1
|
Borkowska-Sztachańska M, Thoene M, Socha K, Juśkiewicz J, Majewski MS. Decreased vascular contraction and changes in oxidative state in middle-aged Wistar rats after exposure to increased levels of dietary zinc. Toxicol Appl Pharmacol 2024; 491:117049. [PMID: 39098745 DOI: 10.1016/j.taap.2024.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Both copper and zinc are known to be important for maintaining health, but most research has focused on deficiencies of these elements. Recent studies have shown that high levels of Cu can be toxic, especially to the cardiovascular (CV) system. However, little research has been done on the effects of higher levels of Zn on the CV system. In this study, male Wistar rats aged 12 months were given a diet with twice the recommended daily allowance of zinc (31.8 mg/kg of diet) and compared to a control group (15.9 mg/kg of diet) after 8 weeks. Blood plasma and internal organs of both groups were examined for levels of copper, zinc, selenium and iron, as well as several key enzymes. Aortic rings from both groups were also examined to determine vascular functioning. There were very few changes in the vascular system functioning after chronic exposure to zinc, and only one enzyme, heme oxygenase-1 (HO-1) was elevated, whereas vascular contraction to noradrenaline decreased with no changes in vasodilation to acetylcholine. Of the micronutrients, zinc and selenium were elevated in the blood plasma, while copper decreased. Meanwhile, the total antioxidant status increased. These were not observed in the liver. Therefore, it is proposed that there is a mechanism in place within the vascular system to protect against the overproduction of heme, caused by chronic zinc exposure.
Collapse
Affiliation(s)
- Małgorzata Borkowska-Sztachańska
- Department of Mental and Psychosomatic Diseases, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Michael Thoene
- Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland.
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, 15-222 Białystok, Poland.
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| | - Michał S Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| |
Collapse
|
2
|
Asif K, Adeel M, Mahbubur Rahman M, Bartoletti M, Brezar SK, Cemazar M, Canzonieri V, Rizzolio F, Caligiuri I. Copper nitroprusside: An innovative approach for targeted cancer therapy via ROS modulation. Biomed Pharmacother 2024; 171:116017. [PMID: 38194739 DOI: 10.1016/j.biopha.2023.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
The clinical application of nanomaterials for chemodynamic therapy (CDT), which generate multiple reactive oxygen species (ROS), presents significant challenges. These challenges arise due to insufficient levels of endogenous hydrogen peroxide and catalytic ions necessary to initiate Fenton reactions. As a result, sophisticated additional delivery systems are required. In this study, a novel bimetallic copper (II) pentacyanonitrosylferrate (Cu(II)NP, Cu[Fe(CN) 5 NO]) material was developed to address these limitations. This material functions as a multiple ROS generator at tumoral sites by self-inducing hydrogen peroxide and producing peroxynitrite (ONOO-) species. The research findings demonstrate that this material exhibits low toxicity towards normal liver organoids, yet shows potent antitumoral effects on High Grade Serous Ovarian Cancer (HGSOC) organoid patients, regardless of platinum resistance. Significantly, this research introduces a promising therapeutic opportunity by proposing a single system capable of replacing the need for H2O2, additional catalysts, and NO-based delivery systems. This innovative system exhibits remarkable multiple therapeutic mechanisms, paving the way for potential advancements in clinical treatments.
