1
|
Kong J, Yang J, He C, Zhou B, Fang S, Salinas M, Mohabbat AB, Bauer BA, Wang X. Regulation of endotoxemia through the gut microbiota: The role of the Mediterranean diet and its components. APMIS 2024; 132:948-955. [PMID: 39370693 DOI: 10.1111/apm.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
Endotoxemia is closely related to many diseases. As the largest endotoxin reservoir in the human body, the gut microbiota should be a key target for alleviating endotoxemia. The intestinal microbiota is believed to cause endotoxemia directly or indirectly by modifying the intestinal barrier function through dysbiosis, changing intestinal mucosal permeability and bacterial translocation. Diet is known to be the main environmental factor affecting the intestinal microbiota, and different diets and food components have a large impact on the gut microbiota. The Mediterranean diet, which received much attention in recent years, is believed to be able to regulate the gut microbiota, thereby maintaining the function of the intestinal barrier and alleviating endotoxemia. In this review, we focus on the relationship between the gut microbiota and endotoxemia, and how the Mediterranean dietary (MD) pattern can interfere with endotoxemia through the gut microbiota.
Collapse
Affiliation(s)
- Jing Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Juan Yang
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Cong He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingduo Zhou
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengquan Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Manisha Salinas
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Arya B Mohabbat
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brent A Bauer
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaosu Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen J, Wang H, Bu S, Cheng X, Hu X, Shen M, Zhuang H. Alterations in subgingival microbiome and advanced glycation end-products levels in periodontitis with and without type 1 diabetes mellitus: a cross-sectional study. BMC Oral Health 2024; 24:1344. [PMID: 39501226 PMCID: PMC11539332 DOI: 10.1186/s12903-024-05089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Existing studies predominantly focused on the relationship between periodontitis and type 2 diabetes mellitus (T2DM), with limited data on the association between periodontitis and type 1 diabetes mellitus (T1DM). This study aimed to examine the impact of T1DM and periodontitis on the subgingival microbiome and levels of advanced glycation end-products (AGEs). METHODS Samples were collected from four groups: T1DM, periodontitis (P), T1DM with periodontitis (DP), and periodontally and systemically healthy controls (Control). Subgingival microbiome composition and AGE levels were assessed using 16S rRNA gene sequencing and enzyme-linked immunosorbent assay (ELISA), respectively. Correlations between clinical indexes, microbiome composition, and AGEs were analyzed using Spearman correlation coefficient. RESULTS Alpha and beta diversity analyses revealed significant differences in bacterial diversity between the DP group and other groups. Linear discriminant analysis effect size (LEfSe) analysis identified specific bacteria influencing each group: Acinetobacter, Leptotrichia, Raoultibacter, and Veillonella in the Control group; Tannerella, Porphyromonas, Filifactor, and Treponema in the P group; and Lactobacillales in T1DM individuals. Prevotella and Selenomonas were notably influential in the DP group. PICRUSt2 analysis showed pathways alterations were concentrated in cell motility, translation, cell growth and death and metabolism in the DP and P groups. Spearman correlation analysis indicated a positive correlation between AGEs and periodontitis or diabetes-related parameters and AGEs were positively correlated with Haemophilus and Arachnia. CONCLUSIONS The findings suggested that the composition and function of the subgingival microbiome in the P group with or without T1DM were significantly different. Additionally, AGEs were involved in the development of periodontitis even in absence of hyperglycemia.
Collapse
Affiliation(s)
- Jialu Chen
- Department of Stomatology, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Hong Wang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - ShouShan Bu
- Department of Stomatology, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Xiaofan Cheng
- Department of Stomatology, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Xiaoya Hu
- Department of Stomatology, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Min Shen
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Hai Zhuang
- Department of Stomatology, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
3
|
Zhang Y, Zhao L, Jia Y, Zhang X, Han Y, Lu P, Yuan H. Genetic Evidence for the Causal Relationship Between Gut Microbiota and Diabetic Kidney Disease: A Bidirectional, Two-Sample Mendelian Randomisation Study. J Diabetes Res 2024; 2024:4545595. [PMID: 39479291 PMCID: PMC11524706 DOI: 10.1155/2024/4545595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Aims: According to the gut-kidney axis theory, gut microbiota (GM) has bidirectional crosstalk with the development of diabetic kidney disease (DKD). However, empirical results have been inconsistent, and the causal associations remain unclear. This study was aimed at exploring the causal relationship between GM and DKD as well as the glomerular filtration rate (GFR) and urinary albumin-to-creatinine ratio (UACR). Materials and Methods: Two-sample Mendelian randomisation (MR) analysis was performed with inverse-variance weighting as the primary method, together with four additional modes (MR-Egger regression, simple mode, weighted mode, and weighted median). We utilised summary-level genome-wide association study statistics from public databases for this MR analysis. Genetic associations with DKD were downloaded from the IEU Open GWAS project or CKDGen consortium, and associations with GM (196 taxa from five levels) were downloaded from the MiBioGen repository. Results: In forward MR analysis, we identified 13 taxa associated with DKD, most of which were duplicated in Type 2 diabetes with renal complications but not in Type 1 diabetes. We observed a causal association between genetic signature contributing to the relative abundance of Erysipelotrichaceae UCG003 and that for both DKD and GFR. Similarly, host genetic signature defining the abundance of Ruminococcaceae UCG014 was found to be simultaneously associated with DKD and UACR. In reverse MR analysis, the abundance of 14 other GM taxa was affected by DKD, including the phylum Proteobacteria, which remained significant after false discovery rate correction. Sensitivity analyses revealed no evidence of outliers, heterogeneity, or horizontal pleiotropy. Conclusion: Our findings provide compelling causal genetic evidence for the bidirectional crosstalk between specific GM taxa and DKD development, contributing valuable insights for a comprehensive understanding of the pathological mechanisms of DKD and highlighting the possibility of prevention and management of DKD by targeting GM.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Lingyun Zhao
- Department of Endocrinology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yifan Jia
- Department of Endocrinology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhang
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueying Han
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Ping Lu
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Bibi S, Kerbiriou C, Uzma, Mckirdy S, Kostrytsia A, Rasheed H, Eqani SAMAS, Gerasimidis K, Nurulain SM, Ijaz UZ. Gut microbiome and function are altered for individuals living in high fluoride concentration areas in Pakistan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116959. [PMID: 39232295 DOI: 10.1016/j.ecoenv.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Endemic fluorosis refers to the condition when individuals are exposed to excessive amounts of fluoride ion due to living in a region characterized by elevated levels of fluorine in the drinking water, food, and/or air. In Pakistan, a substantial proportion of the population is thereby affected, posing a public health concern. OBJECTIVES Assessing how the gut microbiota and its metabolic profiles are impacted by chronic exposure to fluoride in drinking water (that caused Dental Fluorosis) as well as to perceive how this microbiota is connected to adverse health outcomes prevailing with fluoride exposure. METHODS Drinking water (n=27) and biological samples (n=100) of blood, urine and feces were collected from 70 high fluoride exposed (with Dental Fluorosis) and 30 healthy control (without Dental Fluorosis) subjects. Water and urinary fluoride concentrations were determined. Serum/plasma biochemical testing was performed. Fecal DNA extraction, 16S rRNA analysis of microbial taxa, their predicted metabolic function and fecal short chain fatty acids (SCFAs) quantification were carried out. RESULTS The study revealed that microbiota taxonomic shifts and their metabolic characterization had been linked to certain host clinical parameters under the chronic fluoride exposure. Some sets of genera showed strong specificity to water and urine fluoride concentrations, Relative Fat Mass index and SCFAs. The SCFAs response in fluoride-exposed samples was observed to be correlated with bacterial taxa that could contribute to adverse health effects. CONCLUSIONS Microbial dysbiosis as a result of endemic fluorosis exhibits a structure that is associated with risk of metabolic deregulation and is implicated in various diseases. Our results may form the development of novel interventions and may have utility in diagnosis and monitoring.
