1
|
Pérez‐Ocampo J, Taborda NA, Yassin LM, Higuita‐Gutiérrez LF, Hernandez JC. Exploring the Association Between Systemic Lupus Erythematosus and High-Density Lipoproteins: A Systematic Review and Meta-Analysis. ACR Open Rheumatol 2024; 6:648-661. [PMID: 39030864 PMCID: PMC11471950 DOI: 10.1002/acr2.11700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is an autoimmune disease with inflammation as a critical feature. Recently, high-density lipoprotein cholesterol (HDLc) have been evidenced to have anti-inflammatory effects, suggesting a potential link between HDL and SLE that needs to be thoroughly studied. The aim was to explore the association between SLE and HDLc through a systematic review with meta-analysis. METHODS A systematic review with meta-analysis was conducted to assess mean differences in HDL levels between patients with SLE and healthy controls. Both qualitative and quantitative syntheses were performed, including an assessment of heterogeneity using I2, a publication bias evaluation, a methodologic quality assessment, and a forest plot under a random effects model. Subgroup analyses were conducted based on disease activity and the report of corticosteroid dosage. RESULTS A total of 53 studies were included in the qualitative synthesis, and 35 studies were included in the quantitative synthesis, comprising 3,002 patients with SLE and 2,123 healthy controls. Mean HDL levels were found to be lower in patients with SLE as follows: in the meta-analysis including all articles -6.55 (95% confidence interval [CI] -8.77 to -4.33); in patients with mild disease activity -5.46 (95% CI -8.26 to -2.65); in patients with moderate or severe disease activity -9.42 (95% CI -15.49 to -3.34); in patients using corticosteroids -5.32 (95% CI -10.35 to -0.29); and in studies with excellent methodologic quality -8.71 (95% CI -12.38 to -5.03). CONCLUSION HDL levels appear to be quantitatively altered in patients with SLE, suggesting a potential contribution to immune dysregulation, highlighting the importance of HDL in autoimmune diseases.
Collapse
Affiliation(s)
- Julián Pérez‐Ocampo
- Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| | - Natalia A. Taborda
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la SaludCorporación Universitaria RemingtonMedellínColombia
| | - Lina M. Yassin
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la SaludCorporación Universitaria RemingtonMedellínColombia
| | - Luis Felipe Higuita‐Gutiérrez
- Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
- Escuela de microbiología, Universidad de Antioquia UdeAMedellinColombia
| | - Juan C. Hernandez
- Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
- Grupo Inmunovirología, Facultad de Medicina (UdeA)Universidad de Antioquia UdeAMedellínColombia
| |
Collapse
|
2
|
Arkelius K, Wendt TS, Andersson H, Arnou A, Gottschalk M, Gonzales RJ, Ansar S. LOX-1 and MMP-9 Inhibition Attenuates the Detrimental Effects of Delayed rt-PA Therapy and Improves Outcomes After Acute Ischemic Stroke. Circ Res 2024; 134:954-969. [PMID: 38501247 DOI: 10.1161/circresaha.123.323371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Acute ischemic stroke triggers endothelial activation that disrupts vascular integrity and increases hemorrhagic transformation leading to worsened stroke outcomes. rt-PA (recombinant tissue-type plasminogen activator) is an effective treatment; however, its use is limited due to a restricted time window and hemorrhagic transformation risk, which in part may involve activation of MMPs (matrix metalloproteinases) mediated through LOX-1 (lectin-like oxLDL [oxidized low-density lipoprotein] receptor 1). This study's overall aim was to evaluate the therapeutic potential of novel MMP-9 (matrix metalloproteinase 9) ± LOX-1 inhibitors in combination with rt-PA to improve stroke outcomes. METHODS A rat thromboembolic stroke model was utilized to investigate the impact of rt-PA delivered 4 hours poststroke onset as well as selective MMP-9 (JNJ0966) ±LOX-1 (BI-0115) inhibitors given before rt-PA administration. Infarct size, perfusion, and hemorrhagic transformation were evaluated by 9.4-T magnetic resonance imaging, vascular and parenchymal MMP-9 activity via zymography, and neurological function was assessed using sensorimotor function testing. Human brain microvascular endothelial cells were exposed to hypoxia plus glucose deprivation/reperfusion (hypoxia plus glucose deprivation 3 hours/R 24 hours) and treated with ±tPA and ±MMP-9 ±LOX-1 inhibitors. Barrier function was assessed via transendothelial electrical resistance, MMP-9 activity was determined with zymography, and LOX-1 and barrier gene expression/levels were measured using qRT-PCR (quantitative reverse transcription PCR) and Western blot. RESULTS Stroke and subsequent rt-PA treatment increased edema, hemorrhage, MMP-9 activity, LOX-1 expression, and worsened neurological outcomes. LOX-1 inhibition improved neurological function, reduced edema, and improved endothelial barrier integrity. Elevated MMP-9 activity correlated with increased edema, infarct volume, and decreased neurological function. MMP-9 inhibition reduced MMP-9 activity and LOX-1 expression. In human brain microvascular endothelial cells, LOX-1/MMP-9 inhibition differentially attenuated MMP-9 levels, inflammation, and activation following hypoxia plus glucose deprivation/R. CONCLUSIONS Our findings indicate that LOX-1 inhibition and ± MMP-9 inhibition attenuate negative aspects of ischemic stroke with rt-PA therapy, thus resulting in improved neurological function. While no synergistic effect was observed with simultaneous LOX-1 and MMP-9 inhibition, a distinct interaction is evident.
