role for the IL-36/IL-17/IL-23 axis, with these findings validated using patient-derived samples and cell lines. IL-36γ, together with either IL-17a or IL-22, was able to synergistically induce different genes involved in the IL-17/IL-23 axis in CRC cells and additively induce colon cancer cell proliferation. CONCLUSIONS Collectively, this data support a pro-tumorigenic role for IL-36 signalling in colon cancer, with the IL-17/IL-23 axis influential in IL-36-mediated colon tumorigenesis.
Collapse
Affiliation(s)
- Kevin James Baker
- Department of Pathology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Mues N, Martin RJ, Alam R, Schaunaman N, Dimasuay KG, Kolakowski C, Wright CJ, Zheng L, Chu HW. Bacterial DNA amplifies neutrophilic inflammation in IL-17-exposed airways. ERJ Open Res 2023; 9:00474-2022. [PMID: 36699649 PMCID: PMC9868970 DOI: 10.1183/23120541.00474-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background Neutrophilic asthma (NA) is associated with increased airway interleukin (IL)-17 and abnormal bacterial community such as dominance of nontypeable Haemophilus influenzae (NTHi), particularly during asthma exacerbations. Bacteria release various products including DNA, but whether they cooperate with IL-17 in exaggerating neutrophilic inflammation is unclear. We sought to investigate the role of bacteria-derived DNA in airway neutrophilic inflammation related to IL-17-high asthma and underlying mechanisms (e.g. Toll-like receptor 9 (TLR9)/IL-36γ signalling axis). Methods Bacterial DNA, IL-8 and IL-36γ were measured in bronchoalveolar lavage fluid (BALF) of people with asthma and healthy subjects. The role of co-exposure to IL-17 and bacterial DNA or live bacteria in neutrophilic inflammation, and the contribution of the TLR9/IL-36γ signalling axis, were determined in cultured primary human airway epithelial cells and alveolar macrophages, and mouse models. Results Bacterial DNA levels were increased in asthma BALF, which positively correlated with IL-8 and neutrophil levels. Moreover, IL-36γ increased in BALF of NA patients. Bacterial DNA or NTHi infection under an IL-17-high setting amplified IL-8 production and mouse lung neutrophilic inflammation. DNase I treatment in IL-17-exposed and NTHi-infected mouse lungs reduced neutrophilic inflammation. Mechanistically, bacterial DNA-mediated amplification of neutrophilic inflammation is in part dependent on the TLR9/IL-36γ signalling axis. Conclusions Bacterial DNA amplifies airway neutrophilic inflammation in an IL-17-high setting partly through the TLR9 and IL-36γ signalling axis. Our novel findings may offer several potential therapeutic targets including TLR9 antagonists, IL-36γ neutralising antibodies and DNase I to reduce asthma severity associated with exaggerated airway neutrophilic inflammation.
Collapse
Affiliation(s)
- Nastaran Mues
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Rafeul Alam
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | | | | | - Clyde J. Wright
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lijun Zheng
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
25
|
Zhou L, Wang J, Hou H, Li J, Li J, Liang J, Li J, Niu X, Hou R, Zhang K. Autophagy Inhibits Inflammation via Down-Regulation of p38 MAPK/mTOR Signaling Cascade in Endothelial Cells. Clin Cosmet Investig Dermatol 2023; 16:659-669. [PMID: 36942318 PMCID: PMC10024493 DOI: 10.2147/ccid.s405068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Objective Autophagy, an intracellular process of self-digestion, has been shown to modulate inflammatory responses. In the present study, we determined the effects of autophagy on inflammatory response induced by M5 cytokines. Methods Human umbilical vein endothelial cells (HUVECs) were treated with M5 cytokines to induce inflammation. Expression levels of mRNA for inflammatory cytokines and BIRC2 were compared in HUVECs with vs without induction of autophagy with rapamycin (RAPA) by PCR, while cell apoptosis was assessed by flow cytometry and caspase-3 activity assay kit. Expression levels of LC3, p62, p-p38 MAPK (Thr180/Tyr182), p-mTOR (Ser2445) and p-ULK1 (Ser555) proteins were measured by Western blotting. The nitric oxide (NO) content, NO synthase (NOS) activity and cell angiogenesis were also evaluated. Results Induction of autophagy with RAPA decreased expression levels of IL6, IL8 and CCL20, in addition to reduction in inflammation-induced apoptosis in HUVECs. Moreover, RAPA increased LC3II, while decreasing p62 expression. Likewise, expression levels of p-p38 MAPK and p-mTOR proteins were markedly decreased by the treatment with RAPA. Finally, RAPA treatment increased the NO content and the NOS activity, and inhibited angiogenesis. Conclusion Induced autophagy can improve the function of endothelial cells in psoriasis, suggesting approaches to induce autophagy can be used to ameliorate psoriasis.
