1
|
Rostamian M, Kooti S, Abiri R, Khazayel S, Kadivarian S, Borji S, Alvandi A. Prevalence of Mycobacterium tuberculosis mutations associated with isoniazid and rifampicin resistance: A systematic review and meta-analysis. J Clin Tuberc Other Mycobact Dis 2023; 32:100379. [PMID: 37389010 PMCID: PMC10302537 DOI: 10.1016/j.jctube.2023.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Tuberculosis (TB) is still one of the leading causes of worldwide death, especially following the emergence of strains resistant to isoniazid (INH) and rifampicin (RIF). This study aimed to systematically review published articles focusing on the prevalence of INH and/or RIF resistance-associated mutations of Mycobacterium tuberculosis isolates in recent years. Literature databases were searched using appropriate keywords. The data of the included studies were extracted and used for a random-effects model meta-analysis. Of the initial 1442 studies, 29 were finally eligible to be included in the review. The overall resistance to INH and RIF was about 17.2% and 7.3%, respectively. There was no difference between the frequency of INH and RIF resistance using different phenotypic or genotypic methods. The INH and/or RIF resistance was higher in Asia. The S315T mutation in KatG (23.7 %), C-15 T in InhA (10.7 %), and S531L in RpoB (13.5 %) were the most prevalent mutations. Altogether, the results showed that due to S531L in RpoB, S315T in KatG, and C-15 T in InhA mutations INH- and RIF-resistant M. tuberculosis isolates were widely distributed. Thus, it would be diagnostically and epidemiologically beneficial to track these gene mutations among resistant isolates.
Collapse
Affiliation(s)
- Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Kooti
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Ramin Abiri
- Fertility and Infertility Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Khazayel
- Deupty of Research and Technology Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepide Kadivarian
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Borji
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhooshang Alvandi
- Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Inbaraj LR, Shewade HD, Daniel J, Srinivasalu VA, Paul J, Satish S, Kirubakaran R, Padmapriyadarsini C. Effectiveness and safety of Levofloxacin containing regimen in the treatment of Isoniazid mono-resistant pulmonary Tuberculosis: a systematic review. Front Med (Lausanne) 2023; 10:1085010. [PMID: 37415768 PMCID: PMC10321706 DOI: 10.3389/fmed.2023.1085010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/10/2023] [Indexed: 07/08/2023] Open
Abstract
Background We aimed to determine the effectiveness and safety of the Levofloxacin-containing regimen that the World Health Organization is currently recommending for the treatment of Isoniazid mono-resistant pulmonary Tuberculosis. Methods Our eligible criteria for the studies to be included were; randomized controlled trials or cohort studies that focused on adults with Isoniazid mono-resistant tuberculosis (HrTB) and treated with a Levofloxacin-containing regimen along with first-line anti-tubercular drugs; they should have had a control group treated with first-line without Levofloxacin; should have reported treatment success rate, mortality, recurrence, progression to multidrug-resistant Tuberculosis. We performed the search in MEDLINE, EMBASE, Epistemonikos, Google Scholar, and Clinical trials registry. Two authors independently screened the titles/abstracts and full texts that were retained after the initial screening, and a third author resolved disagreements. Results Our search found 4,813 records after excluding duplicates. We excluded 4,768 records after screening the titles and abstracts, retaining 44 records. Subsequently, 36 articles were excluded after the full-text screening, and eight appeared to have partially fulfilled the inclusion criteria. We contacted the respective authors, and none responded positively. Hence, no articles were included in the meta-analysis. Conclusion We found no "quality" evidence currently on the effectiveness and safety of Levofloxacin in treating HrTB. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022290333, identifier: CRD42022290333.