Collapse
Affiliation(s)
- Kanwal Asif
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy
| | - Muhammad Adeel
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju 27478, South Korea
| | - Michele Bartoletti
- Department of Medicine (DAME), University of Udine, Udine, Italy; Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
3
|
Kubohara Y, Fukunaga Y, Kikuchi H, Kuwayama H. Pharmacological Evidence That Dictyostelium Differentiation-Inducing Factor 1 Promotes Glucose Uptake Partly via an Increase in Intracellular cAMP Content in Mouse 3T3-L1 Cells. Molecules 2023; 28:7926. [PMID: 38067655 PMCID: PMC10708055 DOI: 10.3390/molecules28237926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Differentiation-inducing factor 1 (DIF-1) isolated from the cellular slime mold Dictyostelium discoideum can inhibit mammalian calmodulin-dependent cAMP/cGMP phosphodiesterase (PDE1) in vitro. DIF-1 also promotes glucose uptake, at least in part, via a mitochondria- and AMPK-dependent pathway in mouse 3T3-L1 fibroblast cells, but the mechanism underlying this effect has not been fully elucidated. In this study, we investigated the effects of DIF-1 on intracellular cAMP and cGMP levels, as well as the effects that DIF-1 and several compounds that increase cAMP and cGMP levels have on glucose uptake in confluent 3T3-L1 cells. DIF-1 at 20 μM (a concentration that promotes glucose uptake) increased the level of intracellular cAMP by about 20% but did not affect the level of intracellular cGMP. Neither the PDE1 inhibitor 8-methoxymethyl-3-isobutyl-1-methylxanthine at 10-200 μM nor the broad-range PDE inhibitor 3-isobutyl-1-methylxanthine at 40-400 μM had any marked effects on glucose uptake. The membrane-permeable cAMP analog 8-bromo-cAMP at 200-1000 μM significantly promoted glucose uptake (by 20-25%), whereas the membrane-permeable cGMP analog 8-bromo-cGMP at 3-100 μM did not affect glucose uptake. The adenylate cyclase activator forskolin at 1-10 μM promoted glucose uptake by 20-30%. Thus, DIF-1 may promote glucose uptake by 3T3-L1 cells, at least in part, via an increase in intracellular cAMP level.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan
| | - Yuko Fukunaga
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi 288-0025, Japan;
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| | - Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| |
Collapse
|
4
|
Majewski M, Gromadziński L, Cholewińska E, Ognik K, Fotschki B, Juśkiewicz J. The Interaction of Dietary Pectin, Inulin, and Psyllium with Copper Nanoparticle Induced Changes to the Cardiovascular System. Nutrients 2023; 15:3557. [PMID: 37630746 PMCID: PMC10457830 DOI: 10.3390/nu15163557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
We aimed to analyze how supplementation with a standard (recommended, 6.5 mg/kg) or enhanced (two-times higher, 13 mg/kg) dose of copper (Cu), in the form of nanoparticles (NPs) along with dietary intervention via the implementation of diverse types of fiber, affects the cardiovascular system in rats. Nine-week-old male Wistar Han rats (n/group = 10) received, for an additional 6 weeks, a controlled diet with cellulose as dietary fiber and ionic Cu (in the form of carbonate salt). The experimental groups received cellulose, pectin, inulin, and psyllium as dietary fiber, together with CuNPs (6.5 or 13 mg/kg diet). After the experimental feeding, samples of blood, hearts, and thoracic arteries were collected for further analysis. Compared to pectin, and under a standard dose of CuNPs, inulin and psyllium beneficially increased the antioxidant capacity of lipid- and water-soluble compounds in the blood, and decreased heart malondialdehyde. Moreover, pectin decreased heart catalase (CAT) and cyclooxygenase (COX)-2 in the aortic rings compared to inulin and psyllium under standard and enhanced doses of copper. When the dose of CuNPs was enhanced, inulin and psyllium potentiated vasodilation to acetylcholine by up-regulation of COX-2-derived vasodilator prostanoids compared to both cellulose and pectin, and this was modulated with selective inducible nitric oxide synthase (iNOS) inhibitor for psyllium only. Moreover, inulin decreased heart CAT compared to psyllium. Our results suggest that supplementation with dietary fiber may protect the vascular system against potentially harmful metal NPs by modulating the antioxidant mechanisms.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.C.); (K.O.)
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.C.); (K.O.)
