1
|
Chen SL, Fei YR, Cai XX, Wang C, Tong SY, Zhang ZZ, Huang YX, Bian DD, He YB, Yang XX. Exploring the role of metabolic pathways in TNBC immunotherapy: insights from single-cell and spatial transcriptomics. Front Endocrinol (Lausanne) 2025; 15:1528248. [PMID: 39850483 PMCID: PMC11754047 DOI: 10.3389/fendo.2024.1528248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
The article provides an overview of the current understanding of the interplay between metabolic pathways and immune function in the context of triple-negative breast cancer (TNBC). It highlights recent advancements in single-cell and spatial transcriptomics technologies, which have revolutionized the analysis of tumor heterogeneity and the immune microenvironment in TNBC. The review emphasizes the crucial role of metabolic reprogramming in modulating immune cell function, discussing how specific metabolic pathways, such as glycolysis, lipid metabolism, and amino acid metabolism, can directly impact the activity and phenotypes of various immune cell populations within the TNBC tumor microenvironment. Furthermore, the article explores the implications of these metabolic-immune interactions for the efficacy of immune checkpoint inhibitor (ICI) therapies in TNBC, suggesting that strategies targeting metabolic pathways may enhance the responsiveness to ICI treatments. Finally, the review outlines future directions and the potential for combination therapies that integrate metabolic modulation with immunotherapeutic approaches, offering promising avenues for improving clinical outcomes for TNBC patients.
Collapse
Affiliation(s)
- Shi-liang Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yi-Ran Fei
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin-xian Cai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- School of Medical Technology and Informmation Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cong Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shi-yuan Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe-zhong Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yan-xia Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Dan-dan Bian
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yi-bo He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiao-xiao Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
2
|
Egelston CA, Guo W, Simons DL, Ye J, Avalos C, Solomon ST, Nwangwu M, Nelson MS, Tan J, Bacon ER, Ihle K, Schmolze D, Tumyan L, Waisman JR, Lee PP. Organ-Specific Immune Setpoints Underlie Divergent Immune Profiles across Metastatic Sites in Breast Cancer. Cancer Immunol Res 2024; 12:1559-1573. [PMID: 39051632 PMCID: PMC11534553 DOI: 10.1158/2326-6066.cir-23-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/06/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Immune composition within the tumor microenvironment (TME) plays a central role in the propensity of cancer cells to metastasize and respond to therapy. Previous studies have suggested that the metastatic TME is immune-suppressed. However, limited accessibility to multiple metastatic sites within patients has made assessing the immune TME difficult in the context of multiorgan metastases. We utilized a rapid postmortem tissue collection protocol to assess the immune composition of numerous sites of breast cancer metastasis and paired tumor-free tissues. Metastases had comparable immune cell densities and compositions to paired tumor-free tissues of the same organ type. In contrast, immune cell densities in both metastatic and tumor-free tissues differed significantly between organ types, with lung immune infiltration being consistently greater than that in the liver. These immune profiling results were consistent between flow cytometry and multiplex immunofluorescence-based spatial analysis. Furthermore, we found that granulocytes were the predominant tumor-infiltrating immune cells in lung and liver metastases, and these granulocytes comprised most PD-L1-expressing cells in many tissue sites. We also identified distinct potential mechanisms of immunosuppression in lung and liver metastases, with the lung having increased expression of PD-L1+ antigen-presenting cells and the liver having higher numbers of activated regulatory T cells and HLA-DRlow monocytes. Together, these results demonstrate that the immune contexture of metastases is dictated by organ type and that immunotherapy strategies may benefit from unique tailoring to the tissue-specific features of the immune TME.
Collapse
Affiliation(s)
- Colt A. Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Diana L. Simons
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jian Ye
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Christian Avalos
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Shawn T. Solomon
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Mary Nwangwu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Michael S. Nelson
- The Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Eliza R. Bacon
- Department of Medical Oncology, City of Hope, Duarte, CA
| | - Kena Ihle
- Department of Medical Oncology, City of Hope, Duarte, CA
| | | | - Lusine Tumyan
- Department of Diagnostic Radiology, City of Hope, Duarte, CA
| | | | - Peter P. Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
3
|
Jahangir CA, Page DB, Broeckx G, Gonzalez CA, Burke C, Murphy C, Reis-Filho JS, Ly A, Harms PW, Gupta RR, Vieth M, Hida AI, Kahila M, Kos Z, van Diest PJ, Verbandt S, Thagaard J, Khiroya R, Abduljabbar K, Haab GA, Acs B, Adams S, Almeida JS, Alvarado-Cabrero I, Azmoudeh-Ardalan F, Badve S, Baharun NB, Bellolio ER, Bheemaraju V, Blenman KRM, Fujimoto LBM, Burgues O, Chardas A, Cheang MCU, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Portela FLD, Deman F, Demaria S, Dudgeon SN, Elghazawy M, Fernandez-Martín C, Fineberg S, Fox SB, Giltnane JM, Gnjatic S, Gonzalez-Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hewitt S, Horlings HM, Husain Z, Irshad S, Janssen EAM, Kataoka TR, Kawaguchi K, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Akturk G, Scott E, Kovács A, Lænkholm AV, Lang-Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Madabhushi A, Maley SK, Narasimhamurthy VM, Marks DK, McDonald ES, Mehrotra R, Michiels S, Kharidehal D, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault-Llorca F, Perera RD, Pinard CJ, Pinto-Cardenas JC, Pruneri G, Pusztai L, Rajpoot NM, Rapoport BL, Rau TT, Ribeiro JM, et alJahangir CA, Page DB, Broeckx G, Gonzalez CA, Burke C, Murphy C, Reis-Filho JS, Ly A, Harms PW, Gupta RR, Vieth M, Hida AI, Kahila M, Kos Z, van Diest PJ, Verbandt S, Thagaard J, Khiroya R, Abduljabbar K, Haab GA, Acs B, Adams S, Almeida JS, Alvarado-Cabrero I, Azmoudeh-Ardalan F, Badve S, Baharun NB, Bellolio ER, Bheemaraju V, Blenman KRM, Fujimoto LBM, Burgues O, Chardas A, Cheang MCU, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Portela FLD, Deman F, Demaria S, Dudgeon SN, Elghazawy M, Fernandez-Martín C, Fineberg S, Fox SB, Giltnane JM, Gnjatic S, Gonzalez-Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hewitt S, Horlings HM, Husain Z, Irshad S, Janssen EAM, Kataoka TR, Kawaguchi K, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Akturk G, Scott E, Kovács A, Lænkholm AV, Lang-Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Madabhushi A, Maley SK, Narasimhamurthy VM, Marks DK, McDonald ES, Mehrotra R, Michiels S, Kharidehal D, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault-Llorca F, Perera RD, Pinard CJ, Pinto-Cardenas JC, Pruneri G, Pusztai L, Rajpoot NM, Rapoport BL, Rau TT, Ribeiro JM, Rimm D, Vincent-Salomon A, Saltz J, Sayed S, Hytopoulos E, Mahon S, Siziopikou KP, Sotiriou C, Stenzinger A, Sughayer MA, Sur D, Symmans F, Tanaka S, Taxter T, Tejpar S, Teuwen J, Thompson EA, Tramm T, Tran WT, van der Laak J, Verghese GE, Viale G, Wahab N, Walter T, Waumans Y, Wen HY, Yang W, Yuan Y, Bartlett J, Loibl S, Denkert C, Savas P, Loi S, Stovgaard ES, Salgado R, Gallagher WM, Rahman A. Image-based multiplex immune profiling of cancer tissues: translational implications. A report of the International Immuno-oncology Biomarker Working Group on Breast Cancer. J Pathol 2024; 262:271-288. [PMID: 38230434 PMCID: PMC11288342 DOI: 10.1002/path.6238] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chowdhury Arif Jahangir
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - David B Page
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Glenn Broeckx
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
- Centre for Oncological Research (CORE), MIPPRO, Faculty of Medicine, Antwerp University, Antwerp, Belgium
| | - Claudia A Gonzalez
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Caoimbhe Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Clodagh Murphy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, Ml, USA
| | - Rajarsi R Gupta
- Department of Biomedical informatics, Stony Brook University, Stony Brook, NY, USA
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Akira I Hida
- Department of Pathology, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Mohamed Kahila
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer, Vancouver, British Columbia, Canada
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
- Johns Hopkins Oncology Center, Baltimore, MD, USA
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jeppe Thagaard
- Technical University of Denmark, Kgs. Lyngby, Denmark
- Visiopharm A/S, Hørsholm, Denmark
| | - Reena Khiroya
- Department of Cellular Pathology, University College Hospital, London, UK
| | - Khalid Abduljabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | | | - Balazs Acs
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, Manhattan, NY, USA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | | | | | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory University Winship Cancer Institute, Atlanta, GA, USA
| | | | - Enrique R Bellolio
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | | | - Kim RM Blenman
- Department of internal Medicine Section of Medical Oncology and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Computer Science, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | | | - Octavio Burgues
- Pathology Department, Hospital Cliníco Universitario de Valencia/lncliva, Valencia, Spain
| | - Alexandros Chardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Maggie Chon U Cheang
- Head of Integrative Genomics Analysis in Clinical Trials, ICR-CTSU, Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Francesco Ciompi
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lee AD Cooper
- Department of Pathology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Germán Corredor
