1
|
Mattson MP. The cyclic metabolic switching theory of intermittent fasting. Nat Metab 2025; 7:665-678. [PMID: 40087409 DOI: 10.1038/s42255-025-01254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Intermittent fasting (IF) and ketogenic diets (KDs) have recently attracted much attention in the scientific literature and in popular culture and follow a longer history of exercise and caloric restriction (CR) research. Whereas IF involves cyclic metabolic switching (CMS) between ketogenic and non-ketogenic states, KDs and CR may not. In this Perspective, I postulate that the beneficial effects of IF result from alternating between activation of adaptive cellular stress response pathways during the fasting period, followed by cell growth and plasticity pathways during the feeding period. Thereby, I establish the cyclic metabolic switching (CMS) theory of IF. The health benefits of IF may go beyond those seen with continuous CR or KDs without CMS owing to the unique interplay between the signalling functions of the ketone β-hydroxybutyrate, mitochondrial adaptations, reciprocal activation of autophagy and mTOR pathways, endocrine and paracrine signalling, gut microbiota, and circadian biology. The CMS theory may have important implications for future basic research, clinical trials, development of pharmacological interventions, and healthy lifestyle practices.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Jugan MC, Plattner BL, Ford AK, Freilich L, Bieberly Z, Schermerhorn T. Plasma glucagon-like peptide-2 in cats with chronic enteropathies. J Feline Med Surg 2025; 27:1098612X241305923. [PMID: 39840661 PMCID: PMC11755514 DOI: 10.1177/1098612x241305923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
OBJECTIVES The objective of this study was to compare plasma glucagon-like peptide-2 (GLP-2) concentrations in cats with chronic enteropathies (CE) with those of healthy cats. METHODS Nineteen client-owned cats with a histopathologic diagnosis of either idiopathic chronic enteropathy (CIE) or low-grade lymphoma and six healthy client-owned cats were enrolled in a prospective study between 2 December 2021 and 9 June 2023. Fasted and postprandial plasma GLP-2 concentrations were measured via ELISA in CE cats at the time gastrointestinal biopsies were obtained and before CE treatment. In cats with a histopathologic diagnosis of CIE, plasma GLP-2 concentrations were re-evaluated after 1 month of CE treatment. RESULTS There was no significant difference in plasma GLP-2 concentrations between healthy cats (0.53 ng/ml) and cats with CE (0.52 ng/ml). GLP-2 concentrations in cats with CIE were not significantly different following 1 month of treatment (0.43 ng/ml) from those at initial presentation (0.44 ng/ml). CONCLUSIONS AND RELEVANCE GLP-2 can be successfully detected in the plasma of cats with CE. Based on the lack of differences observed between this population of CE cats and healthy cats, GLP-2 cannot be recommended as a biomarker of feline CE using this ELISA method. Further investigation of larger CE cat populations and analytic methods would be needed to determine the overall utility of GLP-2 evaluation in feline CE.
