1
|
Fernandez-Gonzalez SM, Sucasas-Alonso A, Balboa-Barreiro V, Rego-Perez I, Avila-Alvarez A. Mitochondrial DNA haplogroups and circulating cell-free mitochondrial DNA as biomarkers of bronchopulmonary dysplasia. Pediatr Res 2025:10.1038/s41390-025-04052-7. [PMID: 40247115 DOI: 10.1038/s41390-025-04052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/06/2025] [Accepted: 03/02/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Recognizing which premature infants are at higher risk of developing BPD/death is a challenge in neonatology. The aims of our study are to identify mitochondrial haplogroups and quantify circulating cell-free mitochondrial DNA (ccf-mtDNA) levels in very preterm infants at risk of bronchopulmonary dysplasia (BPD) or death and explore the relationship between these variables and the development of BPD/death. METHODS Single-center prospective cohort study including preterm infants of ≤32 weeks gestational age (GA) and birth weight ≤1500 g. Clinical variables, mitochondrial haplogroups, and ccf-mtDNA levels were determined. Subsequently, diagnosis and staging of BPD/death were performed, and groups were compared. RESULTS The population consisted of 107 newborns (mean GA 28.73 ± 2 weeks; mean birth weight 1,121 ± 332 g). A total of 44 patients (41.1%) presented the outcome of BPD/death without differences in haplogroup distribution and ccf-mtDNA levels between those who survived without BPD (controls). Variables independently associated with BPD/death included GA (p < 0.001; OR = 0.36 [95%CI 0.23-0.5]), birth weight (p < 0.001; OR = 0.99 [95%CI 0.99-0.99]), maximum FiO2 in the delivery room (p = 0.001; OR = 1.07 [95%CI 1.03-1.12]), hours on mechanical ventilation (p = 0.02; OR 1.02 [95%CI 1.00-1.02]), and postnatal corticosteroids (p < 0.001; OR = 47.12 [95%CI = 5.98-371.1]). CONCLUSION This is the first study to characterize mtDNA haplogroups and ccf-mtDNA in very preterm infants at risk of BPD/death. None of the mitochondrial variables studied were associated with BPD/death. Further research is needed to elucidate the role of mtDNA in BPD. IMPACT STATEMENT Despite advances in perinatal care, bronchopulmonary dysplasia continues to be the most common chronic pulmonary morbidity associated with prematurity. Prediction of BPD in early stages is crucial to improve BPD rates, but this remains a major challenge in neonatal units. Given that mitochondria play an important role in the inflammatory and oxidative stress responses, we aimed to explore the relationship between mitochondrial haplogroups, circulating cell-free mitochondrial DNA levels, and BPD. This is the first work carried out in very preterm infants where mitochondrial haplogroups and the levels ccf-mtDNA are investigated with the intention of discovering a new biomarker for BPD.
Collapse
Affiliation(s)
| | - Andrea Sucasas-Alonso
- Neonatology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Vanesa Balboa-Barreiro
- Biostatistics and Epidemiology Unit, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Ignacio Rego-Perez
- Grupo de Investigación en Reumatología, Unidad de Genómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Alejandro Avila-Alvarez
- Neonatology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain.
- Grupo de Investigación en Pediatría. Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario, Universitario A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain.