Collapse
Affiliation(s)
- Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- Correspondence: Kaiming Zhang, Taiyuan Central Hospital, Taiyuan, People’s Republic of China, Tel/Fax +86-351-5656080, Email ;
| |
Collapse
|
26
|
Treponema denticola Induces Interleukin-36γ Expression in Human Oral Gingival Keratinocytes via the Parallel Activation of NF-κB and Mitogen-Activated Protein Kinase Pathways. Infect Immun 2022; 90:e0024722. [PMID: 36040155 PMCID: PMC9584330 DOI: 10.1128/iai.00247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oral epithelial barrier acts as both a physical barrier to the abundant oral microbiome and a sentry for the immune system that, in health, constrains the accumulation of the polymicrobial plaque biofilm. The immune homeostasis during gingivitis that is largely protective becomes dysregulated, unproductive, and destructive to gingival tissue as periodontal disease progresses to periodontitis. The progression to periodontitis is associated with the dysbiosis of the oral microbiome, with increasing prevalences and abundances of periodontal pathogens such as Treponema denticola. Despite the association of T. denticola with a chronic inflammatory disease, relatively little is known about gingival epithelial cell responses to T. denticola infection. Here, we characterized the transcriptome of gingival keratinocytes following T. denticola challenge and identified interleukin-36γ (IL-36γ) as the most differentially expressed cytokine. IL-36γ expression is regulated by p65 NF-κB and the activation of both the Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways downstream of Toll-like receptor 2 (TLR2). Finally, we demonstrate for the first time that mitogen- and stress-activated kinase 1 (MSK1) contributes to IL-36γ expression and may link the activation of MAPK and NF-κB signaling. These findings suggest that the interactions of T. denticola with the gingival epithelium lead to elevated IL-36γ expression, which may be a critical inducer and amplifier of gingival inflammation and subsequent alveolar bone loss.
Collapse
|
27
|
Sachen KL, Arnold Greving CN, Towne JE. Role of IL-36 cytokines in psoriasis and other inflammatory skin conditions. Cytokine 2022; 156:155897. [DOI: 10.1016/j.cyto.2022.155897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
|
28
|
Dong H, Hao Y, Li W, Yang W, Gao P. IL-36 Cytokines: Their Roles in Asthma and Potential as a Therapeutic. Front Immunol 2022; 13:921275. [PMID: 35903102 PMCID: PMC9314646 DOI: 10.3389/fimmu.2022.921275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-36 cytokines are members of the IL-1 superfamily, which consists of three agonists (IL-36α, IL-36β and IL-36γ) and an IL-36 receptor antagonist (IL-36Ra). IL-36 cytokines are crucial for immune and inflammatory responses. Abnormal levels of IL-36 cytokine expression are involved in the pathogenesis of inflammation, autoimmunity, allergy and cancer. The present study provides a summary of recent reports on IL-36 cytokines that participate in the pathogenesis of inflammatory diseases, and the potential mechanisms underlying their roles in asthma. Abnormal levels of IL-36 cytokines are associated with the pathogenesis of different types of asthma through the regulation of the functions of different types of cells. Considering the important role of IL-36 cytokines in asthma, these may become a potential therapeutic target for asthma treatment. However, existing evidence is insufficient to fully elucidate the specific mechanism underlying the action of IL-36 cytokines during the pathological process of asthma. The possible mechanisms and functions of IL-36 cytokines in different types of asthma require further studies.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Gao,
| |
Collapse
|
29
|
Molecular and cellular regulation of psoriatic inflammation. Clin Sci (Lond) 2022; 136:935-952. [PMID: 35730381 DOI: 10.1042/cs20210916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023]
Abstract
This review highlights the molecular and cellular mechanisms underlying psoriatic inflammation with an emphasis on recent developments which may impact on treatment approaches for this chronic disease. We consider both the skin and the musculoskeletal compartment and how different manifestations of psoriatic inflammation are linked. This review brings a focus to the importance of inflammatory feedback loops that exist in the initiation and chronic stages of the condition, and how close interaction between the epidermis and both innate and adaptive immune compartments drives psoriatic inflammation. Furthermore, we highlight work done on biomarkers to predict the outcome of therapy as well as the transition from psoriasis to psoriatic arthritis.