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| |
Collapse
|
5
|
Kitala K, Tanski D, Godlewski J, Krajewska-Włodarczyk M, Gromadziński L, Majewski M. Copper and Zinc Particles as Regulators of Cardiovascular System Function-A Review. Nutrients 2023; 15:3040. [PMID: 37447366 DOI: 10.3390/nu15133040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Copper and zinc are micronutrients that play a crucial role in many cellular pathways, act as cofactors in enzymatic systems, and hence, modulate enzyme activity. The regulation of these elements in homeostasis is precisely controlled by various mechanisms. Superoxide dismutase (SOD) is an enzyme requiring both copper and zinc for proper functioning. Additionally, there is an interaction between the concentrations of copper and zinc. Dietary ingestion of large amounts of zinc augments intestinal absorption of this trace element, resulting in copper deficiency secondary to zinc excess. The presence of an overabundance of copper and zinc has a detrimental impact on the cardiovascular system; however, the impact on vascular contractility varies. Copper plays a role in the modulation of vascular remodeling in the cardiac tissue, and the phenomenon of cuproptosis has been linked to the pathogenesis of coronary artery disease. The presence of copper has an observable effect on the vasorelaxation mediated by nitric oxide. The maintenance of proper levels of zinc within an organism influences SOD and is essential in the pathogenesis of myocardial ischemia/reperfusion injury. Recently, the effects of metal nanoparticles have been investigated due to their unique characteristics. On the other hand, dietary introduction of metal nanoparticles may result in vascular dysfunction, oxidative stress, and cellular DNA damage. Copper and zinc intake affect cardiovascular function, but more research is needed.
Collapse
Affiliation(s)
- Klaudia Kitala
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Damian Tanski
- Department of Human Histology and Embryology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Magdalena Krajewska-Włodarczyk
- Department of Mental and Psychosomatic Diseases, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
6
|
Dietary Effects of Chromium Picolinate and Chromium Nanoparticles in Wistar Rats Fed with a High-Fat, Low-Fiber Diet: The Role of Fat Normalization. Nutrients 2022; 14:nu14235138. [PMID: 36501167 PMCID: PMC9741435 DOI: 10.3390/nu14235138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
We aimed to evaluate how feeding a high-fat-low-fiber (F) diet to rats and dietary intervention with the implementation of a standard-fat-and-fiber (S) diet affects the response of the cardiovascular system to chromium (III) picolinate (Cr-Pic) and, alternatively, chromium nanoparticles (Cr-NPs). Young male Wistar Han rats (n/group = 12) from either the fatty group (18 weeks on F diet) or the intervention group (9 weeks on F diet + 9 weeks on S diet) received a pharmacologically relevant dose of 0.3 mg Cr/kg body weight in the form of Cr-Pic or Cr-NPs for 9 weeks. Our study on rats confirmed the pro-inflammatory effect of an F diet administered for 18 weeks. In the intervention group, both Cr-Pic and Cr-NPs decreased heart glutathione ratio (GSH+GSSG), enhanced participation of nitric oxide (NO) derived from inducible NO synthase (iNOS) in vascular relaxation to acetylcholine (ACh), increased the vasodilator net effect of cyclooxygenase-2 (COX-2)-derived prostanoids, and increased the production of superoxide anion (O2.-) in aortic rings. Meanwhile, in the fatty group, there was increased heart superoxide dismutase (SOD), decreased heart catalase (CAT), and reduced sensitivity in pre-incubated aortic rings to endogenous prostacyclin (PGI2). The factors that significantly differentiated Cr-NPs from Cr-Pic were (i) decreased blood antioxidant capacity of water-soluble compounds (0.75-fold, p = 0.0205), (ii) increased hydrogen peroxide (H2O2) production (1.59-fold, p = 0.0332), and (iii) modified vasodilator response due to PGI2 synthesis inhibition (in the intervention group) vs. modified ACh-induced vasodilator response due to (iv) COX inhibition and v) PGI2 synthesis inhibition with thromboxane receptor blockage after 18 weeks on F diet (in the fatty group). Our results show that supplementation with Cr-Pic rather than with Cr-NPs is more beneficial in rats who regularly consumed an F diet (e.g., for 18 weeks). On the contrary, in the intervention group (9 weeks on F diet + 9 weeks of dietary fat normalization (the S diet)), Cr-Pic and Cr-NPs could function as pro-oxidant agents, initiating free-radical reactions that led to oxidative stress.