| |
Collapse
|
2
|
Xu W, Hong YS, Hu B, Comhair SAA, Janocha AJ, Zein JG, Chen R, Meyers DA, Mauger DT, Ortega VE, Bleecker ER, Castro M, Denlinger LC, Fahy JV, Israel E, Levy BD, Jarjour NN, Moore WC, Wenzel SE, Gaston B, Liu C, Arking DE, Erzurum SC. Mitochondrial DNA copy number variation in asthma risk, severity, and exacerbations. J Allergy Clin Immunol 2025; 155:1224-1235. [PMID: 39237012 PMCID: PMC11875079 DOI: 10.1016/j.jaci.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Asthma pathophysiology is associated with mitochondrial dysfunction. Mitochondrial DNA copy number (mtDNA-CN) has been used as a proxy of mitochondrial function, with lower levels indicating mitochondrial dysfunction in population studies of cardiovascular diseases and cancers. OBJECTIVES We investigated whether lower levels of mtDNA-CN are associated with asthma diagnosis, severity, and exacerbations. METHODS mtDNA-CN is evaluated in blood from 2 cohorts: UK Biobank (UKB) (asthma, n = 39,147; no asthma, n = 302,302) and Severe Asthma Research Program (SARP) (asthma, n = 1283; nonsevere asthma, n = 703). RESULTS Individuals with asthma have lower mtDNA-CN compared to individuals without asthma in UKB (beta, -0.006 [95% confidence interval, -0.008 to -0.003], P = 6.23 × 10-6). Lower mtDNA-CN is associated with asthma prevalence, but not severity in UKB or SARP. mtDNA-CN declines with age but is lower in individuals with asthma than in individuals without asthma at all ages. In a 1-year longitudinal study in SARP, mtDNA-CN was associated with risk of exacerbation; those with highest mtDNA-CN had the lowest risk of exacerbation (odds ratio 0.333 [95% confidence interval, 0.173 to 0.542], P = .001). Biomarkers of inflammation and oxidative stress are higher in individuals with asthma than without asthma, but the lower mtDNA-CN in asthma is independent of general inflammation or oxidative stress. Mendelian randomization studies suggest a potential causal relationship between asthma-associated genetic variants and mtDNA-CN. CONCLUSION mtDNA-CN is lower in asthma than in no asthma and is associated with exacerbations. Low mtDNA-CN in asthma is not mediated through inflammation but is associated with a genetic predisposition to asthma.
Collapse
Affiliation(s)
- Weiling Xu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yun Soo Hong
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Suzy A A Comhair
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Allison J Janocha
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Joe G Zein
- Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Ruoying Chen
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Deborah A Meyers
- Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, Ariz
| | - David T Mauger
- Department of Public Health Sciences, Pennsylvania State University School of Medicine, Hershey, Pa
| | - Victor E Ortega
- Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Eugene R Bleecker
- Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Mario Castro
- Department of Medicine, University of Kansas School of Medicine, Kansas City, Kan
| | - Loren C Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin, Madison, Wis
| | - John V Fahy
- Department of Medicine, San Francisco School of Medicine, University of California, San Francisco, Calif
| | - Elliot Israel
- Department of Medicine, Harvard Medical School, Boston, Mass
| | - Bruce D Levy
- Department of Medicine, Harvard Medical School, Boston, Mass
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Wendy C Moore
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Benjamin Gaston
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind
| | - Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, Mass
| | - Dan E Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Integrated Hospital Care Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
3
|
Agrawal A, Agrawal I, Smith GD. The role of mitochondrial DNA copy number in asthma: Agent or bystander? J Allergy Clin Immunol 2025; 155:1202-1204. [PMID: 39889909 DOI: 10.1016/j.jaci.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Affiliation(s)
- Anurag Agrawal
- Koita Centre for Digital Health, Trivedi School of Biosciences, Ashoka University, Sonipat, India.