Collapse
|
30
|
Zhang W, Chen J, Liu H. Network Pharmacology and Molecular Docking-Based Prediction of the Molecular Targets and Signaling Pathways of Ginseng in the Treatment of Parkinson's Disease. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: The present study was aimed at exploring the molecular mechanism underlying the action of ginseng in the treatment of Parkinson's disease (PD) using network pharmacology. Methods: The main effective ginseng ingredients were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) database and screened for oral bioavailability (OB), as well as drug-like properties (DL). A platform of PD targets was established using GeneCards and Online Mendelian Inheritance in Man (OMIM) databases, and then an “effective ingredient-target-disease” interaction network was constructed using Cytoscape 3.7.1 software. A STRING database was used to construct a protein–protein interaction (PPI) network, and the related protein interactions were analyzed. Finally, we performed functional analyses of core targets using the Gene Ontology (GO) and Kyoto Gene and Gene Encyclopedia (KEGG) pathway enrichment, and then conducted molecular docking of the effective ingredients with disease targets. Results: Ninety-seven effective ginseng ingredients and 168 potential targets of PD were identified in the present study. Network analysis showed that the targets were mainly involved in regulating cell metabolism, apoptosis, and other biological processes (BPs). Further, it was noted that the effects of the targets on treatment of PD involved regulation of several signaling pathways, such as mitogen-activated protein kinase (MAPK), advanced glycation end products (AGE), and receptors of advanced glycation end products (RAGE). The results of molecular docking showed that the active ginseng ingredients bind well with the targets of MAPK3 and MAPK14. Conclusion: The main active compounds of ginseng in the treatment of PD may be ginsenosides, and the molecular mechanism may be related to key targets such as MAPK3, MAPK14, and EGFR. The MAPK and AGE-RAGE signaling pathways may also be involved.
Collapse
Affiliation(s)
- Wei Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingya Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongquan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Fania L, Moretta G, Antonelli F, Scala E, Abeni D, Albanesi C, Madonna S. Multiple Roles for Cytokines in Atopic Dermatitis: From Pathogenic Mediators to Endotype-Specific Biomarkers to Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23052684. [PMID: 35269828 PMCID: PMC8910412 DOI: 10.3390/ijms23052684] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases, which generally presents with intense itching and recurrent eczematous lesions. AD affects up to 20% of children and 10% of adults in high-income countries. The prevalence and incidence of AD have increased in recent years. The onset of AD mostly occurs in childhood, although in some cases AD may persist in adult life or even manifest in middle age (adult-onset AD). AD pathophysiology is made of a complex net, in which genetic background, skin barrier dysfunction, innate and adaptive immune responses, as well as itch contribute to disease development, progression, and chronicization. One of the most important features of AD is skin dehydration, which is mainly caused by filaggrin mutations that determine trans-epidermal water loss, pH alterations, and antigen penetration. In accordance with the “outside-inside” theory of AD pathogenesis, in a context of an altered epidermal barrier, antigens encounter epidermal antigen presentation cells (APCs), such as epidermal Langerhans cells and inflammatory epidermal dendritic cells, leading to their maturation and Th-2 cell-mediated inflammation. APCs also bear trimeric high-affinity receptors for immunoglobulin E (IgE), which induce IgE-mediated sensitizations as part of pathogenic mechanisms leading to AD. In this review, we discuss the role of cytokines in the pathogenesis of AD, considering patients with various clinical AD phenotypes. Moreover, we describe the cytokine patterns in patients with AD at different phases of the disease evolution, as well as in relation to different phenotypes/endotypes, including age, race, and intrinsic/extrinsic subtypes. We also discuss the outcomes of current biologics for AD, which corroborate the presence of multiple cytokine axes involved in the background of AD. A deep insight into the correlation between cytokine patterns and the related clinical forms of AD is a crucial step towards increasingly personalized, and therefore more efficient therapy.