Collapse
Affiliation(s)
- Kajsa Arkelius
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | - Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ (T.S.W., R.J.G.)
| | - Henrik Andersson
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | - Anaële Arnou
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | | | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ (T.S.W., R.J.G.)
| | - Saema Ansar
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| |
Collapse
|
3
|
Leonard J, Kepplinger D, Espina V, Gillevet P, Ke Y, Birukov KG, Doctor A, Hoemann CD. Whole blood coagulation in an ex vivo thrombus is sufficient to induce clot neutrophils to adopt a myeloid-derived suppressor cell signature and shed soluble Lox-1. J Thromb Haemost 2024; 22:1031-1045. [PMID: 38135253 PMCID: PMC11584067 DOI: 10.1016/j.jtha.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Blood clots are living tissues that release inflammatory mediators including IL-8/CXCL8 and MCP-1/CCL2. A deeper understanding of blood clots is needed to develop new therapies for prothrombotic disease states and regenerative medicine. OBJECTIVES To identify a common transcriptional shift in cultured blood clot leukocytes. METHODS Differential gene expression of whole blood and cultured clots (4 hours at 37 °C) was assessed by RNA sequencing (RNAseq), reverse transcriptase-polymerase chain reaction, proteomics, and histology (23 diverse healthy human donors). Cultured clot serum bioactivity was tested in endothelial barrier functional assays. RESULTS All cultured clots developed a polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) signature, including up-regulation of OLR1 (mRNA encoding lectin-like oxidized low-density lipoprotein receptor 1 [Lox-1]), IL-8/CXCL8, CXCL2, CCL2, IL10, IL1A, SPP1, TREM1, and DUSP4/MKP. Lipopolysaccharide enhanced PMN-MDSC gene expression and specifically induced a type II interferon response with IL-6 production. Lox-1 was specifically expressed by cultured clot CD15+ neutrophils. Cultured clot neutrophils, but not activated platelets, shed copious amounts of soluble Lox-1 (sLox-1) with a donor-dependent amplitude. sLox-1 shedding was enhanced by phorbol ester and suppressed by heparin and by beta-glycerol phosphate, a phosphatase inhibitor. Cultured clot serum significantly enhanced endothelial cell monolayer barrier function, consistent with a proresolving bioactivity. CONCLUSION This study suggests that PMN-MDSC activation is part of the innate immune response to coagulation which may have a protective role in inflammation. The cultured blood clot is an innovative thrombus model that can be used to study both sterile and nonsterile inflammatory states and could be used as a personalized medicine tool for drug screening.
Collapse
Affiliation(s)
- Julia Leonard
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA
| | - David Kepplinger
- Department of Statistics, George Mason University, Fairfax, Virginia, USA
| | - Virginia Espina
- Department of Systems Biology, George Mason University, Fairfax, Virginia, USA
| | - Pat Gillevet
- Department of Biology, George Mason University, Fairfax, Virginia, USA
| | - Yunbo Ke
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Allan Doctor
- Departments of Pediatrics & Bioengineering and Center for Blood Oxygen Transport and Hemostasis, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Caroline D Hoemann
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA.
| |
Collapse
|
4
|
Nutritional Approaches to Modulate Cardiovascular Disease Risk in Systemic Lupus Erythematosus: A Literature Review. Nutrients 2023; 15:nu15041036. [PMID: 36839394 PMCID: PMC9958972 DOI: 10.3390/nu15041036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic pathology characterized by a bimodal mortality pattern attributed to clinical disease activity and cardiovascular disease (CVD). A complex interaction between traditional CVD risk factors such as obesity, dyslipidemia, smoking, insulin resistance, metabolic syndrome, and hypertension, as well as the presence of non-traditional CVD risk factors such as hyperhomocysteinemia, pro-inflammatory cytokines, and C-reactive protein levels, has been suggested as a cause of the high prevalence of CVD in SLE patients. On the other hand, environmental factors, such as nutritional status, could influence the disease's prognosis; several nutrients have immunomodulators, antioxidants, and anti-cardiometabolic risk properties which could reduce SLE severity and organ damage by decreasing the development of traditional and non-traditional CVD risk factors. Therefore, this critical literature review discusses the therapeutic potential of nutritional approaches that could modulate the development of the main comorbidities related to CVD risk in SLE patients.
