1
|
Hamwata W, Hazyondo M, Daka V, Muleba M, Shimaponda-Mataa NM. Implications for malaria transmission: a cross-sectional study on the bionomics and susceptibility of local malaria vectors in urban and periurban settings of Ndola district. BMJ Open 2025; 15:e091319. [PMID: 40044192 PMCID: PMC11883537 DOI: 10.1136/bmjopen-2024-091319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
OBJECTIVES To assess vector behaviour and phenotypic resistance for effective vector control programming. DESIGN This was a cross-sectional study. SETTING This study was conducted in the urban and periurban areas of Ndola district, Zambia. PARTICIPANTS/STUDY UNITS A total of 166 houses were selected for adult mosquito collection, and an additional 60 collection efforts were made for larval collection from potential larval habitats. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was the behaviour of the malaria vectors, and the secondary outcome was their phenotypic resistance status. RESULTS The main breeding sites identified were irrigation trenches (4.67 larvae/dip) and garden ponds (2.72 larvae/dip) created from extensive urban agriculture practices. Anopheles funestus sensu stricto (An. funestus s.s) and Anopheles gambiae sensu stricto (An. gambiae s.s) were found to coexist in all the four sites, with An. funestus s.s identified as the most dominant malaria vector. Densities of An. gambiae s.s, seeking a blood meal (χ2=12.566, df=3, p=0.001) and resting indoors (Z=56.5, p=0.019), were found to be higher in urban than periurban sites compared with An. funestus s.s, which had similar distribution across the study sites. Sprayed houses were significantly associated with reduced mosquito numbers (B=-0.956, incidence rate ratio=0.384, p=0.001). Anopheles gambiae was fully susceptible to organophosphates and neonicotinoids but highly resistant to pyrethroids, carbamates and organochlorines. CONCLUSIONS The emergence of An. funestus s.s in an area previously dominated by An. gambiae s.s and its coexistence with An. gambiae s.s in the dry season pose a risk of sustaining malaria transmission all year round. Agricultural practices in urban areas resulted in highly productive mosquito breeding sites; thus, there is a need for targeted vector control.
Collapse
Affiliation(s)
- Westone Hamwata
- Department of Biomedical Sciences, Tropical Diseases Research Centre, Ndola, Copperbelt, Zambia
- Biomedical Sciences, University of Zambia - Ridgeway Campus, Lusaka, Zambia
| | - Mwendalubi Hazyondo
- Biomedical Sciences, University of Zambia - Ridgeway Campus, Lusaka, Zambia
- Department of National Parks and Wildlife Service, Lusaka, Zambia
| | - Victor Daka
- Public Health, The Copperbelt University School of Medicine, Ndola, Copperbelt, Zambia
| | - Mbanga Muleba
- Department of Biomedical Sciences, Tropical Diseases Research Centre, Ndola, Copperbelt, Zambia
| | | |
Collapse
|
2
|
Chatterjee S, Sarkar B, Bag S, Biswal D, Mandal A, Bandyopadhyay R, Sarkar Paria D, Chatterjee A, Saha NC. Mitigating the Public Health Issues Caused by the Filarial Vector, Culex quinquefasciatus (Diptera: Culicidae) Through Phytocontrol and Larval Source Marker Management. Appl Biochem Biotechnol 2024; 196:5013-5044. [PMID: 37999898 DOI: 10.1007/s12010-023-04747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Failure of conventional mosquito control strategies to curb the population of vectors have made the humans vulnerable to serious medical problems transmitted by them. This effect has been compounded by global climate change enabling the mosquitoes to cross geographical boundaries and cause trouble in regions where they were initially not found. As such, the scientific community has been compelled to devise alternative and innovative strategies of mosquito control that can be integrated with the conventional practices to implement multi-phasic approach of vector management. Culex quinquefasciatus is one such mosquito species that is reported to be one of the primary vectors of lymphatic filariasis and many other diseases of global health concern. However, not much is known about its breeding habitat ecology and microbial properties that have enabled the species to achieve reproductive success in urbanized habitats. The current investigation was carried out at Digha, West Bengal, India. The region, despite being endemic for lymphatic filariasis, has rarely been explored for its mosquito diversity and/or their breeding habitat characteristics. Therefore, these were attempted. For survey and sampling, seven villages were chosen, namely, Duttapur, Jatimati, Champabani, Padima, Gobindabasan, Bhagibaharampur and Palsandapur. The study showed that Cx. quinquefasciatus is the dominant mosquito species at the sampling sites with the highest density