| | - Ira Agrawal
- Vardhman Mahavir Medical College, New Delhi, India
| | | |
Collapse
|
4
|
McCravy MS, Yang Z, Cyphert-Daly J, Healy ZR, Vose AV, Kim HR, Walker JKL, Tighe RM, Gasier HG, Ingram JL, Que LG. Role of Paraoxonase 2 in Airway Epithelial Response to Oxidant Stress. Antioxidants (Basel) 2024; 13:1333. [PMID: 39594475 PMCID: PMC11591210 DOI: 10.3390/antiox13111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Asthma is a widespread chronic lung disease characterized by airway inflammation and hyperresponsiveness. This airway inflammation is classified by either the presence (T2-high) or absence (T2-low) of high levels of eosinophils. Because most therapies for asthma target eosinophils and related pathways, treatment options for T2-low disease are limited. New pathophysiologic targets are needed. Oxidant stress is a common feature of T2-low disease. Airway epithelial expression of the antioxidant enzyme Paraoxonase 2 (PON2) is decreased in a well-recognized population of people with T2-low asthma and people with obesity and asthma. As a potential mechanism of increased oxidant stress, we measured the role of PON2 in lung oxidant responses using an environmentally relevant in vivo murine oxidant exposure (i.e., ozone) and in vitro studies with an immortalized human airway epithelial cell line BEAS-2B. Pon2-deficient (Pon2-/-) mice developed increased airway hyper-responsiveness compared to wild-type controls. Despite reduced alveolar macrophage influx, Pon2-/- mice exhibited increased nitrite production. In human airway epithelial cells incubated with hydrogen peroxide, PON2 knockdown (PON2KD) decreased mitochondrial function and inner mitochondrial membrane potential. These findings suggest that PON2 functions in defending against airway epithelial oxidant stress. Further studies are needed to elucidate the mechanisms linking PON2, oxidant stress, and asthma pathogenesis.
Collapse
Affiliation(s)
- Matthew S. McCravy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA (J.C.-D.); (A.V.V.); (R.M.T.); (J.L.I.)
| | - Zhonghui Yang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA (J.C.-D.); (A.V.V.); (R.M.T.); (J.L.I.)
| | - Jaime Cyphert-Daly
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA (J.C.-D.); (A.V.V.); (R.M.T.); (J.L.I.)
| | - Zachary R. Healy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA (J.C.-D.); (A.V.V.); (R.M.T.); (J.L.I.)
| | - Aaron V. Vose
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA (J.C.-D.); (A.V.V.); (R.M.T.); (J.L.I.)
| | - Haein R. Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA (J.C.-D.); (A.V.V.); (R.M.T.); (J.L.I.)
| | | | - Robert M. Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA (J.C.-D.); (A.V.V.); (R.M.T.); (J.L.I.)
| | - Heath G. Gasier
- Department of Anesthesiology, Duke University, Durham, NC 27710, USA;
| | - Jennifer L. Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA (J.C.-D.); (A.V.V.); (R.M.T.); (J.L.I.)
| | - Loretta G. Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA (J.C.-D.); (A.V.V.); (R.M.T.); (J.L.I.)
| |
Collapse
|
5
|
Chang-Chien J, Huang JL, Tsai HJ, Wang SL, Kuo ML, Yao TC. Vitamin D ameliorates particulate matter induced mitochondrial damages and calcium dyshomeostasis in BEAS-2B human bronchial epithelial cells. Respir Res 2024; 25:321. [PMID: 39174953 PMCID: PMC11342659 DOI: 10.1186/s12931-024-02951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Mitochondria is prone to oxidative damage by endogenous and exogenous sources of free radicals, including particulate matter (PM). Given the role of mitochondria in inflammatory disorders, such as asthma and chronic obstructive pulmonary disease, we hypothesized that supplementation of vitamin D may play a protective role in PM-induced mitochondrial oxidative damages of human bronchial epithelial BEAS-2B cells. METHODS BEAS-2B cells were pretreated with 1,25(OH)2D3, an active form of vitamin D, for 1 h prior to 24-hour exposure to PM (SRM-1648a). Oxidative stress was measured by flow cytometry. Mitochondrial functions including mitochondrial membrane potential, ATP levels, and mitochondrial DNA copy number were analyzed. Additionally, mitochondrial ultrastructure was examined