- Biomedical Engineering Department, Emory University, Atlanta, GA, USA
| | | | - Frederik Deman
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Pathology, Weill Cornell Medicine, New York NY, USA
| | - Sarah N Dudgeon
- Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Mahmoud Elghazawy
- University of Surrey, Guildford, UK
- Ain Shams University, Cairo, Egypt
| | - Claudio Fernandez-Martín
- Institute Universitario de Investigatión en Tecnología Centrada en el Ser Humano, HUMAN-tech, Universitat Politècnica de València, Valencia, Spain
| | - Susan Fineberg
- Montefiore Medical Center and the Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Medicine Hem/One, and Pathology, Tisch Cancer Institute – Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | | | - Anita Grigoriadis
- Cancer Bioinformatics, Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- The Breast Cancer Now Research Unit Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Steven N Hart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Johan Hartman
- Tehran University of Medical Sciences, Tehran, Iran
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hugo M Horlings
- Division of Pathology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | - Sheeba Irshad
- King's College London & Guys & St Thomas NHS Trust London, UK
| | - Emiel AM Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | | | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Andrey I Khramtsov
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Umay Kiraz
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Pawan Kirtani
- Histopathology, Aakash Healthcare Super Speciality Hospital, New Delhi, India
| | - Liudmila L Kodach
- Department of Pathology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Konstanty Korski
- Data, Analytics and Imaging, Product Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Guray Akturk
- Translational Molecular Biomarkers, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Ely Scott
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, USA
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne-Vibeke Lænkholm
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
- Department of Surgical Pathology, University of Copenhagen, Copenhagen, Denmark
| | - Corinna Lang-Schwarz
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Denis Larsimont
- Institut Jules Bordet Université Libre de Bruxelles, Brussels, Belgium
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Marvin Lerousseau
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM U900, Paris, France
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Radiology and Imaging Sciences, Biomedical Informatics, Pathology, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sai K Maley
- NRG Oncology/NSABP Foundation, Pittsburgh, PA, USA
| | | | - Douglas K Marks
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Elizabeth S McDonald
- Breast Cancer Translational Research Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Mehrotra
- Indian Cancer Genomic Atlas, Pune, India
- Centre for Health, Innovation and Policy Foundation, Noida, India
| | - Stefan Michiels
- Office of Biostatistics and Epidemiology, Gustave Roussy, Oncostat U1018, Inserm, University Paris-Saclay, Ligue Contre le Cancer labeled Team, Villejuif France
| | - Durga Kharidehal
- Department of Pathology, Narayana Medical College and Hospital, Nellore, India
| | - Fayyaz ul Amir Afsar Minhas
- Tissue Image Analytics Centre, Warwick Cancer Research Centre, PathLAKE Consortium, Department of Computer Science, University of Warwick, Coventry, UK
| | - Shachi Mittal
- Department of Chemical Engineering, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - David A Moore
- CRUK Lung Cancer Centre of Excellence, UCL and Cellular Pathology Department UCLH, London, UK
| | - Shamim Mushtaq
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Hussain Nighat
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Raipur, India
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Clinical Pathology, Drammen Sykehus, Vestre Viken HF, Drammen, Norway
| | - Frederique Penault-Llorca
- Service de Pathologie et Biopathologie, Centre Jean PERRIN, INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Rashindrie D Perera
- School of Electrical, Mechanical and Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Christopher J Pinard
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Oncology, Lakeshore Animal Health Partners, Mississauga, Ontario, Canada
- Centre for Advancing Responsible and Ethical Artificial Intelligence (CARE-AI), University of Guelph, Guelph, Ontario, Canada
| | | | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Lajos Pusztai
- Yale Cancer Center, Yale University, New Haven, CT, USA
- Department of Medical Oncology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | | - Bernardo Leon Rapoport
- The Medical Oncology Centre of Rosebank Johannesburg South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Tilman T Rau
- Institute of Pathology, University Hospital Düsseldorf and Heinrich-Heine-University, Düsseldorf Germany
| | | | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theranostic Medicine, Institut Curie, University Paris-Sciences et Lettres, Paris, France
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook Medicine, New York NY, USA
| | - Shahin Sayed
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | - Evangelos Hytopoulos
- Department of Pathology, Aga Khan University, Nairobi, Kenya
- iRhythm Technologies Inc., San Francisco, CA, USA
| | - Sarah Mahon
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Kalliopi P Siziopikou
- Department of Pathology, Section of Breast Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Medical Oncology Department Institut Jules Bordet Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Centers for Personalized Medicine (ZPM), Heidelberg, Germany
| | | | - Daniel Sur
- Department of Medical Oncology, University of Medicine and Pharmacy “luliu Hatieganu ”, Cluj-Napoca, Romania
| | - Fraser Symmans
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jonas Teuwen
- Al for Oncology Lab, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Trine Tramm
- Department of Pathology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - William T Tran
- Department of Radiation Oncology, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jeroen van der Laak
- Head of Integrative Genomics Analysis in Clinical Trials, ICR-CTSU, Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Gregory E Verghese
- Cancer Bioinformatics, Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- The Breast Cancer Now Research Unit Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Giuseppe Viale
- Department of Pathology, European Institute of Oncology & University of Milan, Milan, Italy
| | - Noorul Wahab
- Tissue Image Analytics Centre, Department of Computer Science, University of Wanwick Coventry, UK
| | - Thomas Walter
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM U900, Paris, France
| | | | - Hannah Y Wen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wentao Yang
- Fudan Medical University Shanghai Cancer Center, Shanghai, PR China
| | - Yinyin Yuan
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sibylle Loibl
- Department of Medicine and Research, German Breast Group, Neu-lsenburg Germany
| | - Carsten Denkert
- Institut für Pathologie, Philipps-Universität Marburg und Universitätsklinikum Marburg, Marburg, Germany
| | - Peter Savas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Roberto Salgado
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Arman Rahman
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Huertas-Caro CA, Ramírez MA, Rey-Vargas L, Bejarano-Rivera LM, Ballen DF, Nuñez M, Mejía JC, Sua-Villegas LF, Cock-Rada A, Zabaleta J, Fejerman L, Sanabria-Salas MC, Serrano-Gomez SJ. Tumor infiltrating lymphocytes (TILs) are a prognosis biomarker in Colombian patients with triple negative breast cancer. Sci Rep 2023; 13:21324. [PMID: 38044375 PMCID: PMC10694133 DOI: 10.1038/s41598-023-48300-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
Triple negative breast cancer (TNBC) is highly immunogenic and high levels of tumor infiltrating lymphocytes (TILs) have been associated with a better prognosis and higher probability to achieve pathological complete response. Here, we explore the potential role of stromal TILs level and composition as a prognostic and predictive biomarker in TNBC. 195 Tumor biospecimens from patients diagnosed with TNBC were included. Stromal TILs (sTILs), positive CD4/CD8 cells were evaluated. Differences in clinic-pathological characteristics according to immune infiltration were assessed. The predictive and prognostic value of immune infiltration was analyzed by multivariate models. Higher immune infiltration was observed in patients with favorable clinical-pathological features. Survival analysis showed that longer overall survival times were observed in patients with a higher infiltration of sTILs (p = 0.00043), CD4 + (p = 0.0074) and CD8 + (p = 0.008). In the multivariate analysis, low levels of sTILs were found to be associated with a higher mortality hazard (HR: 1.59, 95% CI 1.01-2.48). CD4 and CD8 immune infiltration were associated with higher odds for pathological complete response (OR: 1.20, 95% CI 1.00-1.46, OR: 1.28, 1.02-1.65, respectively). Our results suggest that immune infiltration could be used as a prognostic marker for overall survival in TNBC patients.
Collapse
Affiliation(s)
- Carlos A Huertas-Caro
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia
| | - Mayra A Ramírez
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia
| | - Laura Rey-Vargas
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia
| | | | - Diego Felipe Ballen
- Clinical Oncology Unit. Instituto Nacional de Cancerología and Adjunct Clinical Professor, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Marcela Nuñez
- Research Support and Follow-Up Group, National Cancer Institute of Colombia, Calle 1 No. 9 -85, Bogotá, DC, Colombia
| | - Juan Carlos Mejía
- Grupo de Patología, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Luz Fernanda Sua-Villegas
- Department of Pathology and Laboratory Medicine, Fundación Valle del Lili, and Faculty of Health Sciences, Universidad ICESI, Cali, Colombia
| | - Alicia Cock-Rada
- Department of Oncological Breast Surgery and Mastology, Instituto de Cancerología Las Américas, Medellín, Colombia
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Laura Fejerman
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | | | - Silvia J Serrano-Gomez
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia.