Collapse
Affiliation(s)
- Leeberk Raja Inbaraj
- Department of Clinical Research, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, India
| | - Hemant Deepak Shewade
- Division of Health System Research, Indian Council of Medical Research – National Institute of Epidemiology, Chennai, India
| | - Jefferson Daniel
- Department of Pulmonary Medicine, Christian Medical College, Vellore, India
| | - Vignes Anand Srinivasalu
- Department of Clinical Research, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, India
| | - Jabez Paul
- Prof. BV Moses Centre for Evidence Informed Healthcare and Health Policy, Christian Medical College, Vellore, India
| | - S. Satish
- Division of Health System Research, Indian Council of Medical Research – National Institute of Epidemiology, Chennai, India
| | | | - Chandrasekaran Padmapriyadarsini
- Department of Clinical Research, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
3
|
Desikan P, Panwalkar N, Punde RP, Khan Z, Pauranik A, Mirza SB, Chourey M, Anand S, Sachdeva K. Heteroresistance to rifampicin & isoniazid in clinical samples of patients with presumptive drug-resistant tuberculosis in Central India. Indian J Med Res 2023; 157:174-182. [PMID: 37202936 PMCID: PMC10319389 DOI: 10.4103/ijmr.ijmr_607_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 04/28/2023] Open
Abstract
Background & objectives A combination of resistant and susceptible Mycobacterium tuberculosis (MTB) isolated from clinical specimens is referred to as heteroresistance. Heteroresistance leads to difficulties in drug resistance testing and may adversely affect treatment outcomes. The present study estimated the proportion of heteroresistance among MTB in clinical samples of presumptive drug-resistant tuberculosis (TB) patients in Central India. Methods A retrospective analysis of data generated from line probe assay (LPA) at a tertiary care hospital in Central India between January 2013 and December 2018 was carried out. A heteroresistant MTB in a sample was indicated by the presence of both wild-type and mutant-type patterns on an LPA strip. Results Data analysis was carried out on interpretable 11,788 LPA results. Heteroresistance in MTB was detected in 637 (5.4%) samples. Of these, heteroresistance in MTB was detected in 413 (64.8%), 163 (25.5%) and 61 (9.5%) samples with respect to rpoB, katG and inhA genes, respectively. Interpretation & conclusions Heteroresistance is considered a preliminary step in the development of drug resistance. Delayed or suboptimal anti-tubercular therapy in patients with heteroresistance of MTB may elicit full clinical resistance and negatively impact the National TB Elimination Programme. Further studies are, however, needed to determine the impact of heteroresistance on treatment outcomes in individual patients.
Collapse
Affiliation(s)
- Prabha Desikan
- ICMR-Bhopal Memorial Hospital & Research Centre, Bhopal, Madhya Pradesh, India
| | | | | | - Zeba Khan
- Department of Microbiology, Bhopal, Madhya Pradesh, India
| | - Ankur Pauranik
- Department of Microbiology, Bhopal, Madhya Pradesh, India
| | | | - Manju Chourey
- Department of Microbiology, Bhopal, Madhya Pradesh, India
| | - Sridhar Anand
- World Health Organization, Ministry of Health & Family Welfare, New Delhi, India
| | - K.S. Sachdeva
- Central TB Division, Ministry of Health & Family Welfare, New Delhi, India
| |
Collapse
|
4
|
Yusoof KA, García JI, Schami A, Garcia-Vilanova A, Kelley HV, Wang SH, Rendon A, Restrepo BI, Yotebieng M, Torrelles JB. Tuberculosis Phenotypic and Genotypic Drug Susceptibility Testing and Immunodiagnostics: A Review. Front Immunol 2022; 13:870768. [PMID: 35874762 PMCID: PMC9301132 DOI: 10.3389/fimmu.2022.870768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB), considered an ancient disease, is still killing one person every 21 seconds. Diagnosis of Mycobacterium tuberculosis (M.tb) still has many challenges, especially in low and middle-income countries with high burden disease rates. Over the last two decades, the amount of drug-resistant (DR)-TB cases has been increasing, from mono-resistant (mainly for isoniazid or rifampicin resistance) to extremely drug resistant TB. DR-TB is problematic to diagnose and treat, and thus, needs more resources to manage it. Together with+ TB clinical symptoms, phenotypic and genotypic diagnosis of TB includes a series of tests that can be used on different specimens to determine if a person has TB, as well as if the M.tb strain+ causing the disease is drug susceptible or resistant. Here, we review and discuss advantages and disadvantages of phenotypic vs. genotypic drug susceptibility testing for DR-TB, advances in TB immunodiagnostics, and propose a call to improve deployable and low-cost TB diagnostic tests to control the DR-TB burden, especially in light of the increase of the global burden of bacterial antimicrobial resistance, and the potentially long term impact of the coronavirus disease 2019 (COVID-19) disruption on TB programs.
