1
|
Huang J, Zheng X, Yu T, Ali M, Wiese J, Hu S, Huang L, Huang Y. Diverse lifestyles and adaptive evolution of uncultured UBA5794 actinobacteria, a sister order of "Candidatus actinomarinales". ENVIRONMENTAL MICROBIOME 2025; 20:39. [PMID: 40253436 PMCID: PMC12008989 DOI: 10.1186/s40793-025-00701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
Uncultured UBA5794 actinobacteria are frequently found in marine and inland water environments by using metagenomic approaches. However, knowledge about these actinobacteria is limited, hindering their isolation and cultivation, and they are always confused with "Candidatus Actinomarinales" based on 16S rRNA gene classification. Here, to conduct genomic characterization of them, we obtained three high-quality UBA5794 metagenome-assembled genomes (MAGs) from a hydrothermal sediment on the Carlsberg Ridge (CR) and retrieved 131 high-quality UBA5794 genomes from public datasets. Phylogenomic analysis confirms UBA5794 as an independent order within the class Acidimicrobiia. Genome-based metabolic predictions reveal that flexible metabolism and diversified energy acquisition, as well as heavy metal(loid) detoxification capacity, are crucial for the ability of UBA5794 to thrive in diverse environments. Moreover, there is separation between sponge-associated and free-living UBA5794 groups in phylogeny and functional potential, which can be attributed to the symbiotic nature of the sponge-associated group and the extensive horizontal gene transfer (HGT) events observed in these bacteria. Ancestral state reconstruction suggests that the UBA5794 clade may have originated from a free-living environment and then some members gradually migrated to the sponge host. Overall, our study sheds light on the ecological adaptation and evolutionary history of the ubiquitous but poorly understood UBA5794 actinobacteria.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- RU Marine Ecology, RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Yu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mohsin Ali
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jutta Wiese
- RU Marine Ecology, RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Songnian Hu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ying Huang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Wang J, Guan H, Xu Z. Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for Screening Potential Citrate Lyase Inhibitors from a Library of Marine Compounds. Mar Drugs 2024; 22:245. [PMID: 38921556 PMCID: PMC11204750 DOI: 10.3390/md22060245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis, a persistent illness caused by Mycobacterium tuberculosis, remains a significant global public health challenge. The widespread use of anti-tuberculosis drugs has resulted in the emergence of drug-resistant strains, which complicates treatment efforts. Addressing this issue is crucial and hinges on the development of new drugs that can effectively target the disease. This involves identifying novel therapeutic targets that can disrupt the bacterium's survival mechanisms in various environments such as granulomas and lesions. Citrate lyase, essential for the survival of Mycobacterium species at lesion sites and in granulomatous conditions, is a potential target for the treatment of tuberculosis. This manuscript aimed to construct an efficient enzyme inhibitor screening platform using ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF MS). This system can accurately identify compounds with enzyme inhibitory activity from a library of marine terpenoids and phenolic compounds. Utilizing the screened herbal enzyme inhibitors as a starting point, we analyzed their chemical structures and skillfully built a library of marine compounds based on these structures. The results showed that all of the tested compounds from the phenolics library inhibited citrate lyase by more than 50%, and a significant portion of terpenoids also demonstrated inhibition, with these active terpenoids comprising over half of the terpenoids tested. The study underscores the potential of marine-derived phenolic and terpenoid compounds as potent inhibitors of citrate lyase, indicating a promising direction for future investigations in treating tuberculosis and associated disorders.
Collapse
Affiliation(s)
- Jiahong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.W.); (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.W.); (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Zhe Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.W.); (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
3
|
Gao S, Wang Y, Yuan S, Zuo J, Jin W, Shen Y, Grenier D, Yi L, Wang Y. Cooperation of quorum sensing and central carbon metabolism in the pathogenesis of Gram-positive bacteria. Microbiol Res 2024; 282:127655. [PMID: 38402726 DOI: 10.1016/j.micres.2024.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Science, Luoyang Normal University, Luoyang 471934, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
4
|
El-Mohsnawy E, El-Shaer A, El-Gharabawy F, El-Hawary EE, El-Shanshoury AERR. Assignment of the antibacterial potential of Ag 2O/ZnO nanocomposite against MDR bacteria Proteus mirabilis and Salmonella typhi isolated from bone marrow transplant patients. Braz J Microbiol 2023; 54:2807-2815. [PMID: 37801221 PMCID: PMC10689719 DOI: 10.1007/s42770-023-01138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
The rate of infectious diseases started to be one of the major mortality agents in the healthcare sector. Exposed to increased bacterial infection by antibiotic-resistant bacteria became one of the complications that occurred for bone marrow transplant patients. Nanotechnology may provide clinicians and patients with the key to overcoming multidrug-resistant bacteria. Therefore, this study was conducted to clarify the prevalence of MDR bacteria in bone marrow transplant recipients and the use of Ag2O/ZnO nanocomposites to treat participants of diarrhea brought on by MDR bacteria following bone marrow transplantation (BMT). Present results show that pathogenic bacteria were present in 100 of 195 stool samples from individuals who had diarrhea. Phenotypic, biochemical, and molecular analysis clarify that Proteus mirabilis and Salmonella typhi were detected in 21 and 25 samples, respectively. Successful synthesis of Ag2O/ZnO nanocomposites with a particle enables to inhibition of both pathogens. The maximum inhibitory impact was seen on Salmonella typhi. At low doses (10-5 g/l), it prevented the growth by 53.4%, while at higher concentrations (10-1 g/l), Salmonella typhi was inhibited by 95.5%. Regarding Proteus mirabilis, at (10-5 g/l) Ag2O/ZnO, it was inhabited by 78.7%, but at higher concentrations (10-1 g/l), it was inhibited the growth by 94.6%. Ag2O/ZnO nanocomposite was therefore found to be the most effective therapy for MDR-isolated bacteria and offered promise for the treatment of MDR bacterial infections that cause diarrhea.