Collapse
|
7
|
Majewski M, Juśkiewicz J, Krajewska-Włodarczyk M, Gromadziński L, Socha K, Cholewińska E, Ognik K. The Role of 20-HETE, COX, Thromboxane Receptors, and Blood Plasma Antioxidant Status in Vascular Relaxation of Copper-Nanoparticle-Fed WKY Rats. Nutrients 2021; 13:nu13113793. [PMID: 34836047 PMCID: PMC8623823 DOI: 10.3390/nu13113793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the addition of copper nanoparticles (NPs) in a daily diet (6.5 mg/kg) was studied in different animal models as a possible alternative to ionic forms. Male Wistar-Kyoto rats (24-week-old, n = 11) were fed with copper, either in the form of carbonate salt (Cu6.5) or metal-based copper NPs (NP6.5), for 8 weeks. The third group was fed with a half dose of each (NP3.25 + Cu3.25). The thoracic aorta and blood plasma was studied. Supplementation with NP6.5 decreased the Cu (×0.7), Cu/Zn-ratio (×0.6) and catalase (CAT, ×0.7), and increased Zn (×1.2) and superoxide dismutase (SOD, ×1.4). Meanwhile, NP3.25 + Cu3.25 decreased the Cu/Zn-ratio (×0.7), and CAT (×0.7), and increased the daily feed intake (×1.06). Preincubation with either the selective cyclooxygenase (COX)-2 inhibitor, or the non-selective COX-1/2 inhibitor attenuated vasodilation of rat thoracic aorta in the NP6.5 group exclusively. However, an increased vasodilator response was observed in the NP6.5 and NP3.25 + Cu3.25 group of rats after preincubation with an inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) formation, and the thromboxane receptor (TP) antagonist. Significant differences were observed between the NP6.5 and NP3.25 + Cu3.25 groups of rats in: dietary intake, acetylcholine-induced vasodilation, and response to COX-inhibitors. Copper NPs in a standard daily dose had more significant effects on the mechanism(s) responsible for the utilization of reactive oxygen species in the blood plasma with the participation of prostanoids derived from COX-2 in the vascular relaxation. Dietary copper NPs in both doses modified vasodilation through the vasoconstrictor 20-HETE and the TP receptors.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, UWM, 10-082 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-524-56-68
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | | | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland; (E.C.); (K.O.)
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland; (E.C.); (K.O.)
| |
Collapse
|
8
|
Saputra F, Uapipatanakul B, Lee JS, Hung SM, Huang JC, Pang YC, Muñoz JER, Macabeo APG, Chen KHC, Hsiao CD. Co-Treatment of Copper Oxide Nanoparticle and Carbofuran Enhances Cardiotoxicity in Zebrafish Embryos. Int J Mol Sci 2021; 22:ijms22158259. [PMID: 34361024 PMCID: PMC8435221 DOI: 10.3390/ijms22158259] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
The use of chemicals to boost food production increases as human consumption also increases. The insectidal, nematicidal and acaricidal chemical carbofuran (CAF), is among the highly toxic carbamate pesticide used today. Alongside, copper oxide nanoparticles (CuO) are also used as pesticides due to their broad-spectrum antimicrobial activity. The overuse of these pesticides may lead to leaching into the aquatic environments and could potentially cause adverse effects to aquatic animals. The aim of this study is to assess the effects of carbofuran and copper oxide nanoparticles into the cardiovascular system of zebrafish and unveil the mechanism behind them. We found that a combination of copper oxide nanoparticle and carbofuran increases cardiac edema in zebrafish larvae and disturbs cardiac rhythm of zebrafish. Furthermore, molecular docking data show that carbofuran inhibits acetylcholinesterase (AChE) activity in silico, thus leading to impair cardiac rhythms. Overall, our data suggest that copper oxide nanoparticle and carbofuran combinations work synergistically to enhance toxicity on the cardiovascular performance of zebrafish larvae.