using transmission electron microscopy. Intracellular and mitochondrial calcium concentration changes were assessed using flow cytometry based on the expression of Fluo-4 AM and Rhod-2 AM, respectively. Pro-inflammatory cytokines, including IL-6 and MCP-1, were quantified using ELISA. The expression levels of antioxidants, including SOD1, SOD2, CAT, GSH, and NADPH, were determined. RESULTS Our findings first showed that 24-hour exposure to PM led to the overproduction of reactive oxygen species (ROS) derived from mitochondria. PM-induced mitochondrial oxidation resulted in intracellular calcium accumulation, particularly within mitochondria, and alterations in mitochondrial morphology and functions. These changes included loss of mitochondrial membrane integrity, disarrayed cristae, mitochondrial membrane depolarization, reduced ATP production, and increased mitochondrial DNA copy number. Consequently, PM-induced mitochondrial damage triggered the release of certain inflammatory cytokines, such as IL-6 and MCP-1. Similar to the actions of mitochondrial ROS inhibitor MitoTEMPO, 1,25(OH)2D3 conferred protective effects on mtDNA alterations, mitochondrial damages, calcium dyshomeostasis, thereby decreasing the release of certain inflammatory cytokines. We found that greater cellular level of 1,25(OH)2D3 upregulated the expression of enzymatic (SOD1, SOD2, and CAT) and non-enzymatic (GSH and NADPH) antioxidants to modulate cellular redox homeostasis. CONCLUSION Our study provides new evidence that 1,25(OH)2D3 acts as an antioxidant, enhancing BEAS-2B antioxidant responses to regulate mitochondrial ROS homeostasis and mitochondrial function, thereby enhancing epithelial defense against air pollution exposure.
Collapse
Affiliation(s)
- Ju Chang-Chien
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, 33305, Taiwan
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jing-Long Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Shih-Ling Wang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, 33305, Taiwan
| | - Ming-Ling Kuo
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, 33305, Taiwan.
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan.
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Kweishan, Taoyuan, 33302, Taiwan.
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, 33305, Taiwan.
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan.
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| |
Collapse
|
6
|
Novotny MV, Xu W, Mulya A, Janocha AJ, Erzurum SC. Method for depletion of mitochondria DNA in human bronchial epithelial cells. MethodsX 2024; 12:102497. [PMID: 38089156 PMCID: PMC10711463 DOI: 10.1016/j.mex.2023.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
Mitochondria are increasingly recognized to play a role in the airway inflammation of asthma. Model systems to study the role of mitochondrial gene expression in bronchial epithelium are lacking. Here, we create custom bronchial epithelial cell lines that are depleted of mitochondrial DNA. One week of ethidium bromide (EtBr) treatment led to ∼95 % reduction of mtDNA copy number (mtDNA-CN) in cells, which was further reduced by addition of 25 µM 2',3'-dideoxycytidin (ddC). Treatment for up to three weeks with EtBr and ddC led to near complete loss of mtDNA. The basal oxygen consumption rate (OCR) of mtDNA-depleted BET-1A and BEAS-2B cells dropped to near zero. Glycolysis measured by extracellular acidification rate (ECAR) increased ∼two-fold in cells when mtDNA was eliminated. BET-1A ρ0 and BEAS-2B ρ0 cells were cultured for two months, frozen and thawed, cultured for two more months, and maintained near zero mtDNA-CN. Mitochondrial DNA-depleted BET-1A ρ0 and BEAS-2B ρ0 cell lines are viable, lack the capacity for aerobic respiration, and increase glycolysis.•BET-1A and BEAS-2B cells were treated with ethidium bromide (EtBr) with or without 2',3'-dideoxycytidine (ddC) to create cells lacking mitochondrial DNA (mtDNA).•Cells' mtDNA copy number relative to nuclear DNA (nDNA) were verified by quantitative polymerase chain reaction (qPCR).•Cells were also assessed for oxidative phosphorylation by measures of oxygen consumption using the Seahorse analyzer.