- Research Support and Follow-Up Group, National Cancer Institute of Colombia, Calle 1 No. 9 -85, Bogotá, DC, Colombia.
| |
Collapse
|
5
|
Thagaard J, Broeckx G, Page DB, Jahangir CA, Verbandt S, Kos Z, Gupta R, Khiroya R, Abduljabbar K, Acosta Haab G, Acs B, Akturk G, Almeida JS, Alvarado‐Cabrero I, Amgad M, Azmoudeh‐Ardalan F, Badve S, Baharun NB, Balslev E, Bellolio ER, Bheemaraju V, Blenman KRM, Botinelly Mendonça Fujimoto L, Bouchmaa N, Burgues O, Chardas A, Chon U Cheang M, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Dahl AB, Dantas Portela FL, Deman F, Demaria S, Doré Hansen J, Dudgeon SN, Ebstrup T, Elghazawy M, Fernandez‐Martín C, Fox SB, Gallagher WM, Giltnane JM, Gnjatic S, Gonzalez‐Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hauberg S, Hewitt S, Hida AI, Horlings HM, Husain Z, Hytopoulos E, Irshad S, Janssen EAM, Kahila M, Kataoka TR, Kawaguchi K, Kharidehal D, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Kovács A, Laenkholm A, Lang‐Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Ly A, Madabhushi A, Maley SK, Manur Narasimhamurthy V, Marks DK, McDonald ES, Mehrotra R, Michiels S, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault‐Llorca F, Perera RD, Pinard CJ, Pinto‐Cardenas JC, Pruneri G, Pusztai L, Rahman A, Rajpoot NM, Rapoport BL, Rau TT, Reis‐Filho JS, et alThagaard J, Broeckx G, Page DB, Jahangir CA, Verbandt S, Kos Z, Gupta R, Khiroya R, Abduljabbar K, Acosta Haab G, Acs B, Akturk G, Almeida JS, Alvarado‐Cabrero I, Amgad M, Azmoudeh‐Ardalan F, Badve S, Baharun NB, Balslev E, Bellolio ER, Bheemaraju V, Blenman KRM, Botinelly Mendonça Fujimoto L, Bouchmaa N, Burgues O, Chardas A, Chon U Cheang M, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Dahl AB, Dantas Portela FL, Deman F, Demaria S, Doré Hansen J, Dudgeon SN, Ebstrup T, Elghazawy M, Fernandez‐Martín C, Fox SB, Gallagher WM, Giltnane JM, Gnjatic S, Gonzalez‐Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hauberg S, Hewitt S, Hida AI, Horlings HM, Husain Z, Hytopoulos E, Irshad S, Janssen EAM, Kahila M, Kataoka TR, Kawaguchi K, Kharidehal D, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Kovács A, Laenkholm A, Lang‐Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Ly A, Madabhushi A, Maley SK, Manur Narasimhamurthy V, Marks DK, McDonald ES, Mehrotra R, Michiels S, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault‐Llorca F, Perera RD, Pinard CJ, Pinto‐Cardenas JC, Pruneri G, Pusztai L, Rahman A, Rajpoot NM, Rapoport BL, Rau TT, Reis‐Filho JS, Ribeiro JM, Rimm D, Roslind A, Vincent‐Salomon A, Salto‐Tellez M, Saltz J, Sayed S, Scott E, Siziopikou KP, Sotiriou C, Stenzinger A, Sughayer MA, Sur D, Fineberg S, Symmans F, Tanaka S, Taxter T, Tejpar S, Teuwen J, Thompson EA, Tramm T, Tran WT, van der Laak J, van Diest PJ, Verghese GE, Viale G, Vieth M, Wahab N, Walter T, Waumans Y, Wen HY, Yang W, Yuan Y, Zin RM, Adams S, Bartlett J, Loibl S, Denkert C, Savas P, Loi S, Salgado R, Specht Stovgaard E. Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. J Pathol 2023; 260:498-513. [PMID: 37608772 PMCID: PMC10518802 DOI: 10.1002/path.6155] [Show More Authors] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 08/24/2023]
Abstract
The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jeppe Thagaard
- Technical University of DenmarkKongens LyngbyDenmark
- Visiopharm A/SHørsholmDenmark
| | - Glenn Broeckx
- Department of PathologyGZA‐ZNA HospitalsAntwerpBelgium
- Centre for Oncological Research (CORE), MIPPRO, Faculty of MedicineAntwerp UniversityAntwerpBelgium
| | - David B Page
- Earle A Chiles Research InstituteProvidence Cancer InstitutePortlandORUSA
| | - Chowdhury Arif Jahangir
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | - Sara Verbandt
- Digestive Oncology, Department of OncologyKU LeuvenLeuvenBelgium
| | - Zuzana Kos
- Department of Pathology and Laboratory MedicineBC Cancer Vancouver Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rajarsi Gupta
- Department of Biomedical InformaticsStony Brook UniversityStony BrookNYUSA
| | - Reena Khiroya
- Department of Cellular PathologyUniversity College Hospital LondonLondonUK
| | | | | | - Balazs Acs
- Department of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - Guray Akturk
- Translational Molecular Biomarkers, Merck & Co IncRahwayNJUSA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics (DCEG)National Cancer Institute (NCI)Rockville, MDUSA
| | | | - Mohamed Amgad
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | | | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineEmory University Winship Cancer InstituteAtlantaGAUSA
| | | | - Eva Balslev
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
| | - Enrique R Bellolio
- Departamento de Anatomía Patológica, Facultad de MedicinaUniversidad de La FronteraTemucoChile
| | | | - Kim RM Blenman
- Department of Internal Medicine Section of Medical Oncology and Yale Cancer CenterYale School of MedicineNew HavenCTUSA
- Department of Computer ScienceYale School of Engineering and Applied ScienceNew HavenCTUSA
| | | | - Najat Bouchmaa
- Institute of Biological Sciences, Faculty of Medical SciencesMohammed VI Polytechnic University (UM6P)Ben‐GuerirMorocco
| | - Octavio Burgues
- Pathology DepartmentHospital Cliníco Universitario de Valencia/InclivaValenciaSpain
| | - Alexandros Chardas
- Department of Pathobiology & Population SciencesThe Royal Veterinary CollegeLondonUK
| | - Maggie Chon U Cheang
- Head of Integrative Genomics Analysis in Clinical Trials, ICR‐CTSU, Division of Clinical StudiesThe Institute of Cancer ResearchLondonUK
| | - Francesco Ciompi
- Radboud University Medical CenterDepartment of PathologyNijmegenThe Netherlands
| | - Lee AD Cooper
- Department of PathologyNorthwestern Feinberg School of MedicineChicagoILUSA
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and ImmunotherapyKU LeuvenLeuvenBelgium
| | - Germán Corredor
- Biomedical Engineering DepartmentEmory UniversityAtlantaGAUSA
| | - Anders B Dahl
- Technical University of DenmarkKongens LyngbyDenmark
| | | | | | - Sandra Demaria
- Department of Radiation OncologyWeill Cornell MedicineNew YorkNYUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | | | - Sarah N Dudgeon
- Conputational Biology and BioinformaticsYale UniversityNew HavenCTUSA
| | | | | | - Claudio Fernandez‐Martín
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN‐techUniversitat Politècnica de ValènciaValenciaSpain
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Medicine Hem/Onc, and Pathology, Tisch Cancer Institute – Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Niels Halama
- Department of Translational ImmunotherapyGerman Cancer Research CenterHeidelbergGermany
| | - Matthew G Hanna
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
| | | | - Steven N Hart
- Department of Laboratory Medicine and PathologyMayo ClinicRochester, MNUSA
| | - Johan Hartman
- Department of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - Søren Hauberg
- Technical University of DenmarkKongens LyngbyDenmark
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Akira I Hida
- Department of PathologyMatsuyama Shimin HospitalMatsuyamaJapan
| | - Hugo M Horlings
- Division of PathologyNetherlands Cancer Institute (NKI)AmsterdamThe Netherlands
| | | | | | - Sheeba Irshad
- King's College London & Guy's & St Thomas’ NHS TrustLondonUK
| | - Emiel AM Janssen
- Department of PathologyStavanger University HospitalStavangerNorway
- Department of Chemistry, Bioscience and Environmental TechnologyUniversity of StavangerStavangerNorway
| | | | | | - Kosuke Kawaguchi
- Department of Breast SurgeryKyoto University Graduate School of MedicineKyotoJapan
| | | | - Andrey I Khramtsov
- Department of Pathology and Laboratory MedicineAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoILUSA
| | - Umay Kiraz
- Department of PathologyStavanger University HospitalStavangerNorway
- Department of Chemistry, Bioscience and Environmental TechnologyUniversity of StavangerStavangerNorway
| | - Pawan Kirtani
- Department of HistopathologyAakash Healthcare Super Speciality HospitalNew DelhiIndia
| | - Liudmila L Kodach
- Department of PathologyNetherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Konstanty Korski
- Data, Analytics and Imaging, Product DevelopmentF. Hoffmann‐La Roche AGBaselSwitzerland
| | - Anikó Kovács
- Department of Clinical PathologySahlgrenska University HospitalGothenburgSweden
- Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anne‐Vibeke Laenkholm
- Department of Surgical PathologyZealand University HospitalRoskildeDenmark
- Department of Surgical PathologyUniversity of CopenhagenCopenhagenDenmark
| | - Corinna Lang‐Schwarz
- Institute of Pathology, Klinikum Bayreuth GmbHFriedrich‐Alexander‐University Erlangen‐NurembergBayreuthGermany
| | - Denis Larsimont
- Institut Jules BordetUniversité Libre de BruxellesBrusselsBelgium
| | - Jochen K Lennerz
- Center for Integrated DiagnosticsMassachusetts General Hospital/Harvard Medical SchoolBostonMAUSA
| | - Marvin Lerousseau
- Centre for Computational Biology (CBIO)Mines Paris, PSL UniversityParisFrance