Collapse
Affiliation(s)
- Ferry Saputra
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Boontida Uapipatanakul
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi 12110, Thailand;
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung 900391, Taiwan; (J.-S.L.); (S.-M.H.)
| | - Shih-Min Hung
- Department of Applied Physics, National Pingtung University, Pingtung 900391, Taiwan; (J.-S.L.); (S.-M.H.)
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (J.-C.H.); (Y.-C.P.)
| | - Yun-Chieh Pang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (J.-C.H.); (Y.-C.P.)
| | - John Emmanuel R. Muñoz
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines;
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines;
- Correspondence: (A.P.G.M.); (K.H.-C.C.); (C.-D.H.)
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (J.-C.H.); (Y.-C.P.)
- Correspondence: (A.P.G.M.); (K.H.-C.C.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (A.P.G.M.); (K.H.-C.C.); (C.-D.H.)
| |
Collapse
|
9
|
Majewski M, Jurgoński A. The Effect of Hemp ( Cannabis sativa L.) Seeds and Hemp Seed Oil on Vascular Dysfunction in Obese Male Zucker Rats. Nutrients 2021; 13:nu13082575. [PMID: 34444734 PMCID: PMC8398088 DOI: 10.3390/nu13082575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Seeds of industrial hemp (Cannabis sativa L.) contain a large amount of protein (26.3%), dietary fiber (27.5%), and fatty acids (33.2%), including linoleic, α-linolenic, and some amount of γ-linolenic acid. In our study, obese male Zucker rats (n = 6) at 8 weeks of age were supplemented for a further 4 weeks with either ground hemp seeds (12% diet) or lipid fractions in the form of hemp seed oil (4% diet). Hemp oil decreased blood plasma HDL-cholesterol (x0.76, p ≤ 0.0001), triglycerides (x0.55, p = 0.01), and calculated atherogenic parameters. Meanwhile, hemp seeds decreased HDL-cholesterol (x0.71, p ≤ 0.0001) and total cholesterol (x0.81, p = 0.006) but not the atherogenic index. The plasma antioxidant capacity of water-soluble compounds was decreased by the seeds (x0.30, p = 0.0015), which in turn was associated with a decrease in plasma uric acid (x0.18, p = 0.03). Dietary hemp seeds also decreased plasma urea (x0.80, p = 0.02), while the oil decreased the plasma total protein (x0.90, p = 0.05). Hemp seeds and the oil decreased lipid peroxidation in the blood plasma and in the heart (reflected as malondialdehyde content), improved contraction to noradrenaline, and up-regulated the sensitivity of potassium channels dependent on ATP and Ca2+. Meanwhile, acetylcholine-induced vasodilation was improved by hemp seeds exclusively. Dietary supplementation with ground hemp seeds was much more beneficial than the oil, which suggests that the lipid fractions are only partially responsible for this effect.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland
- Correspondence: (M.M.); (A.J.); Tel.: +48-89-524-56-68 (M.M.); +48-89-523-46-01 (A.J.)
| | - Adam Jurgoński
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
- Correspondence: (M.M.); (A.J.); Tel.: +48-89-524-56-68 (M.M.); +48-89-523-46-01 (A.J.)