Collapse
Affiliation(s)
| | | | | | | | - Serpil C. Erzurum
- Lerner Research Institute, USA
- Respiratory Institute: Cleveland Clinic, 9500 Euclid Avenue, NB2-21, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Zhao W, Fang H, Wang T, Yao C. Identification of mitochondria-related biomarkers in childhood allergic asthma. BMC Med Genomics 2024; 17:141. [PMID: 38783263 PMCID: PMC11112767 DOI: 10.1186/s12920-024-01901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The mechanism of mitochondria-related genes (MRGs) in childhood allergic asthma (CAS) was unclear. The aim of this study was to find new biomarkers related to MRGs in CAS. METHODS This research utilized two CAS-related datasets (GSE40888 and GSE40732) and extracted 40 MRGs from the MitoCarta3.0 Database. Initially, differential expression analysis was performed on CAS and control samples in the GSE40888 dataset to obtain the differentially expressed genes (DEGs). Differentially expressed MRGs (DE-MRGs) were obtained by overlapping the DEGs and MRGs. Protein protein interactions (PPI) network of DE-MRGs was created and the top 10 genes in the degree ranking of Maximal Clique Centrality (MCC) algorithm were defined as feature genes. Hub genes were obtained from the intersection genes from the Least absolute shrinkage and selection operator (LASSO) and EXtreme Gradient Boosting (XGBoost) algorithms. Additionally, the expression validation was conducted, functional enrichment analysis, immune infiltration analysis were finished, and transcription factors (TFs)-miRNA-mRNA regulatory network was constructed. RESULTS A total of 1505 DEGs were obtained from the GSE40888, and 44 DE-MRGs were obtained. A PPI network based on these 44 DE-MRGs was created and revealed strong interactions between ADCK5 and MFN1, BNIP3 and NBR1. Four hub genes (NDUFAF7, MTIF3, MRPS26, and NDUFAF1) were obtained by taking the intersection of genes from the LASSO and XGBoost algorithms based on 10 signature genes which obtained from PPI. In addition, hub genes-based alignment diagram showed good diagnostic performance. The results of Gene Set Enrichment Analysis (GSEA) suggested that hub genes were closely related to mismatch repair. The B cells naive cells were significantly expressed between CAS and control groups, and MTIF3 was most strongly negatively correlated with B cells naive. In addition, the expression of MTIF3 and MRPS26 may have influenced the inflammatory response in CAS patients by affecting mitochondria-related functions. The quantitative real-time polymerase chain reaction (qRT‒PCR) results showed that four hub genes were all down-regulated in the CAS samples. CONCLUSION NDUFAF7, MTIF3, MRPS26, and NDUFAF1 were identified as an MRGs-related biomarkers in CAS, which provides some reference for further research on CAS.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pediatrics, The Second People's Hospital of Hefei, Hefei, Anhui, China.
| | - Hongjuan Fang
- Department of Pediatrics, The Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Tao Wang
- Department of Pediatrics, The Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Chao Yao
- Department of Pediatrics, The Second People's Hospital of Hefei, Hefei, Anhui, China
| |
Collapse
|
8
|
Liu T, Hecker J, Liu S, Rui X, Boyer N, Wang J, Yu Y, Zhang Y, Mou H, Gomez-Escobar LG, Choi AM, Raby BA, Weiss ST, Zhou X. The Asthma Risk Gene, GSDMB, Promotes Mitochondrial DNA-induced ISGs Expression. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10005. [PMID: 38737375 PMCID: PMC11086750 DOI: 10.35534/jrbtm.2024.10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Released mitochondrial DNA (mtDNA) in cells activates cGAS-STING pathway, which induces expression of interferon-stimulated genes (ISGs) and thereby promotes inflammation, as frequently seen in asthmatic airways. However, whether the genetic determinant, Gasdermin B (GSDMB), the most replicated asthma risk gene, regulates this pathway remains unknown. We set out to determine whether and how GSDMB regulates mtDNA-activated cGAS-STING pathway and subsequent ISGs induction in human airway epithelial cells. Using qPCR, ELISA, native polyacrylamide gel electrophoresis, co-immunoprecipitation and immunofluorescence assays, we evaluated the regulation of GSDMB on cGAS-STING pathway in both BEAS-2B cells and primary normal human bronchial epithelial cells (nHBEs). mtDNA was extracted in plasma samples from human asthmatics and the