Collapse
Affiliation(s)
- Sara Bibi
- Department of Biosciences, COMSATS University Islamabad, 45550, Pakistan; Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Caroline Kerbiriou
- School of Medicine, Dentistry & Nursing, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Uzma
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Shona Mckirdy
- School of Medicine, Dentistry & Nursing, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Anastasiia Kostrytsia
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Hifza Rasheed
- National Water Quality Laboratory, Pakistan Council of Research in Water Resources (PCRWR), Islamabad, Pakistan
| | | | | | | | - Umer Zeeshan Ijaz
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 7BE, UK; National University of Ireland, University Road, Galway H91 TK33, Ireland.
| |
Collapse
|
5
|
Shi L, Liu X, Li E, Zhang S, Zhou A. Association of lipid-lowering drugs with gut microbiota: A Mendelian randomization study. J Clin Lipidol 2024; 18:e797-e808. [PMID: 38971663 DOI: 10.1016/j.jacl.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The gut microbiota can be influenced by lipid metabolism. We aimed to evaluate the impact of lipid-lowering medications, such as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, Niemann-Pick C1-Like 1 protein (NPC1L1) inhibitors, and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibitors, on gut microbiota through drug target Mendelian randomization (MR) investigation. METHODS We used genetic variants that were associated with low-density lipoprotein cholesterol (LDL-C) in genome-wide association studies and located within or near drug target genes as proxies for lipid-lowering drug exposure. In addition, expression trait loci in drug target genes were used as complementary genetic tools. We used effect estimates calculated using inverse variance weighted MR (IVW-MR) and summary data-based MR (SMR). Multiple sensitivity analyses were performed. RESULTS Genetic proxies for lipid-lowering drugs broadly affected the abundance of gut microbiota. High expression of NPC1L1 was significantly associated with an increase in the genus Eggerthella (β = 1.357, SE = 0.337, P = 5.615 × 10-5). An HMGCR-mediated increase in LDL-C was significantly associated with the order Pasteurellales (β = 0.489, SE = 0.123, P = 6.955 × 10-5) and the genus Haemophilus (β = 0.491, SE = 0.125, P = 8.379 × 10-5), whereas a PCSK9-mediated increase in LDL-C was associated with the genus Terrisporobacter (β = 0.666, SE = 0.127, P = 1.649 × 10-5). No pleiotropy was detected. CONCLUSIONS This drug target MR highlighted the potential interventional effects of lipid-lowering drugs on the gut microbiota and separately revealed the possible effects of different types of lipid-lowering drugs on specific gut microbiota.
Collapse
Affiliation(s)
- Lubo Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, PR China (Drs Shi, Zhang, Zhou)
| | - Xiaoduo Liu
- Department of Neurology & Innovation Center for Neurological Disorders , Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, PR China (Dr Liu)
| | - Enze Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, PR China (Dr Li)
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, PR China (Drs Shi, Zhang, Zhou).
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, PR China (Drs Shi, Zhang, Zhou).
| |
Collapse
|
6
|
Akhlaghi E, Salari E, Mansouri M, Shafiei M, Kalantar-Neyestanaki D, Aghassi H, Fasihi Harandi M. Identification and comparison of intestinal microbial diversity in patients at different stages of hepatic cystic echinococcosis. Sci Rep 2024; 14:18912. [PMID: 39143364 PMCID: PMC11324937 DOI: 10.1038/s41598-024-70005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024] Open
Abstract
There is a significant focus on the role of the host microbiome in different outcomes of human parasitic diseases, including cystic echinococcosis (CE). This study was conducted to identify the intestinal microbiome of patients with CE at different stages of hydatid cyst compared to healthy individuals. Stool samples from CE patients as well as healthy individuals were collected. The samples were divided into three groups representing various stages of hepatic hydatid cyst: active (CE1 and CE2), transitional (CE3), and inactive (CE4 and CE5). One family member from each group was selected to serve as a control. The gut microbiome of patients with different stages of hydatid cysts was investigated using metagenomic next-generation amplicon sequencing of the V3-V4 region of the 16S rRNA gene. In this study, we identified 4862 Operational Taxonomic Units from three stages of hydatid cysts in CE patients and healthy individuals with a combined frequency of 2,955,291. The most abundant genera observed in all the subjects were Blautia, Agathobacter, Faecalibacterium, Bacteroides, Bifidobacterium, and Prevotella. The highest microbial frequency was related to inactive forms of CE, and the lowest frequency was observed in the group with active forms. However, the lowest OTU diversity was found in patients with inactive cysts compared with those with active and transitional cyst stages. The genus Agatobacter had the highest OTU frequency. Pseudomonas, Gemella, and Ligilactobacillus showed significant differences among the patients with different stages of hydatid cysts. Additionally, Anaerostipes and Candidatus showed significantly different reads in CE patients compared to healthy individuals. Our findings indicate that several bacterial genera can play a role in the fate of hydatid cysts in patients at different stages of the disease.
Collapse
Affiliation(s)
- Elham Akhlaghi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Salari
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shafiei
- Research Center for Hydatid Disease in Iran, Department of Surgery, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Aghassi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Li Y, Yao M, Xie F, Qiu Y, Zhao X, Li R. Gut microbiota as a residual risk factor causally influencing cardiac structure and function: Mendelian randomization analysis and biological annotation. Front Microbiol 2024; 15:1410272. [PMID: 39132134 PMCID: PMC11316272 DOI: 10.3389/fmicb.2024.1410272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Background The gut microbiota (GM) is widely acknowledged to have a significant impact on cardiovascular health and may act as a residual risk factor affecting cardiac structure and function. However, the causal relationship between GM and cardiac structure and function remains unclear. Objective This study aims to employ a two-sample Mendelian randomization (MR) approach to investigate the causal association between GM and cardiac structure and function. Methods Data on 119 GM genera were sourced from a genome-wide association study (GWAS) meta-analysis (13,266 European participants) conducted by the MiBioGen consortium, while data on 16 parameters of cardiac structure and function were obtained from the UK Biobank's GWAS of cardiac magnetic resonance imaging (up to 41,135 European participants). Inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods were utilized for causal association assessments, with sensitivity analyses conducted to reinforce the findings. Finally, biological annotation was performed on the GWAS data of GM and cardiac phenotypes with causal associations to explore potential mechanisms. Results The MR analysis, predominantly based on the IVW model, revealed 93 causal associations between the genetically predicted abundance of 44 GM genera and 16 cardiac structure and function parameters. These associations maintained consistent directions in MR-Egger and WM models, with no evidence of pleiotropy detected. Biological annotations suggest that GM may influence cardiac structure and function through pathways involved in myocardial cell development, cardiac contractility, and apoptosis. Conclusion The MR analysis supports a causal association between certain abundances of genetically predicted GM and cardiac structure and function, suggesting that GM could be a residual risk factor impacting cardiac phenotypes.