| |
Collapse
|
10
|
Majewski M, Lis B, Juśkiewicz J, Ognik K, Jedrejek D, Stochmal A, Olas B. The composition and vascular/antioxidant properties of Taraxacum officinale flower water syrup in a normal-fat diet using an obese rat model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113393. [PMID: 32941970 DOI: 10.1016/j.jep.2020.113393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taraxacum officinale (L.), commonly called dandelion has been used for centuries as a natural medicine to treat inflammatory diseases including some metabolic alterations associated with obesity. AIM OF THE STUDY Based on animal experiments this study aims to explore the potential mechanisms of action of T. officinale flower water syrup (TOFS) together with a normal-fat diet in the intervention of obesity. MATERIALS AND METHODS Obese male albino-Wistar rats (n = 8) at 25 weeks of age were fed with a normal-fat diet with or without added 27.82% TOFS (w/w) for 4 weeks. The reactivity of thoracic aorta and antioxidant capacity were studied. RESULTS TOFS delivered daily 926.8 μg of L-chicoric acid, 20.19 μg of luteolin and 3.379 g of sucrose. TOFS showed beneficial effects by regulating blood lipids (HDL, x1.11-fold increase), thereby lowering the risk factors for atherosclerosis (TC/HDL, x0.90-fold). The antioxidant status was improved via an increase in plasma superoxide radical scavenging (SOD, x1.6-fold) and a decrease in lipid peroxidation (MDA, x0.81-fold). Moreover, the following were decreased: Cu (x0.53-fold), Zn (x0.72-fold) and the Cu/Zn molar ratio (x0.60-fold). A marker for liver damage/disease was beneficially decreased (ALP, x0.87-fold). TOFS modulated in a significant way COX-depended relaxation to ACh (p = 0.05) but not to CORM-2 (p = 0.1651) in isolated thoracic arteries, by decreased participation of vasoconstrictor prostanoids. The vascular contraction to prostaglandin F2α was also decreased (x0.62-fold). We observed no change in the feed intake, body weight, organ-to-body weight ratio, blood glucose, CAT, FRAP, AST, ALT, TBARS/carbonyls (in heart, liver, kidneys, spleen) and carbonyls (in blood plasma, thoracic arteries); as well as F2-isoprostanes in urine. Vascular response to the vasodilators ACh, SNP, A23187, CORM-2, pinacidil, NS-1619 and to the vasoconstrictors NA, U-46619, ET-1 as well as hyperpolarizing mechanism(s) were not modified. CONCLUSIONS TOFS possesses beneficial properties by regulating prostanoids and antioxidant status.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, 10-082, Olsztyn, Poland.
| | - Bernadetta Lis
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950, Lublin, Poland
| | - Dariusz Jedrejek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland
| |
Collapse
|
11
|
Lama S, Merlin-Zhang O, Yang C. In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2177. [PMID: 33142878 PMCID: PMC7694082 DOI: 10.3390/nano10112177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Toxicity studies for conventional oral drug formulations are standardized and well documented, as required by the guidelines of administrative agencies such as the US Food & Drug Administration (FDA), the European Medicines Agency (EMA) or European Medicines Evaluation Agency (EMEA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). Researchers tend to extrapolate these standardized protocols to evaluate nanoformulations (NFs) because standard nanotoxicity protocols are still lacking in nonclinical studies for testing orally delivered NFs. However, such strategies have generated many inconsistent results because they do not account for the specific physicochemical properties of nanomedicines. Due to their tiny size, accumulated surface charge and tension, sizeable surface-area-to-volume ratio, and high chemical/structural complexity, orally delivered NFs may generate severe topical toxicities to the gastrointestinal tract and metabolic organs, including the liver and kidney. Such toxicities involve immune responses that reflect different mechanisms than those triggered by conventional formulations. Herein, we briefly analyze the potential oral toxicity mechanisms of NFs and describe recently reported in vitro and in vivo models that attempt to address the specific oral toxicity of nanomedicines. We also discuss approaches that may be used to develop nontoxic NFs for oral drug delivery.
Collapse
Affiliation(s)
| | | | - Chunhua Yang
- Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Institute for Biomedical Sciences, Petite Science Center, Suite 754, 100 Piedmont Ave SE, Georgia State University, Atlanta, GA 30303, USA; (S.L.); (O.M.-Z.)