Collapse
Affiliation(s)
- Luca Fania
- Integrated Center for Research in Atopic Dermatitis (CRI-DA), IDI-IRCCS, Via Monti di Creta, 104, 00167 Rome, Italy; (L.F.); (G.M.); (F.A.); (E.S.)
| | - Gaia Moretta
- Integrated Center for Research in Atopic Dermatitis (CRI-DA), IDI-IRCCS, Via Monti di Creta, 104, 00167 Rome, Italy; (L.F.); (G.M.); (F.A.); (E.S.)
| | - Flaminia Antonelli
- Integrated Center for Research in Atopic Dermatitis (CRI-DA), IDI-IRCCS, Via Monti di Creta, 104, 00167 Rome, Italy; (L.F.); (G.M.); (F.A.); (E.S.)
| | - Enrico Scala
- Integrated Center for Research in Atopic Dermatitis (CRI-DA), IDI-IRCCS, Via Monti di Creta, 104, 00167 Rome, Italy; (L.F.); (G.M.); (F.A.); (E.S.)
| | - Damiano Abeni
- Clinical Epidemiology Unit, IDI-IRCCS, 00167 Rome, Italy;
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, IDI-IRCCS, Via Monti di Creta, 104, 00167 Rome, Italy;
- Correspondence:
| | - Stefania Madonna
- Laboratory of Experimental Immunology, IDI-IRCCS, Via Monti di Creta, 104, 00167 Rome, Italy;
| |
Collapse
|
32
|
Manzanares-Meza LD, Valle-Rios R, Medina-Contreras O. Interleukin-1 Receptor-Like 2: One Receptor, Three Agonists, and Many Implications. J Interferon Cytokine Res 2022; 42:49-61. [PMID: 35171706 DOI: 10.1089/jir.2021.0173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interleukin (IL)-1 superfamily of cytokines comprises 11 pro- and anti-inflammatory cytokines, which play essential roles during the immune response. Several pathogenic pathways are initiated by IL-1RL2 (interleukin 1 receptor-like 2) signaling, also known as IL-36R, in the skin, lungs, and gut. IL-36 cytokines promote the secretion of proinflammatory cytokines and chemokines, upregulation of antimicrobial peptides, proliferation mediators, and adhesion molecules on endothelial cells. In addition, the IL-36-IL-1RL2 axis has an essential role against viral infections, including a potential role in COVID-19 pathology. The evidence presented in this review highlights the importance of the axis IL-36-IL-1RL2 in the development of several inflammation-related diseases and the healing process. It suggests that IL-1RL2 ligands have specific roles depending on the tissue or cell source. However, there is still much to discover about this cytokine family, their functions in other organs, and how they accomplish a dual effect in inflammation and healing.
Collapse
Affiliation(s)
- Laura D Manzanares-Meza
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico.,Molecular Biomedicine Department, CINVESTAV, Mexico City, Mexico
| | - Ricardo Valle-Rios
- Research Division, School of Medicine, UNAM, Mexico City, Mexico.,Immunology and Proteomics Research Unit, Mexico Children's Hospital, Mexico City, Mexico
| | - Oscar Medina-Contreras
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico
| |
Collapse
|
33
|
Huang G, Li M, Tian X, Jin Q, Mao Y, Li Y. The emerging roles of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications. Endocr Metab Immune Disord Drug Targets 2022; 22:997-1008. [PMID: 35049442 DOI: 10.2174/1871530322666220113142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a metabolic disease caused by a combination of genetics and environmental factors. The importance of the inflammatory response occurring in the pancreas and adipose tissue in the occurrence and progression of diabetes has been gradually accepted. Excess blood glucose and free fatty acids produce large amounts of inflammatory cytokines and chemokines through oxidative stress and endoplasmic reticulum stress. There is sufficient evidence that proinflammatory mediators, such as interleukin (IL)-1β, IL-6, macrophage chemotactic protein-1, and tumor necrosis factor-α, are engaged in the insulin resistance in peripheral adipose tissue and the apoptosis of pancreatic β-cells. IL-36, IL-37, and IL-38, as new members of the IL-1 family, play an indispensable effect in the regulation of immune system homeostasis and are involved in the pathogenesis of inflammatory and autoimmune diseases. Recently, the abnormal expression of IL-36, IL-37, and IL-38 in diabetes has been reported. In this review, we discuss the emerging functions, potential mechanisms, and future research directions on the role of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Guoqing Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Mingcai Li
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaoqing Tian
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Qiankai Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yushan Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yan Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| |
Collapse
|
34
|
Carbone ML, Failla CM. Interleukin role in the regulation of endothelial cell pathological activation. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2021; 3:R96-R105. [PMID: 34870094 PMCID: PMC8630758 DOI: 10.1530/vb-21-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Interleukins (ILs) are the group of cytokines firstly identified as expressed by leukocytes and playing different immunomodulatory functions. With increasing evidence of a constant crosstalk between leukocytes and endothelial cells in the regulation of immune cell differentiation and activation, a role of ILs also in endothelial cell stimulation and vascular inflammation has been shown. ILs act on endothelial cells both in an autocrine and a paracrine manner. In fact, a cross regulation is present among ILs expressed by different cell types, leading to amplification or blocking of the initial inflammatory signal with the secretion of additional ILs or involvement of other adjacent cells and tissues. Based on selective structural features, ILs can be divided into four major groups, a fifth group comprises ILs that do not fit into any of the other four. Most of the ILs playing a role in endothelial cell activation belong to the IL1-like cytokine group, but the number of ILs involved in vascular inflammation is constantly growing, and a special contribution of IL6, IL8, and IL17 has been underlined. This review aims at presenting current knowledge and at underling missing information about the role of IL in activating endothelial cells in selected pathological settings such as tumours, psoriasis, systemic sclerosis, and viral infection.