Collapse
Affiliation(s)
- Yihua Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meidan Yao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- National Key Laboratory of Chinese Medicine Evidence, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Xie
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijun Qiu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinjun Zhao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Yang C, Lan R, Zhao L, Pu J, Hu D, Yang J, Zhou H, Han L, Ye L, Jin D, Xu J, Liu L. Prevotella copri alleviates hyperglycemia and regulates gut microbiota and metabolic profiles in mice. mSystems 2024; 9:e0053224. [PMID: 38934548 PMCID: PMC11265406 DOI: 10.1128/msystems.00532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Prevotella copri is the dominant species of the Prevotella genus in the gut, which is genomically heterogeneous and difficult to isolate; hence, scarce research was carried out for this species. This study aimed to investigate the effect of P. copri on hyperglycemia. Thirty-nine strains were isolated from healthy individuals, and three strains (HF2123, HF1478, and HF2130) that had the highest glucose consumption were selected to evaluate the effects of P. copri supplementation on hyperglycemia. Microbiomics and non-target metabolomics were used to uncover the underlying mechanisms. Oral administration of P. copri in diabetic db/db mice increased the expression and secretion of glucagon-like peptide-1 (GLP-1), significantly improved hyperglycemia, insulin resistance, and lipid accumulation, and alleviated the pathological morphology in the pancreas, liver, and colon. P. copri changed the composition of the gut microbiota of diabetic db/db mice, which was characterized by increasing the ratio of Bacteroidetes to Firmicutes and increasing the relative abundance of genera Bacteroides, Akkermansia, and Faecalibacterium. After intervention with P. copri, fecal metabolic profiling showed that fumaric acid and homocysteine contents decreased, and glutamine contents increased. Furthermore, amino acid metabolism and cAMP/PKA signaling pathways were enriched. Our findings indicate that P. copri improved glucose metabolism abnormalities in diabetic db/db mice. Especially, one of the P. copri strains, HF2130, has shown superior performance in improving hyperglycemia, which may have the potential as a probiotic against hyperglycemia. IMPORTANCE As a core member of the human intestinal ecosystem, Prevotelal copri has been associated with glucose metabolic homeostasis in previous studies. However, these results have often been derived from metagenomic studies, and the experimental studies have been based solely on the type of strain DSM 18205T. Therefore, more experimental evidence from additional isolates is needed to validate the results according to their high genomic heterogeneity. In this study, we isolated different branches of strains and demonstrated that P. copri could improve the metabolic profile of hyperglycemic mice by modulating microbial activity. This finding supports the causal contribution of P. copri in host glucose metabolism.
Collapse
Affiliation(s)
- Caixin Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lijun Zhao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Pu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Huimin Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lichao Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin Ye
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Public Health, Nankai University, Tianjin, China
| | - Liyun Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Yao X, Zhang R, Wang X. The gut-joint axis: Genetic evidence for a causal association between gut microbiota and seropositive rheumatoid arthritis and seronegative rheumatoid arthritis. Medicine (Baltimore) 2024; 103:e37049. [PMID: 38394529 PMCID: PMC11309692 DOI: 10.1097/md.0000000000037049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to assess the causal relationship between GM and RA (seropositive RA and seronegative RA). A two-sample Mendelian randomization (MR) analysis was performed to assess the causality of GM on seropositive RA and seronegative RA. GM's genome-wide association study (GWAS) was used as the exposure, whereas the GWAS datasets of seropositive RA and seronegative RA were the outcomes. The primary analysis approach was used as inverse-variance weighted (IVW), followed by 3 additional MR methods (MR-Egger, weighted median, and weighted mode). Cochran's Q test was used to identify heterogeneity. The MR-Egger intercept test and leave-one-out analyses were used to assess horizontal pleiotropy. All statistical analyses were performed in R software. We discovered that Alloprevotella (IVW OR 0.84, 95% CI 0.71-0.99, P = .04) and Christensenellaceae R 7 group (IVW OR 0.71, 95% CI 0.52-0.99, P = .04) were negatively correlated with seropositive RA, Ruminococcaceae UCG002 (IVW OR 1.30, 95% CI 1.10-1.54, P = .002) was positively associated with seropositive RA. Actinomyces (IVW OR 0.73, 95% CI 0.54-0.99, P = .04), Christensenellaceae R 7 group (IVW OR 0.62, 95% CI 0.39-0.97, P = .04), Terrisporobacter (IVW OR 0.64, 95% CI 0.44-0.93, P = .02), Lactobacillales (IVW OR 0.65, 95% CI 0.47-0.90, P = .01) were negatively correlated with seronegative RA. The present MR analysis showed a protective effect of Alloprevotella and Christensenellaceae R 7 group and a potentially anti-protective effect of Ruminococcaceae UCG002 on seropositive RA; and a protective effect of Actinomyces, Christensenellaceae R 7 group, Terrisporobacter, and Lactobacillales on seronegative RA. Further experimental studies and randomized controlled trials are needed to validate these findings.
Collapse
Affiliation(s)
- Xinyi Yao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Runrun Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Han J, Li M, Li X, Liu C, Li XL, Wang K, Qiao R, Yang F, Han X, Li XJ. Effects of microbes in pig farms on occupational exposed persons and the environment. AMB Express 2023; 13:136. [PMID: 38032532 PMCID: PMC10689614 DOI: 10.1186/s13568-023-01631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In terms of pig farming, pig gut microbes have a significant effect on farmers and the farm environment. However, it is still unclear which microbial composition is more likely to contribute to this effect. This study collected a total of 136 samples, including pigs' faeces samples, farmers' faeces samples, samples from individuals who had no contact with any type of farm animal (referred to as 'non-exposed' persons), and environmental dust samples (collected from inside and outside pig houses and the farm) from two pig farms, pig farm A and pig farm B. Whereafter, 16S rRNA sequencing and taxonomic composition analysis were performed. According to the study, compared to non-exposed persons, pig farmers had a significantly higher abundance of 7 genera. In addition, the farmers were grouped according to the duration of their occupational exposure, and it was shown that 4 genera, including Turicibacter, Terrisporobacter, and Clostridium_sensu_stricto_1, exhibited a rise in more frequent contact with pigs. As compared to outside the pig house, the environmental dust has a greater concentration of the 3 bacteria mentioned before. Therefore, these 3 microbes can be considered as co-occurring microbes that may exist both in humans and the environment. Also, the 3 co-occurring microbes are involved in the fermentation and production of short-chain fatty acids and their effectiveness decreased as distance from the farm increased. This study shows that the 3 microbes where pig farmers co-occur with the environment come from pig farms, which provides fresh ideas for preventing the spread of microbial aerosols in pig farms and reducing pollution.
Collapse
Affiliation(s)
- Jinyi Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyu Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chuang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiu-Ling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xin-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Sanya Institute, Hainan Academy of Agricultural Science, Sanya, China.