of their larvae being recorded from man-made structures like drains and pools close to human habitations and livestock. The study was, therefore, restricted to Cx. quinquefasciatus. Seasonal abundance showed that they were most prevalent in the monsoon followed by summer. The physicochemical characterization showed their larvae to prefer almost neutral pH (6.9 to 7.3), low chloride concentration (98 to 258 ppm) and turbidity. As far as other parameters are concerned, they were tolerant towards a wide range allowing them to adapt varied habitats in the study areas. The bacterial profiling of their natural habitat waters revealed the presence of Paenibacillus nanensis DGX1(OQ690670), Bacillus cereus DGX2(OQ690675), Bacillus sp. DGX3(OQ690700) and Escherichia coli DGX4(OQ690701). Bacillus cereus was found to have high oviposition attractant properties in oviposition assays. Bacillus cereus was also obtained from the midgut of third instar larvae indicating that they had entered from the surrounding medium and colonized the larval gut. Subsequent tests exhibited the roles of B. cereus in larval development. Numerous plant products have been reported either as insecticides for killing larvae or adult mosquitoes or as repellents for mosquito biting and the best alternatives for mosquito control. Larvicidal potential of emulsified neem oil formulation against the field collected 3rd instar larvae of Culex quinquefasciatus mosquito under laboratory conditions was also evaluated. The information thus obtained can be pooled to generate larval source markers and larval source management practices by altering their habitats that cannot be removed. Furthermore, the time of implementation of these strategies can also be planned.
Collapse
Affiliation(s)
- Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, Purba Bardhaman, West Bengal, 713104, India.
| | - Basanta Sarkar
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Souvik Bag
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Debraj Biswal
- Department of Zoology, Government General Degree College at Mangalkote, Burdwan, West Bengal, 713132, India
| | - Abhijit Mandal
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Raktima Bandyopadhyay
- Department of Nutrition, AKPC Mahavidyalaya, Bengai, Hooghly, West Bengal, 712611, India
| | - Dipanwita Sarkar Paria
- Department of Zoology, Chandernagore College, Chandernagore, Hooghly, West Bengal, 712136, India
| | - Arnab Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Nimai Chandra Saha
- Department of Zoology, Bidhannagar College, EB-2, Sector 1, Salt Lake, Kolkata, 700 064, India
| |
Collapse
|
3
|
Liu M, Zhang Y, Li Q, Zhou X, Yan T, Li J, Zhang H, Wang L, Wang G, Li R, Tong Y, Zeng X. Spatial distribution and environmental correlations of Culex pipiens pallens (Diptera: Culicidae) in Haidian district, Beijing. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:948-958. [PMID: 38747350 PMCID: PMC11239791 DOI: 10.1093/jme/tjae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 07/13/2024]
Abstract
Culex pipiens pallens Coquillett, 1898 (Diptera: Culicidae) was the dominant health threat to mosquito species in Beijing, and it is important to unravel the spatial distribution and environmental correlations of Cx. pipiens pallens in Beijing. 3S technology methods and spatial statistics were used to clarify the distribution pattern. Subsequently, linear and spatial regression were performed to detect the environmental factors linked with the density of Cx. pipiens pallens. The same "middle peak" spatial distribution pattern was observed for Cx. pipiens pallens density at the community, subdistrict, and loop area levels in our study area. In addition, there were various correlated environmental factors at the community and subdistrict scales. At the community scale, the summary values of the Modified Normalized Difference Water Index (MNDWI) in 2 km buffer zone (MNDWI_2K) were negatively correlated, and the summary values of Normalized Difference Built-up Index (NDBI) in 800 m buffer zone (NDBI_800) was positively correlated to the Cx. pipiens pallens density. However, the summary values of Normalized Difference Vegetation Index and Nighttime Light Index significantly affected Cx. pipiens pallens density at the subdistrict scale. Our findings provide insight into the spatial distribution pattern of Cx. pipiens pallens density and its associated environmental risk factors at different spatial scales in the Haidian district of Beijing for the first time. The results could be used to predict the Cx. pipiens pallens density as well as the risk of lymphatic filariasis (LF) infection, which would help implement prevention and control measures to prevent future risks of biting and LF transmission in Beijing.