Collapse
|
35
|
Elias M, Zhao S, Le HT, Wang J, Neurath MF, Neufert C, Fiocchi C, Rieder F. IL-36 in chronic inflammation and fibrosis - bridging the gap? J Clin Invest 2021; 131:144336. [PMID: 33463541 DOI: 10.1172/jci144336] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IL-36 is a member of the IL-1 superfamily and consists of three agonists and one receptor antagonist (IL-36Ra). The three endogenous agonists, IL-36α, -β, and -γ, act primarily as proinflammatory cytokines, and their signaling through the IL-36 receptor (IL-36R) promotes immune cell infiltration and secretion of inflammatory and chemotactic molecules. However, IL-36 signaling also fosters secretion of profibrotic soluble mediators, suggesting a role in fibrotic disorders. IL-36 isoforms and IL-36 have been implicated in inflammatory diseases including psoriasis, arthritis, inflammatory bowel diseases, and allergic rhinitis. Moreover, IL-36 has been connected to fibrotic disorders affecting the kidney, lung, and intestines. This review summarizes the expression, cellular source, and function of IL-36 in inflammation and fibrosis in various organs, and proposes that IL-36 modulation may prove valuable in preventing or treating inflammatory and fibrotic diseases and may reveal a mechanistic link between inflammation and fibrosis.
Collapse
Affiliation(s)
- Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Markus F Neurath
- Department of Medicine 1 and Deutsches Zentrum Immuntherapie DZI, Universitaetsklinikum Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1 and Deutsches Zentrum Immuntherapie DZI, Universitaetsklinikum Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
36
|
Ferrari D, Casciano F, Secchiero P, Reali E. Purinergic Signaling and Inflammasome Activation in Psoriasis Pathogenesis. Int J Mol Sci 2021; 22:ijms22179449. [PMID: 34502368 PMCID: PMC8430580 DOI: 10.3390/ijms22179449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory disease of the skin associated with systemic and joint manifestations and accompanied by comorbidities, such as metabolic syndrome and increased risk of cardiovascular disease. Psoriasis has a strong genetic basis, but exacerbation requires additional signals that are still largely unknown. The clinical manifestations involve the interplay between dendritic and T cells in the dermis to generate a self-sustaining inflammatory loop around the TNFα/IL-23/IL-17 axis that forms the psoriatic plaque. In addition, in recent years, a critical role of keratinocytes in establishing the interplay that leads to psoriatic plaques’ formation has re-emerged. In this review, we analyze the most recent evidence of the role of keratinocytes and danger associates molecular patterns, such as extracellular ATP in the generation of psoriatic skin lesions. Particular attention will be given to purinergic signaling in inflammasome activation and in the initiation of psoriasis. In this phase, keratinocytes’ inflammasome may trigger early inflammatory pathways involving IL-1β production, to elicit the subsequent cascade of events that leads to dendritic and T cell activation. Since psoriasis is likely triggered by skin-damaging events and trauma, we can envisage that intracellular ATP, released by damaged cells, may play a role in triggering the inflammatory response underlying the pathogenesis of the disease by activating the inflammasome. Therefore, purinergic signaling in the skin could represent a new and early step of psoriasis; thus, opening the possibility to target single molecular actors of the purinome to develop new psoriasis treatments.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
37
|
Molecular Pathogenesis of Psoriasis and Biomarkers Reflecting Disease Activity. J Clin Med 2021; 10:jcm10153199. [PMID: 34361983 PMCID: PMC8346978 DOI: 10.3390/jcm10153199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease induced by multifactorial causes and is characterized by bothersome, scaly reddish plaques, especially on frequently chafed body parts, such as extensor sites of the extremities. The latest advances in molecular-targeted therapies using biologics or small-molecule inhibitors help to sufficiently treat even the most severe psoriatic symptoms and the extra cutaneous comorbidities of psoriatic arthritis. The excellent clinical effects of