Collapse
Affiliation(s)
- Kizil A. Yusoof
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Juan Ignacio García
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| | - Alyssa Schami
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, United States
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Andreu Garcia-Vilanova
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Holden V. Kelley
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Shu-Hua Wang
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine and Global One Health Initiative, The Ohio State University, Columbus, OH, United States
| | - Adrian Rendon
- Centro de Investigación, Prevención y Tratamiento de Infecciones Respiratorias (CIPTIR), Hospital Universitario de Monterrey Universidad Autónoma de Nuevo León (UANL), Monterrey, Mexico
| | - Blanca I. Restrepo
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| | - Marcel Yotebieng
- Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| | - Jordi B. Torrelles
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, United States
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| |
Collapse
|
5
|
Habimana-Mucyo Y, Dushime A, Migambi P, Habiyambere I, Semuto Ngabonziza JC, Decroo T. Continuous surveillance of drug-resistant TB burden in Rwanda: a retrospective cross-sectional study. Int Health 2022:6599066. [PMID: 35653710 DOI: 10.1093/inthealth/ihac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Since the roll-out of the Xpert MTB/RIF assay, continuous surveillance can provide an estimate of rifampicin-resistant TB (RR-TB) prevalence, provided high drug susceptibility testing (DST) coverage is achieved. We use national data from Rwanda to describe rifampicin DST coverage, estimate the prevalence of RR-TB and assess its predictors. METHODS Routinely collected DST data were entered into an electronic TB case-based surveillance system. DST coverage was calculated among all bacteriologically confirmed pulmonary TB patients notified from 1 July 2019 to 30 June 2020 in Rwanda. The prevalence of RR-TB was estimated among those with DST results. Univariable and multivariable analysis was performed to explore predictors for RR TB. RESULTS Among 4066 patients with bacteriologically confirmed pulmonary TB, rifampicin DST coverage was 95.6% (4066/4251). RR-TB was diagnosed in 73 patients. The prevalence of RR-TB was 1.4% (53/3659; 95% CI 1.09 to 1.89%) and 4.9% (20/406; 95% CI 3.03 to 7.51%) in new and previously treated TB cases, respectively. Predictors of RR-TB were: (1) living in Kigali City (adjusted OR [aOR] 1.65, 95% CI 1.03 to 2.65); (2) previous TB treatment (aOR 3.64, 95% CI 2.14 to 6.19); and (3) close contact with a known RR-TB patient (aOR 11.37, 95% CI 4.19 to 30.82). CONCLUSIONS High rifampicin DST coverage for routine reporting allowed Rwanda to estimate the RR-TB prevalence among new and previously treated patients.
Collapse
Affiliation(s)
- Yves Habimana-Mucyo
- Tuberculosis and Other Respiratory Communicable Diseases Division; HIV/AIDS, Disease Prevention and Control Department; Rwanda Biomedical Centre, Kigali, Rwanda
| | - Augustin Dushime
- Tuberculosis and Other Respiratory Communicable Diseases Division; HIV/AIDS, Disease Prevention and Control Department; Rwanda Biomedical Centre, Kigali, Rwanda
| | - Patrick Migambi
- Tuberculosis and Other Respiratory Communicable Diseases Division; HIV/AIDS, Disease Prevention and Control Department; Rwanda Biomedical Centre, Kigali, Rwanda
| | - Innocent Habiyambere
- Tuberculosis and Other Respiratory Communicable Diseases Division; HIV/AIDS, Disease Prevention and Control Department; Rwanda Biomedical Centre, Kigali, Rwanda
| | - Jean Claude Semuto Ngabonziza
- National Reference Laboratory, Department of Biomedical Services, Rwanda Biomedical Centre, Kigali, Rwanda.,School of Medicine and Pharmacy, Department of Clinical Biology, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Tom Decroo