- Institut CuriePSL UniversityParisFrance
- INSERMParisFrance
| | - Xiaoxian Li
- Department of Pathology and Laboratory MedicineEmory UniversityAtlantaGAUSA
| | - Amy Ly
- Department of PathologyMassachusetts General HospitalBostonMAUSA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Radiology and Imaging Sciences, Biomedical Informatics, PathologyGeorgia Institute of Technology and Emory UniversityAtlantaGAUSA
| | - Sai K Maley
- NRG Oncology/NSABP FoundationPittsburghPAUSA
| | | | | | - Elizabeth S McDonald
- Breast Cancer Translational Research GroupUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ravi Mehrotra
- Indian Cancer Genomic AtlasPuneIndia
- Centre for Health, Innovation and Policy FoundationNoidaIndia
| | - Stefan Michiels
- Office of Biostatistics and Epidemiology, Gustave Roussy, Oncostat U1018, InsermUniversity Paris‐Saclay, Ligue Contre le Cancer labeled TeamVillejuifFrance
| | - Fayyaz ul Amir Afsar Minhas
- Tissue Image Analytics Centre, Warwick Cancer Research Centre, PathLAKE Consortium, Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Shachi Mittal
- Department of Chemical Engineering, Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattle, WAUSA
| | - David A Moore
- CRUK Lung Cancer Centre of Excellence, UCL and Cellular Pathology DepartmentUCLHLondonUK
| | - Shamim Mushtaq
- Department of BiochemistryZiauddin UniversityKarachiPakistan
| | - Hussain Nighat
- Pathology and Laboratory MedicineAll India Institute of Medical sciencesRaipurIndia
| | - Thomas Papathomas
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
- Department of Clinical PathologyDrammen Sykehus, Vestre Viken HFDrammenNorway
| | - Frederique Penault‐Llorca
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies ThéranostiquesClermont FerrandFrance
| | - Rashindrie D Perera
- School of Electrical, Mechanical and Infrastructure EngineeringUniversity of MelbourneMelbourneVictoriaAustralia
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Christopher J Pinard
- Radiogenomics LaboratorySunnybrook Health Sciences CentreTorontoOntarioCanada
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
- Department of OncologyLakeshore Animal Health PartnersMississaugaOntarioCanada
- Centre for Advancing Responsible and Ethical Artificial Intelligence (CARE‐AI)University of GuelphGuelphOntarioCanada
| | | | - Giancarlo Pruneri
- Department of Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
- Faculty of Medicine and SurgeryUniversity of MilanMilanItaly
| | - Lajos Pusztai
- Yale Cancer CenterYale UniversityNew HavenCTUSA
- Department of Medical Oncology, Yale School of MedicineYale UniversityNew HavenCTUSA
| | - Arman Rahman
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | | | - Bernardo Leon Rapoport
- The Medical Oncology Centre of RosebankJohannesburgSouth Africa
- Department of Immunology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Tilman T Rau
- Institute of PathologyUniversity Hospital Düsseldorf and Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Jorge S Reis‐Filho
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Joana M Ribeiro
- Département de Médecine OncologiqueGustave RoussyVillejuifFrance
| | - David Rimm
- Department of PathologyYale University School of MedicineNew HavenCTUSA
- Department of MedicineYale University School of MedicineNew HavenCTUSA
| | - Anne Roslind
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
| | - Anne Vincent‐Salomon
- Department of Diagnostic and Theranostic Medicine, Institut CurieUniversity Paris‐Sciences et LettresParisFrance
| | - Manuel Salto‐Tellez
- Integrated Pathology UnitThe Institute of Cancer ResearchLondonUK
- Precision Medicine CentreQueen's University BelfastBelfastUK
| | - Joel Saltz
- Department of Biomedical InformaticsStony Brook UniversityStony BrookNYUSA
| | - Shahin Sayed
- Department of PathologyAga Khan UniversityNairobiKenya
| | - Ely Scott
- Translational PathologyTranslational Sciences and Diagnostics/Translational Medicine/R&D, Bristol Myers SquibbPrincetonNJUSA
| | - Kalliopi P Siziopikou
- Department of Pathology, Section of Breast PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.‐C. Heuson, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB)Université Libre de Bruxelles (ULB)BrusselsBelgium
- Medical Oncology Department, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB)Université Libre de Bruxelles (ULB)BrusselsBelgium
| | - Albrecht Stenzinger
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
- Centers for Personalized Medicine (ZPM)HeidelbergGermany
| | | | - Daniel Sur
- Department of Medical OncologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu”Cluj‐NapocaRomania
| | - Susan Fineberg
- Montefiore Medical CenterBronxNYUSA
- Albert Einstein College of MedicineBronxNYUSA
| | - Fraser Symmans
- University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | | | - Sabine Tejpar
- Digestive Oncology, Department of OncologyKU LeuvenLeuvenBelgium
| | - Jonas Teuwen
- AI for Oncology Lab, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | | | - Trine Tramm
- Department of PathologyAarhus University HospitalAarhusDenmark
- Institute of Clinical MedicineAarhus UniversityAarhusDenmark
| | - William T Tran
- Department of Radiation OncologyUniversity of Toronto and Sunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Jeroen van der Laak
- Department of PathologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center UtrechtThe Netherlands
- Johns Hopkins Oncology CenterBaltimoreMDUSA
| | - Gregory E Verghese
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Giuseppe Viale
- Department of PathologyEuropean Institute of OncologyMilanItaly
- Department of PathologyUniversity of MilanMilanItaly
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth GmbHFriedrich‐Alexander‐University Erlangen‐NurembergBayreuthGermany
| | - Noorul Wahab
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Thomas Walter
- Centre for Computational Biology (CBIO)Mines Paris, PSL UniversityParisFrance
- Institut CuriePSL UniversityParisFrance
- INSERMParisFrance
| | | | - Hannah Y Wen
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
| | - Wentao Yang
- Fudan Medical University Shanghai Cancer CenterShanghaiPR China
| | - Yinyin Yuan
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Reena Md Zin
- Department of Pathology, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Sylvia Adams
- Perlmutter Cancer CenterNYU Langone HealthNew YorkNYUSA
- Department of MedicineNYU Grossman School of MedicineManhattanNYUSA
| | | | - Sibylle Loibl
- Department of Medicine and ResearchGerman Breast GroupNeu‐IsenburgGermany
| | - Carsten Denkert
- Institut für PathologiePhilipps‐Universität Marburg und Universitätsklinikum MarburgMarburgGermany
| | - Peter Savas
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of Medical OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Sherene Loi
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of Medical OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Roberto Salgado
- Department of PathologyGZA‐ZNA HospitalsAntwerpBelgium
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Elisabeth Specht Stovgaard
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
6
|
Wang V, Liu Z, Martinek J, Zhou J, Boruchov H, Ray K, Palucka K, Chuang J. Computational immune synapse analysis reveals T-cell interactions in distinct tumor microenvironments. RESEARCH SQUARE 2023:rs.3.rs-2968528. [PMID: 37398220 PMCID: PMC10312981 DOI: 10.21203/rs.3.rs-2968528/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The tumor microenvironment (TME) and the cellular interactions within it can be critical to tumor progression and treatment response. Although technologies to generate multiplex images of the TME are advancing, the many ways in which TME imaging data can be mined to elucidate cellular interactions are only beginning to be realized. Here, we present a novel approach for multipronged computational immune synapse analysis (CISA) that reveals T-cell synaptic interactions from multiplex images. CISA enables automated discovery and quantification of immune synapse interactions based on the localization of proteins on cell membranes. We first demonstrate the ability of CISA to detect T-cell:APC (antigen presenting cell) synaptic interactions in two independent human melanoma imaging mass cytometry (IMC) tissue microarray datasets. We then generate melanoma histocytometry whole slide images and verify that CISA can detect similar interactions across data modalities. Interestingly, CISA histoctyometry analysis also reveals that T-cell:macrophage synapse formation is associated with T-cell proliferation. We next show the generality of CISA by extending it to breast cancer IMC images, finding that CISA quantifications of T-cell:B-cell synapses are predictive of improved patient survival. Our work demonstrates the biological and clinical significance of spatially resolving cell-cell synaptic interactions in the TME and provides a robust method to do so across imaging modalities and cancer types.