these therapies provide a deeper understanding of the impaired quality of life caused by this disease and the detailed molecular mechanism in which the interleukin (IL)-23/IL-17 axis plays an essential role. To establish standardized therapeutic strategies, biomarkers that define deep remission are indispensable. Several molecules, such as cytokines, chemokines, antimicrobial peptides, and proteinase inhibitors, have been recognized as potent biomarker candidates. In particular, blood protein markers that are repeatedly measurable can be extremely useful in daily clinical practice. Herein, we summarize the molecular mechanism of psoriasis, and we describe the functions and induction mechanisms of these biomarker candidates.
Collapse
|
38
|
Enhanced NAMPT-Mediated NAD Salvage Pathway Contributes to Psoriasis Pathogenesis by Amplifying Epithelial Auto-Inflammatory Circuits. Int J Mol Sci 2021; 22:ijms22136860. [PMID: 34202251 PMCID: PMC8267663 DOI: 10.3390/ijms22136860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023] Open
Abstract
Dysregulated cross-talk between immune cells and epithelial compartments is responsible for the onset and amplification of pathogenic auto-inflammatory circuits occurring in psoriasis. NAMPT-mediated NAD salvage pathway has been recently described as an immunometabolic route having inflammatory function in several disorders, including arthritis and inflammatory bowel diseases. To date, the role of NAD salvage pathway has not been explored in the skin of patients affected by psoriasis. Here, we show that NAD content is enhanced in lesional skin of psoriatic patients and is associated to high NAMPT transcriptional levels. The latter are drastically reduced in psoriatic skin following treatment with the anti-IL-17A biologics secukinumab. We provide evidence that NAMPT-mediated NAD+ metabolism fuels the immune responses executed by resident skin cells in psoriatic skin. In particular, intracellular NAMPT, strongly induced by Th1/Th17-cytokines, acts on keratinocytes by inducing hyper-proliferation and impairing their terminal differentiation. Furthermore, NAMPT-mediated NAD+ boosting synergizes with psoriasis-related cytokines in the upregulation of inflammatory chemokines important for neutrophil and Th1/Th17 cell recruitment. In addition, extracellular NAMPT, abundantly released by keratinocytes and dermal fibroblasts, acts in a paracrine manner on endothelial cells by inducing their proliferation and migration, as well as the expression of ICAM-1 membrane molecule and chemokines important for leukocyte recruitment into inflamed skin. In conclusion, our results showed that NAMPT-mediated NAD salvage pathway contributes to psoriasis pathogenic processes by amplifying epithelial auto-inflammatory responses in psoriasis.
Collapse
|
39
|
Vidal S, Puig L, Carrascosa-Carrillo JM, González-Cantero Á, Ruiz-Carrascosa JC, Velasco-Pastor AM. From Messengers to Receptors in Psoriasis: The Role of IL-17RA in Disease and Treatment. Int J Mol Sci 2021; 22:6740. [PMID: 34201664 PMCID: PMC8268646 DOI: 10.3390/ijms22136740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
The paradigm of psoriasis as a Th17-driven disease has evolved in the last years towards a much deeper knowledge of the complex pathways, mechanisms, cells, and messengers involved, highlighting the crucial role played by the IL-17 family of cytokines. All IL-17 isoforms signal through IL-17R. Five subunits of IL-17R have been described to date, which couple to form a homo- or hetero-receptor complex. Characteristically, IL-17RA is a common subunit in all hetero-receptors. IL-17RA has unique structural-containing a SEFIR/TILL domain-and functional-requiring ACT-1 for signaling-properties, enabling Th17 cells to act as a bridge between innate and adaptive immune cells. In psoriasis, IL-17RA plays a key role in pathogenesis based on: (a) IL-17A, IL-17F, and other IL-17 isoforms are involved in disease development; and (b) IL-17RA is essential for signaling of all IL-17 cytokines but IL-17D, whose receptor has not been identified to date. This article reviews current evidence on the biology and role of the IL-17 family of cytokines and receptors, with focus on IL-17RA, in psoriasis and some related comorbidities, and puts them in context with current and upcoming treatments.