Collapse
Affiliation(s)
- Meide Liu
- Institute for Disinfection and Vector Control, Beijing Municipal Center for Disease Prevention and Control, 16 Hepingli Zhong Street, Dongcheng District, Beijing 100013, China
| | - Yong Zhang
- Institute for Disinfection and Vector Control, Beijing Municipal Center for Disease Prevention and Control, 16 Hepingli Zhong Street, Dongcheng District, Beijing 100013, China
| | - Qiuhong Li
- Institute for Disinfection and Vector Control, Beijing Municipal Center for Disease Prevention and Control, 16 Hepingli Zhong Street, Dongcheng District, Beijing 100013, China
| | - Xiaojie Zhou
- Institute for Disinfection and Vector Control, Beijing Municipal Center for Disease Prevention and Control, 16 Hepingli Zhong Street, Dongcheng District, Beijing 100013, China
| | - Ting Yan
- Institute for Disinfection and Vector Control, Beijing Municipal Center for Disease Prevention and Control, 16 Hepingli Zhong Street, Dongcheng District, Beijing 100013, China
| | - Jing Li
- Institute for Disinfection and Vector Control, Beijing Municipal Center for Disease Prevention and Control, 16 Hepingli Zhong Street, Dongcheng District, Beijing 100013, China
| | - Hongjiang Zhang
- Institute for Disinfection and Vector Control, Beijing Municipal Center for Disease Prevention and Control, 16 Hepingli Zhong Street, Dongcheng District, Beijing 100013, China
| | - Lei Wang
- Department of Disinfection and Sanitation, Haidian District Center for Disease Control and Prevention, Beijing 100037, China
| | - Guangwen Wang
- Department of Disinfection and Vector Control, Fangshan District Center for Disease Control and Prevention, Beijing 102446, China
| | - Ruoxi Li
- Department of Disinfection and Vector Control, Fengtai District Center for Disease Control and Prevention, Beijing 100068, China
| | - Ying Tong
- Institute for Disinfection and Vector Control, Beijing Municipal Center for Disease Prevention and Control, 16 Hepingli Zhong Street, Dongcheng District, Beijing 100013, China
| | - Xiaopeng Zeng
- Institute for Disinfection and Vector Control, Beijing Municipal Center for Disease Prevention and Control, 16 Hepingli Zhong Street, Dongcheng District, Beijing 100013, China
| |
Collapse
|
4
|
Pautzke KC, Felsot AS, Reganold JP, Owen JP. Effects of soil on the development, survival, and oviposition of Culex quinquefasciatus (Diptera: Culicidae) mosquitoes. Parasit Vectors 2024; 17:154. [PMID: 38523287 PMCID: PMC10960989 DOI: 10.1186/s13071-024-06202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Water quality is known to influence the development and survival of larval mosquitoes, which affects mosquito-borne pathogen transmission as a function of the number of mosquitoes that reach adulthood and blood feed. Although water properties are known to affect mosquito development, few studies have investigated the link among soil properties, water quality, and mosquito development. Given the large number of ground-breeding mosquito species, this linkage is a potentially important factor to consider in mosquito ecology. In this study, we explored the effects of different soils on multiple life history parameters of the ground-breeding mosquito species Culex quinquefasciatus (Diptera: Culicidae). METHODS Cx. quinquefasciatus larvae were reared in water combined with different soil substrates (sandy, silt, or clay loam textures) at increasing soil to water volume ratios, with and without the addition of organic matter (fish food). Gravid mosquitoes were offered different soil-water extracts to investigate soil effects on oviposition preference. RESULTS Without the addition of organic matter, larval survival and development differed significantly among waters with different soil textures and volumes of substrate. Mosquitoes in water with clay loam soil survived longer and developed further than mosquitoes in other soil waters. Larvae survived for longer periods of time with increased volumes of soil substrate. Adding organic matter reduced the differences in larval survival time, development, and pupation among soil-water extracts. Adult female mosquitoes oviposited more frequently in water with clay loam soil, but the addition of organic matter reduced the soil effects on oviposition preference. CONCLUSIONS This study suggests soil composition affects larval mosquito survival and development, as well as the oviposition preference of gravid females. Future studies could differentiate abiotic and biotic soil features that affect mosquitoes and incorporate soil variation at the landscape scale into models to predict mosquito population dynamics and mosquito-borne pathogen transmission.