- Unit of HIV and TB, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Ngabonziza JCS, Rigouts L, Torrea G, Decroo T, Kamanzi E, Lempens P, Rucogoza A, Habimana YM, Laenen L, Niyigena BE, Uwizeye C, Ushizimpumu B, Mulders W, Ivan E, Tzfadia O, Muvunyi CM, Migambi P, Andre E, Mazarati JB, Affolabi D, Umubyeyi AN, Nsanzimana S, Portaels F, Gasana M, de Jong BC, Meehan CJ. Multidrug-resistant tuberculosis control in Rwanda overcomes a successful clone that causes most disease over a quarter century. J Clin Tuberc Other Mycobact Dis 2022; 27:100299. [PMID: 35146133 PMCID: PMC8802117 DOI: 10.1016/j.jctube.2022.100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SUMMARY BACKGROUND Multidrug-resistant (MDR) tuberculosis (TB) poses an important challenge in TB management and control. Rifampicin resistance (RR) is a solid surrogate marker of MDR-TB. We investigated the RR-TB clustering rates, bacterial population dynamics to infer transmission dynamics, and the impact of changes to patient management on these dynamics over 27 years in Rwanda. METHODS We analysed whole genome sequences of a longitudinal collection of nationwide RR-TB isolates. The collection covered three important periods: before programmatic management of MDR-TB (PMDT; 1991-2005), the early PMDT phase (2006-2013), in which rifampicin drug-susceptibility testing (DST) was offered to retreatment patients only, and the consolidated phase (2014-2018), in which all bacteriologically confirmed TB patients had rifampicin DST done mostly via Xpert MTB/RIF assay. We constructed clusters based on a 5 SNP cut-off and resistance conferring SNPs. We used Bayesian modelling for dating and population size estimations, TransPhylo to estimate the number of secondary cases infected by each patient, and multivariable logistic regression to assess predictors of being infected by the dominant clone. RESULTS Of 308 baseline RR-TB isolates considered for transmission analysis, the clustering analysis grouped 259 (84.1%) isolates into 13 clusters. Within these clusters, a single dominant clone was discovered containing 213 isolates (82.2% of clustered and 69.1% of all RR-TB), which we named the "Rwanda Rifampicin-Resistant clone" (R3clone). R3clone isolates belonged to Ugandan sub-lineage 4.6.1.2 and its rifampicin and isoniazid resistance were conferred by the Ser450Leu mutation in rpoB and Ser315Thr in katG genes, respectively. All R3clone isolates had Pro481Thr, a putative compensatory mutation in the rpoC gene that likely restored its fitness. The R3clone was estimated to first arise in 1987 and its population size increased exponentially through the 1990s', reaching maximum size (∼84%) in early 2000 s', with a declining trend since 2014. Indeed, the highest proportion of R3clone (129/157; 82·2%, 95%CI: 75·3-87·8%) occurred between 2000 and 13, declining to 64·4% (95%CI: 55·1-73·0%) from 2014 onward. We showed that patients with R3clone detected after an unsuccessful category 2 treatment were more likely to generate secondary cases than patients with R3clone detected after an unsuccessful category 1 treatment regimen. CONCLUSIONS RR-TB in Rwanda is largely transmitted. Xpert MTB/RIF assay as first diagnostic test avoids unnecessary rounds of rifampicin-based TB treatment, thus preventing ongoing transmission of the dominant R3clone. As PMDT was intensified and all TB patients accessed rifampicin-resistance testing, the nationwide R3clone burden declined. To our knowledge, our findings provide the first evidence supporting the impact of universal DST on the transmission of RR-TB.
Collapse
Affiliation(s)
- Jean Claude S. Ngabonziza
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Gabriela Torrea
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tom Decroo
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Research Foundation Flanders, Brussels, Belgium
| | - Eliane Kamanzi
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Pauline Lempens
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Aniceth Rucogoza
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Yves M. Habimana
- Tuberculosis and Other Respiratory Diseases Division, Institute of HIV/AIDS Disease Prevention and Control, Rwanda Biomedical Center, Kigali, Rwanda
| | - Lies Laenen
- Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Belamo E. Niyigena
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Cécile Uwizeye
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bertin Ushizimpumu
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Wim Mulders
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Emil Ivan
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Oren Tzfadia