Collapse
|
5
|
Stinson SE, Jonsson AE, Andersen MK, Lund MAV, Holm LA, Fonvig CE, Huang Y, Stankevič E, Juel HB, Ängquist L, Sørensen TIA, Ongstad EL, Gaddipati R, Grimsby J, Rhodes CJ, Pedersen O, Christiansen M, Holm J, Hansen T. High Plasma Levels of Soluble Lectin-like Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Inflammation and Cardiometabolic Risk Profiles in Pediatric Overweight and Obesity. J Am Heart Assoc 2023; 12:e8145. [PMID: 36695299 PMCID: PMC9973661 DOI: 10.1161/jaha.122.027042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background Lectin-like oxidized low-density lipoprotein (ox-LDL) receptor-1 is a scavenger receptor for oxidized low-density lipoprotein. In adults, higher soluble lectin-like ox-LDL receptor-1 (sLOX-1) levels are associated with cardiovascular disease, type 2 diabetes, and obesity, but a similar link in pediatric overweight/obesity remains uncertain. Methods and Results Analyses were based on the cross-sectional HOLBAEK Study, including 4- to 19-year-olds from an obesity clinic group with body mass index >90th percentile (n=1815) and from a population-based group (n=2039). Fasting plasma levels of sLOX-1 and inflammatory markers were quantified, cardiometabolic risk profiles were assessed, and linear and logistic regression analyses were performed. Pubertal/postpubertal children and adolescents from the obesity clinic group exhibited higher sLOX-1 levels compared with the population (P<0.001). sLOX-1 positively associated with proinflammatory cytokines, matrix metalloproteinases, body mass index SD score, waist SD score, body fat %, plasma alanine aminotransferase, serum high-sensitivity C-reactive protein, plasma low-density lipoprotein cholesterol, triglycerides, systolic and diastolic blood pressure SD score, and inversely associated with plasma high-density lipoprotein cholesterol (all P<0.05). sLOX-1 positively associated with high alanine aminotransferase (odds ratio [OR], 1.16, P=4.1 E-04), insulin resistance (OR, 1.16, P=8.6 E-04), dyslipidemia (OR, 1.25, P=1.8 E-07), and hypertension (OR, 1.12, P=0.02). Conclusions sLOX-1 levels were elevated during and after puberty in children and adolescents with overweight/obesity compared with population-based peers and associated with inflammatory markers and worsened cardiometabolic risk profiles. sLOX-1 may serve as an early marker of cardiometabolic risk and inflammation in pediatric overweight/obesity. Registration The HOLBAEK Study, formerly known as The Danish Childhood Obesity Biobank, ClinicalTrials.gov identifier number NCT00928473, https://clinicaltrials.gov/ct2/show/NCT00928473 (registered June 2009).
Collapse
Affiliation(s)
- Sara E. Stinson
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Anna E. Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Mette K. Andersen
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Morten A. V. Lund
- The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of PediatricsHolbæk HospitalHolbækDenmark,Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark,The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of PediatricsHolbæk HospitalHolbækDenmark
| | - Cilius E. Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark,The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of PediatricsHolbæk HospitalHolbækDenmark,Department of PediatricsKolding Hospital a part of Lillebælt HospitalKoldingDenmark
| | - Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Evelina Stankevič
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Thorkild I. A. Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark,Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Emily L. Ongstad
- Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGaithersburgMD
| | - Ranjitha Gaddipati
- Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGaithersburgMD
| | - Joseph Grimsby
- Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGaithersburgMD,Regeneron Pharmaceuticals, Inc.TarrytownNY
| | - Christopher J. Rhodes
- Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGaithersburgMD
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Michael Christiansen
- The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of PediatricsHolbæk HospitalHolbækDenmark,Department for Congenital DisordersStatens Serum InstituteCopenhagenDenmark
| | - Jens‐Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark,The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of PediatricsHolbæk HospitalHolbækDenmark,Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| |
Collapse
|
6
|
Hong CG, Florida E, Li H, Parel PM, Mehta NN, Sorokin AV. Oxidized low-density lipoprotein associates with cardiovascular disease by a vicious cycle of atherosclerosis and inflammation: A systematic review and meta-analysis. Front Cardiovasc Med 2023; 9:1023651. [PMID: 36727024 PMCID: PMC9885196 DOI: 10.3389/fcvm.2022.1023651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Background Low-density lipoprotein cholesterol (LDL-C) is an established marker for cardiovascular disease (CVD) and a therapeutic target. Oxidized LDL (oxLDL) is known to be associated with excessive inflammation and abnormal lipoprotein metabolism. Chronic inflammatory diseases confer an elevated risk of premature atherosclerosis and adverse cardiovascular events. Whether oxLDL may serve as a potential biomarker for CVD stratification in populations with chronic inflammatory conditions remains understudied. Objective To perform a systematic review and meta-analysis evaluating the relationship between oxLDL and CVD (defined by incident CVD events, carotid intima-media thickness, presence of coronary plaque) in patients with chronic inflammatory diseases. Methods A systematic literature search was performed using studies published between 2000 and 2022 from PubMed, Cochrane Library, Embase (Elsevier), CINHAL (EBSCOhost), Scopus (Elsevier), and Web of Science: Core Collection (Clarivate Analytics) databases on the relationship between oxLDL and cardiovascular risk on inflamed population. The pooled effect size was combined using the random effect model and publication bias was assessed if P < 0.05 for the Egger or Begg test along with the funnel plot test. Results A total of three observational studies with 1,060 participants were ultimately included in the final meta-analysis. The results demonstrated that oxLDL is significantly increased in participants with CVD in the setting of chronic inflammatory conditions. This meta-analysis suggests that oxLDL may be a useful biomarker in risk stratifying cardiovascular disease in chronically inflamed patients.