Collapse
Affiliation(s)
| | - Zichao Liu
- 1The Jackson Laboratory for Genomic Medicine
| | | | - Jie Zhou
- The Jackson Laboratory for Genomic Medicine
| | | | - Kelly Ray
- The Jackson Laboratory for Genomic Medicine
| | | | | |
Collapse
|
7
|
Loi S, Salgado R, Schmid P, Cortes J, Cescon DW, Winer EP, Toppmeyer DL, Rugo HS, De Laurentiis M, Nanda R, Iwata H, Awada A, Tan AR, Sun Y, Karantza V, Wang A, Huang L, Saadatpour A, Cristescu R, Yearley J, Lunceford J, Jelinic P, Adams S. Association Between Biomarkers and Clinical Outcomes of Pembrolizumab Monotherapy in Patients With Metastatic Triple-Negative Breast Cancer: KEYNOTE-086 Exploratory Analysis. JCO Precis Oncol 2023; 7:e2200317. [PMID: 37099733 DOI: 10.1200/po.22.00317] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
PURPOSE In the two-cohort phase II KEYNOTE-086 study (ClinicalTrials.gov identifier: NCT02447003), first-line and second-line or later pembrolizumab monotherapy demonstrated antitumor activity in metastatic triple-negative breast cancer (mTNBC; N = 254). This exploratory analysis evaluates the association between prespecified molecular biomarkers and clinical outcomes. METHODS Cohort A enrolled patients with disease progression after one or more systemic therapies for metastatic disease irrespective of PD-L1 status; Cohort B enrolled patients with previously untreated PD-L1-positive (combined positive score [CPS] ≥ 1) metastatic disease. The association between the following biomarkers as continuous variables and clinical outcomes (objective response rate [ORR], progression-free survival [PFS], and overall survival [OS]) was evaluated: PD-L1 CPS (immunohistochemistry), cluster of differentiation 8 (CD8; immunohistochemistry), stromal tumor-infiltrating lymphocyte (sTIL; hematoxylin and eosin staining), tumor mutational burden (TMB; whole-exome sequencing [WES]), homologous recombination deficiency-loss of heterozygosity, mutational signature 3 (WES), mutational signature 2 (apolipoprotein B mRNA editing catalytic polypeptide-like; WES), T-cell-inflamed gene expression profile (TcellinfGEP; RNA sequencing), and 10 non-TcellinfGEP signatures (RNA sequencing); Wald test P values were calculated, and significance was prespecified at α = 0.05. RESULTS In the combined cohorts (A and B), PD-L1 (P = .040), CD8 (P < .001), sTILs (P = .012), TMB (P = .007), and TcellinfGEP (P = .011) were significantly associated with ORR; CD8 (P < .001), TMB (P = .034), Signature 3 (P = .009), and TcellinfGEP (P = .002) with PFS; and CD8 (P < .001), sTILs (P = .004), TMB (P = .025), and TcellinfGEP (P = .001) with OS. None of the non-TcellinfGEP signatures were associated with outcomes of pembrolizumab after adjusting for the TcellinfGEP. CONCLUSION In this exploratory biomarker analysis from KEYNOTE-086, baseline tumor PD-L1, CD8, sTILs, TMB, and TcellinfGEP were associated with improved clinical outcomes of pembrolizumab and may help identify patients with mTNBC who are most likely to respond to pembrolizumab monotherapy.
Collapse
Affiliation(s)
- Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- University of Melbourne, Parkville, Australia
| | | | - Peter Schmid
- Barts ECMC, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Barts Health NHS Trust, London, United Kingdom
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Madrid, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Eric P Winer
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Hope S Rugo
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | | | | | | | - Ahmad Awada
- Medical Oncology Clinic, Institut Jules Bordet, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | - Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York, NY
| |
Collapse
|
8
|
Pomatto-Watson LCD, Bodogai M, Carpenter M, Chowdhury D, Krishna P, Ng S, Bosompra O, Kato J, Wong S, Reyes-Sepulveda C, Bernier M, Price NL, Biragyn A, de Cabo R. Replenishment of myeloid-derived suppressor cells (MDSCs) overrides CR-mediated protection against tumor growth in a murine model of triple-negative breast cancer. GeroScience 2022; 44:2471-2490. [PMID: 35996062 PMCID: PMC9768076 DOI: 10.1007/s11357-022-00635-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 01/06/2023] Open
Abstract
Caloric restriction (CR) is the leading non-pharmacological intervention to delay induced and spontaneous tumors in pre-clinical models. These effects of CR are largely attributed to canonical inhibition of pro-growth pathways. However, our recent data suggest that CR impairs primary tumor growth and cancer progression in the murine 4T1 model of triple negative breast cancer (TNBC), at least in part, through reduced frequency of the myeloid-derived suppressor cells (MDSC). In the present study, we sought to determine whether injection of excess MDSCs could block regression in 4T1 tumor growth and metastatic spread in BALB/cJ female mice undergoing daily CR. Our findings show that MDSC injection impeded CR-mediated protection against tumor growth without increasing lung metastatic burden. Overall, these results reveal that CR can slow cancer progression by affecting immune suppressive cells.Impact statement: Inoculation of MDSCs from donor mice effectively impedes the ability of calorie restriction to protect against primary tumor growth without impacting lung metastatic burden in recipient animals.
Collapse
Affiliation(s)
- Laura C D Pomatto-Watson
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Monica Bodogai
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Melissa Carpenter
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Dolly Chowdhury
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Priya Krishna
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sandy Ng
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Oye Bosompra
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jonathan Kato
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sarah Wong
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Carlos Reyes-Sepulveda
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
9
|
Ribeiro R, Carvalho MJ, Goncalves J, Moreira JN. Immunotherapy in triple-negative breast cancer: Insights into tumor immune landscape and therapeutic opportunities. Front Mol Biosci 2022; 9:903065. [PMID: 36060249 PMCID: PMC9437219 DOI: 10.3389/fmolb.2022.903065] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer that represents 15-20% of breast tumors and is more prevalent in young pre-menopausal women. It is the subtype of breast cancers with the highest metastatic potential and recurrence at the first 5 years after diagnosis. In addition, mortality increases when a complete pathological response is not achieved. As TNBC cells lack estrogen, progesterone, and HER2 receptors, patients do not respond well to hormone and anti-HER2 therapies, and conventional chemotherapy remains the standard treatment. Despite efforts to develop targeted therapies, this disease continues to have a high unmet medical need, and there is an urgent demand for customized diagnosis and therapeutics. As immunotherapy is changing the paradigm of anticancer treatment, it arises as an alternative treatment for TNBC patients. TNBC is classified as an immunogenic subtype of breast cancer due to its high levels of tumor mutational burden and presence of immune cell infiltrates. This review addresses the implications of these characteristics for the diagnosis, treatment, and prognosis of the disease. Herein, the role of immune gene signatures and tumor-infiltrating lymphocytes as biomarkers in TNBC is reviewed, identifying their application in patient diagnosis and stratification, as well as predictors of efficacy. The expression of PD-L1 expression is already considered to be predictive of response to checkpoint inhibitor therapy, but the challenges regarding its value as biomarker are described. Moreover, the rationales for different formats of immunotherapy against TNBC currently under clinical research are discussed, and major clinical trials are highlighted. Immune checkpoint inhibitors have demonstrated clinical benefit, particularly in early-stage tumors and when administered in combination with chemotherapy, with several regimens approved by the regulatory authorities. The success of antibody-drug conjugates and research on other emerging approaches, such as vaccines and cell therapies, will also be addressed. These advances give hope on the development of personalized, more effective, and safe treatments, which will improve the survival and quality of life of patients with TNBC.
Collapse
Affiliation(s)
- Rita Ribeiro
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Univ Coimbra—University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal
| | - Maria João Carvalho
- Univ Coimbra—University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal
- CHUC—Coimbra Hospital and University Centre, Department of Gynaecology, Coimbra, Portugal
- Univ Coimbra—University Clinic of Gynaecology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR—Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - João Goncalves
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - João Nuno Moreira
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- Univ Coimbra—University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
10
|
Liao X, Wang W, Yu B, Tan S. Thrombospondin-2 acts as a bridge between tumor extracellular matrix and immune infiltration in pancreatic and stomach adenocarcinomas: an integrative pan-cancer analysis. Cancer Cell Int 2022; 22:213. [PMID: 35701829 PMCID: PMC9195477 DOI: 10.1186/s12935-022-02622-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background Thrombospondin-2 (THBS2) is a versatile glycoprotein that regulates numerous biological functions, including the apoptosis-proliferation balance in endothelial cells, and it has been linked to tumor angiogenesis. However, the exact role of THBS2 in human cancer remains unknown. This study aimed to determine THBS2 expression in a pan-cancer analysis and its association with pan-cancer prognosis and to further identify its possible roles in tumor immunity and the extracellular matrix (ECM). Methods Data on THBS2 expression in cancers and normal tissues were downloaded from the Genotype-Tissue Expression portal and UCSC Xena visual exploration tool and analyzed using the ONCOMINE database, Perl programming language, and Gene Expression Profiling and Interactive Analyses vision 2 webserver. In addition, survival prognosis was analyzed using the survival, survminer, limma, and forestplot packages in R v. 4.0.3.Immune and matrix components were also analyzed using R v. 4.0.3. Most importantly, we partially validated the role and mechanism of THBS2 in pancreatic and gastric cancers in vitro using PANC1 and BGC-823 cell lines. Results THBS2 was significantly overexpressed in 17 of the 33 investigated cancers and linked to a poor prognosis in pan-cancer survival analysis. High THBS2 expression was an independent unfavorable prognostic factor in kidney renal papillary cell, mesothelioma, and stomach and pancreatic adenocarcinomas. Immune infiltration and THBS2 expression were also related. THBS2 expression has been linked to immune and stromal scores and immune checkpoint markers in various cancers. The protein–protein interaction network revealed that THBS2 is associated with multiple ECM and immune proteins. THBS2 knockdown decreased the expression of CD47 and matrix metallopeptidase 2 (MMP-2) as well as the proliferation, migration, and invasion of PANC1 and BGC-823 cells in vitro. Conclusions Our findings suggested that THBS2 might promote cancer progression by remodeling the tumor microenvironment, affecting CD47-mediated signaling pathways, activating the pro-tumor functions of a disintegrin and metalloproteinase with thrombospondin motifs, and enhancing MMP-2 expression. Furthermore, it functions as a bridge between the ECM and immune infiltration in cancer and serves as a potential prognostic biomarker for several cancers, especially pancreatic and gastric adenocarcinomas. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02622-x.