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Claude Mambo Muvunyi
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | - Emmanuel Andre
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, Leuven, Belgium
| | | | | | | | | | - Françoise Portaels
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michel Gasana
- Tuberculosis and Other Respiratory Diseases Division, Institute of HIV/AIDS Disease Prevention and Control, Rwanda Biomedical Center, Kigali, Rwanda
| | - Bouke C. de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J. Meehan
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- School of Chemistry and Biosciences, University of Bradford, UK
| |
Collapse
|
7
|
Van Deun A, Bola V, Lebeke R, Kaswa M, Hossain MA, Gumusboga M, Torrea G, De Jong BC, Rigouts L, Decroo T. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac037. [PMID: 35415609 PMCID: PMC8994197 DOI: 10.1093/jacamr/dlac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/13/2022] [Indexed: 11/14/2022] Open
Abstract
Background Objectives Methods Results Conclusions
Collapse
Affiliation(s)
| | - Valentin Bola
- Programme National de Lutte contre la Tuberculose, Direction Provinciale de Kinshasa, Kinshasa, République Démocratique du Congo
| | - Rossin Lebeke
- Programme National de Lutte contre la Tuberculose, Direction Provinciale de Kinshasa, Kinshasa, République Démocratique du Congo
| | - Michel Kaswa
- Programme National de Lutte contre la Tuberculose, Direction Nationale, Kinshasa, République Démocratique du Congo
| | | | - Mourad Gumusboga
- Institute of Tropical Medicine, Unit of Mycobacteriology, Department of Biomedical Sciences, 2000 Antwerp, Belgium
| | - Gabriela Torrea
- Institute of Tropical Medicine, Unit of Mycobacteriology, Department of Biomedical Sciences, 2000 Antwerp, Belgium
| | - Bouke Catharine De Jong
- Institute of Tropical Medicine, Unit of Mycobacteriology, Department of Biomedical Sciences, 2000 Antwerp, Belgium
| | - Leen Rigouts
- Institute of Tropical Medicine, Unit of Mycobacteriology, Department of Biomedical Sciences, 2000 Antwerp, Belgium
| | - Tom Decroo
- Institute of Tropical Medicine, Unit of HIV and TB, Department of Clinical Sciences, 2000 Antwerp, Belgium
- Corresponding author. E-mail:
| |
Collapse
|
8
|
Thin-Layer-Agar-Based Direct Phenotypic Drug Susceptibility Testing on Sputum in Eswatini Rapidly Detects Mycobacterium tuberculosis Growth and Rifampicin Resistance Otherwise Missed by WHO-Endorsed Diagnostic Tests. Antimicrob Agents Chemother 2021; 65:AAC.02263-20. [PMID: 33722892 PMCID: PMC8315964 DOI: 10.1128/aac.02263-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Xpert MTB/RIF rapidly detects resistance to rifampicin (RR); however, this test misses I491F-RR conferring rpoB mutation, common in southern Africa. In addition, Xpert MTB/RIF does not distinguish between viable and dead Mycobacterium tuberculosis (MTB). We aimed to investigate the ability of thin-layer agar (TLA) direct drug-susceptibility testing (DST) to detect MTB and its drug-resistance profiles in field conditions in Eswatini. Consecutive samples were tested in parallel with Xpert MTB/RIF and TLA for rifampicin (1.0 μg/ml) and ofloxacin (2.0 μg/ml). TLA results were compared at the Reference Laboratory in Antwerp with indirect-DST on Löwenstein-Jensen or 7H11 solid media and additional phenotypic and genotypic testing to resolve discordance. TLA showed a positivity rate for MTB detection of 7.1% versus 10.0% for Xpert MTB/RIF. Of a total of 4,547 samples included in the study, 200 isolates were available for comparison to the composite reference. Within a median of 18.4 days, TLA detected RR with 93.0% sensitivity (95% confidence interval [CI], 77.4 to 98.0) and 99.4% specificity (95% CI, 96.7 to 99.9) versus 62.5% (95% CI, 42.7 to 78.8) and 99.3% (95% CI, 96.2 to 99.9) for Xpert MTB/RIF. Eight isolates, 28.6% of all RR-confirmed isolates, carried the I491F mutation, all detected by TLA. TLA also correctly identified 183 of the 184 ofloxacin-susceptible isolates (99.5% specificity; 95% CI, 97.0 to 99.9). In field conditions, TLA rapidly detects RR, and in this specific setting, it contributed to detection of additional RR patients over Xpert MTB/RIF, mainly but not exclusively due to I491F. TLA also accurately excluded fluoroquinolone resistance.