Collapse
|
7
|
Korkmaz FT, Shenoy AT, Symer EM, Baird LA, Odom CV, Arafa EI, Dimbo EL, Na E, Molina-Arocho W, Brudner M, Standiford TJ, Mehta JL, Sawamura T, Jones MR, Mizgerd JP, Traber KE, Quinton LJ. Lectin-like oxidized low-density lipoprotein receptor 1 attenuates pneumonia-induced lung injury. JCI Insight 2022; 7:e149955. [PMID: 36264633 PMCID: PMC9746901 DOI: 10.1172/jci.insight.149955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
Identifying host factors that contribute to pneumonia incidence and severity are of utmost importance to guiding the development of more effective therapies. Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1, encoded by OLR1) is a scavenger receptor known to promote vascular injury and inflammation, but whether and how LOX-1 functions in the lung are unknown. Here, we provide evidence of substantial accumulation of LOX-1 in the lungs of patients with acute respiratory distress syndrome and in mice with pneumonia. Unlike previously described injurious contributions of LOX-1, we found that LOX-1 is uniquely protective in the pulmonary airspaces, limiting proteinaceous edema and inflammation. We also identified alveolar macrophages and recruited neutrophils as 2 prominent sites of LOX-1 expression in the lungs, whereby macrophages are capable of further induction during pneumonia and neutrophils exhibit a rapid, but heterogenous, elevation of LOX-1 in the infected lung. Blockade of LOX-1 led to dysregulated immune signaling in alveolar macrophages, marked by alterations in activation markers and a concomitant elevation of inflammatory gene networks. However, bone marrow chimeras also suggested a prominent role for neutrophils in LOX-1-mediated lung protection, further supported by LOX-1+ neutrophils exhibiting transcriptional changes consistent with reparative processes. Taken together, this work establishes LOX-1 as a tissue-protective factor in the lungs during pneumonia, possibly mediated by its influence on immune signaling in alveolar macrophages and LOX-1+ airspace neutrophils.
Collapse
Affiliation(s)
- Filiz T. Korkmaz
- Division of Immunology and Infectious Disease, Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | | - Matthew Brudner
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jawahar L. Mehta
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | - Joseph P. Mizgerd
- Pulmonary Center
- Department of Microbiology, and
- Department of Medicine and
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Lee J. Quinton
- Division of Immunology and Infectious Disease, Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
- Pulmonary Center
- Department of Medicine and
| |
Collapse
|
8
|
Wang K, Xuan Z, Liu X, Zheng M, Yang C, Wang H. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front Immunol 2022; 13:1059376. [PMID: 36466812 PMCID: PMC9715963 DOI: 10.3389/fimmu.2022.1059376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 12/25/2023] Open
Abstract
ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family of transmembrane proteases involved in the shedding of some cell membrane proteins and regulating various signaling pathways. More than 90 substrates are regulated by ADAM17, some of which are closely relevant to tumor formation and development. Besides, ADAM17 is also responsible for immune regulation and its substrate-mediated signal transduction. Recently, ADAM17 has been considered as a major target for the treatment of tumors and yet its immunomodulatory roles and mechanisms remain unclear. In this paper, we summarized the recent understanding of structure and several regulatory roles of ADAM17. Importantly, we highlighted the immunomodulatory roles of ADAM17 in tumor development, as well as small molecule inhibitors and monoclonal antibodies targeting ADAM17.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
9
|
Liu Y, Yu X, Zhang W, Zhang X, Wang M, Ji F. Mechanistic insight into premature atherosclerosis and cardiovascular complications in systemic lupus erythematosus. J Autoimmun 2022; 132:102863. [PMID: 35853760 DOI: 10.1016/j.jaut.2022.102863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is associated with a significant risk of cardiovascular disease (CVD), which substantially increases disease mortality and morbidity. The overall mechanisms associated with the development of premature atherosclerosis and CVD in SLE remain unclear, but has been considered as a result of an intricate interplay between the profound immune dysregulation and traditional CVD risk factors. Aberrant systemic inflammation in SLE may lead to an abnormal lipid profile and dysfunction, which can further fuel the pro-atherosclerotic environment. The existence of a strong imbalance between endothelial damage and vascular repair/angiogenesis promotes vascular injury, which is the early step in the progression of atherosclerotic CVD. Profound innate and adaptive immune dysregulation, characterized by excessive type I interferon burden, aberrant macrophage, platelet and complements activation, neutrophil dysregulation and neutrophil extracellular traps formation, uncontrolled T cell activation, and excessive autoantibody production and immune complex formation, have been proposed to promote accelerated CVD in SLE. While designing targeted therapies to correct the dysregulated immune activation may be beneficial in the treatment of SLE-related CVD, much additional work is needed to determine how to translate these findings into clinical practice. Additionally, a number of biomarkers display diagnostic potentials in improving CVD risk stratification in SLE, further prospective studies will help understand which biomarker(s) will be the most impactful one(s) in assessing SLE-linked CVD. Continued efforts to identify novel mechanisms and to establish criteria for assessing CVD risk as well as predicting CVD progression are in great need to improve CVD outcomes in SLE.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Wenduo Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Fusui Ji
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
10
|
Alghareeb R, Hussain A, Maheshwari MV, Khalid N, Patel PD. Cardiovascular Complications in Systemic Lupus Erythematosus. Cureus 2022; 14:e26671. [PMID: 35949751 PMCID: PMC9358056 DOI: 10.7759/cureus.26671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an auto-immune disease of a relapsing-remitting nature that can cause multiorgan damage depending on several factors, mainly the disease activity. Young age women are the most likely to be affected by the disease and the female-to-male prevalence ratio is approximately 1:10. As the number of SLE patients has been increasing in the last few decades, the annual number of deaths due to the disease and its complications has increased as well, and one of the most important systems to which high mortality is attributed is the cardiovascular system, leading to premature atherosclerosis and other events such as endocarditis and valve disease. In addition to the classical cardiovascular risk factors, studies have found a positive correlation between SLE and other cardio-harmful diseases such as metabolic syndrome and dyslipidemia. Moreover, some of the medications used in the treatment of SLE place a heavy burden on the heart. The article reviews the shared pathophysiology of SLE and cardiovascular disease along with the most common SLE- associated cardiac risks, events, and management.