Collapse
Affiliation(s)
- Kellen C Pautzke
- Department of Entomology, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, USA.
| | - Allan S Felsot
- Department of Entomology, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, USA
| | - John P Reganold
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, USA
| | - Jeb P Owen
- Department of Entomology, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Bhumiratana A, Nunthawarasilp P, Intarapuk A, Pimnon S, Ritthison W. Emergence of zoonotic Brugia pahangi parasite in Thailand. Vet World 2023; 16:752-765. [PMID: 37235155 PMCID: PMC10206978 DOI: 10.14202/vetworld.2023.752-765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 05/28/2023] Open
Abstract
Zoonotic Brugia pahangi parasite infections in humans have emerged over two decades in Southeast Asia (SEA), including Malaysia and Thailand. The species is commonly found in domestic cats and dogs as the natural reservoir hosts. The sporadic transmission pattern of B. pahangi zoonosis causes childhood infections in Thailand and adulthood infections in Malaysia. It is crucial to understand the vulnerability in how zoonotic B. pahangi parasite is transmitted to susceptible persons in receptive settings and the exposure to the infection under impoverished environment to which the human-vector-animal interactions are related. This acquisition of knowledge will help multiple health science professions to apply One Health approach to strengthening the capacity in diagnosis and surveillance, and hence detecting and monitoring the "lingering" zoonotic B. pahangi infections present in vulnerable populations in Thailand and elsewhere in SEA. In this review article, the authors focused on articulating the concepts of plantation-related zoonotic B. pahangi filariasis by updating current knowledge of B. pahangi life cycle, vector's life cycle and current state of research on the epidemiology and ecology of B. pahangi zoonosis.
Collapse
Affiliation(s)
- Adisak Bhumiratana
- Thammasat University Research Unit in One Health and EcoHealth, Pathum Thani, Thailand
- Faculty of Public Health, Thammasat University, Pathum Thani 12121, Thailand
| | | | - Apiradee Intarapuk
- Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Suntorn Pimnon
- Faculty of Public Health, Bangkokthonburi University, Bangkok 10170, Thailand
| | - Wanapa Ritthison
- Office of Disease Prevention and Control, Region 6 Chonburi, Thailand
| |
Collapse
|
6
|
Metz HC, Miller AK, You J, Akorli J, Avila FW, Buckner EA, Kane P, Otoo S, Ponlawat A, Triana-Chávez O, Williams KF, McBride CS. Evolution of a Mosquito's Hatching Behavior to Match Its Human-Provided Habitat. Am Nat 2023; 201:200-214. [PMID: 36724468 DOI: 10.1086/722481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AbstractA subspecies of the yellow fever mosquito, Aedes aegypti, has recently evolved to specialize in biting and living alongside humans. It prefers human odor over the odor of nonhuman animals and breeds in human-provided artificial containers rather than the forest tree holes of its ancestors. Here, we report one way this human specialist has adapted to the distinct ecology of human environments. While eggs of the ancestral subspecies rarely hatch in pure water, those of the derived human specialist do so readily. We trace this novel behavior to a shift in how eggs respond to dissolved oxygen, low levels of which may signal food abundance. Moreover, we show that while tree holes are consistently low in dissolved oxygen, artificial containers often have much higher levels. There is thus a concordance between the hatching behavior of each subspecies and the aquatic habitat it uses in the wild. We find this behavioral variation is heritable, with both maternal and zygotic effects. The zygotic effect depends on dissolved oxygen concentration (i.e., a genotype-environment interaction, or G×E), pointing to potential changes in oxygen-sensitive circuits. Together, our results suggest that a shift in hatching response contributed to the pernicious success of this human-specialist mosquito and illustrate how animals may rapidly adapt to human-driven changes in the environment.