Collapse
|
9
|
Van Deun A, Decroo T, Aung KJM, Hossain MA, Gumusboga M, De Rijk WB, Tahseen S, de Jong BC, Rigouts L. Mycobacterium tuberculosis borderline rpoB mutations: emerging from the unknown. Eur Respir J 2021; 58:13993003.00783-2021. [PMID: 33926970 DOI: 10.1183/13993003.00783-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/20/2021] [Indexed: 11/05/2022]
Affiliation(s)
| | - Tom Decroo
- Institute of Tropical Medicine, Unit of HIV and TB, Dept of Clinical Sciences, Antwerp, Belgium .,Research Foundation Flanders, Brussels, Belgium
| | | | | | - Mourad Gumusboga
- Institute of Tropical Medicine, Unit of Mycobacteriology, Dept of Biomedical Sciences, Antwerp, Belgium
| | - Willem Bram De Rijk
- Institute of Tropical Medicine, Unit of Mycobacteriology, Dept of Biomedical Sciences, Antwerp, Belgium
| | - Sabira Tahseen
- National Tuberculosis Control Program and Pakistan National Tuberculosis Reference laboratory, Islamabad, Pakistan
| | - Bouke Catherine de Jong
- Institute of Tropical Medicine, Unit of Mycobacteriology, Dept of Biomedical Sciences, Antwerp, Belgium
| | - Leen Rigouts
- Institute of Tropical Medicine, Unit of Mycobacteriology, Dept of Biomedical Sciences, Antwerp, Belgium
| |
Collapse
|
10
|
Ndambuki J, Nzomo J, Muregi L, Mutuku C, Makokha F, Nthusi J, Ambale C, Lynen L, Decroo T. Comparison of first-line tuberculosis treatment outcomes between previously treated and new patients: a retrospective study in Machakos subcounty, Kenya. Int Health 2021; 13:272-280. [PMID: 32860045 PMCID: PMC8079320 DOI: 10.1093/inthealth/ihaa051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/24/2020] [Accepted: 08/10/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Since 2016, patients with rifampicin-susceptible tuberculosis (TB) have been treated with the 6-month first-line regimen, regardless of treatment history. We assessed treatment outcomes of previously treated and new patients in Machakos subcounty, Kenya. METHODS We performed a retrospective cohort study in patients started on first-line treatment between 2016 and 2017. Firth's logistic regression was used to estimate the effect of previous treatment on having a programmatic adverse outcome (either lost to follow-up, death, failure) and treatment failure vs treatment success (either cure or completion). RESULTS Of 1024 new and 79 previously treated patients, 88.1% and 74.7% were treated successfully, 6.5% and 7.6% died, 4.2% and 10.1% were lost to follow-up and 1.2% and 7.6% had treatment failure, respectively. Previous treatment predicted having a programmatic adverse outcome (adjusted odds ratio [aOR] 2.4 [95% confidence interval {CI} 1.4 to 4.2]) and treatment failure (aOR 7.3 [95% CI 2.6 to 20.4]) but not mortality. Similar correlations were found in 334 new and previously treated patients with confirmed baseline rifampicin susceptibility. CONCLUSION Previously treated patients were more at risk of experiencing a poor treatment outcome, mainly lost to follow-up and treatment failure. Adherence support may reduce lost to follow-up. Rifampicin drug susceptibility testing coverage should increase. More robust retreatment regimens may reduce treatment failure.
Collapse
Affiliation(s)
| | - Joseph Nzomo
- Department of Health and Emergency Services, Machakos County, Kenya
| | - Lucy Muregi
- Department of Health and Emergency Services, Machakos County, Kenya
| | - Chris Mutuku
- Department of Health and Emergency Services, Machakos County, Kenya
| | - Francis Makokha
- Directorate of Research and Innovation, Mount Kenya University, Box 342-01000, Thika, Kenya
| | - Jonathan Nthusi
- Department of Health and Emergency Services, Machakos County, Kenya
| | - Clarice Ambale
- Department of Health and Emergency Services, Machakos County, Kenya
| | - Lutgarde Lynen
- Institute of Tropical Medicine-Antwerp, Nationalestraat 155-B-2000, Belgium
| | - Tom Decroo
- Institute of Tropical Medicine-Antwerp, Nationalestraat 155-B-2000, Belgium
- Research Foundation Flanders, Brussels, 1000 Brussels, Belgium
| |
Collapse
|
11
|
Köser CU, Georghiou SB, Schön T, Salfinger M. On the Consequences of Poorly Defined Breakpoints for Rifampin Susceptibility Testing of Mycobacterium tuberculosis Complex. J Clin Microbiol 2021; 59:e02328-20. [PMID: 33568463 PMCID: PMC8092724 DOI: 10.1128/jcm.02328-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a recent report of a systematic review of critical concentrations (CCs), the World Health Organization (WHO) lowered the rifampin (RIF) CC for antimicrobial susceptibility testing (AST) of the Mycobacterium tuberculosis complex using Middlebrook 7H10 medium and the Bactec Mycobacterial Growth Indicator Tube (MGIT) 960 system from 1 to 0.5 μg/ml. The previous RIF CC for 7H10 had been in use for over half a century. Because it had served as the de facto reference standard, it contributed to the endorsement of inappropriately high CCs for other AST methods, including the U.S. Food and Drug Administration (FDA)-approved MGIT system. Moreover, this resulted in confusion about the interpretation of seven borderline resistance mutations in rpoB (i.e., L430P, D435Y, H445L, H445N, H445S, L452P, and I491F). In this issue of the Journal of Clinical Microbiology, Shea et al. (J Clin Microbiol 59:e01885-20, 2021, https://doi.org/10.1128/JCM.01885-20) provide evidence that the CC endorsed by the Clinical and Laboratory Standards Institute for the Sensititre MYCOTB system, which is not FDA approved but is CE-IVD marked in the European Union, is likely also too high. These findings underscore the importance of calibrating AST methods against a rigorously defined reference standard, as recently proposed by the European Committee on Antimicrobial Susceptibility Testing, as well as the value of routine next-generation sequencing for investigating discordant AST results.