Collapse
Affiliation(s)
- Silvia Vidal
- Institute of Research, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Lluís Puig
- Institute of Research, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | | | - Álvaro González-Cantero
- Department of Dermatology, Hospital Universitario Ramón y Cajal, M-607, km. 9, 100, 28034 Madrid, Spain;
- Facultad de Medicina, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda KM 1.800, 28223 Pozuelo de Alarcón, Spain
| | | | | |
Collapse
|
40
|
Wang X, Yi P, Liang Y. The Role of IL-36 in Infectious Diseases: Potential Target for COVID-19? Front Immunol 2021; 12:662266. [PMID: 34054828 PMCID: PMC8155493 DOI: 10.3389/fimmu.2021.662266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
IL-36 is a member of the interleukin 1 cytokine family, which is currently experiencing a renaissance due to the growing understanding of its context-dependent roles and advances in our understanding of the inflammatory response. The immunological role of IL-36 has revealed its profound and indispensable functional roles in psoriasis, as well as in several inflammatory diseases, including inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis (RA) and cancer. More recently, an increasing body of evidence suggests that IL-36 plays a crucial role in viral, bacterial and fungal infections. There is a growing interest as to whether IL-36 contributes to host protective immune responses against infection as well as the potential implications of IL-36 for the development of new therapeutic strategies. In this review, we summarize the recent progress in understanding cellular expression, regulatory mechanisms and biological roles of IL-36 in infectious diseases, which suggest more specific strategies to maneuver IL-36 as a diagnostic or therapeutic target, especially in COVID-19.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
41
|
Mercurio L, Albanesi C, Madonna S. Recent Updates on the Involvement of PI3K/AKT/mTOR Molecular Cascade in the Pathogenesis of Hyperproliferative Skin Disorders. Front Med (Lausanne) 2021; 8:665647. [PMID: 33996865 PMCID: PMC8119789 DOI: 10.3389/fmed.2021.665647] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
PhosphoInositide-3 Kinase (PI3K) represents a family of different classes of kinases which control multiple biological processes in mammalian cells, such as cell growth, proliferation, and survival. Class IA PI3Ks, the main regulators of proliferative signals, consists of a catalytic subunit (α, β, δ) that binds p85 regulatory subunit and mediates activation of AKT and mammalian Target Of Rapamycin (mTOR) pathways and regulation of downstream effectors. Dysregulation of PI3K/AKT/mTOR pathway in skin contributes to several pathological conditions characterized by uncontrolled proliferation, including skin cancers, psoriasis, and atopic dermatitis (AD). Among cutaneous cancers, basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) display PI3K/AKT/mTOR signaling hyperactivation, implicated in hyperproliferation, and tumorigenesis, as well as in resistance to apoptosis. Upregulation of mTOR signaling proteins has also been reported in psoriasis, in association with enhanced proliferation, defective keratinocyte differentiation, senescence-like growth arrest, and resistance to apoptosis, accounting for major parts of the overall disease phenotypes. On the contrary, PI3K/AKT/mTOR role in AD is less characterized, even though recent evidence demonstrates the relevant function for mTOR pathway in the regulation of epidermal barrier formation and stratification. In this review, we provide the most recent updates on the role and function of PI3K/AKT/mTOR molecular axis in the pathogenesis of different hyperproliferative skin disorders, and highlights on the current status of preclinical and clinical studies on PI3K-targeted therapies.