Collapse
|
11
|
Wang M, Huang S, Lin X, Wen C, He Z, Huang L. The Causal Relationship Between Blood Lipids and Systemic Lupus Erythematosus Risk: A Bidirectional Two-Sample Mendelian Randomization Study. Front Genet 2022; 13:858653. [PMID: 35495122 PMCID: PMC9043646 DOI: 10.3389/fgene.2022.858653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Although observational studies have demonstrated that blood lipids were associated with systemic lupus erythematosus (SLE), the causality of this association remains elusive as traditional observational studies were prone to confounding and reverse causality biases. Here, this study attempted to reveal the potential causal link between SLE and the levels of four blood lipids (HDL cholesterol, LDL cholesterol, TG, and TC).Methods: Bidirectional two-sample Mendelian randomization (MR) was employed to explore the unconfounded causal associations between the four blood lipids and SLE. In addition, regression-based Multivariate MR (MVMR) to quantify the possible mediation effects of blood lipids on SLE. After a rigorous evaluation of the quality of studies, the single-nucleotide polymorphisms (SNPs) associated with the four blood lipids were selected from the Global Lipids Genetic Consortium (GLGC) consisted of 188,577 individuals of European ancestry, and the SNPs related to SLE were selected from a large-scale genome-wide association study (GWAS) database named IEU GWAS. Subsequently, MR analyses were conducted with inverse-variance weighted (IVW), weighted median, weighted mode, simple mode, and MR-Egger regression. Sensitivity analyses were performed to verify whether heterogeneity and pleiotropy led to bias in the MR results.Results: Bidirectional two-sample MR results demonstrated that there was no significant causal association between SLE and the four blood lipids (When setting SLE as outcome, HDL cholesterol and SLE, IVW OR: 1.32, 95% CI: 1.05∼1.66, p = 1.78E-02; LDL cholesterol and SLE, IVW OR: 1.26, 95% CI: 1.04∼1.53, p = 2.04E-02; TG and SLE, IVW OR: 1.04, 95% CI: 0.71∼1.51, p = 8.44E-01; TC and SLE, IVW OR: 1.07, 95% CI: 0.89∼1.29, p = 4.42E-01; When setting SLE as exposure, SLE and HDL cholesterol, IVW OR: 1.00, 95% CI: 0.99∼1.01, p = 9.51E-01; SLE and LDL cholesterol, IVW OR: 0.99, 95% CI: 0.98∼1.00, p = 3.14E-01; SLE and TG, IVW OR: 0.99, 95% CI: 0.98∼1.00, p = 1.30E-02; SLE and TC, IVW OR: 0.99, 95% CI: 0.98∼1.00, p = 1.56E-01). Our MVMR analysis also provided little evidence that genetically determined lipid traits were significantly associated with the risk of SLE (HDL cholesterol and SLE, p = 9.63E-02; LDL cholesterol and SLE, p = 9.63E-02; TG and SLE, p = 8.44E-01; TC and SLE, p = 4.42E-01).Conclusion: In conclusion, these data provide evidence that genetic changes in lipid traits are not significantly associated with SLE risk in the European population.
Collapse
Affiliation(s)
| | | | | | | | - Zhixing He
- *Correspondence: Zhixing He, ; Lin Huang,
| | - Lin Huang
- *Correspondence: Zhixing He, ; Lin Huang,
| |
Collapse
|
12
|
Mak A, Chan JKY. Endothelial function and endothelial progenitor cells in systemic lupus erythematosus. Nat Rev Rheumatol 2022; 18:286-300. [PMID: 35393604 DOI: 10.1038/s41584-022-00770-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
The observations that traditional cardiovascular disease (CVD) risk factors fail to fully account for the excessive cardiovascular mortality in patients with systemic lupus erythematosus (SLE) compared with the general population have prompted in-depth investigations of non-traditional, SLE-related risk factors that contribute to cardiovascular complications in patients with SLE. Of the various perturbations of vascular physiology, endothelial dysfunction, which is believed to occur in the earliest step of atherosclerosis, has been extensively investigated for its contribution to CVD risk in SLE. Endothelial progenitor cells (EPCs), which play a crucial part in vascular repair, neovascularization and maintenance of endothelial function, are quantitatively and functionally reduced in patients with SLE. Yet, the lack of a unified definition of EPCs, standardization of the quantity and functional assessment of EPCs as well as endothelial function measurement pose challenges to the translation of endothelial function measurements and EPC levels into prognostic markers for CVD in patients with SLE. This Review discusses factors that contribute to CVD in SLE, with particular focus on how endothelial function and EPCs are evaluated currently, and how EPCs are quantitatively and functionally altered in patients with SLE. Potential strategies for the use of endothelial function measurements and EPC quantification as prognostic markers of CVD in patients with SLE, and the limitations of their prognostication potential, are also discussed.