Collapse
Affiliation(s)
- Claudio U Köser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Thomas Schön
- Department of Infectious Diseases, Kalmar County Hospital, Linköping University, Kalmar, Sweden
- Unit of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden
| | - Max Salfinger
- University of South Florida College of Public Health and Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
12
|
Gonzaga LDM, Gils T, Decroo T, Jacobs BKM, Lynen L. Case Report: Therapeutic Threshold for Rifampicin-Resistant Tuberculosis in a Patient from Maputo, Mozambique. Am J Trop Med Hyg 2021; 104:1317-1320. [PMID: 33556043 PMCID: PMC8045612 DOI: 10.4269/ajtmh.20-0959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/10/2020] [Indexed: 11/07/2022] Open
Abstract
We present a case of a patient in Mozambique, who initiated treatment for rifampicin-resistant tuberculosis (RR-TB) without proof of resistance. For this patient, we estimated the probability of RR-TB using likelihood ratios of clinical arguments. The probability of RR-TB in Mozambique, positive HIV status, and treatment failure after a first treatment and after retreatment were included as confirming arguments, and a rapid molecular test showing rifampicin susceptibility as excluding argument. The therapeutic threshold to start treatment for RR-TB is unknown, but probably lower than 47% and should be calculated to guide clinical decisions.
Collapse
Affiliation(s)
| | - Tinne Gils
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tom Decroo
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Research Foundation Flanders, Brussels, Belgium
| | - Bart K. M. Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lutgarde Lynen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
13
|
Chiang CY, Lin CJ. Principles of chemotherapy for tuberculosis in national tuberculosis programmes of low- and middle-income countries. Indian J Tuberc 2020; 67:S16-S22. [PMID: 33308663 DOI: 10.1016/j.ijtb.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
National tuberculosis programmes (NTPs) should aim for achieving a very high proportion of cure of all tuberculosis (TB) cases. Ineffective chemotherapy of TB that keeps a substantial proportion of patients alive without cure may amplify resistance during treatment and promote transmission of TB. In 2017, the World Health Organization (WHO) recommended that in patients who require TB retreatment, the retreatment regimen that comprised 8 months of isoniazid, rifampicin and ethambutol supplemented by streptomycin for the initial 2 months, and pyrazinamide for the initial 3 months (2SHRZE/HRZE/5HRE) should no longer be prescribed and drug susceptibility testing (DST) should be conducted to inform the choice of treatment regimen. While GeneXpert MTB/RIF assay may detect rifampicin resistance, it does not detect isoniazid resistance. A 6-month regimen consisting of rifampicin, isoniazid, pyrazinamide and ethambutol may be used for the treatment of previously treated cases in whom rifampicin resistance has been excluded but DST of isoniazid is not available. WHO recommended to treat isoniazid-resistant, rifampicin-susceptible TB (Hr-TB) with rifampicin, ethambutol, pyrazinamide and levofloxacin for a duration of 6 months. In several low- and middle-income countries, the majority of Hr-TB cases are detected after the initiation of treatment with first-line regimens. If patients have an unsatisfactory response to first-line treatment with persistent positive sputum, modification of regimens needs to be done very carefully. Adding a fluoroquinolone in cases with undetected rifampicin resistance runs the risk of acquired fluoroquinolone resistance. Recently, WHO advises NTPs to phase out the injectable-containing short regimen for multidrug-resistant and rifampicin-resistant TB (MDR-/RR-TB) and recommends that the preferred treatment option is a shorter, all-oral, bedaquiline-containing regimen. WHO emphasizes that access to rapid DST, especially for ruling out fluoroquinolone resistance, is required before starting the bedaquiline-containing shorter regimen. The problem is that access to rapid DST for ruling out fluoroquinolone resistance is limited in low- and middle-income countries. The use of WHO-recommended bedaquiline-containing regimens in the treatment of MDR-/RR-TB patients with undetected resistance to fluoroquinolones runs a high risk of acquired bedaquiline resistance, especially in settings with a high prevalence of fluoroquinolone resistance. It is crucial to mitigate the risks of both primary and acquired resistance of rifampicin, fluoroquinolone and bedaquiline by rational design of regimens and effective management of TB patients.