Collapse
Affiliation(s)
- Xingchen Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
11
|
Dissecting Tumor-Immune Microenvironment in Breast Cancer at a Spatial and Multiplex Resolution. Cancers (Basel) 2022; 14:cancers14081999. [PMID: 35454904 PMCID: PMC9026731 DOI: 10.3390/cancers14081999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The tumor immune microenvironment (TIME) is an important player in breast cancer pathophysiology. Surrogates for antitumor immune response have been explored as predictive biomarkers to immunotherapy, though with several limitations. Immunohistochemistry for programmed death ligand 1 suffers from analytical problems, immune signatures are devoid of spatial information and histopathological evaluation of tumor infiltrating lymphocytes exhibits interobserver variability. Towards improved understanding of the complex interactions in TIME, several emerging multiplex in situ methods are being developed and gaining much attention for protein detection. They enable the simultaneous evaluation of multiple targets in situ, detection of cell densities/subpopulations as well as estimations of functional states of immune infiltrate. Furthermore, they can characterize spatial organization of TIME—by cell-to-cell interaction analyses and the evaluation of distribution within different regions of interest and tissue compartments—while digital imaging and image analysis software allow for reproducibility of the various assays. In this review, we aim to provide an overview of the different multiplex in situ methods used in cancer research with special focus on breast cancer TIME at the neoadjuvant, adjuvant and metastatic setting. Spatial heterogeneity of TIME and importance of longitudinal evaluation of TIME changes under the pressure of therapy and metastatic progression are also addressed.
Collapse
|
12
|
Seeing the forest and the tree: TILs and PD-L1 as immune biomarkers. Breast Cancer Res Treat 2021; 189:599-606. [PMID: 34487294 DOI: 10.1007/s10549-021-06287-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023]
Abstract
Here we will provide an immune-focussed overview of biomarkers in early and advanced stage breast cancer. It should be noted from the outset that all the biomarkers under discussion here have not been tested in prospective clinical trials to determine their predictive performance. Such trials require very large sample sizes due to the statistical burden of testing an interaction between a treatment and a biomarker, which is compounded by the heterogeneous biology of breast cancer (Polley et al. in J Natl Cancer Inst 105:1677-1683 2013 [1]). For a detailed discussion of the immunobiology of breast cancer, analytical aspects of these biomarkers, emerging biomarkers such as tumour mutation burden and detailed immunotherapy clinical trial data, see other articles in this issue.
Collapse
|
13
|
Badve SS, Penault-Llorca F, Reis-Filho JS, Deurloo R, Siziopikou KP, D'Arrigo C, Viale G. Determining PD-L1 Status in Patients with Triple-Negative Breast Cancer: Lessons Learned from IMpassion130. J Natl Cancer Inst 2021; 114:664-675. [PMID: 34286340 DOI: 10.1093/jnci/djab121] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 07/17/2021] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 12% to 17% of all breast cancers and has an aggressive clinical behavior. Increased tumor-infiltrating lymphocyte counts are prognostic for survival in TNBC, making this disease a potential target for cancer immunotherapy (CIT). Research on immunophenotyping of tumor-infiltrating lymphocytes is revealing molecular and structural organization in the tumor microenvironment that may predict patient prognosis. The anti-programmed death-ligand 1 (PD-L1) antibody atezolizumab plus nab-paclitaxel was the first CIT combination to demonstrate progression-free survival benefit and clinically meaningful overall survival benefit in the first-line treatment of metastatic TNBC (mTNBC) in patients with PD-L1-expressing tumor-infiltrating immune cells (IC) in ≥ 1% of the tumor area. This led to its US and EU approval for mTNBC and US approval of the VENTANA PD-L1 (SP142) assay as a companion diagnostic immunohistochemistry (IHC) assay. Subsequently, the anti- programmed death-1 (PD-1) antibody pembrolizumab plus chemotherapy was approved by the FDA for mTNBC based on progression-free survival benefit in patients with a combined positive score ≥10 by its concurrently approved 22C3 companion diagnostic assay. Treatment guidelines now recommend PD-L1 testing for patients with mTNBC, and the testing landscape will likely become increasingly complex as new anti-PD-L1/PD-1 agents and diagnostics are approved for TNBC. Integrating PD-L1 testing into current diagnostic workflows for mTNBC may provide more treatment options for these patients. Therefore, it is critical for medical oncologists and pathologists to understand the available assays and their relevance to therapeutic options to develop an appropriate workflow for IHC testing.
Collapse
Affiliation(s)
- Sunil S Badve
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Regula Deurloo
- Oncology Biomarker Development, F. Hoffmann-La Roche, Ltd, ., Basel, Switzerland
| | - Kalliopi P Siziopikou
- Breast Pathology Section, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Giuseppe Viale
- University of Milan, Milan, Italy.,European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
14
|
Chakraborty D, Ivan C, Amero P, Khan M, Rodriguez-Aguayo C, Başağaoğlu H, Lopez-Berestein G. Explainable Artificial Intelligence Reveals Novel Insight into Tumor Microenvironment Conditions Linked with Better Prognosis in Patients with Breast Cancer. Cancers (Basel) 2021; 13:3450. [PMID: 34298668 PMCID: PMC8303703 DOI: 10.3390/cancers13143450] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Abstract
We investigated the data-driven relationship between immune cell composition in the tumor microenvironment (TME) and the ≥5-year survival rates of breast cancer patients using explainable artificial intelligence (XAI) models. We acquired TCGA breast invasive carcinoma data from the cbioPortal and retrieved immune cell composition estimates from bulk RNA sequencing data from TIMER2.0 based on EPIC, CIBERSORT, TIMER, and xCell computational methods. Novel insights derived from our XAI model showed that B cells, CD8+ T cells, M0 macrophages, and NK T cells are the most critical TME features for enhanced prognosis of breast cancer patients. Our XAI model also revealed the inflection points of these critical TME features, above or below which ≥5-year survival rates improve. Subsequently, we ascertained the conditional probabilities of ≥5-year survival under specific conditions inferred from the inflection points. In particular, the XAI models revealed that the B cell fraction (relative to all cells in a sample) exceeding 0.025, M0 macrophage fraction (relative to the total immune cell content) below 0.05, and NK T cell and CD8+ T cell fractions (based on cancer type-specific arbitrary units) above 0.075 and 0.25, respectively, in the TME could enhance the ≥5-year survival in breast cancer patients. The findings could lead to accurate clinical predictions and enhanced immunotherapies, and to the design of innovative strategies to reprogram the breast TME.
Collapse
Affiliation(s)
- Debaditya Chakraborty
- Department of Construction Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (P.A.); (C.R.-A.); (G.L.-B.)
| | - Maliha Khan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Thagaard J, Stovgaard ES, Vognsen LG, Hauberg S, Dahl A, Ebstrup T, Doré J, Vincentz RE, Jepsen RK, Roslind A, Kümler I, Nielsen D, Balslev E. Automated Quantification of sTIL Density with H&E-Based Digital Image Analysis Has Prognostic Potential in Triple-Negative Breast Cancers. Cancers (Basel) 2021; 13:3050. [PMID: 34207414 PMCID: PMC8235502 DOI: 10.3390/cancers13123050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and difficult-to-treat cancer type that represents approximately 15% of all breast cancers. Recently, stromal tumor-infiltrating lymphocytes (sTIL) resurfaced as a strong prognostic biomarker for overall survival (OS) for TNBC patients. Manual assessment has innate limitations that hinder clinical adoption, and the International Immuno-Oncology Biomarker Working Group (TIL-WG) has therefore envisioned that computational assessment of sTIL could overcome these limitations and recommended that any algorithm should follow the manual guidelines where appropriate. However, no existing studies capture all the concepts of the guideline or have shown the same prognostic evidence as manual assessment. In this study, we present a fully automated digital image analysis pipeline and demonstrate that our hematoxylin and eosin (H&E)-based pipeline can provide a quantitative and interpretable score that correlates with the manual pathologist-derived sTIL status, and importantly, can stratify a retrospective cohort into two significant distinct prognostic groups. We found our score to be prognostic for OS (HR: 0.81 CI: 0.72-0.92 p = 0.001) independent of age, tumor size, nodal status, and tumor type in statistical modeling. While prior studies have followed fragments of the TIL-WG guideline, our approach is the first to follow all complex aspects, where appropriate, supporting the TIL-WG vision of computational assessment of sTIL in the future clinical setting.