Collapse
Affiliation(s)
- Maria C Jugan
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Brandon L Plattner
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Alexandra K Ford
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Leah Freilich
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- BluePearl Pet Hospital, 625 Ridge Pike, Conshohocken, PA, USA
| | - Zackery Bieberly
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Thomas Schermerhorn
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
3
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Grant CE, Godfrey H, Tal M, Bakovic M, Shoveller AK, Blois SL, Hesta M, Verbrugghe A. Description of the fasted serum metabolomic signature of lean and obese cats at maintenance and of obese cats under energy restriction. PLoS One 2024; 19:e0299375. [PMID: 38489282 PMCID: PMC10942044 DOI: 10.1371/journal.pone.0299375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
This study aimed to investigate the serum metabolomic profile of obese and lean cats as well as obese cats before and after energy restriction for weight loss. Thirty cats, 16 obese (body condition score 8 to 9/9) and 14 lean (body condition score 4 to 5/9), were fed a veterinary weight loss food during a 4-week period of weight maintenance (L-MAINT and O-MAINT). The 16 obese cats were then energy restricted by a 60% energy intake reduction with the same food for a 10-week period (O-RESTRICT). Fasted serum metabolites were measured using nuclear magnetic resonance and direct infusion mass spectrometry after the maintenance period for L-MAINT and O-MAINT cats and after the energy restriction period for O-RESTRICT and compared between groups using a two-sided t-test. Obese cats lost 672 g ± 303 g over the 10-week restriction period, representing a weight loss rate of 0.94 ± 0.28% per week. Glycine, l-alanine, l-histidine, l-glutamine, 2-hydroxybutyrate, isobutryric acid, citric acid, creatine, and methanol were greater in O-RESTRICT compared to O-MAINT. There was a greater concentration of long-chain acylcarnitines in O-RESTRICT compared to both O-MAINT and L-MAINT, and greater total amino acids compared to O-MAINT. Glycerol and 3-hydroxybutyric acid were greater in O-MAINT compared to L-MAINT, as were several lysophosphatidylcholines. Thus, energy restriction resulted in increased dispensable amino acids in feline serum which could indicate alterations in amino acid partitioning. An increase in lipolysis was not evident, though greater circulating acylcarnitines were observed, suggesting that fatty acid oxidation rates may have been greater under calorie restriction. More research is needed to elucidate energy metabolism and substrate utilization, specifically fatty acid oxidation and methyl status, during energy restriction in strict carnivorous cats to optimize weight loss.
Collapse
Affiliation(s)
- Caitlin E. Grant
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Hannah Godfrey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Moran Tal
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Shauna L. Blois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Myriam Hesta
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Godfrey H, Morrow S, Abood SK, Verbrugghe A. Identifying the target population and preventive strategies to combat feline obesity. J Feline Med Surg 2024; 26:1098612X241228042. [PMID: 38415669 PMCID: PMC10911305 DOI: 10.1177/1098612x241228042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Feline obesity continues to be a priority health and welfare issue. Most research surrounding obesity currently focuses on obesity treatment. However, treatment for feline obesity is slow, often unsuccessful and not without consequences. Identifying high-risk populations for obesity onset is crucial for developing and implementing preventive strategies. This review identifies post-gonadectomy kittens aged 5-12 months as the primary target population for obesity prevention in domestic cats and highlights dietary and feeding management strategies to be implemented for obesity prevention.
Collapse
Affiliation(s)
- Hannah Godfrey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shawna Morrow
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah K Abood
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Li P, Wu G. Characteristics of Nutrition and Metabolism in Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:55-98. [PMID: 38625525 DOI: 10.1007/978-3-031-54192-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Domestic dogs and cats have evolved differentially in some aspects of nutrition, metabolism, chemical sensing, and feeding behavior. The dogs have adapted to omnivorous diets containing taurine-abundant meat and starch-rich plant ingredients. By contrast, domestic cats must consume animal-sourced foods for survival, growth, and development. Both dogs and cats synthesize vitamin C and many amino acids (AAs, such as alanine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and serine), but have a limited ability to form de novo arginine and vitamin D3. Compared with dogs, cats have greater endogenous nitrogen losses and higher dietary requirements for AAs (particularly arginine, taurine, and tyrosine), B-complex vitamins (niacin, thiamin, folate, and biotin), and choline; exhibit greater rates of gluconeogenesis; are less sensitive to AA imbalances and antagonism; are more capable of concentrating urine through renal reabsorption of water; and cannot tolerate high levels of dietary starch due to limited pancreatic α-amylase activity. In addition, dogs can form sufficient taurine from cysteine (for most breeds); arachidonic acid from linoleic acid; eicosapentaenoic acid and docosahexaenoic acid from α-linolenic acid; all-trans-retinol from β-carotene; and niacin from tryptophan. These synthetic pathways, however, are either absent or limited in all cats due to (a) no or low activities of key enzymes (including pyrroline-5-carboxylate synthase, cysteine dioxygenase, ∆6-desaturase, β-carotene dioxygenase, and quinolinate phosphoribosyltransferase) and (b) diversion of intermediates to other metabolic pathways. Dogs can thrive on one large meal daily, select high-fat over low-fat diets, and consume sweet substances. By contrast, cats eat more frequently during light and dark periods, select high-protein over low-protein diets, refuse dry food, enjoy a consistent diet, and cannot taste sweetness. This knowledge guides the feeding and care of dogs and cats, as well as the manufacturing of their foods. As abundant sources of essential nutrients, animal-derived foodstuffs play important roles in optimizing the growth, development, and health of the companion animals.