Collapse
Affiliation(s)
- Eithar El-Mohsnawy
- Microbial Biotechnology Unit, Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Abdelhamid El-Shaer
- Nanotechnology Unit, Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Fadia El-Gharabawy
- Microbial Biotechnology Unit, Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Eslam E El-Hawary
- Pediatric Hematology and Oncology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | | |
Collapse
|
5
|
Type IV Pili Are a Critical Virulence Factor in Clinical Isolates of Paenibacillus thiaminolyticus. mBio 2022; 13:e0268822. [PMID: 36374038 PMCID: PMC9765702 DOI: 10.1128/mbio.02688-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrocephalus, the leading indication for childhood neurosurgery worldwide, is particularly prevalent in low- and middle-income countries. Hydrocephalus preceded by an infection, or postinfectious hydrocephalus, accounts for up to 60% of hydrocephalus in these areas. Since many children with hydrocephalus suffer poor long-term outcomes despite surgical intervention, prevention of hydrocephalus remains paramount. Our previous studies implicated a novel bacterial pathogen, Paenibacillus thiaminolyticus, as a causal agent of neonatal sepsis and postinfectious hydrocephalus in Uganda. Here, we report the isolation of three P. thiaminolyticus strains, Mbale, Mbale2, and Mbale3, from patients with postinfectious hydrocephalus. We constructed complete genome assemblies of the clinical isolates as well as the nonpathogenic P. thiaminolyticus reference strain and performed comparative genomic and proteomic analyses to identify potential virulence factors. All three isolates carry a unique beta-lactamase gene, and two of the three isolates exhibit resistance in culture to the beta-lactam antibiotics penicillin and ampicillin. In addition, a cluster of genes carried on a mobile genetic element that encodes a putative type IV pilus operon is present in all three clinical isolates but absent in the reference strain. CRISPR-mediated deletion of the gene cluster substantially reduced the virulence of the Mbale strain in mice. Comparative proteogenomic analysis identified various additional potential virulence factors likely acquired on mobile genetic elements in the virulent strains. These results provide insight into the emergence of virulence in P. thiaminolyticus and suggest avenues for the diagnosis and treatment of this novel bacterial pathogen. IMPORTANCE Postinfectious hydrocephalus, a devastating sequela of neonatal infection, is associated with increased childhood mortality and morbidity. A novel bacterial pathogen, Paenibacillus thiaminolyticus, is highly associated with postinfectious hydrocephalus in an African cohort. Whole-genome sequencing, RNA sequencing, and proteomics of clinical isolates and a reference strain in combination with CRISPR editing identified type IV pili as a critical virulence factor for P. thiaminolyticus infection. Acquisition of a type IV pilus-encoding mobile genetic element critically contributed to converting a nonpathogenic strain of P. thiaminolyticus into a pathogen capable of causing devastating diseases. Given the widespread presence of type IV pilus in pathogens, the presence of the type IV pilus operon could serve as a diagnostic and therapeutic target in P. thiaminolyticus and related bacteria.