Collapse
Affiliation(s)
- Anselm Mak
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore, Singapore.
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Academic Clinical Programme in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Tejon G, Valdivieso N, Flores-Santibañez F, Barra-Valdebenito V, Martínez V, Rosemblatt M, Sauma D, Bono MR. Phenotypic and functional alterations of peritoneal macrophages in lupus-prone mice. Mol Biol Rep 2022; 49:4193-4204. [PMID: 35211864 PMCID: PMC9262788 DOI: 10.1007/s11033-022-07252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Abstract
Background Several studies have demonstrated the contribution of innate immune cells, including macrophages, in promoting systemic lupus erythematosus (SLE). Macrophages, one of the most abundant cell populations in the peritoneal cavity, are considered multifunctional cells with phenotypic plasticity. However, the functional properties of peritoneal macrophages in steady-state and during the progression of SLE remain poorly defined. Methods and results Using the [NZB × NZW]F1 (BWF1) murine model of SLE, we analyzed the phenotype and function of peritoneal macrophages during the disease’s onset. We found a higher frequency of peritoneal macrophages and B1a cells in BWF1-diseased mice than age-matched controls. Additionally, macrophages from diseased animals expressed lower levels of CD206, MHC-II, and Sirpα. RNAseq analysis identified 286 differentially expressed genes in peritoneal macrophages from diseased-BWF1 mice compared to control mice. Functional experiments demonstrate that peritoneal macrophages from diseased-BWF1 mice secrete higher levels of pro-inflammatory cytokines when activated with TLR7 and TLR9 agonists, and they were less efficient in suppressing the activation and proliferation of peritoneal LPS-activated B cells. These data demonstrate that peritoneal macrophages from BWF1-diseased mice present phenotypic and functional alterations shifting to a more pro-inflammatory state. Conclusions The increase of macrophages with an altered phenotype and function together with the accumulation of B1a cells in the peritoneal cavity of diseased-BWF1 mice may promote the progression of the disease. Advancing awareness of the role and phenotype of peritoneal macrophages in SLE may contribute to a better understanding of these types of diseases and the development of novel therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07252-0.
Collapse
Affiliation(s)
- Gabriela Tejon
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Nicolás Valdivieso
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | - Víctor Martínez
- FAVET-INBIOGEN, Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia & Vida, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
- Centro Ciencia & Vida, Santiago, Chile.
| |
Collapse
|
14
|
Wang J, Yu C, Zhuang J, Qi W, Jiang J, Liu X, Zhao W, Cao Y, Wu H, Qi J, Zhao RC. The role of phosphatidylserine on the membrane in immunity and blood coagulation. Biomark Res 2022; 10:4. [PMID: 35033201 PMCID: PMC8760663 DOI: 10.1186/s40364-021-00346-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
The negatively charged aminophospholipid, phosphatidylserine (PtdSer), is located in the inner leaflet of the plasma membrane in normal cells, and may be exposed to the outer leaflet under some immune and blood coagulation processes. Meanwhile, Ptdser exposed to apoptotic cells can be recognized and eliminated by various immune cells, whereas on the surface of activated platelets Ptdser interacts with coagulation factors prompting enhanced production of thrombin which significantly facilitates blood coagulation. In the case where PtdSer fails in exposure or mistakenly occurs, there are occurrences of certain immunological and haematological diseases, such as the Scott syndrome and Systemic lupus erythematosus. Besides, viruses (e.g., Human Immunodeficiency Virus (HIV), Ebola virus (EBOV)) can invade host cells through binding the exposed PtdSer. Most recently, the Corona Virus Disease 2019 (COVID-19) has been similarly linked to PtdSer or its receptors. Therefore, it is essential to comprehensively understand PtdSer and its functional characteristics. Therefore, this review summarizes Ptdser, its eversion mechanism; interaction mechanism, particularly with its immune receptors and coagulation factors; recognition sites; and its function in immune and blood processes. This review illustrates the potential aspects for the underlying pathogenic mechanism of PtdSer-related diseases, and the discovery of new therapeutic strategies as well.
Collapse
Affiliation(s)
- Jiao Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Changxin Yu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Junyi Zhuang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiawen Jiang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xuanting Liu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wanwei Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yiyang Cao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hao Wu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, No. 5 Dongdansantiao, Beijing, 100005, China.