Collapse
|
7
|
Tawidian P, Kang Q, Michel K. The Potential of a New Beauveria bassiana Isolate for Mosquito Larval Control. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:131-147. [PMID: 36633608 PMCID: PMC9993401 DOI: 10.1093/jme/tjac179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 05/25/2023]
Abstract
The African malaria mosquito, Anopheles gambiae Giles (Diptera: Culicidae), and the Asian tiger mosquito, Aedes albopictus Skuse (Diptera: Culicidae) are of public health concern due to their ability to transmit disease-causing parasites and pathogens. Current mosquito control strategies to prevent vector-borne diseases rely mainly on the use of chemicals. However, insecticide resistance in mosquito populations necessitates alternative control measures, including biologicals such as entomopathogenic fungi. Here we report the impact of a new Beauveria bassiana (Balsamo) Vuillemin (Hyprocreales: Cordycipitaeceae) isolate, isolated from field-collected Ae. albopictus larvae on mosquito survival and development. Larval infection bioassays using three B. bassiana conidial concentrations were performed on the second and third larval instars of An. gambiae and Ae. albopictus mosquitoes. Larvae were monitored daily for survival and development to pupae and adults. Our results show that B. bassiana MHK was more effective in killing An. gambiae than Ae. albopictus larvae. We further observed delays in development to pupae and adults in both mosquito species exposed the varying concentrations of B. bassiana as compared to the water control. In addition, larval exposure to B. bassiana reduced adult male and female survival in both mosquito species, further contributing to mosquito population control. Thus, this study identifies a new B. bassiana isolate as a possible biological control agent of two mosquito species of public health concern, increasing the arsenal for integrated mosquito control.
Collapse
Affiliation(s)
- Patil Tawidian
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Qing Kang
- Department of Statistics, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
8
|
Sakata MK, Sato M, Sato MO, Watanabe T, Mitsuishi H, Hikitsuchi T, Kobayashi J, Minamoto T. Detection and persistence of environmental DNA (eDNA) of the different developmental stages of a vector mosquito, Culex pipiens pallens. PLoS One 2022; 17:e0272653. [PMID: 35947597 PMCID: PMC9365122 DOI: 10.1371/journal.pone.0272653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Preventing mosquito-borne infectious diseases requires that vector mosquitoes are monitored and controlled. Targeting immature mosquitoes (eggs, larvae, and pupae), which have less mobility than adults, is an effective management approach. However, conducting these surveys is often difficult due to the limitations of morphological classification and survey costs. The application of environmental DNA (eDNA) analysis can solve these issues because it allows easy estimation of species distribution and morphology-independent species identification. Although a few previous studies have reported mosquito eDNA detection, there is a gap in knowledge regarding the dynamics related to the persistence of immature mosquito eDNA. We used Culex pipiens pallens, a vector of West Nile fever, as a model species. First, we developed a species-specific detection assay and confirmed its specificity using in silico and in vitro tests. Next, we conducted laboratory experiments using breeding tanks. Water samples were collected at each developmental stage. In addition, water samples were collected daily until the seventh day after emergence from the pupae. We quantified eDNA using real-time PCR with the developed assay to investigate the dynamics of mosquito eDNA. The specificity of the developed assay was confirmed by in silico and in vitro tests. Mosquito eDNA was detected at all developmental stages and detected up to seven days after emergence of pupae. In particular, high concentrations of eDNA were detected immediately after hatching from eggs and after emergence from pupae. Highly frequent positive eDNA signals were continuously detected between egg hatching and pupa hatching. Mosquito eDNA was detected immediately after the eggs were introduced, and eDNA-positive detections continued until pupae emergence, suggesting that eDNA analysis is useful for monitoring mosquito larvae. In the future, monitoring immature mosquitoes using eDNA analysis will contribute to prevent mosquito-borne infectious diseases.