Collapse
|
6
|
Shin H, Takahashi T, Lee S, Choi EH, Maeda T, Fukushima Y, Kim S. Comparing Genomic Characteristics of Streptococcus pyogenes Associated with Invasiveness over a 20-year Period in Korea. Ann Lab Med 2022; 42:438-446. [PMID: 35177564 PMCID: PMC8859563 DOI: 10.3343/alm.2022.42.4.438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background Few studies have investigated the invasiveness of Streptococcus pyogenes based on whole-genome sequencing (WGS). Using WGS, we determined the genomic features associated with invasiveness of S. pyogenes strains in Korea. Methods Forty-five S. pyogenes strains from 1997, 2006, and 2017, including common emm types, were selected from the repository at Gyeongsang National University Hospital in Korea. In addition, 48 S. pyogenes strains were randomly selected depending on their invasiveness between 1997 and 2017 to evaluate the genetic evolution and the associations between invasiveness and genetic profiles. Using WGS datasets, we conducted virulence-associated DNA sequence determination, emm genotyping, multi-locus sequence typing (MLST), and superantigen gene profiling. Results In total, 87 strains were included in this study. There were no significant differences in the genomic features throughout the study periods. Four genes, csn1, ispE, nisK, and citC, were detected only in invasive strains. There was a significant association between invasiveness and emm cluster type A-C3, including, emm1.0, emm1.18, emm1.3, and emm1.76 (P<0.05). The predominant emm1 lineage belonged to ST28. There were no associations between invasiveness and superantigen gene profiles. Conclusions This is the first study using WGS datasets of S. pyogenes strains collected between 1997 and 2017 in Korea. Streptococcal invasiveness is associated with the presence of csn1, ispE, nisK, and citC. The emm1 lineage and ST28 clone are explicitly associated with invasiveness, whereas genomic features remained stable over the 20-year period.
Collapse
Affiliation(s)
- Hyoshim Shin
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Takashi Takahashi
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Seungjun Lee
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Eun Hwa Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Takahiro Maeda
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Yasuto Fukushima
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea.,Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Institute of Health Sciences, Jinju, Korea
| |
Collapse
|
7
|
Köstlbacher S, Collingro A, Halter T, Schulz F, Jungbluth SP, Horn M. Pangenomics reveals alternative environmental lifestyles among chlamydiae. Nat Commun 2021; 12:4021. [PMID: 34188040 PMCID: PMC8242063 DOI: 10.1038/s41467-021-24294-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Chlamydiae are highly successful strictly intracellular bacteria associated with diverse eukaryotic hosts. Here we analyzed metagenome-assembled genomes of the "Genomes from Earth's Microbiomes" initiative from diverse environmental samples, which almost double the known phylogenetic diversity of the phylum and facilitate a highly resolved view at the chlamydial pangenome. Chlamydiae are defined by a relatively large core genome indicative of an intracellular lifestyle, and a highly dynamic accessory genome of environmental lineages. We observe chlamydial lineages that encode enzymes of the reductive tricarboxylic acid cycle and for light-driven ATP synthesis. We show a widespread potential for anaerobic energy generation through pyruvate fermentation or the arginine deiminase pathway, and we add lineages capable of molecular hydrogen production. Genome-informed analysis of environmental distribution revealed lineage-specific niches and a high abundance of chlamydiae in some habitats. Together, our data provide an extended perspective of the variability of chlamydial biology and the ecology of this phylum of intracellular microbes.
Collapse
Affiliation(s)
- Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | | | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Diray-Arce J, Conti MG, Petrova B, Kanarek N, Angelidou A, Levy O. Integrative Metabolomics to Identify Molecular Signatures of Responses to Vaccines and Infections. Metabolites 2020; 10:E492. [PMID: 33266347 PMCID: PMC7760881 DOI: 10.3390/metabo10120492] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Approaches to the identification of metabolites have progressed from early biochemical pathway evaluation to modern high-dimensional metabolomics, a powerful tool to identify and characterize biomarkers of health and disease. In addition to its relevance to classic metabolic diseases, metabolomics has been key to the emergence of immunometabolism, an important area of study, as leukocytes generate and are impacted by key metabolites important to innate and adaptive immunity. Herein, we discuss the metabolomic signatures and pathways perturbed by the activation of the human immune system during infection and vaccination. For example, infection induces changes in lipid (e.g., free fatty acids, sphingolipids, and lysophosphatidylcholines) and amino acid pathways (e.g., tryptophan, serine, and threonine), while vaccination can trigger changes in carbohydrate and bile acid pathways. Amino acid, carbohydrate, lipid, and nucleotide metabolism is relevant to immunity and is perturbed by both infections and vaccinations. Metabolomics holds substantial promise to provide fresh insight into the molecular mechanisms underlying the host immune response. Its integration with other systems biology platforms will enhance studies of human health and disease.
Collapse
Affiliation(s)
- Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115, USA; (M.G.C.); (A.A.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; (B.P.); (N.K.)
| | - Maria Giulia Conti
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115, USA; (M.G.C.); (A.A.)
- Department of Maternal and Child Health, Sapienza University of Rome, 5, 00185 Rome, Italy
| | - Boryana Petrova
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; (B.P.); (N.K.)
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Naama Kanarek
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; (B.P.); (N.K.)
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Asimenia Angelidou
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115, USA; (M.G.C.); (A.A.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; (B.P.); (N.K.)
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115, USA; (M.G.C.); (A.A.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; (B.P.); (N.K.)
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| |
Collapse
|