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| |
Collapse
|
15
|
Akhmedov A, Crucet M, Simic B, Kraler S, Bonetti NR, Ospelt C, Distler O, Ciurea A, Liberale L, Jauhiainen M, Metso J, Miranda M, Cydecian R, Schwarz L, Fehr V, Zilinyi R, Amrollahi-Sharifabadi M, Ntari L, Karagianni N, Ruschitzka F, Laaksonen R, Vanhoutte PM, Kollias G, Camici GG, Lüscher TF. TNFα induces endothelial dysfunction in rheumatoid arthritis via LOX-1 and arginase 2: reversal by monoclonal TNFα antibodies. Cardiovasc Res 2022; 118:254-266. [PMID: 33483748 DOI: 10.1093/cvr/cvab005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 02/02/2023] Open
Abstract
AIMS Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting joints and blood vessels. Despite low levels of low-density lipoprotein cholesterol (LDL-C), RA patients exhibit endothelial dysfunction and are at increased risk of death from cardiovascular complications, but the molecular mechanism of action is unknown. We aimed in the present study to identify the molecular mechanism of endothelial dysfunction in a mouse model of RA and in patients with RA. METHODS AND RESULTS Endothelium-dependent relaxations to acetylcholine were reduced in aortae of two tumour necrosis factor alpha (TNFα) transgenic mouse lines with either mild (Tg3647) or severe (Tg197) forms of RA in a time- and severity-dependent fashion as assessed by organ chamber myograph. In Tg197, TNFα plasma levels were associated with severe endothelial dysfunction. LOX-1 receptor was markedly up-regulated leading to increased vascular oxLDL uptake and NFκB-mediated enhanced Arg2 expression via direct binding to its promoter resulting in reduced NO bioavailability and vascular cGMP levels as shown by ELISA and chromatin immunoprecipitation. Anti-TNFα treatment with infliximab normalized endothelial function together with LOX-1 and Arg2 serum levels in mice. In RA patients, soluble LOX-1 serum levels were also markedly increased and closely related to serum levels of C-reactive protein. Similarly, ARG2 serum levels were increased. Similarly, anti-TNFα treatment restored LOX-1 and ARG2 serum levels in RA patients. CONCLUSIONS Increased TNFα levels not only contribute to RA, but also to endothelial dysfunction by increasing vascular oxLDL content and activation of the LOX-1/NFκB/Arg2 pathway leading to reduced NO bioavailability and decreased cGMP levels. Anti-TNFα treatment improved both articular symptoms and endothelial function by reducing LOX-1, vascular oxLDL, and Arg2 levels.
Collapse
MESH Headings
- Adult
- Animals
- Animals, Genetically Modified
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/immunology
- Aorta, Thoracic/physiopathology
- Arginase/genetics
- Arginase/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/enzymology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/physiopathology
- Case-Control Studies
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelial Cells/immunology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/physiopathology
- Female
- Humans
- Lipoproteins, LDL/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Middle Aged
- NF-kappa B/metabolism
- Scavenger Receptors, Class E/genetics
- Scavenger Receptors, Class E/metabolism
- Signal Transduction
- Tumor Necrosis Factor Inhibitors/therapeutic use
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Vasodilation/drug effects
- Mice
Collapse
Affiliation(s)
- Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
| | - Margot Crucet
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
| | - Branko Simic
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
| | - Nicole R Bonetti
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
| | - Caroline Ospelt
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Adrian Ciurea
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Luca Liberale
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
- Department of Internal Medicine and Medical Specialties, University of Genova, Genova, Italy
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Melroy Miranda
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
| | - Rose Cydecian
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
| | - Lena Schwarz
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
| | - Vera Fehr
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
| | - Rita Zilinyi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | | | - Lydia Ntari
- Institute for Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Niki Karagianni
- Institute for Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital, Zürich, Switzerland
| | - Reijo Laaksonen
- Zora Biosciences Oy, Espoo, Finland
- Finnish Cardiovascular Research Center, University of Tampere and Finnish Clinical Biobank Tampere, Tampere University Hospital, Tampere, Finland
| | - Paul M Vanhoutte
- Department of Pharmacology, Hong Kong University, Hong Kong, Peoples Republic of China
| | - George Kollias
- Institute for Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Giovanni G Camici
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8001 Zurich, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| |
Collapse
|
16
|
Feng J, Zhai Z, Wang Z, Huang L, Dong S, Liu K, Shi W, Lu G, Qin W. Speckle tracking imaging combined with myocardial comprehensive index to evaluate left ventricular function changes in patients with systemic lupus erythematosus. Echocardiography 2021; 38:1632-1640. [PMID: 34555198 DOI: 10.1111/echo.15189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/17/2021] [Accepted: 08/15/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To evaluate early changes in left ventricular systolic function in patients with systemic lupus erythematosus (SLE) using three-dimensional speckle tracking imaging (3D-STI). METHODS A total of 30 SLE patients and 30 healthy people (control group) were selected, the patients were further divided into subgroups according to their Safety of Estrogens in Lupus Erythematosus National Assessment version of the SLE Disease Activity Index (SELENA-SLEDAI) score: ≤ 12: mild-to-moderate group; > 12: severe group. All participants were examined using 3D-STI, the 3D-STI parameters were obtained. Receiver operating curves (ROC) were prepared for above parameters and analyzed to identify correlations among 3D-STI parameters and high sensitivity-TropT (hs-TropT). RESULTS Compared with the control group, the absolute values of left ventricular end-diastolic volume (LVEDV), left ventricular ejection fraction (LVEF), global longitudinal strain (GLS), global circumferential strain (GCS), left ventricular twist angle (LVtw), torsion (Tor) and myocardial comprehensive index (MCI) decreased, left ventricular end diastolic mass (LV EDmass), left ventricular end systolic mass (LV ESmass) and peak strain dispersion (PSD) increased in the mild-to-moderate and the severe groups (P2 < 0.05, P3 < 0.05). There was statistically significant difference in terms of 3D-STI parameters between the mild-to-moderate group and the severe group (P1 < 0.05). The highest area under the ROC for MCI was 0.909, the highest sensitivity for MCI was 90.00%, and the highest specificity for Tor was 86.67%. Correlation analysis showed that there was a good correlation between the MCI and hs-TropT (r = - 0.677). CONCLUSION 3D-STI technology may help detect early changes in left ventricular systolic function in patients with SLE.