Collapse
Affiliation(s)
- Laura Mercurio
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
42
|
Honma M, Hayashi K. Psoriasis: Recent progress in molecular‐targeted therapies. J Dermatol 2021; 48:761-777. [DOI: 10.1111/1346-8138.15727] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Masaru Honma
- Department of Dermatology Asahikawa Medical University Hospital Asahikawa Japan
- International Medical Support Center Asahikawa Medical University Hospital Asahikawa Japan
| | - Kei Hayashi
- International Medical Support Center Asahikawa Medical University Hospital Asahikawa Japan
| |
Collapse
|
43
|
Toubi E, Vadasz Z. The Emerging Role of IL-17 in the Immune-Pathogenesis of Chronic Spontaneous Urticaria. Immunotargets Ther 2020; 9:217-223. [PMID: 33134229 PMCID: PMC7592154 DOI: 10.2147/itt.s266410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022] Open
Abstract
Chronic spontaneous urticaria (CSU) is considered to be an autoimmune disorder (type I and type II) in 50% of all cases. However, autoreactive T cells and their proximity with activated mast cells in the skin of CSU patients are believed to be the primary event in mast cell degranulation. The finding of anti-FcɛRIα on mast cells or IgE autoantibodies against thyroid antigens should be considered to be a consequence of the auto-reactive T cells’ recognition of the above-mentioned antigens. Our recent finding of increased Th17 and IL-17 expression in both CD4+ T cells and mast cells in the skin of severe CSU patients is supportive for the major role that T cells perform in the pathogenesis of CSU. Supporting this are numerous previous reports in which increased serum IL-17 was found to be in association with CSU disease severity. The beneficial effect of anti-IL-17A (secukinumab) in CSU patients in whom high dose anti-histamines, recurrent course of steroids and omalizumab fail to achieve a reasonable response should be investigated as a new therapeutic strategy in future studies with a large cohort of patients.
Collapse
Affiliation(s)
- Elias Toubi
- The Outpatient Allergy Clinic, The Holy Family Hospital, Nazareth, Israel
| | - Zahava Vadasz
- The Proteomic Unit, The Division of Clinical Immunology, Bnai-Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
44
|
Neurath MF. IL-36 in chronic inflammation and cancer. Cytokine Growth Factor Rev 2020; 55:70-79. [DOI: 10.1016/j.cytogfr.2020.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
|
45
|
Hiz P, Kanbur E, Demir N, Akalin H, Cagan E, Pashazadeh M, Bal SH, Tezcan G, Oral HB, Budak F. Roles of novel IL-1 family (IL-36, IL-37, and IL-38) members in chronic brucellosis. Cytokine 2020; 135:155211. [PMID: 32736334 DOI: 10.1016/j.cyto.2020.155211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/20/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The secretion of interleukin (IL)-1 family cytokines is one of the most potent and earliest pro-inflammatory responses triggered by brucellosis. However, the roles of the most recently discovered IL-1 family members, IL-36, IL-37, and IL-38, in the transition into the chronic form of brucellos is remain largely unknown. Therefore, in this study, the roles of IL-36, IL-37, and IL-38 in brucella infections and their effects on the transition from the acute to chronic form of the disease were investigated. Using peripheral blood samples from 40 patients with acute brucellosis, 40 patients with chronic brucellosis, and 40 healthy control subjects, we analysed the serum concentrations of secreted IL-36, IL-37, and IL-38 using ELISA. The findings were confirmed by using RT-qPCR to analyse the mRNA levels of the genes encoding IL-36, IL-37, and IL-38 in peripheral blood mononuclear cells (PBMCs) from 10 randomly selected patients from each of the three groups. Our results showed that serum IL-37 (p < 0.001) and IL-38 (p < 0.001) concentrations were lower in patients with brucellosis than in the healthy controls. In addition, serum IL-37 and IL-38 concentrations were higher in the chronic patient group than in the acute patient group. The mRNA expression levels of IL-37 and IL1F10, genes that encode IL-38, did not affect serum cytokine secretion levels. This result suggests that the high secretion levels of IL-37 and IL-38 may be related to the progression into the chronic form of brucellosis. Our findings will aid in clarifying the mechanism of the transition of brucellosis from the acute to the chronic form of the disease.
Collapse
Affiliation(s)
- Pinar Hiz
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Ertan Kanbur
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Nesrin Demir
- Department of Immunology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Halis Akalin
- Department of Clinical Microbiology and Infection Diseases, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.
| | - Eren Cagan
- Clinics of Child Infection, Bursa Yuksek Ihtisas Education and Research Hospital, Health Sciences University, Bursa, Turkey
| | - Mehrdat Pashazadeh
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Salih Haldun Bal
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.
| | - Gulcin Tezcan
- Department of Fundamental Science, Faculty of Dentistry, Bursa Uludağ University, Bursa, Turkey.
| | - Haluk Barbaros Oral
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.
| | - Ferah Budak
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.
| |
Collapse
|