correlation between mtDNA levels and eosinophil counts was analyzed. GSDMB is significantly associated with RANTES expression in asthmatic nasal epithelial brushing samples from the Genes-environments and Admixture in Latino Americans (GALA) II study. Over-expression of GSDMB promotes DNA-induced IFN and ISGs expression in bronchial epithelial BEAS-2B cells and nHBEs. Conversely, knockout of GSDMB led to weakened induction of interferon (IFNs) and ISGs in BEAS-2B cells. Mechanistically, GSDMB interacts with the C-terminus of STING, promoting the translocation of STING to Golgi, leading to the phosphorylation of IRF3 and induction of IFNs and ISGs. mtDNA copy number in serum from asthmatics was significantly correlated with blood eosinophil counts especially in male subjects. GSDMB promotes the activation of mtDNA and poly (dA:dT)-induced activation of cGAS-STING pathway in airway epithelial cells, leading to enhanced induction of ISGs.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xianliang Rui
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Boyer
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Wang
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yuzhen Yu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Augustine M.K. Choi
- Weil Cornell Medical School, Joan and Sanford I. Weill Department of Medicine, New York, NY 10065, USA
| | - Benjamin A. Raby
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Nguyen J, Win PW, Nagano TS, Shin EH, Newcomb C, Arking DE, Castellani CA. Mitochondrial DNA copy number reduction via in vitro TFAM knockout remodels the nuclear epigenome and transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577835. [PMID: 38352513 PMCID: PMC10862824 DOI: 10.1101/2024.01.29.577835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is associated with several age-related chronic diseases and is a predictor of all-cause mortality. Here, we examine site-specific differential nuclear DNA (nDNA) methylation and differential gene expression resulting from in vitro reduction of mtDNA-CN to uncover shared genes and biological pathways mediating the effect of mtDNA-CN on disease. Epigenome and transcriptome profiles were generated for three independent human embryonic kidney (HEK293T) cell lines harbouring a mitochondrial transcription factor A (TFAM) heterozygous knockout generated via CRISPR-Cas9, and matched control lines. We identified 4,242 differentially methylated sites, 228 differentially methylated regions, and 179 differentially expressed genes associated with mtDNA-CN. Integrated analysis uncovered 381 Gene-CpG pairs. GABAA receptor genes and related pathways, the neuroactive ligand receptor interaction pathway, ABCD1/2 gene activity, and cell signalling processes were overrepresented, providing insight into the underlying biological mechanisms facilitating these associations. We also report evidence implicating chromatin state regulatory mechanisms as modulators of mtDNA-CN effect on gene expression. We demonstrate that mitochondrial DNA variation signals to the nuclear DNA epigenome and transcriptome and may lead to nuclear remodelling relevant to development, aging, and complex disease.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tyler Shin Nagano
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elly H. Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles Newcomb
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Children’s Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
10
|
Miller RL, Rivera J, Lichtiger L, Govindarajulu US, Jung KH, Lovinsky-Desir S, Perera F, Balcer Whaley S, Newman M, Grant TL, McCormack M, Perzanowski M, Matsui EC. Associations between mitochondrial biomarkers, urban residential exposures and childhood asthma outcomes over 6 months. ENVIRONMENTAL RESEARCH 2023; 239:117342. [PMID: 37813137 PMCID: PMC10843300 DOI: 10.1016/j.envres.2023.117342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