Collapse
Affiliation(s)
- Jia Feng
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Zijing Zhai
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Zhen Wang
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Lei Huang
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Shanshan Dong
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Kuichan Liu
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Wenrong Shi
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Guilin Lu
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Wenjuan Qin
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
17
|
Todorova VK, Wei JY, Makhoul I. Subclinical doxorubicin-induced cardiotoxicity update: role of neutrophils and endothelium. Am J Cancer Res 2021; 11:4070-4091. [PMID: 34659877 PMCID: PMC8493405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapy agent that often causes cardiotoxicity. Despite a number of extensive studies, the risk for DOX cardiotoxicity remains unpredictable. The majority of the studies on DOX-induced cardiotoxicity have been focused on the effects on cardiomyocytes that lead to contractile dysfunction. The roles of systemic inflammation, endothelial injury and neutrophil recruitment, all induced by the DOX, are increasingly recognized as the mechanisms that trigger the development and progression of DOX-induced cardiomyopathy. This review explores recent data regarding the possible mechanisms and biomarkers of early subclinical DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Valentina K Todorova
- Division of Medical Oncology/Department of Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
- Department of Geriatrics, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| | - Issam Makhoul
- Division of Medical Oncology/Department of Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| |
Collapse
|
18
|
Chen DY, Sawamura T, Dixon RAF, Sánchez-Quesada JL, Chen CH. Autoimmune Rheumatic Diseases: An Update on the Role of Atherogenic Electronegative LDL and Potential Therapeutic Strategies. J Clin Med 2021; 10:1992. [PMID: 34066436 PMCID: PMC8124242 DOI: 10.3390/jcm10091992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis has been linked with an increased risk of atherosclerotic cardiovascular disease (ASCVD). Autoimmune rheumatic diseases (AIRDs) are associated with accelerated atherosclerosis and ASCVD. However, the mechanisms underlying the high ASCVD burden in patients with AIRDs cannot be explained only by conventional risk factors despite disease-specific factors and chronic inflammation. Nevertheless, the normal levels of plasma low-density lipoprotein (LDL) cholesterol observed in most patients with AIRDs do not exclude the possibility of increased LDL atherogenicity. By using anion-exchange chromatography, human LDL can be divided into five increasingly electronegative subfractions, L1 to L5, or into electropositive and electronegative counterparts, LDL (+) and LDL (-). Electronegative L5 and LDL (-) have similar chemical compositions and can induce adverse inflammatory reactions in vascular cells. Notably, the percentage of L5 or LDL (-) in total LDL is increased in normolipidemic patients with AIRDs. Electronegative L5 and LDL (-) are not recognized by the normal LDL receptor but instead signal through the lectin-like oxidized LDL receptor 1 (LOX-1) to activate inflammasomes involving interleukin 1β (IL-1β). Here, we describe the detailed mechanisms of AIRD-related ASCVD mediated by L5 or LDL (-) and discuss the potential targeting of LOX-1 or IL-1β signaling as new therapeutic modalities for these diseases.
Collapse
Affiliation(s)
- Der-Yuan Chen
- Translational Medicine Center, China Medical University Hospital, Taichung 404, Taiwan;
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Richard A. F. Dixon
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX 77030, USA;
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute IIB Sant Pau, 08041 Barcelona, Spain;
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 08041 Barcelona, Spain
| | - Chu-Huang Chen
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- New York Heart Research Foundation, Mineola, NY 11501, USA
| |
Collapse
|
19
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
20
|
Neutrophils as a Novel Target of Modified Low-Density Lipoproteins and an Accelerator of Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21218312. [PMID: 33167592 PMCID: PMC7664187 DOI: 10.3390/ijms21218312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) significantly contribute to various pathophysiological conditions, including cardiovascular diseases. NET formation in the vasculature exhibits inflammatory and thrombogenic activities on the endothelium. NETs are induced by various stimulants such as exogenous damage-associated molecular patterns (DAMPs). Oxidatively modified low-density lipoprotein (oxLDL) has been physiologically defined as a subpopulation of LDL that comprises various oxidative modifications in the protein components and oxidized lipids, which could act as DAMPs. oxLDL has been recognized as a crucial initiator and accelerator of atherosclerosis through foam cell formation by macrophages; however, recent studies have demonstrated that oxLDL stimulates neutrophils to induce NET formation and enhance NET-mediated inflammatory responses in vascular endothelial cells, thereby suggesting that oxLDL may be involved in cardiovascular diseases through neutrophil activation. As NETs comprise myeloperoxidase and proteases, they have the potential to mediate oxidative modification of LDL. This review summarizes recent updates on the analysis of NETs, their implications for cardiovascular diseases, and prospects for a possible link between NET formation and oxidative modification of lipoproteins.
Collapse
|