Collapse
Affiliation(s)
- Masayuki K. Sakata
- Graduate School of Human Development and Environment, Kobe University, Kobe City, Japan
- Kobe University Innovation, Co., Ltd, Kobe City, Japan
- * E-mail:
| | - Megumi Sato
- Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Marcello Otake Sato
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi, Japan
| | - Tomoe Watanabe
- Dainihon Jochugiku Co., Ltd Research & Development Laboratory Biological Research Section 1–11, Osaka, Japan
| | - Honami Mitsuishi
- Dainihon Jochugiku Co., Ltd Research & Development Laboratory Biological Research Section 1–11, Osaka, Japan
| | - Tomoyuki Hikitsuchi
- Dainihon Jochugiku Co., Ltd Research & Development Laboratory Biological Research Section 1–11, Osaka, Japan
| | - Jun Kobayashi
- Graduate School of Health Sciences, University of the Ryukyus, Okinawa, Japan
| | - Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University, Kobe City, Japan
| |
Collapse
|
9
|
Colonization and Authentication of the Pyrethroid-Resistant Anopheles gambiae s.s. Muleba-Kis Strain; an Important Test System for Laboratory Screening of New Insecticides. INSECTS 2021; 12:insects12080710. [PMID: 34442276 PMCID: PMC8396659 DOI: 10.3390/insects12080710] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Malaria control and prevention have traditionally relied on the use of insecticides in the form of treated bed nets or residual spraying in households. However, scaling up of these interventions—based on few available insecticide classes—resulted in the development and spread of insecticide resistance in malaria-transmitting mosquitoes. There is therefore an urgent need for introducing and applying new insecticides that are effective against these mosquitoes. Laboratories tasked with evaluating the efficacy of novel insecticides need to establish a large colony of resistant mosquitoes. In this study, we report the procedures used and challenges faced during the establishment and maintenance of a resistant mosquito strain in the laboratory which reflects the characteristics of the wild-resistant mosquito populations found in East Africa. Abstract Background: The emergence and spread of insecticide resistance in malaria vectors to major classes of insecticides call for urgent innovation and application of insecticides with novel modes of action. When evaluating new insecticides for public health, potential candidates need to be screened against both susceptible and resistant mosquitoes to determine efficacy and to identify potential cross-resistance to insecticides currently used for mosquito control. The challenges and lessons learned from establishing, maintaining, and authenticating the pyrethroid-resistant An. gambiae s.s. Muleba-Kis strain at the KCMUCo-PAMVERC Test Facility are described in this paper. Methods: Male mosquitoes from the F1 generation of wild-pyrethroid resistant mosquitoes were cross-bred with susceptible female An. gambiae s.s. Kisumu laboratory strain followed by larval selection using a pyrethroid insecticide solution. Periodic screening for phenotypic and genotypic resistance was done. WHO susceptibility tests and bottle bioassays were used to assess the phenotypic resistance, while Taqman™ assays were used to screen for known target-site resistance alleles (kdr and ace-1). Additionally, the strains were periodically assessed for quality control by monitoring adult weight and wing length. Results: By out-crossing the wild mosquitoes with an established lab strain, a successful resistant insectary colony was established. Intermittent selection pressure using alphacypermethrin has maintained high kdr mutation (leucine-serine) frequencies in the selected colony. There was consistency in the wing length and weight measurements from the year 2016 to 2020, with the exception that one out of four years was significantly different. Mean annual wing length varied between 0.0142–0.0028 mm compared to values obtained in 2016, except in 2019 where it varied by 0.0901 mm. Weight only varied by approximately 0.001 g across four years, except in 2017 where it differed by 0.005 g. Routine phenotypic characterization on Muleba-Kis against pyrethroids using the WHO susceptibility test indicated high susceptibility when type I pyrethroids were used compared to type II pyrethroids. Dynamics on susceptibility status also depended on the lapse time when the selection was last done. Conclusions: This study described the procedure for introducing, colonizing, and maintaining a resistant An. gambiae s.s. strain in the laboratory with leucine to serine substitution kdr allele which reflects the features of the wild-resistant population in East Africa. Challenges in colonizing a wild-resistant mosquito strain were overcome by out-crossing between mosquito strains of desired traits followed by intermittent insecticide selection at the larval stage to select for the resistant phenotype.
Collapse
|
10
|
Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins (Basel) 2021; 13:toxins13080523. [PMID: 34437394 PMCID: PMC8402332 DOI: 10.3390/toxins13080523] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022] Open
Abstract
Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus are effective and environmentally safe compounds for the control of dipteran insects of medical importance. They produce crystals that display specific and potent insecticidal activity against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus crystals contain one major binary toxin that display an outstanding persistence in field conditions, which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single receptor is vulnerable for resistance selection in insects. In this review we present the most recent data on the mode of action and synergism of these toxins, resistance issues, and examples of their use worldwide. Data reported in recent years improved our understanding of the mechanism of action of these toxins, showed that their combined use can enhance their activity and counteract resistance, and reinforced their relevance for mosquito control programs in the future years.