| |
Collapse
|
12
|
Goma AA, El Okle OS, Tohamy HG. Protective effect of methylene blue against copper oxide nanoparticle-induced neurobehavioral toxicity. Behav Brain Res 2020; 398:112942. [PMID: 33010384 DOI: 10.1016/j.bbr.2020.112942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
Increasing attention has been paid in the past decade to assessing the toxicological effects of nanoparticles and finding a protectant; thus, the current study aimed to investigate the protective effect of the mitochondria-targeting drug methylene blue (MB) against copper oxide nanoparticle (CuO-NP)-induced neurobehavioral toxicity in rats. For this purpose, twenty rats were allocated to four equal groups (n = 5). The negative control group received distilled water intraperitoneally (IP) and Tween 80 (10 %) orally. The CuO-NP group was given a dose of 100 mg/kg of CuO-NPs, administered orally, and the positive control group was treated with 1 mg/kg MB intraperitoneally (IP). The final group was concurrently exposed to CuO-NPs and MB for 14 consecutive days. At the end of the study, each group was neurobehaviorally blind tested relative to other experimental animals, then brain tissue markers were determined and a histopathological examination was conducted. The results showed that supplementation with CuO-NPs induced neurobehavioral alterations; increased Cu content in the brain; and enhanced lipid peroxidation (malondialdehyde [MDA]), protein peroxidation (protein carbonyl [PC]), and DNA oxidative damage (8-hydroxy-2-deoxyguanosine [8-OH-dG]) compared to other treatments. In addition, a decrease was noted in the mitochondrial dehydrogenases' (aldehyde dehydrogenase 2 [ALDH2], and glutamate dehydrogenase [GDH]) activity in Cu-exposed rats. The histopathological findings revealed shrunken, pyknotic, and hypereosinophic cortical neurons and increased immune positive brown staining of caspase-3 protein, indicating apoptosis. Co-treatment with methylene blue ameliorated the neurotoxic effects of CuO-NPs; therefore, MB evidently had a powerful modulatory effect against the neurotoxicity of nano-Cu oxide via its antioxidant and mitochondrial protection properties.
Collapse
Affiliation(s)
- Amira A Goma
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Osama S El Okle
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| |
Collapse
|
13
|
Majewski M, Kucharczyk E, Kaliszan R, Markuszewski M, Fotschki B, Juśkiewicz J, Borkowska-Sztachańska M, Ognik K. The Characterization of Ground Raspberry Seeds and the Physiological Response to Supplementation in Hypertensive and Normotensive Rats. Nutrients 2020; 12:E1630. [PMID: 32492905 PMCID: PMC7352221 DOI: 10.3390/nu12061630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to evaluate the protective role of ground raspberry seeds (RBS) as a source of polyphenols and essential fatty acids on blood plasma enzymatic antioxidant status, lipid profile, and endothelium-intact vasodilation during physiological and pathological conditions. Young normotensive Wistar-Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) at ten weeks of age were fed with either a control diet or were supplemented with added 7% RBS for six weeks (n = 6). The main component of RBS was dietary fiber (64%) and the main polyphenols were ellagitannins (1.2%) and flavan-3-ols (0.45%). Irrespective of the rat model, ground RBS decreased liver enzyme aspartate aminotransferase (0.9-fold) and hydrogen peroxide scavenging capacity (Catalase, 0.9-fold). In supplemented SHRs, preincubation with inducible nitric oxide synthase (iNOS) inhibitor 1400W, nonselective cyclooxygenase (COX) inhibitor indomethacin, selective COX-2 inhibitor NS-398, prostacyclin (PGI2) synthesis inhibitor tranylcypromine (TCP), thromboxane receptor (TP) antagonist SQ-29548, thromboxane synthesis inhibitor furegrelate, and 20-HETE synthesis inhibitor HET0016 induced the same relaxant response to acetylcholine as in the nonsupplemented control group. In supplemented WKYs, atherogenic index was decreased (0.8-fold), while iNOS and COX-2-derived PGI2 increased acetylcholine-induced vasodilation. These effects of ground RBS may constitute a potential mechanism for preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland;
| | - Ewa Kucharczyk
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland;
| | - Roman Kaliszan
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (R.K.); (M.M.)
| | - Michał Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (R.K.); (M.M.)
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland; (B.F.); (J.J.)
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland; (B.F.); (J.J.)
| | | | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland;
| |
Collapse
|