Collapse
Affiliation(s)
- Peng Li
- North American Renderers Association, Alexandria, VA, 22314, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Udell M, Delgado M, Ekenstedt K, Shoveller AK, Croney C. CATastrophic myths part 2: Common misconceptions about the environmental, nutritional, and genetic management of domestic cats and their welfare implications. Vet J 2023; 300-302:106029. [PMID: 37683762 DOI: 10.1016/j.tvjl.2023.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Despite the cat's popularity as a companion species, many owners and practitioners lack high quality information about important aspects of their behavior and management. Myths, anecdotes, and narratives of cats as 'low maintenance, self-sufficient' animals are pervasive, and the degree to which these may underlie complacency about fully meeting cats' needs is unknown. Several studies suggest that cat welfare and the human-cat bond may benefit from improved education about how to optimize the domestic cat's management and husbandry needs in homes and elsewhere. This paper is the second of a two-part series addressing common myths about cats. The purpose of this paper is to review and debunk common misconceptions about optimal cat care, feeding behavior, genetics, and training. Replacing these misconceptions with scientifically generated information could have a significant impact on the behavioral management of cats, positively influencing their physical health, mental stimulation, and well-being, and reducing stress for both cats and the people caring for them. Areas where further research is required to address ambiguities, and to better meet cats' needs in homes and other environments, are also identified.
Collapse
Affiliation(s)
- Monique Udell
- Department of Animal and Rangeland Sciences, Oregon State University, 2921 SW Campus Way, Corvallis, OR 97331, USA
| | | | - Kari Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA
| | - Anna Kate Shoveller
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Candace Croney
- Center for Animal Welfare Science, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Fleeman L, Gilor C. Insulin Therapy in Small Animals, Part 1: General Principles. Vet Clin North Am Small Anim Pract 2023; 53:615-633. [PMID: 36906469 DOI: 10.1016/j.cvsm.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Understanding the pharmacology of insulin and how it relates to the pathophysiology of diabetes can lead to better clinical outcomes. No insulin formulation should be considered "best" by default. Insulin suspensions (NPH, NPH/regular mixes, lente, and PZI) as well as insulin glargine U100 and detemir are intermediate-acting formulations that are administered twice daily. For a formulation to be an effective and safe basal insulin, its action should be roughly the same every hour of the day. Currently, only insulin glargine U300 and insulin degludec meet this standard in dogs, whereas in cats, insulin glargine U300 is the closest option.
Collapse
Affiliation(s)
- Linda Fleeman
- Animal Diabetes Australia, Melbourne, Victoria, Australia.