| |
Collapse
|
11
|
Rinanda T, Riani C, Artarini A, Sasongko L. Correlation between gut microbiota composition, enteric infections and linear growth impairment: a case-control study in childhood stunting in Pidie, Aceh, Indonesia. Gut Pathog 2023; 15:54. [PMID: 37946290 PMCID: PMC10636988 DOI: 10.1186/s13099-023-00581-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Gut microbiota is pivotal in maintaining children's health and well-being. The ingestion of enteric pathogens and dysbiosis lead to Environmental Enteric Dysfunction (EED), which is essential in stunting pathogenesis. The roles of gut microbiome and enteric infections have not been explored comprehensively in relation to childhood stunting in Indonesia. This study aimed to determine the correlation between gut microbiota composition, enteric infections, and growth biomarker, Insulin-like Growth Factor 1 (IGF-1), in stunted children from Pidie, Aceh, Indonesia. METHODS This study was a case-control study involving 42 subjects aged 24 to 59 months, comprising 21 stunted children for the case and 21 normal children for the control group. The IGF-1 serum level was quantified using ELISA. The gut microbiome profiling was conducted using 16S rDNA amplicon sequencing. The expression of enteric pathogens virulence genes was determined using quantitative PCR (qPCR) assay. The correlations of observed variables were analysed using suitable statistical analyses. RESULTS The result showed that the IGF-1 sera levels in stunted were lower than those in normal children (p ≤ 0.001). The abundance of Firmicutes (50%) was higher than Bacteroidetes (34%) in stunted children. The gut microbiome profile of stunted children showed enriched genera such as Blautia, Dorea, Collinsella, Streptococcus, Clostridium sensu stricto 13, Asteroleplasma and Anaerostipes. Meanwhile the depleted genera comprised Prevotella, Lactococcus, Butyrivibrio, Muribaculaceae, Alloprevotella, Akkermansia, Enterococcus, Terrisporobacter and Turicibacter. The abundance of water biological contaminants such as Aeromonas, Stappiaceae, and Synechococcus was also higher in stunted children compared to normal children. The virulence genes expression of Enteroaggregative Escherichia coli (aaiC), Enterotoxigenic E. coli (estA), Enteropathogenic E. coli (eaeA), Shigella/Enteroinvasive E. coli (ipaH3) and Salmonella enterica (ompC) in stunted was higher than in normal children (p ≤ 0.001), which negatively correlated to height and level of IGF-1. CONCLUSION The present study showed the distinctive gut microbiome profile of stunted and normal children from Pidie, Aceh, Indonesia. The gut microbiota of stunted children revealed dysbiosis, comprised several pro-inflammatory, metabolic abnormalities and high-fat/low-fiber diet-related taxa, and expressed virulence genes of enteric pathogens. These findings provide evidence that it is imperative to restore dysbiosis and preserve the balance of gut microbiota to support linear growth in children.
Collapse
Affiliation(s)
- Tristia Rinanda
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia
- Department of Microbiology, Faculty of Medicine, Universitas Syiah Kuala, Darussalam, Banda Aceh, 23111, Aceh, Indonesia
| | - Catur Riani
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Anita Artarini
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Lucy Sasongko
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia.
| |
Collapse
|
12
|
Kenger EB, Eren F, Ozlu T, Gunes FE. Analysis of microbiota profile and nutritional status in male professional football players. J Sports Med Phys Fitness 2023; 63:1235-1243. [PMID: 37486255 DOI: 10.23736/s0022-4707.23.15103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND The interest in the effect of gut microbiota on athlete health has increased in recent years. Available data indicate a relationship between gut microbiota composition and physical activity, suggesting that changes in the microbiota may contribute to the host's physical performance. Studies show that leaky gut syndrome is highly correlated with upper respiratory infections and gastrointestinal disorders in endurance sports. This study aims to reveal the relationship between microbiota profiles, and the nutritional status of football players who perform endurance exercises. METHODS Twenty male professional football players playing in one of the Turkish Football Federation Second League clubs participated in the study. Fecal samples were collected and stored at -86 °C, and the fecal microbiota was analyzed through 16s rRNA gene sequencing. The body composition of the football players was measured using a bioelectrical impedance analyzer. In addition, the 3-day food intake of the participants was recorded with the help of a dietitian. RESULTS In the microbiota of football players, four phyla, 10 genera, and four species with densities above 1% were found. Body fat percentage was observed to be negatively correlated with the species of Faecalibacterium prausnitzii and Bacteroides vulgatus and the genus of Faecalibacterium (P<0.05). Considering the nutritional status, the fat intake was found to be positively correlated with Actinobacteria and Blautia coccoides; energy and fiber intake with Prevotella and Prevotella copri (P<0.05). In addition, there was a negative correlation between carbohydrate intake and Faecalibacterium (P<0.05). CONCLUSIONS Our study is the first to reveal the microbiota profile of professional Turkish football players. It was found that football players' nutritional status and anthropometric measurements of are significantly related to phylum, genus and species ranks in the microbiota. These results support the bidirectional interaction between microbiota and sports. The relationship between microbiota and sports health/performance is thought to be further clarified with future studies.
Collapse
Affiliation(s)
- Emre B Kenger
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahcesehir University, Istanbul, Türkiye -
| | - Fatih Eren
- Institute of Gastroenterology, Marmara University, Istanbul, Türkiye
| | - Tugce Ozlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Fatma E Gunes
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Medeniyet University, Istanbul, Türkiye
| |
Collapse
|
13
|
Mázala-de-Oliveira T, Silva BT, Campello-Costa P, Carvalho VF. The Role of the Adrenal-Gut-Brain Axis on Comorbid Depressive Disorder Development in Diabetes. Biomolecules 2023; 13:1504. [PMID: 37892186 PMCID: PMC10604999 DOI: 10.3390/biom13101504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetic patients are more affected by depression than non-diabetics, and this is related to greater treatment resistance and associated with poorer outcomes. This increase in the prevalence of depression in diabetics is also related to hyperglycemia and hypercortisolism. In diabetics, the hyperactivity of the HPA axis occurs in parallel to gut dysbiosis, weakness of the intestinal permeability barrier, and high bacterial-product translocation into the bloodstream. Diabetes also induces an increase in the permeability of the blood-brain barrier (BBB) and Toll-like receptor 4 (TLR4) expression in the hippocampus. Furthermore, lipopolysaccharide (LPS)-induced depression behaviors and neuroinflammation are exacerbated in diabetic mice. In this context, we propose here that hypercortisolism, in association with gut dysbiosis, leads to an exacerbation of hippocampal neuroinflammation, glutamatergic transmission, and neuronal apoptosis, leading to the development and aggravation of depression and to resistance to treatment of this mood disorder in diabetic patients.
Collapse
Affiliation(s)
- Thalita Mázala-de-Oliveira
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
| | - Bruna Teixeira Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
| | - Paula Campello-Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
| | - Vinicius Frias Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
- Laboratório de Inflamação, Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação—INCT-NIM, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
14
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
15
|
Pheeha SM, Tamuzi JL, Chale-Matsau B, Manda S, Nyasulu PS. A Scoping Review Evaluating the Current State of Gut Microbiota Research in Africa. Microorganisms 2023; 11:2118. [PMID: 37630678 PMCID: PMC10458939 DOI: 10.3390/microorganisms11082118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota has emerged as a key human health and disease determinant. However, there is a significant knowledge gap regarding the composition, diversity, and function of the gut microbiota, specifically in the African population. This scoping review aims to examine the existing literature on gut microbiota research conducted in Africa, providing an overview of the current knowledge and identifying research gaps. A comprehensive search strategy was employed to identify relevant studies. Databases including MEDLINE (PubMed), African Index Medicus (AIM), CINAHL (EBSCOhost), Science Citation index (Web of Science), Embase (Ovid), Scopus (Elsevier), WHO International Clinical Trials Registry Platform (ICTRP), and Google Scholar were searched for relevant articles. Studies investigating the gut microbiota in African populations of all age groups were included. The initial screening included a total of 2136 articles, of which 154 were included in this scoping review. The current scoping review revealed a limited number of studies investigating diseases of public health significance in relation to the gut microbiota. Among these studies, HIV (14.3%), colorectal cancer (5.2%), and diabetes mellitus (3.9%) received the most attention. The top five countries that contributed to gut microbiota research were South Africa (16.2%), Malawi (10.4%), Egypt (9.7%), Kenya (7.1%), and Nigeria (6.5%). The high number (n = 66) of studies that did not study any specific disease in relation to the gut microbiota remains a gap that needs to be filled. This scoping review brings attention to the prevalent utilization of observational study types (38.3%) in the studies analysed and emphasizes the importance of conducting more experimental studies. Furthermore, the findings reflect the need for more disease-focused, comprehensive, and population-specific gut microbiota studies across diverse African regions and ethnic groups to better understand the factors shaping gut microbiota composition and its implications for health and disease. Such knowledge has the potential to inform targeted interventions and personalized approaches for improving health outcomes in African populations.