Collapse
Affiliation(s)
- Jeppe Thagaard
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (L.G.V.); (S.H.); (A.D.)
- Visiopharm A/S, 2970 Hørsholm, Denmark; (T.E.); (J.D.)
| | - Elisabeth Specht Stovgaard
- Department of Pathology, Herlev and Gentofte Hospital, 2730 Herlev, Denmark; (E.S.S.); (R.E.V.); (R.K.J.); (A.R.); (E.B.)
| | - Line Grove Vognsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (L.G.V.); (S.H.); (A.D.)
- Visiopharm A/S, 2970 Hørsholm, Denmark; (T.E.); (J.D.)
| | - Søren Hauberg
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (L.G.V.); (S.H.); (A.D.)
| | - Anders Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (L.G.V.); (S.H.); (A.D.)
| | | | - Johan Doré
- Visiopharm A/S, 2970 Hørsholm, Denmark; (T.E.); (J.D.)
| | - Rikke Egede Vincentz
- Department of Pathology, Herlev and Gentofte Hospital, 2730 Herlev, Denmark; (E.S.S.); (R.E.V.); (R.K.J.); (A.R.); (E.B.)
| | - Rikke Karlin Jepsen
- Department of Pathology, Herlev and Gentofte Hospital, 2730 Herlev, Denmark; (E.S.S.); (R.E.V.); (R.K.J.); (A.R.); (E.B.)
| | - Anne Roslind
- Department of Pathology, Herlev and Gentofte Hospital, 2730 Herlev, Denmark; (E.S.S.); (R.E.V.); (R.K.J.); (A.R.); (E.B.)
| | - Iben Kümler
- Department of Oncology, Herlev and Gentofte Hospital, 2730 Herlev, Denmark; (I.K.); (D.N.)
| | - Dorte Nielsen
- Department of Oncology, Herlev and Gentofte Hospital, 2730 Herlev, Denmark; (I.K.); (D.N.)
| | - Eva Balslev
- Department of Pathology, Herlev and Gentofte Hospital, 2730 Herlev, Denmark; (E.S.S.); (R.E.V.); (R.K.J.); (A.R.); (E.B.)
| |
Collapse
|
16
|
Zhang W, Yan C, Gao X, Li X, Cao F, Zhao G, Zhao J, Er P, Zhang T, Chen X, Wang Y, Jiang Y, Wang Q, Zhang B, Qian D, Wang J, Zhou D, Ren X, Yu Z, Zhao L, Yuan Z, Wang P, Pang Q. Safety and Feasibility of Radiotherapy Plus Camrelizumab for Locally Advanced Esophageal Squamous Cell Carcinoma. Oncologist 2021; 26:e1110-e1124. [PMID: 33893689 PMCID: PMC8265339 DOI: 10.1002/onco.13797] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
LESSONS LEARNED Radiotherapy plus anti-PD-1 antibody as first-line therapy is safe and feasible in locally advanced esophageal squamous cell carcinoma (ESCC). Tumor-infiltrating and peripheral lymphocytes were associated with patient survival. Further studies combining chemoradiotherapy with immunotherapy in locally advanced ESCC and exploration of predictive biomarkers are warranted. BACKGROUND We conducted a phase Ib study of radiotherapy plus programmed cell death protein 1 (PD-1) monoclonal antibody camrelizumab as first-line treatment for locally advanced esophageal squamous cell carcinoma (ESCC). METHODS We planned to enroll 20 patients with newly diagnosed locally advanced ESCC. Patients received 60 Gy radiation (2.0 Gy/fraction, 5 fractions/week), with camrelizumab (200 mg every 2 weeks) starting with radiotherapy and continuing for 32 weeks (i.e., for 16 cycles). The primary endpoints were safety and feasibility. Secondary endpoints were rates of radiologic and pathologic response, overall survival (OS), and progression-free survival (PFS). Study data were collected by the week during radiotherapy (RT), every month during the maintenance camrelizumab treatment, and every 3 months after treatment. Tumor microenvironment and peripheral blood were monitored at baseline and after 40 Gy radiation for association with efficacy. RESULTS Twenty patients were enrolled and received treatment. One patient (patient 10) was excluded upon discovery of a second tumor in the bladder during treatment, leaving 19 patients for analysis. Toxicity was deemed tolerable. Fourteen (74%) patients had assessed objective response. At a median follow-up time of 31.0 months (95% confidence interval [CI], 27.0-35.1), median OS and PFS times were 16.7 months (95% CI, 5.9-27.9) and 11.7 months (95% CI, 0-30.3), respectively. OS and PFS rates at 24 months were 31.6% and 35.5%, respectively. Kaplan-Meier analysis revealed associations between the following factors and OS/PFS: tumor programmed cell death ligand 1 (PD-L1) expression, PD-1+ CD8+ , PD-1+ CD4+ T cells, and PD-L1+ CD4+ T cells; peripheral blood CD4+ , CD8+ , CD4+ regulatory T cells, and their subsets. CONCLUSION Radiotherapy plus camrelizumab had manageable toxicity and antitumor efficacy for locally advanced ESCC. Several biomarkers were associated with clinical benefit and deserve further study.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, People's Republic of China
| | - Xiaoxia Li
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Fuliang Cao
- Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Gang Zhao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Jingjing Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Puchun Er
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Tian Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Yuwen Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Yao Jiang
- Jiangsu Hengrui Medicine Co. Ltd., Lianyungang, People's Republic of China
| | - Quanren Wang
- Jiangsu Hengrui Medicine Co. Ltd., Lianyungang, People's Republic of China
| | - Baozhong Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Dong Qian
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Jun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Dejun Zhou
- Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Zhentao Yu
- Esophageal Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| |
Collapse
|
17
|
Beck RJ, Weigelin B, Beltman JB. Mathematical Modelling Based on In Vivo Imaging Suggests CD137-Stimulated Cytotoxic T Lymphocytes Exert Superior Tumour Control Due to an Enhanced Antimitotic Effect on Tumour Cells. Cancers (Basel) 2021; 13:cancers13112567. [PMID: 34073822 PMCID: PMC8197176 DOI: 10.3390/cancers13112567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Cytotoxic T lymphocytes (CTLs) play an important role in controlling tumours, and an improved understanding of how they accomplish this will benefit immunotherapeutic cancer treatment strategies. Stimulation of CTLs by targeting their CD137 receptor is a strategy currently under investigation for enhancing responses against tumours, yet so far only limited quantitative knowledge regarding the effects of such stimulation upon CTLs has been obtained. Here, we develop mathematical models to describe dynamic in vivo two-photon imaging of tumour infiltrating CTLs, to characterise differences in their function either in the presence or absence of a CD137 agonist antibody. We showed that an increased antiproliferative effect and a more sustained presence of CTLs within the tumour were the most important effects associated with anti-CD137 treatment. Abstract Several immunotherapeutic strategies for the treatment of cancer are under development. Two prominent strategies are adoptive cell transfer (ACT) of CTLs and modulation of CTL function with immune checkpoint inhibitors or with costimulatory antibodies. Despite some success with these approaches, there remains a lack of detailed and quantitative descriptions of the events following CTL transfer and the impact of immunomodulation. Here, we have applied ordinary differential equation models to two photon imaging data derived from a B16F10 murine melanoma. Models were parameterised with data from two different treatment conditions: either ACT-only, or ACT with intratumoural costimulation using a CD137 targeted antibody. Model dynamics and best fitting parameters were compared, in order to assess the mode of action of the CTLs and examine how the CD137 antibody influenced their activities. We found that the cytolytic activity of the transferred CTLs was minimal without CD137 costimulation, and that the CD137 targeted antibody did not enhance the per-capita killing ability of the transferred CTLs. Instead, the results of our modelling study suggest that an antiproliferative effect of CTLs exerted upon the tumour likely accounted for the majority of the reduction in tumour growth after CTL transfer. Moreover, we found that CD137 most likely improved tumour control via enhancement of this antiproliferative effect, as well as prolonging the period in which CTLs were inside the tumour, leading to a sustained duration of their antitumour effects following CD137 stimulation.