Collapse
|
11
|
Wang H, Wang Y, Cheng P, Wang H, Wang H, Liu H, Zhang C, Gong M. The Larval Density of Mosquitos (Diptera: Culicidae) in Jiaxiang County, Shandong Province, China: Influence of Bacterial Diversity, Richness, and Physicochemical Factors. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.616769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
As Jiaxiang County of Shandong province is an area with complex mosquito vector composition, it is necessary to investigate the relationship between bacterial diversity, physicochemical factors, and larval density. Therefore, the physicochemical properties of 46 breeding sites for six kinds of habitat types (small puddles, small water containers, paddy fields, large water containers, irrigation channels, and drainage ditches) were investigated by a multiparameter analyzer; the water’s bacterial diversity was analyzed by the 16S rRNA full-length sequencing method. Spearman correlation and multiple linear regression were used to analyze the correlation between larval density and variables. The variables analyzed were dissolved oxygen, pH, hardness, turbidity, conductivity, temperature, ammonia nitrogen, water depth, and distance from the nearest house. One-Way ANOVA was used to understand whether there are differences in bacterial diversity in different habitats. Pearson linear correlation model was used to analyze the effects of bacterial diversity and richness on mosquito densities in breeding sites. A total of 3291 larvae were captured, and a total of 6 species of 4 genera were identified. The identified species were Culex pipiens pallens, Aedes albopictus, Anopheles sinensis, Culex tritaeniorhynchus, Culex bitaeniorhynchus, and Mansonia uniformis. The density and species can be jointly affected by physicochemical properties and bacterial diversity, especially Shannon index and distance from the nearest house. In general, the physicochemical parameters and bacterial diversity of different habitats were significantly different. Even for the same habitat type, the physicochemical parameters varied greatly due to different environments.
Collapse
|
12
|
Li Y, Zhou G, Zhong S, Wang X, Zhong D, Hemming-Schroeder E, Yi G, Fu F, Fu F, Cui L, Cui G, Yan G. Spatial heterogeneity and temporal dynamics of mosquito population density and community structure in Hainan Island, China. Parasit Vectors 2020; 13:444. [PMID: 32887654 PMCID: PMC7650291 DOI: 10.1186/s13071-020-04326-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mosquitoes are vectors of many tropical diseases. Understanding the ecology of local mosquito vectors, such as species composition, distributions, population dynamics, and species diversity is important for designing the optimal strategy to control the mosquito-borne diseases. METHODS Entomological surveillance of adult mosquitoes was conducted in five sites representing different ecological settings across Hainan Island from January to December of 2018 using BG Sentinel (BGS) traps and Centers for Disease Prevention and Control (CDC) light traps. In each site, we selected three areas representing urban, suburban and rural settings. Eighteen trap-days were sampled in each setting at each site, and CDC light traps and BGS traps were setup simultaneously. Mosquito species composition, distribution, population dynamics, and species diversity were analyzed. Mosquito densities were compared between different study sites and between different settings. RESULTS Nine species of mosquitoes belonging to four genera were identified. Culex quinquefasciatus (80.8%), Armigeres subalbatus (13.0%) and Anopheles sinensis (3.1%) were the top three species collected by CDC light traps; Cx. quinquefasciatus (91.9%), Ae. albopictus (5.1%), and Ar. subalbatus (2.8%) were the top three species collected by BGS traps. Predominant species varied among study sites. The population dynamics of Ae. albopictus, An. sinensis and Cx. quinquefasciatus showed clear seasonal variation regardless of study sites with a varied peak season for different species. Mosquito abundance of all species showed significant differences among different study sites and among urban, suburban and rural areas. Danzhou had the highest mosquito biodiversity, with an α, β, and Gini-Simpson biodiversity index of 8, 1.13 and 0.42, respectively. BGS traps captured Aedes mosquito at a higher efficiency than CDC light traps, whereas CDC light traps captured significantly more Anopheles and Armigeres mosquitoes than BGS traps. CONCLUSIONS Mosquitoes were abundant on Hainan Island with clear seasonality and spatial heterogeneity. Population density, species composition, distribution, and species diversity were strongly affected by the natural environment. Different tools are required for the surveillance of different mosquito species.
Collapse
Affiliation(s)
- Yiji Li
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan China
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA 92697 USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA 92697 USA
| | - Saifeng Zhong
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan China
| | - Xiaoming Wang
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA 92697 USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA 92697 USA
| | | | - Guohui Yi
- Public Research Laboratory, Hainan Medical University, Haikou, Hainan China
| | - Fengyang Fu
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Faxing Fu
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Guzhen Cui
- Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases Ministry of Education, Guiyang, China
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA 92697 USA
| |
Collapse
|