Collapse
Affiliation(s)
- Sara M. Pheeha
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Department of Chemical Pathology, Faculty of Medicine and Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa
| | - Jacques L. Tamuzi
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
| | - Bettina Chale-Matsau
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- National Health Laboratory Service, Steve Biko Academic Hospital, Pretoria 0002, South Africa
| | - Samuel Manda
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter S. Nyasulu
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
16
|
Anzà S, Schneider D, Daniel R, Heistermann M, Sangmaneedet S, Ostner J, Schülke O. The long-term gut bacterial signature of a wild primate is associated with a timing effect of pre- and postnatal maternal glucocorticoid levels. MICROBIOME 2023; 11:165. [PMID: 37501202 PMCID: PMC10373267 DOI: 10.1186/s40168-023-01596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/11/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND During development, elevated levels of maternal glucocorticoids (GCs) can have detrimental effects on offspring morphology, cognition, and behavior as well as physiology and metabolism. Depending on the timing of exposure, such effects may vary in strength or even reverse in direction, may alleviate with age, or may concern more stable and long-term programming of phenotypic traits. Maternal effects on gut bacterial diversity, composition, and function, and the persistence of such effects into adulthood of long-lived model species in the natural habitats remain underexplored. RESULTS In a cross-sectional sample of infant, juvenile, and adult Assamese macaques, the timing of exposure to elevated maternal GCs during ontogeny was associated with the gut bacterial community of the offspring. Specifically, naturally varying maternal GC levels during early but not late gestation or lactation were associated with reduced bacterial richness. The overall effect of maternal GCs during early gestation on the gut bacterial composition and function exacerbated with offspring age and was 10 times stronger than the effect associated with exposure during late prenatal or postnatal periods. Instead, variation in maternal GCs during the late prenatal or postnatal period had less pronounced or less stable statistical effects and therefore a weaker effect on the entire bacterial community composition, particularly in adult individuals. Finally, higher early prenatal GCs were associated with an increase in the relative abundance of several potential pro-inflammatory bacteria and a decrease in the abundance of Bifidobacterium and other anti-inflammatory taxa, an effect that exacerbated with age. CONCLUSIONS In primates, the gut microbiota can be shaped by developmental effects with strong timing effects on plasticity and potentially detrimental consequences for adult health. Together with results on other macaque species, this study suggests potential detrimental developmental effects similar to rapid inflammaging, suggesting that prenatal exposure to high maternal GC concentrations is a common cause underlying both phenomena. Our findings await confirmation by metagenomic functional and causal analyses and by longitudinal studies of long-lived, ecologically flexible primates in their natural habitat, including developmental effects that originate before birth. Video Abstract.
Collapse
Affiliation(s)
- Simone Anzà
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany.
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Somboon Sangmaneedet
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Julia Ostner
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Oliver Schülke
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| |
Collapse
|
17
|
Chen Y, Xiang Q, Peng F, Gao S, Yu L, Tang Y, Yang Z, Pu W, Xie X, Peng C. The mechanism of action of safflower total flavonoids in the treatment of endometritis caused by incomplete abortion based on network pharmacology and 16S rDNA sequencing. JOURNAL OF ETHNOPHARMACOLOGY 2023:116639. [PMID: 37201664 DOI: 10.1016/j.jep.2023.116639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Safflower is a traditional Chinese medicine used for treating gynaecological diseases. However, its material basis and mechanism of action in the treatment of endometritis induced by incomplete abortion are still unclear. AIM OF THE STUDY This study aimed to reveal the material basis and mechanism of action of safflower in the treatment of endometritis induced by incomplete abortion through comprehensive methods, including network pharmacology and 16S rDNA sequencing. MATERIALS AND METHODS Network pharmacology and molecular docking methods were used to screen the main active components and potential mechanisms of action of safflower in the treatment of endometritis induced by incomplete abortion in rats. A rat model of endometrial inflammation by incomplete abortion was established. The rats were treated with safflower total flavonoids (STF) based on forecasting results, serum levels of inflammatory cytokines were analysed, and immunohistochemistry, Western blots, and 16S rDNA sequencing were performed to investigate the effects of the active ingredient and the treatment mechanism. RESULTS The network pharmacology prediction results showed 20 active components with 260 targets in safflower, 1007 targets related to endometritis caused by incomplete abortion, and 114 drug-disease intersecting targets, including TNF, IL6, TP53, AKT1, JUN, VEGFA, CASP3 and other core targets, PI3K/AKT, MAPK and other signalling pathways may be closely related to incomplete abortion leading to endometritis. The animal experiment results showed that STF could significantly repair uterine damage and reduce the amount of bleeding. Compared with the model group, STF significantly down-regulated the levels of pro-inflammatory factors (IL-6, IL-1β, NO, TNF-α) and the expression of JNK, ASK1, Bax, caspase3, and caspase11 proteins. At the same time, the levels of anti-inflammatory factors (TGF-β and PGE2) and the protein expression of ERα, PI3K, AKT, and Bcl2 were up-regulated. Significant differences in the intestinal flora were seen between the normal group and the model group, and the intestinal flora of the rats was closer to the normal group after the administration of STF. CONCLUSIONS The characteristics of STF used in the treatment of endometritis induced by incomplete abortion were multi-targeted and involved multiple pathways. The mechanism may be related to the activation of the ERα/PI3K/AKT signalling pathway by regulating the composition and ratio of the gut microbiota.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; School of Pharmacy, West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunli Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhou Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Wei Pu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
18
|
Esquivel-Hernández DA, Martínez-López YE, Sánchez-Castañeda JP, Neri-Rosario D, Padrón-Manrique C, Giron-Villalobos D, Mendoza-Ortíz C, Resendis-Antonio O. A network perspective on the ecology of gut microbiota and progression of type 2 diabetes: Linkages to keystone taxa in a Mexican cohort. Front Endocrinol (Lausanne) 2023; 14:1128767. [PMID: 37124757 PMCID: PMC10130651 DOI: 10.3389/fendo.2023.1128767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The human gut microbiota (GM) is a dynamic system which ecological interactions among the community members affect the host metabolism. Understanding the principles that rule the bidirectional communication between GM and its host, is one of the most valuable enterprise for uncovering how bacterial ecology influences the clinical variables in the host. Methods Here, we used SparCC to infer association networks in 16S rRNA gene amplicon data from the GM of a cohort of Mexican patients with type 2 diabetes (T2D) in different stages: NG (normoglycemic), IFG (impaired fasting glucose), IGT (impaired glucose tolerance), IFG + IGT (impaired fasting glucose plus impaired glucose tolerance), T2D and T2D treated (T2D with a 5-year ongoing treatment). Results By exploring the network topology from the different stages of T2D, we observed that, as the disease progress, the networks lose the association between bacteria. It suggests that the microbial community becomes highly sensitive to perturbations in individuals with T2D. With the purpose to identify those genera that guide this transition, we computationally found keystone taxa (driver nodes) and core genera for a Mexican T2D cohort. Altogether, we suggest a set of genera driving the progress of the T2D in a Mexican cohort, among them Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-010, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005, Alistipes, Anaerostipes, and Terrisporobacter. Discussion Based on a network approach, this study suggests a set of genera that can serve as a potential biomarker to distinguish the distinct degree of advances in T2D for a Mexican cohort of patients. Beyond limiting our conclusion to one population, we present a computational pipeline to link ecological networks and clinical stages in T2D, and desirable aim to advance in the field of precision medicine.