| | - Chen Gilor
- Small Animal Internal Medicine, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32608, USA
| |
Collapse
|
9
|
Mellors SC, Wilms JN, Welboren AC, Ghaffari MH, Leal LN, Martín-Tereso J, Sauerwein H, Steele MA. Gastrointestinal structure and function of preweaning dairy calves fed a whole milk powder or a milk replacer high in fat. J Dairy Sci 2023; 106:2408-2427. [PMID: 36894427 DOI: 10.3168/jds.2022-22155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/16/2022] [Indexed: 03/09/2023]
Abstract
The composition of milk replacer (MR) for calves greatly differs from that of bovine whole milk, which may affect gastrointestinal development of young calves. In this light, the objective of the current study was to compare gastrointestinal tract structure and function in response to feeding liquid diets having a same macronutrient profile (e.g., fat, lactose, protein) in calves in the first month of life. Eighteen male Holstein calves (46.6 ± 5.12 kg; 1.4 ± 0.50 d of age at arrival; mean ± standard deviation) were housed individually. Upon arrival, calves were blocked based on age and arrival day, and, within a block, calves were randomly assigned to either a whole milk powder (WP; 26% fat, DM basis, n = 9) or a MR high in fat (25% fat, n = 9) fed 3.0 L 3 times daily (9 L total per day) at 135 g/L through teat buckets. On d 21, gut permeability was assessed with indigestible permeability markers [chromium (Cr)-EDTA, lactulose, and d-mannitol]. On d 32 after arrival, calves were slaughtered. The weight of the total forestomach without contents was greater in WP-fed calves. Furthermore, duodenum and ileum weights were similar between treatment groups, but jejunum and total small intestine weights were greater in WP-fed calves. The surface area of the duodenum and ileum did not differ between treatment groups, but the surface area of the proximal jejunum was greater in calves fed WP. Urinary lactulose and Cr-EDTA recoveries were greater in calves fed WP in the first 6 h post marker administration. Tight junction protein gene expression in the proximal jejunum or ileum did not differ between treatments. The free fatty acid and phospholipid fatty acid profiles in the proximal jejunum and ileum differed between treatments and generally reflected the fatty acid profile of each liquid diet. Feeding WP or MR altered gut permeability and fatty acid composition of the gastrointestinal tract and further investigation are needed to understand the biological relevance of the observed differences.
Collapse
Affiliation(s)
- S C Mellors
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - J N Wilms
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2; Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands.
| | - A C Welboren
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - L N Leal
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| | - J Martín-Tereso
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2.
| |
Collapse
|
10
|
Mo R, Zhang M, Wang H, Liu T, Zhang G, Wu Y. Short-term changes in dietary fat levels and starch sources affect weight management, glucose and lipid metabolism, and gut microbiota in adult cats. J Anim Sci 2023; 101:skad276. [PMID: 37602405 PMCID: PMC10465269 DOI: 10.1093/jas/skad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
A 2 × 2 factorial randomized design was utilized to investigate the effects of fat level (8% or 16% fat on a fed basis) and starch source (pea starch or corn starch) on body weight, glycolipid metabolism, hematology, and fecal microbiota in cats. The study lasted for 28 d and included a low fat and pea starch diet (LFPS), a high fat and pea starch diet, a low fat and corn starch diet, and a high fat and corn starch diet. In this study, hematological analysis showed that all cats were healthy. The apparent total tract digestibility of gross energy, crude protein, and crude fat was above 85% in the four diets. After 28 d, cats fed the high fat diets (HF) gained an average of 50 g more than those fed the low fat diets (LF). The hematological results showed that the HF diets increased the body inflammation in cats, while the LFPS group improved the glucolipid metabolism. The levels of glucose and insulin were lower in cats fed the LF diets than those in cats fed the HF diets (P < 0.05). Meanwhile, compared with the LF, the concentrations of total cholesterol, triglyceride, and high-density lipoprotein cholesterol in serum were greater in the cats fed the HF diets (P < 0.05). Additionally, both fat level and starch source influenced the fecal microbiota, with the relative abundance of beneficial bacteria, such as Blautia being significantly greater in the LFPS group than in the other three groups (P < 0.05). Reducing energy density and using pea starch in foods are both valuable design additions to aid in the management of weight control and improve gut health in cats. This study highlights the importance of fat level and starch in weight management in cats.