Collapse
Affiliation(s)
- Chen-Yuan Chiang
- International Union Against Tuberculosis and Lung Disease, Paris, France; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chou-Jui Lin
- Division of Pulmonary Medicine, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| |
Collapse
|
14
|
Ngabonziza JCS, Decroo T, Torrea G, Migambi P, Van Deun A, Rigouts L, de Jong BC. Management of falsepositive rifampicin resistant Xpert MTB/RIF – Authors' reply. THE LANCET MICROBE 2020; 1:e239. [DOI: 10.1016/s2666-5247(20)30125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022] Open
|
15
|
Tahseen S, Khanzada FM, Rizvi AH, Qadir M, Ghazal A, Baloch AQ, Mustafa T. Isoniazid resistance profile and associated levofloxacin and pyrazinamide resistance in rifampicin resistant and sensitive isolates/from pulmonary and extrapulmonary tuberculosis patients in Pakistan: A laboratory based surveillance study 2015-19. PLoS One 2020; 15:e0239328. [PMID: 32966321 PMCID: PMC7511002 DOI: 10.1371/journal.pone.0239328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022] Open
Abstract
Background Pakistan is among top five high burden countries for tuberculosis and drug resistant TB. Among rifampicin sensitive new pulmonary TB (PTB), prevalence of isoniazid resistance is 8.3% (95%CI: 7.0–10.7) and resistance to fluoroquinolone is higher (11·1%, 95%CI: 7·8–14·3) than isoniazid resistance. Method Five year retrospective data (2015–2019) of drug susceptibility testing (DST) for Mycobacterium tuberculosis isolates, performed using recommended phenotypic (pDST) and/or genotypic (gDST) methods was analyzed stratified by rifampicin results for isoniazid resistance profiles and associated levofloxacin and pyrazinamide resistance. Findings DST data was analyzed from 11045 TB patients. Isolates were tested using pDST (87%), gDST (92%) and both methods (79.5%). For both rifampicin and isoniazid, a significant difference (P < .001) was noted between resistance detected by pDST and gDST. Among isolates, tested by both methods (8787), 49% were resistant to rifampicin and 51.7% to isoniazid with discordance in resistant results of 15.8% for each, with 13.2% (570) of rifampicin resistance reported sensitive by pDST and 14.2% (660) of isoniazid resistance missed by gDST. Estimated isoniazid resistance among rifampicin sensitive new PTB, extrapulmonary TB and previously treated PTB was 9.8% (95%CI: 8.7–11.1), 6.8% (95%CI: 5.4–8.5) and 14.6% (95%CI: 11.8–17.9) respectively. Significant differences were reported between the genotypic profile of isoniazid resistance associated with rifampicin-resistant and sensitive isolates including detectable mutations (87% vs 71.6%), frequency of inhA (7.6% and 30.2%) and katG mutations (76.1% vs 41.2%) respectively. Among rifampicin resistant and sensitive isolates, a significantly higher level of resistance to levofloxacin and pyrazinamide was seen associated with isoniazid resistance. Conclusion There are risks and many challenges in implementing WHO recommended treatment for isoniazid resistant tuberculosis. The laboratory based surveillance can complement random surveys in country specific planning for TB diagnostics and appropriate treatment regimens.
Collapse
Affiliation(s)
- Sabira Tahseen
- National TB Reference Laboratory, National TB Control Program, Islamabad, Pakistan
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- * E-mail:
| | | | | | - Mahmood Qadir
- National TB Reference Laboratory, National TB Control Program, Islamabad, Pakistan
| | - Aisha Ghazal
- National TB Reference Laboratory, National TB Control Program, Islamabad, Pakistan
| | - Aurangzaib Quadir Baloch
- National TB Control Program, Ministry of National Health Services Regulation and Coordination, Islamabad, Pakistan
| | - Tehmina Mustafa
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|