Collapse
Affiliation(s)
| | - Yoscelina Estrella Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Guanajuato, Mexico
| | - Jean Paul Sánchez-Castañeda
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Padrón-Manrique
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - David Giron-Villalobos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Mendoza-Ortíz
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica – Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
19
|
Aljuraiban GS, Alfhili MA, Aldhwayan MM, Aljazairy EA, Al-Musharaf S. Metagenomic Shotgun Sequencing Reveals Specific Human Gut Microbiota Associated with Insulin Resistance and Body Fat Distribution in Saudi Women. Biomolecules 2023; 13:biom13040640. [PMID: 37189387 DOI: 10.3390/biom13040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
(1) Background: Gut microbiota dysbiosis may lead to diseases such as insulin resistance and obesity. We aimed to investigate the relationship between insulin resistance, body fat distribution, and gut microbiota composition. (2) Methods: The present study included 92 Saudi women (18–25 years) with obesity (body mass index (BMI) ≥ 30 kg/m2, n = 44) and with normal weight (BMI 18.50–24.99 kg/m2, n = 48). Body composition indices, biochemical data, and stool samples were collected. The whole-genome shotgun sequencing technique was used to analyze the gut microbiota. Participants were divided into subgroups stratified by the homeostatic model assessment for insulin resistance (HOMA-IR) and other adiposity indices. (3) Results: HOMA-IR was inversely correlated with Actinobacteria (r = −0.31, p = 0.003), fasting blood glucose was inversely correlated with Bifidobacterium kashiwanohense (r = −0.22, p = 0.03), and insulin was inversely correlated with Bifidobacterium adolescentis (r = −0.22, p = 0.04). There were significant differences in α- and β-diversities in those with high HOMA-IR and waist–hip ratio (WHR) compared to low HOMA-IR and WHR (p = 0.02, 0.03, respectively). (4) Conclusions: Our findings highlight the relationship between specific gut microbiota at different taxonomic levels and measures of glycemic control in Saudi Arabian women. Future studies are required to determine the role of the identified strains in the development of insulin resistance.
Collapse
Affiliation(s)
- Ghadeer S. Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Madhawi M. Aldhwayan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Esra’a A. Aljazairy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sara Al-Musharaf
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Key Stratification of Microbiota Taxa and Metabolites in the Host Metabolic Health-Disease Balance. Int J Mol Sci 2023; 24:ijms24054519. [PMID: 36901949 PMCID: PMC10003303 DOI: 10.3390/ijms24054519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Human gut microbiota seems to drive the interaction with host metabolism through microbial metabolites, enzymes, and bioactive compounds. These components determine the host health-disease balance. Recent metabolomics and combined metabolome-microbiome studies have helped to elucidate how these substances could differentially affect the individual host pathophysiology according to several factors and cumulative exposures, such as obesogenic xenobiotics. The present work aims to investigate and interpret newly compiled data from metabolomics and microbiota composition studies, comparing controls with patients suffering from metabolic-related diseases (diabetes, obesity, metabolic syndrome, liver and cardiovascular diseases, etc.). The results showed, first, a differential composition of the most represented genera in healthy individuals compared to patients with metabolic diseases. Second, the analysis of the metabolite counts exhibited a differential composition of bacterial genera in disease compared to health status. Third, qualitative metabolite analysis revealed relevant information about the chemical nature of metabolites related to disease and/or health status. Key microbial genera were commonly considered overrepresented in healthy individuals together with specific metabolites, e.g., Faecalibacterium and phosphatidylethanolamine; and the opposite, Escherichia and Phosphatidic Acid, which is converted into the intermediate Cytidine Diphosphate Diacylglycerol-diacylglycerol (CDP-DAG), were overrepresented in metabolic-related disease patients. However, it was not possible to associate most specific microbiota taxa and metabolites according to their increased and decreased profiles analyzed with health or disease. Interestingly, positive association of essential amino acids with the genera Bacteroides were observed in a cluster related to health, and conversely, benzene derivatives and lipidic metabolites were related to the genera Clostridium, Roseburia, Blautia, and Oscillibacter in a disease cluster. More studies are needed to elucidate the microbiota species and their corresponding metabolites that are key in promoting health or disease status. Moreover, we propose that greater attention should be paid to biliary acids and to microbiota-liver cometabolites and its detoxification enzymes and pathways.
Collapse
|
21
|
Mønsted MØ, Bilgin M, Kuzma M, Pelantová H, Pedersen K, Tomášová P, Nazmutdinova A, Šedivá B, Funda D, Castro-Mejía JL, Holm LJ, Nielsen DS, Haupt-Jorgensen M. Reduced phosphatidylcholine level in the intestinal mucus layer of prediabetic NOD mice. APMIS 2023; 131:237-248. [PMID: 36811202 DOI: 10.1111/apm.13302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease with rising incidence. Pre- and manifest T1D is associated with intestinal barrier dysfunction, skewed microbiota composition, and serum dyslipidemia. The intestinal mucus layer protects against pathogens and its structure and phosphatidylcholine (PC) lipid composition may be compromised in T1D, potentially contributing to barrier dysfunction. This study compared prediabetic Non-Obese Diabetic (NOD) mice to healthy C57BL/6 mice by analyzing the intestinal mucus PC profile by shotgun lipidomics, plasma metabolomics by mass spectrometry and nuclear magnetic resonance, intestinal mucus production by histology, and cecal microbiota composition by 16 S rRNA sequencing. Jejunal mucus PC class levels were decreased in early prediabetic NOD vs C57BL/6 mice. In colonic mucus of NOD mice, the level of several PC species was reduced throughout prediabetes. In plasma, similar reductions of PC species were observed in early prediabetic NOD mice, where also increased beta-oxidation was prominent. No histological alterations were found in jejunal nor colonic mucus between the mouse strains. However, the β-diversity of the cecal microbiota composition differed between prediabetic NOD and C57BL/6 mice, and the bacterial species driving this difference were related to decreased short-chain fatty acid (SCFA)-production in the NOD mice. This study reports reduced levels of PCs in the intestinal mucus layer and plasma of prediabetic NOD mice as well as reduced proportions of SCFA-producing bacteria in cecal content at early prediabetes, possibly contributing to intestinal barrier dysfunction and T1D.
Collapse
Affiliation(s)
- Mia Øgaard Mønsted
- Department of Pathology, Rigshospitalet, The Bartholin Institute, Copenhagen, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marek Kuzma
- Institute of Microbiology, Czech Academy of Sciences, Prague, The Czech Republic
| | - Helena Pelantová
- Institute of Microbiology, Czech Academy of Sciences, Prague, The Czech Republic
| | - Kristina Pedersen
- Department of Pathology, Rigshospitalet, The Bartholin Institute, Copenhagen, Denmark
| | - Petra Tomášová
- Institute of Microbiology, Czech Academy of Sciences, Prague, The Czech Republic
| | | | - Blanka Šedivá
- Faculty of Applied Sciences, University of West Bohemia, Plzeň, The Czech Republic
| | - David Funda
- Institute of Microbiology, Czech Academy of Sciences, Prague, The Czech Republic
| | | | - Laurits Juulskov Holm
- Department of Pathology, Rigshospitalet, The Bartholin Institute, Copenhagen, Denmark
| | | | | |
Collapse
|
22
|
Monson KR, Peters BA, Usyk M, Um CY, Oberstein PE, McCullough ML, Purdue MP, Freedman ND, Hayes RB, Ahn J. Elevated dietary carbohydrate and glycemic intake associate with an altered oral microbial ecosystem in two large U.S. cohorts. CANCER RESEARCH COMMUNICATIONS 2022; 2:1558-1568. [PMID: 36567732 PMCID: PMC9770587 DOI: 10.1158/2767-9764.crc-22-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The human oral microbiome is associated with chronic diseases including cancer. However, our understanding of its relationship with diet is limited. We assessed the associations between carbohydrate and glycemic index (GI) with oral microbiome composition in 834 non-diabetic subjects from the NCI-PLCO and ACS-CPSII cohorts. The oral microbiome was characterized using 16Sv3-4 rRNA-sequencing from oral mouthwash samples. Daily carbohydrate and GI were assessed from food frequency questionnaires. We used linear regression, permutational MANOVA, and negative binomial Generalized Linear Models (GLM) to test associations of diet with α- and β-diversity and taxon abundance (adjusting for age, sex, cohort, BMI, smoking, caloric intake, and alcohol). A q-value (FDR-adjusted P-value) of <0.05 was considered significant. Oral bacterial α-diversity trended higher in participants in the highest quintiles of carbohydrate intake, with marginally increased richness and Shannon diversity (p-trend=0.06 and 0.07). Greater carbohydrate intake was associated with greater abundance of class Fusobacteriia (q=0.02) and genus Leptotrichia (q=0.01) and with lesser abundance of an Actinomyces OTU (q=4.7E-04). Higher GI was significantly related to greater abundance of genus Gemella (q=0.001). This large, nationwide study provides evidence that diets high in carbohydrates and GI may influence the oral microbiome.