Collapse
Affiliation(s)
- Ruixia Mo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingrui Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Circulating direct infusion MS and NMR metabolomic profiles of post-gonadectomy kittens with or without additional dietary choline supplementation. Br J Nutr 2022:1-20. [PMID: 36305498 DOI: 10.1017/s0007114522003385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Abstract
Choline is beneficial for energy metabolism and growth in various species. Choline may work similarly in kittens at risk of obesity. Direct infusion MS (Di-MS) and NMR spectroscopy were used to investigate the metabolomic signatures of kittens supplemented with or without additional dietary choline for 12 weeks. Fifteen intact male kittens consumed a base diet (3310 mg choline/kg DM) to their daily metabolisable energy requirement (DER) over an 11-week acclimation. Kittens were gonadectomised and assigned, based on body weight, to the base diet (CONTROL, n 7) or the base diet with 300 mg/kgBW0·75 additional choline as choline chloride (CHOLINE, n 8) and offered three times their individual energy requirement divided into three meals. At weeks −1 and 12, fasted blood was sampled and serum analysed for 130 metabolites via Di-MS and fifty-one metabolites via NMR spectroscopy. Changes in fasted metabolites were assessed using a repeated-measures GLIMMIX procedure with time and group as fixed effects, and time as a repeated measure. Metabolites of one-carbon metabolism and lipids increased, and medium-chain acyl carnitines decreased from week −1 to 12 for CHOLINE (P < 0·05), but not CONTROL (P > 0·05). Increases in amino acid, biogenic amine and organic compound concentrations were observed in both groups (P < 0·05). The results suggest impacts of dietary choline at greater intakes than currently recommended on one-carbon metabolism and fatty acid oxidation, and these may promote healthy growth in post-gonadectomy kittens.
Collapse
|
12
|
Rankovic A, Godfrey H, Grant CE, Shoveller AK, Bakovic M, Kirby G, Verbrugghe A. Dose-response relationship between dietary choline and serum lipid profile, energy expenditure, and respiratory quotient in overweight adult cats fed at maintenance energy requirements. J Anim Sci 2022; 100:skac202. [PMID: 35641141 PMCID: PMC9259596 DOI: 10.1093/jas/skac202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
Choline is an essential nutrient linked to hepatic lipid metabolism in many animal species, including cats. The current study investigated the serum lipid profiles, serum liver enzymes, respiratory quotients, and energy expenditures of overweight cats fed maintenance diets, in response to graded doses of supplemental dietary choline. Overweight (body condition score [BCS]: ≥6/9) adult male neutered cats (n = 14) were supplemented with five choline chloride doses for 3-wk periods, in a 5 × 5 Latin square design. Doses were based on individual body weight (BW) and the daily recommended allowance (RA) for choline (63 mg/kg BW0.67) according to the National Research Council. Doses were control (no additional choline: 1.2 × RA, 77 mg/kg BW0.67), 2 × RA (126 mg/kg BW0.67), 4 × RA (252 mg/kg BW0.67), 6 × RA (378 mg/kg BW0.67), and 8 × RA (504 mg/kg BW0.67). Choline was top-dressed over the commercial extruded cat food (3,620 mg choline/kg diet), fed once a day at maintenance energy requirements (130 kcal/kgBW0.4). Body weight and BCS were assessed weekly. Fasted blood samples were taken and indirect calorimetry was performed at the end of each 3-wk period. Serum was analyzed for cholesterol, high-density lipoprotein cholesterol (HDL-C), triglycerides, non-esterified fatty acids, glucose, creatinine, blood urea nitrogen (BUN), alkaline phosphatase (ALP), and alanine aminotransferase. Very low-density lipoprotein cholesterol (VLDL) and low-density lipoprotein cholesterol were calculated. Data were analyzed via SAS using proc GLIMMIX, with group and period as the random effects, and treatment as the fixed effect. Statistical significance was considered at P < 0.05. Body weight and BCS did not change (P > 0.05). Serum cholesterol, HDL-C, triglycerides, and VLDL increased with 6 × RA (P < 0.05). Serum ALP decreased with 8 × RA (P = 0.004). Choline at 4 × and 6 × RA decreased serum BUN (P = 0.006). Fed or fasted respiratory quotient and energy expenditure did not differ among dietary choline doses (P > 0.05). These results suggest that dietary choline supplementation at 6 × RA may increase hepatic fat mobilization through increased lipoprotein transport and beneficially support hepatic health in overweight cats. Future studies that combine these results with existing knowledge of feline weight loss and hepatic lipidosis are warranted.