Collapse
Affiliation(s)
- Richard J. Beck
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Joost B. Beltman
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden University, 2333 CC Leiden, The Netherlands;
- Correspondence:
| |
Collapse
|
18
|
Kvokačková B, Remšík J, Jolly MK, Souček K. Phenotypic Heterogeneity of Triple-Negative Breast Cancer Mediated by Epithelial-Mesenchymal Plasticity. Cancers (Basel) 2021; 13:2188. [PMID: 34063254 PMCID: PMC8125677 DOI: 10.3390/cancers13092188] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast carcinoma known for its unusually aggressive behavior and poor clinical outcome. Besides the lack of molecular targets for therapy and profound intratumoral heterogeneity, the relatively quick overt metastatic spread remains a major obstacle in effective clinical management. The metastatic colonization of distant sites by primary tumor cells is affected by the microenvironment, epigenetic state of particular subclones, and numerous other factors. One of the most prominent processes contributing to the intratumoral heterogeneity is an epithelial-mesenchymal transition (EMT), an evolutionarily conserved developmental program frequently hijacked by tumor cells, strengthening their motile and invasive features. In response to various intrinsic and extrinsic stimuli, malignant cells can revert the EMT state through the mesenchymal-epithelial transition (MET), a process that is believed to be critical for the establishment of macrometastasis at secondary sites. Notably, cancer cells rarely undergo complete EMT and rather exist in a continuum of E/M intermediate states, preserving high levels of plasticity, as demonstrated in primary tumors and, ultimately, in circulating tumor cells, representing a simplified element of the metastatic cascade. In this review, we focus on cellular drivers underlying EMT/MET phenotypic plasticity and its detrimental consequences in the context of TNBC cancer.
Collapse
Affiliation(s)
- Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ján Remšík
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
19
|
Myeloid and T-Cell Microenvironment Immune Features Identify Two Prognostic Sub-Groups in High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms. J Clin Med 2021; 10:jcm10081741. [PMID: 33920514 PMCID: PMC8072982 DOI: 10.3390/jcm10081741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
High-grade Gastroenteropancreatic Neuroendocrine neoplasms (H-NENs) comprehend well-differentiated tumors (NET G3) and poorly differentiated carcinomas (NEC) with proliferative activity indexes as mitotic count (MC) >20 mitoses/10 HPF and Ki-67 >20%. At present, no specific therapy for H-NENs exists and the several evidences of microenvironment involvement in their pathogenesis pave the way for tailored therapies. Forty-five consecutive cases, with available information about T-cell, immune, and non-immune markers, from surgical pathology and clinical databases of 2 Italian institutions were immunostained for Arginase, CD33, CD163 and CD66 myeloid markers. The association between features was assessed by Spearman’s correlation coefficient. A unsupervised K-means algorithm was used to identify clusters of patients according to inputs of microenvironment features and the relationship between clusters and clinicopathological features, including cancer-specific survival (CSS), was analyzed. The H-NEN population was composed of 6 (13.3%) NET G3 and 39 (86.7%) NEC. Overall, significant positive associations were found between myeloid (CD33, CD163 and Arginase) and T/immune markers (CD3, CD4, CD8, PD-1 and HLA-I). Myeloid and T-cell markers CD3 and CD8 identified two clusters of patients from unsupervised K-means analysis. Cases grouped in cluster 1 with more myeloid infiltrates, T cell, HLA and expression of inhibitory receptors and ligands in the stroma (PD-1, PD-L1) had significantly better CSS than patients in cluster 2. Multivariable analysis showed that Ki-67 (>55 vs. <55, HR 8.60, CI 95% 2.61–28.33, p < 0.0001) and cluster (1 vs. 2, HR 0.43, CI 95% 0.20–0.93, p = 0.03) were significantly associated with survival. High grade gastroenteropancreatic neuroendocrine neoplasms can be further classified into two prognostic sub-populations of tumors driven by different tumor microenvironments and immune features able to generate the framework for evaluating new therapeutic strategies.
Collapse
|
20
|
Mungenast F, Fernando A, Nica R, Boghiu B, Lungu B, Batra J, Ecker RC. Next-Generation Digital Histopathology of the Tumor Microenvironment. Genes (Basel) 2021; 12:538. [PMID: 33917241 PMCID: PMC8068063 DOI: 10.3390/genes12040538] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Progress in cancer research is substantially dependent on innovative technologies that permit a concerted analysis of the tumor microenvironment and the cellular phenotypes resulting from somatic mutations and post-translational modifications. In view of a large number of genes, multiplied by differential splicing as well as post-translational protein modifications, the ability to identify and quantify the actual phenotypes of individual cell populations in situ, i.e., in their tissue environment, has become a prerequisite for understanding tumorigenesis and cancer progression. The need for quantitative analyses has led to a renaissance of optical instruments and imaging techniques. With the emergence of precision medicine, automated analysis of a constantly increasing number of cellular markers and their measurement in spatial context have become increasingly necessary to understand the molecular mechanisms that lead to different pathways of disease progression in individual patients. In this review, we summarize the joint effort that academia and industry have undertaken to establish methods and protocols for molecular profiling and immunophenotyping of cancer tissues for next-generation digital histopathology-which is characterized by the use of whole-slide imaging (brightfield, widefield fluorescence, confocal, multispectral, and/or multiplexing technologies) combined with state-of-the-art image cytometry and advanced methods for machine and deep learning.
Collapse
Affiliation(s)
- Felicitas Mungenast
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- TissueGnostics GmbH, 1020 Vienna, Austria;
| | - Achala Fernando
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | - Bogdan Boghiu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Bianca Lungu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Jyotsna Batra
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Rupert C. Ecker
- TissueGnostics GmbH, 1020 Vienna, Austria;
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
21
|
Ju Q, Li XM, Zhang H, Zhao YJ. BRCA1-Associated Protein Is a Potential Prognostic Biomarker and Is Correlated With Immune Infiltration in Liver Hepatocellular Carcinoma: A Pan-Cancer Analysis. Front Mol Biosci 2020; 7:573619. [PMID: 33240929 PMCID: PMC7667264 DOI: 10.3389/fmolb.2020.573619] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022] Open
Abstract
Background BRCA1-associated protein (BRAP) is a critical gene that regulates inflammation-related signaling pathway and affects patients’ prognosis in esophageal squamous cell carcinoma (ESCC). However, its roles in different cancers remain largely unknown. Methods BRAP expression in human pan-cancer was analyzed via the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) database. Pearson correlation analysis was used to evaluate the association between BRAP expression with mismatch repair (MMR) gene mutation and DNA methyltransferase. We evaluated the influence of BRAP on clinical prognosis by univariate survival analysis. Moreover, the correlation between BRAP and tumor immune infiltration was analyzed via the Tumor Immune Evaluation Resource (TIMER) database. Pearson correlation analysis was used to investigate the correlation between BRAP expression and immune checkpoint genes expression. Results BRAP is abnormally overexpressed and significantly correlated with MMR gene mutation level and DNA methyltransferase expression in human pan-cancer. Univariate survival analysis showed that BRAP was significant with patients’ overall survival (OS) in six cancer types, disease-free interval (DFI) in three cancer types, and progression-free interval (PFI) in two cancer types. Remarkably, increased BRAP expression was strongly correlated with patients’ poor prognosis in liver hepatocellular carcinoma (LIHC), whether OS (P < 0.0001, hazard ratio (HR) = 1.1), DFI (P = 0.00099, HR = 1.06), or PFI (P = 0.00025, HR = 1.07). Moreover, a positive relationship was found between BRAP expression and immune infiltrating cells including B cell, CD4 + T cell, CD8 + T cell, dendritic cell, macrophage cell, and neutrophil cell in colon adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), and LIHC. Additionally, BRAP expression showed strong correlations with immune checkpoint genes in LIHC. Conclusion BRAP expression is increased in human pan-cancer samples compared with normal tissues. Overexpression of BRAP is correlated with poor prognosis and immune infiltration in multiple cancers, especially in LIHC. These findings suggest that BRAP may be used as a potential molecular biomarker for determining prognosis and immune infiltration in LIHC.
Collapse
Affiliation(s)
- Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xin-Mei Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Heng Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Yan-Jie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Lee JS, Yost SE, Yuan Y. Neoadjuvant Treatment for Triple Negative Breast Cancer: Recent Progresses and Challenges. Cancers (Basel) 2020; 12:E1404. [PMID: 32486021 PMCID: PMC7352772 DOI: 10.3390/cancers12061404] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive breast cancer with historically poor outcomes, primarily due to the lack of effective targeted therapies. The tumor molecular heterogeneity of TNBC has been well recognized, yet molecular subtype driven therapy remains lacking. While neoadjuvant anthracycline and taxane-based chemotherapy remains the standard of care for early stage TNBC, the optimal chemotherapy regimen is debatable. The addition of carboplatin to anthracycline, cyclophosphamide, and taxane (ACT) regimen is associated with improved complete pathologic response (pCR). Immune checkpoint inhibitor (ICI) combinations significantly increase pCR in TNBC. Increased tumor infiltrating lymphocyte (TILs) or the presence of DNA repair deficiency (DRD) mutation is associated with increased pCR. Other targets, such as poly-ADP-ribosyl polymerase inhibitors (PARPi) and Phosphatidylinositol-3-kinase/Protein Kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) pathway inhibitors, are being evaluated in the neoadjuvant setting. This review examines recent progress in neoadjuvant therapy of TNBC, including platinum, ICI, PARPi, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) pathway targeted therapies, and novel tumor microenvironment (TME) targeted therapy, in addition to biomarkers for the prediction of pCR.
Collapse
Affiliation(s)
| | | | - Yuan Yuan
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA; (J.S.L.); (S.E.Y.)
| |
Collapse
|