Collapse
Affiliation(s)
- Kelsey R. Monson
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, New York
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Brandilyn A. Peters
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, New York
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Mykhaylo Usyk
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, New York
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Paul E. Oberstein
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | | | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Richard B. Hayes
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, New York
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Jiyoung Ahn
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, New York
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
23
|
Tharwat M, Medhat MA, El-Kassas M. The NAFLD-MAFLD debate through the lens of the Arab world. Saudi J Gastroenterol 2022; 28:413-416. [PMID: 36124490 PMCID: PMC9843511 DOI: 10.4103/sjg.sjg_314_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/07/2022] [Accepted: 08/14/2022] [Indexed: 01/21/2023] Open
Abstract
The most common liver disease in the world is fatty liver disease related to metabolic dysfunction, yet neither patients nor medical professionals are fully aware of this. The disease, formerly known for decades as non-alcoholic fatty liver disease (NAFLD), has been renamed metabolic (dysfunction)-associated fatty liver disease (MAFLD), with many international consensus groups making recommendations on how the condition should be diagnosed and treated. This point of view explores the nomenclature change from the standpoint of Arab medical professionals and patients. The call for a name change brought up serious issues with the current nomenclature, which refers to the condition as NAFLD, and its diagnostic criteria, including the necessity for excluding alcohol consumption. The Arab world has its unique situation as regards both old and new nomenclatures. This is because of the low alcohol consumption rates in most Arab Muslim countries besides the reported high prevalence rates of obesity and its related comorbidities in the region. In our opinion, such unclarities acted as a significant roadblock to several crucial aspects of disease management in the Arab countries, including patient-doctor communication, patient awareness, partnership working, patient motivation to make lifestyle changes, and promotion of multiple health behavior changes. Many Arab world hepatologists thus wholeheartedly endorse this call to redefine the disease as they believe it will eventually positively impact the understanding and awareness of fatty liver disease, enhance patient treatment and quality of life, and reduce the load on the healthcare system.
Collapse
Affiliation(s)
- Mina Tharwat
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Mohammed A. Medhat
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Assiut University, Cairo, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
24
|
Bacterial Compositional Shifts of Gut Microbiomes in Patients with Rheumatoid Arthritis in Association with Disease Activity. Microorganisms 2022; 10:microorganisms10091820. [PMID: 36144422 PMCID: PMC9505928 DOI: 10.3390/microorganisms10091820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disabling autoimmune disorder. Little is known regarding the association between the gut microbiome and etiopathogenesis of RA. We aimed to dissect the differences in gut microbiomes associated with RA in comparison to healthy individuals and, in addition, to identify the shifts in the bacterial community in association with disease activity; Methods: In order to identify compositional shifts in gut microbiomes of RA patients, V3-V4 hypervariable regions of 16S rRNA were sequenced using Illumina MiSeq. In total, sixty stool samples were collected from 45 patients with RA besides 15 matched healthy subjects; Results: Notably, RA microbiomes were significantly associated with diverse bacterial communities compared with healthy individuals. Likewise, a direct association between bacterial diversity and disease activity was detected in RA patients (Kruskal Wallis; p = 0.00047). In general, genus-level analysis revealed a positive coexistence between RA and Megasphaera, Adlercreutzia, Ruminococcus, Bacteroides, Collinsella, and Acidaminococcus. Furthermore, Spearman correlation analysis significantly stratified the most dominant genera into distinct clusters that were mainly based on disease activity (r ≥ 0.6; p ≤ 0.05). The predictive metabolic profile of bacterial communities associated with RA could support the potential impact of gut microbiomes in either the development or recovery of RA; Conclusions: The overall shifts in bacterial composition at different disease statuses could confirm the cross-linking of certain genera either to causation or progression of RA.
Collapse
|
25
|
Traditional Medicine Use among Type 2 Diabetes Patients in KZN. ADVANCES IN PUBLIC HEALTH 2022. [DOI: 10.1155/2022/7334080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. Traditional medicine (TM) is widely used in both developing and developed countries to assist in the attempt to curtail the prevalence and increase in diabetes mellitus. Approximately 53% of South Africans use TM to prevent and treat their diseases. There is no conclusive evidence regarding the safety and effectiveness of TM versus prescribed medicine. The most common therapies used by diabetics in Africa include herbal treatments, nutritional products, spiritual healing, and relaxation techniques. Therefore, this study aimed to evaluate the use of TM in patients with T2DM who are on chronic therapy and living in KwaZulu-Natal. Method. This cross-sectional study was conducted at a district hospital, in which purposive sampling was used to recruit participants and data were collected using a structured questionnaire. Information collected included demographic data, information pertaining to home remedies/TM, and self-care practices employed by participants while using TM. Data were analyzed using Pearson’s chi-squared test, t-test, and multivariate logistic regressions to determine predictors of TM usage. Results. Only 92 (27%) of 340 participants reported using TM, with Indians being the most frequent users (58.24%). Approximately, 83.72% (n = 72) used TM in conjunction with prescribed medication. Most participants (56.32%) acquired TM knowledge from family. The most frequently used TM was lemon and honey, Aloe vera, bitter gourd, green tea, and cinnamon. Traditional medicine use among African participants was 0.56 times (OR = 0.56, 95% CI = 0.34, 0.93) lower than Indian participants. There were no significant predictors for TM usage among the variables tested. Conclusion. A low prevalence rate of TM usage in T2DM patients was found. A significant correlation was noted between ethnicity and TM use. Large-scale studies are required to determine the additive and synergistic effects of TM in health care. Consideration should also be given to integrating TM into mainstream health care.
Collapse
|
26
|
El-Sabbagh AM, Zaki MES, Motawea MM, Alkasaby NM. Molecular Study of Lactobacilli Species in Patients with Type 2 Diabetes Mellitus. Open Microbiol J 2022; 16. [DOI: 10.2174/18742858-v16-e2205090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background:
Diabetes mellitus type 2 (T2DM) is a metabolic disorder of multiple etiologies due to disturbances in carbohydrate, protein, and fat metabolism. Egypt is among the top 10 countries with a high prevalence of T2DM (15.56% of adults). There are studies that show a link between the diversity of the gut microbiota and the development of T2DM. There are species of Lactobacilli that inhabit the gut that might differ in patients with T2DM compared to healthy subjects.
Objective:
The aim of the present research is to study the presence of Lactobacilli species in gut microbiota by multiplex PCR in patients with T2DM compared to healthy controls as a preliminary approach to open the way for future treatment with the help of probiotics or diet modulation.