Collapse
Affiliation(s)
- Alexandra Rankovic
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Hannah Godfrey
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Caitlin E Grant
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Gordon Kirby
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
13
|
Esmaeili N, Carter CG, Wilson R, Walker SP, Miller MR, Bridle AR, Symonds JE. Protein metabolism in the liver and white muscle is associated with feed efficiency in Chinook salmon (Oncorhynchus tshawytscha) reared in seawater: Evidence from proteomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100994. [PMID: 35533546 DOI: 10.1016/j.cbd.2022.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 06/13/2023]
Abstract
Understanding the molecular mechanisms that underlie differences in feed efficiency (FE) is an important step toward optimising growth and achieving sustainable salmonid aquaculture. In this study, the liver and white muscle proteomes of feed efficient (EFF) and inefficient (INEFF) Chinook salmon (Oncorhynchus tshawytscha) reared in seawater were investigated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In total, 2746 liver and 702 white muscle proteins were quantified and compared between 21 EFF and 22 INEFF fish. GSEA showed that gene sets related to protein synthesis were enriched in the liver and white muscle of the EFF group, while conversely, pathways related to protein degradation (amino acid catabolism and proteolysis, respectively) were the most affected processes in the liver and white muscle of INEFF fish. Estimates of individual daily feed intake and share of the meal within tank were significantly higher in the INEFF than the EFF fish showing INEFF fish were likely more dominant during feeding and overfed. Overeating by the INEFF fish was associated with an increase in protein catabolism. This study found that fish with different FE values had expression differences in the gene sets related to protein turnover, and this result supports the hypothesis that protein metabolism plays a role in FE.
Collapse
Affiliation(s)
- Noah Esmaeili
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Private Bag 49, Australia.
| | - Chris G Carter
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Private Bag 49, Australia
| | - Richard Wilson
- Central Science Laboratory, Research Division, University of Tasmania, Hobart 7001, Australia
| | | | - Matthew R Miller
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Private Bag 49, Australia; Cawthron Institute, Nelson 7010, New Zealand
| | - Andrew R Bridle
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Private Bag 49, Australia
| | - Jane E Symonds
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Private Bag 49, Australia; Cawthron Institute, Nelson 7010, New Zealand
| |
Collapse
|
14
|
Model JFA, Rocha DS, Fagundes ADC, Vinagre AS. Physiological and pharmacological actions of glucagon like peptide-1 (GLP-1) in domestic animals. Vet Anim Sci 2022; 16:100245. [PMID: 35372707 PMCID: PMC8966211 DOI: 10.1016/j.vas.2022.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
GLP-1 improves peripheral glucose uptake in healthy dogs and cats. GLP-1 analogues administration in diabetic cats reduces exogenous insulin requirement. Dogs cardiomyocytes apoptosis is reduced by GLP-1-derived molecules action.
Analogues of glucagon like peptide-1 (GLP-1) and other drugs that increase this peptide half-life are used worldwide in human medicine to treat type 2 diabetes mellitus (DM) and obesity. These molecules can increase insulin release and satiety, interesting effects that could also be useful in the treatment of domestic animals pathologies, however their use in veterinary medicine are still limited. Considering the increasing incidence of DM and obesity in cats and dogs, the aim of this review is to summarize the available information about the physiological and pharmacological actions of GLP-1 in domestic animals and discuss about its potential applications in veterinary medicine. In diabetic dogs, the use of drugs based on GLP-1 actions reduced blood glucose and increased glucose uptake, while in diabetic cats they reduced glycemic variability and exogenous insulin administration. Thus, available evidence indicates that GLP-1 based drugs could become alternatives to DM treatment in domestic animals. Nevertheless, current data do not provide enough elements to recommend these drugs widespread clinical use.