Methods:
A retrograde case-control study was conducted on 79 patients with T2DM and 100 healthy controls cross-matched with age and sex. All patients were subjected to full clinical examination and laboratory tests, including identification of stool Lactobacillus species by multiplex polymerase chain reaction (PCR).
Results:
Certain species of L. acidophilus, and L. rhamnosus were found to be significantly increased in patients with T2DM (67.1%, 50.6% respectively) compared to control subjects (35%, P=0.001, OR 3.8, 95% CI:2.1-7.1, 25%, P=0.001, OR 3.1, 95% CI:1.64-5.8 respectively). Other species as determined by multiplex PCR, namely, L. gasseri, (70%, P=0.001, OR 0.16, 95% CI: 0.1-0.3), L. reuteri (74%, P=0.001, OR 0.28, 95% CI: 0.5-0.53), and L. plantarum (69%, P=0.003, OR 0.4, 95% CI: 0.073-0.22) were significantly higher in prevalence in control compared to patients with T2DM.
Conclusion:
The present study highlights the significant prevalence of certain species of Lactobacilli in gut as determined by multiplex PCR, namely L. gasseri, L. reuteri and L. plantarum in controls compared to patients with T2DM. These species may have a role in the reduction of certain risk factors associated with the development of T2DM. Moreover, certain species of L. acidophilus, L. delbrueckii and L. rhamnosus were significantly increased in prevalence in patients with T2DM. The findings of this preliminary study need further verification by a larger longitudinal study.
Collapse
|
27
|
Mouse Subcutaneous BCG Vaccination and Mycobacterium tuberculosis Infection Alter the Lung and Gut Microbiota. Microbiol Spectr 2022; 10:e0169321. [PMID: 35652642 PMCID: PMC9241886 DOI: 10.1128/spectrum.01693-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to characterize the effect of Bacillus Calmette-Guérin (BCG) vaccination and M. tuberculosis infection on gut and lung microbiota of C57BL/6 mice, a well-characterized mouse model of tuberculosis. BCG vaccination and infection with M. tuberculosis altered the relative abundance of Firmicutes and Bacteroidetes phyla in the lung compared with control group. Vaccination and infection changed the alpha- and beta-diversity in both the gut and the lung. However, lung diversity was the most affected organ after BCG vaccination and M. tuberculosis infection. Focusing on the gut-lung axis, a multivariate regression approach was used to compare profile evolution of gut and lung microbiota. More genera have modified relative abundances associated with BCG vaccination status at gut level compared with lung. Conversely, genera with modified relative abundances associated with M. tuberculosis infection were numerous at lung level. These results indicated that the host local response against infection impacted the whole microbial flora, while the immune response after vaccination modified mainly the gut microbiota. This study showed that a subcutaneous vaccination with a live attenuated microorganism induced both gut and lung dysbiosis that may play a key role in the immunopathogenesis of tuberculosis. IMPORTANCE The microbial communities in gut and lung are important players that may modulate the immunity against tuberculosis or other infections as well as impact the vaccine efficacy. We discovered that vaccination through the subcutaneous route affect the composition of gut and lung bacteria, and this might influence susceptibility and defense mechanisms against tuberculosis. Through these studies, we can identify microbial communities that can be manipulated to improve vaccine response and develop treatment adjuvants.
Collapse
|
28
|
Niu M, Zhao Y, Xiang L, Jia Y, Yuan J, Dai X, Chen H. 16S rRNA gene sequencing analysis of gut microbiome in a mini-pig diabetes model. Animal Model Exp Med 2022; 5:81-88. [PMID: 35213788 PMCID: PMC8879634 DOI: 10.1002/ame2.12202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Currently, increasing attention is being paid to the important role of intestinal microbiome in diabetes. However, few studies have evaluated the characteristics of gut microbiome in diabetic miniature pigs, despite it being a good model animal for assessing diabetes. METHODS In this study, a mini-pig diabetes model (DM) was established by 9-month high-fat diet (HFD) combined with low-dose streptozotocin, while the animals fed standard chow diet constituted the control group. 16S ribosomal RNA (rRNA) gene sequencing was performed to assess the characteristics of the intestinal microbiome in diabetic mini-pigs. RESULTS The results showed that microbial structure in diabetic mini-pigs was altered, reflected by increases in levels of Coprococcus_3 and Clostridium_sensu_stricto_1, which were positively correlated with diabetes, and decreases in levels of the bacteria Rikenellaceae, Clostridiales_vadinBB60_group, and Bacteroidales_RF16_group, which were inversely correlated with blood glucose and insulin resistance. Moreover, PICRUSt-predicted pathways related to the glycolysis and Entner-Doudoroff superpathway, enterobactin biosynthesis, and the l-tryptophan biosynthesis were significantly elevated in the DM group. CONCLUSION These results reveal the composition and predictive functions of the intestinal microbiome in the mini-pig diabetes model, further verifying the relationship between HFD, gut microbiome, and diabetes, and providing novel insights into the application of the mini-pig diabetes model in gut microbiome research.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yunxiao Jia
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
29
|
Wang Y, Liu Z, Shen P, Zhao C, Liu B, Shu C, Hu X, Fu Y. Kynurenic acid ameliorates lipopolysaccharide-induced endometritis by regulating the GRP35/NF-κB signaling pathway. Toxicol Appl Pharmacol 2022; 438:115907. [DOI: 10.1016/j.taap.2022.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
|
30
|
Yang HT, Liu JK, Xiu WJ, Tian TT, Yang Y, Hou XG, Xie X. Gut Microbiome-Based Diagnostic Model to Predict Diabetes Mellitus. Bioengineered 2021; 12:12521-12534. [PMID: 34927535 PMCID: PMC8810174 DOI: 10.1080/21655979.2021.2009752] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to determine the diversity of intestinal microflora and its correlation with clinical parameters in diabetic patients and healthy subjects and to assess the importance of intestinal flora in patients with diabetes. Forty-four patients with diabetes were included. The control group included 47 healthy people. Their data, biochemical indicators and results from 16S rRNA sequencing of their fecal samples were collected. Compared with the healthy population, the intestinal flora of the diabetic patients was obviously abnormal. Within the diabetes group, the abundances of the genera Faecalibacterium, Prevotella, and Roseburia were higher, and the abundances of the genera Shigella and Bifidobacterium were lower. In the correlation analysis between bacteria and clinical indicators, it was found that the genera Veillonella and unclassified_Enterobacteriaceae were negatively related to blood glucose, while the genera Phascolarctobacterium, unidentified_Bacteroidales and Prevotella were significantly positively correlated with fasting blood glucose. Twelve microbial markers were detected in the random forest model, and the area under the curve (AUC) was 84.1%. This index was greater than the diagnostic effect of fasting blood glucose. This was also supported by the joint diagnostic model of microorganisms and clinical indicators. In addition, the intestinal flora significantly improved the diagnosis of diabetes. In conclusion, it can be concluded from these results that intestinal flora is essential for the occurrence and development of diabetes, which seems to be as important as blood glucose itself. Abbreviations: PCoA: principal coordinate analysis; NMDS: non econometric multidimensional scaling analysis; LEfSe: linear discriminant analysis effect size; LDA: linear discriminant analysis; POD: probability of disease; BMI: body mass index; DCA: decision curve analysis
Collapse
Affiliation(s)
- Hai-Tao Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing-Kun Liu
- Department of Oncology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wen-Juan Xiu
- College of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Ting-Ting Tian
- College of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Yi Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xian-Geng Hou
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
31
|
Molecular characterization of the gut microbiome in egyptian patients with remitting relapsing multiple sclerosis. Mult Scler Relat Disord 2021; 57:103354. [DOI: 10.1016/j.msard.2021.103354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
|