Collapse
|
15
|
Gilor C, Fleeman LM. One hundred years of insulin: Is it time for smart? J Small Anim Pract 2022; 63:645-660. [PMID: 35560042 DOI: 10.1111/jsap.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/10/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022]
Abstract
Smarter understanding of diabetes pathophysiology and pharmacology of insulin therapy can lead to better clinical outcomes. Rather than looking for an insulin formulation that is considered "best" for a general population, it could be appropriate to seek the "smart" insulin choice, tailored to the specific clinical situation. Different treatment goals should be considered, with pros and cons to each. Ideally, insulin therapy in most diabetic dogs should mimic a "basal-bolus" pattern. The "intermediate"-acting insulin formulations might provide better "bolus" treatment in dogs than the rapid-acting formulations used in people. In patients with some residual beta cell function such as many diabetic cats, administering only a "basal" insulin might lead to complete normalisation of blood glucose concentrations. Insulin suspensions (neutral protamine Hagedorn, neutral protamine Hagedorn/regular mixes, lente and protamine zinc insulin) as well as insulin glargine U100 and detemir are "intermediate"-acting formulations that are administered twice daily. For a formulation to be an effective and safe "basal" insulin, its action should be roughly the same every hour of the day. Currently, only insulin glargine U300 and insulin degludec meet this standard in dogs, whereas in cats, insulin glargine U300 is the closest option.
Collapse
Affiliation(s)
- C Gilor
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - L M Fleeman
- Animal Diabetes Australia, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Summers SC, Quimby J, Blake A, Keys D, Steiner JM, Suchodolski J. Serum and Fecal Amino Acid Profiles in Cats with Chronic Kidney Disease. Vet Sci 2022; 9:vetsci9020084. [PMID: 35202337 PMCID: PMC8878831 DOI: 10.3390/vetsci9020084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
The purpose of the study was to quantify serum and fecal amino acids (AA) in cats with chronic kidney disease (CKD) and compare to healthy cats. Thirty-five cats with International Renal Interest Society Stage 1–4 CKD and 16 healthy mature adult and senior client-owned cats were included in this prospective cross-sectional study. Sera were analyzed for 25 AA concentrations using an ion exchange chromatography AA analyzer with post column ninhydrin derivatization. Voided fecal samples were analyzed for 22 AA concentrations using liquid chromatography with tandem mass spectrometry. CKD cats had lower serum concentrations of phenylalanine (mean difference ± standard error of the mean: 12.7 ± 4.3 µM; p = 0.03), threonine (29.6 ± 9.2 µM; p = 0.03), tryptophan (18.4 ± 5.4 µM; p = 0.005), serine (29.8 ± 12.6 µM; p = 0.03), and tyrosine (11.6 ± 3.8 µM; p = 0.01) and higher serum concentrations of aspartic acid (4.7 ± 2.0 µM; p = 0.01), β-alanine (3.4 ± 1.2 µM; p = 0.01), citrulline (5.7 ± 1.6 µM; p = 0.01), and taurine (109.9 ± 29.6 µM; p = 0.01) when compared to healthy cats. Fecal AA concentrations did not differ between healthy cats and CKD cats. 3-Methylhistidine-to-creatinine did not differ between healthy cats with and without muscle loss. Cats with CKD IRIS Stages 1–4 have a deranged serum amino acid profile compared to healthy cats.
Collapse
Affiliation(s)
- Stacie C. Summers
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Correspondence:
| | - Jessica Quimby
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Amanda Blake
- Texas A&M Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College Station, TX 77843, USA; (A.B.); (J.M.S.); (J.S.)
| | - Deborah Keys
- Kaleidoscope Statistics Veterinary Medical Research Consulting, Athens, GA 30606, USA;
| | - Joerg M. Steiner
- Texas A&M Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College Station, TX 77843, USA; (A.B.); (J.M.S.); (J.S.)
| | - Jan Suchodolski
- Texas A&M Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College Station, TX 77843, USA; (A.B.); (J.M.S.); (J.S.)
| |
Collapse
|
17
|
The Diets of Companion Cats in Aotearoa New Zealand: Identification of Obesity Risk Factors. Animals (Basel) 2021; 11:ani11102881. [PMID: 34679902 PMCID: PMC8532602 DOI: 10.3390/ani11102881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
One in four New Zealand cats are overweight or obese, conditions associated with poor health outcomes. As part of an online survey that was conducted from January 2019 to March 2019, NZ residents aged ≥18 years were asked demographic questions along with questions related to the body condition, breed and diet of their cat/s. From the responses, possible owner-related risk factors for developing obesity were identified. Of the respondents, 65.5% (n = 1537) owned cat/s; the owners being more likely to be female, live rurally, or live with children. Most of the respondents fed their cat/s biscuits from the supermarket (63%) and wet food (57%). Almost half (45%) fed their cat/s specialised food from a pet shop or veterinary clinic and gave them treats, with 31% of respondents feeding their cat/s raw meat. Feeding cats a variety of food types may make it difficult to estimate the appropriate amount of each needed to avoid excess caloric intake. In addition, approximately 30% of the respondents did not agree with the correct body condition statement, revealing a need for owner education. These findings highlight important areas of cat nutrition requiring future research to better inform the development of healthy weight interventions for NZ cats.
Collapse
|
18
|
Banton S, Pezzali JG, Verbrugghe A, Bakovic M, Wood KM, Shoveller AK. Addition of dietary methionine but not dietary taurine or methyl donors/receivers to a grain-free diet increases postprandial homocysteine concentrations in adult dogs. J Anim Sci 2021; 99:6333283. [PMID: 34333630 DOI: 10.1093/jas/skab223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022] Open
Abstract
Grain based ingredients are replaced in part by pulse ingredients in grain-free pet foods. Pulse ingredients are lower in methionine and cysteine, amino acid (AA) precursors to taurine synthesis in dogs. While recent work has investigated plasma and whole blood taurine concentrations when feeding grain-free diets, supplementation of a grain-free diet with various nutrients involved in the biosynthesis of taurine has not been evaluated. This study aimed to investigate the effects of supplementing a complete grain-free dry dog food with either methionine (MET), taurine (TAU), or methyl donors (choline) and methyl receivers (creatine and carnitine; CCC) on postprandial AA concentrations. Eight healthy Beagle dogs were fed 1 of 3 treatments or the control grain-free diet (CON) for 7 d in a 4 × 4 Latin square design. On d7, cephalic catheters were placed and one fasted sample (0 min) and a series of 9 post-meal blood samples were collected at 15, 30, 60, 90, 120, 180, 240, 300 and 360 min. Data were analyzed as repeated measures using the PROC GLIMMIX function in SAS (Version 9.4). Dogs fed MET had greater plasma and whole blood methionine concentrations from 30 - 360 min after a meal (P < 0.0001) and greater plasma homocysteine concentrations from 60 - 360 min after a meal (P < 0.0001) compared to dogs fed CON, TAU and CCC. Dogs fed TAU had greater plasma taurine concentrations over time compared to dogs fed CON (P = 0.02), but were not different than dogs fed MET and CCC (P > 0.05). In addition, most AA remained significantly elevated at 6 h post-meal compared to fasted samples across all treatments. Supplementation of creatine, carnitine and choline in grain-free diets may play a role in sparing the methionine requirement without increasing homocysteine concentrations. Supplementing these nutrients could also aid in the treatment of disease that causes metabolic or oxidative stress, including cardiac disease in dogs, but future research is required.
Collapse
Affiliation(s)
- Sydney Banton
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Júlia G Pezzali
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Katie M Wood
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Anna K Shoveller
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|