Determining biomarkers of responses to environmental exposures and evaluating whether they predict respiratory outcomes may help optimize environmental and medical approaches to childhood asthma. Relative mitochondrial (mt) DNA abundance and other potential mitochondrial indicators of oxidative stress may provide a sensitive metric of the child's shifting molecular responses to its changing environment. We leveraged two urban childhood cohorts (Environmental Control as Add-on Therapy in Childhood Asthma (ECATCh); Columbia Center for Children's Environmental Health (CCCEH)) to ascertain whether biomarkers in buccal mtDNA associate with airway inflammation and altered lung function over 6 months of time and capture biologic responses to multiple external stressors such as indoor allergens and fine particulate matter (PM2.5). Relative mtDNA content was amplified by qPCR and methylation of transfer RNA phenylalanine/rRNA 12S (TF/RNR1), cytochrome c oxidase (CO1), and carboxypeptidase O (CPO) was measured by pyrosequencing. Data on residential exposures and respiratory outcomes were harmonized between the two cohorts. Repeated measures and multiple regression models were utilized to assess relationships between mitochondrial biomarkers, respiratory outcomes, and residential exposures (PM2.5, allergens), adjusted for potential confounders and time-varying asthma. We found across the 6 month visits, a 0.64 fold higher level of TF/RNR1 methylation was detected among those with asthma in comparison to those without asthma ((parameter estimate (PE) 0.64, standard error 0.28, p = 0.03). In prospective analyses, CPO methylation was associated with subsequent reduced forced vital capacity (FVC; PE -0.03, standard error 0.01, p = 0.02). Bedroom dust mouse allergen, but not indoor PM2.5, was associated with higher methylation of TF/RNR1 (PE 0.015, standard error 0.006, p = 0.01). Select mtDNA measures in buccal cells may indicate children's responses to toxic environmental exposures and associate selectively with asthma and lung function.
Collapse
Affiliation(s)
- Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA; Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA.
| | - Janelle Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lydia Lichtiger
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Usha S Govindarajulu
- Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kyung Hwa Jung
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Frederica Perera
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Susan Balcer Whaley
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| | - Michelle Newman
- Department of Epidemiology and Public Health, University of Maryland, 10 S. Pine St, MSTF 3-34, Baltimore, MD, 21201, USA
| | - Torie L Grant
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith McCormack
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Perzanowski
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Elizabeth C Matsui
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| |
Collapse
|
11
|
Xu W, Hong YS, Hu B, Comhair SAA, Janocha AJ, Zein JG, Chen R, Meyers DA, Mauger DT, Ortega VE, Bleecker ER, Castro M, Denlinger LC, Fahy JV, Israel E, Levy BD, Jarjour NN, Moore WC, Wenzel SE, Gaston B, Liu C, Arking DE, Erzurum SC. Mitochondrial DNA Copy Number Variation in Asthma Risk, Severity, and Exacerbations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299392. [PMID: 38106101 PMCID: PMC10723502 DOI: 10.1101/2023.12.05.23299392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Rationale Although airway oxidative stress and inflammation are central to asthma pathogenesis, there is limited knowledge of the relationship of asthma risk, severity, or exacerbations to mitochondrial dysfunction, which is pivotal to oxidant generation and inflammation. Objectives We investigated whether mitochondrial DNA copy number (mtDNA-CN) as a measure of mitochondrial function is associated with asthma diagnosis, severity, oxidative stress, and exacerbations. Methods We measured mtDNA-CN in blood in two cohorts. In the UK Biobank (UKB), we compared mtDNA-CN in mild and moderate-severe asthmatics to non-asthmatics. In the Severe Asthma Research Program (SARP), we evaluated mtDNA-CN in relation to asthma severity, biomarkers of oxidative stress and inflammation, and exacerbations. Measures and Main Results In UK Biobank, asthmatics (n = 29,768) have lower mtDNA-CN compared to non-asthmatics (n = 239,158) (beta, -0.026 [95% CI, -0.038 to -0.014], P = 2.46×10-5). While lower mtDNA-CN is associated with asthma, mtDNA-CN did not differ by asthma severity in either UKB or SARP. Biomarkers of inflammation show that asthmatics have higher white blood cells (WBC), neutrophils, eosinophils, fraction exhaled nitric oxide (FENO), and lower superoxide dismutase (SOD) than non-asthmatics, confirming greater oxidative stress in asthma. In one year follow-up in SARP, higher mtDNA-CN is associated with reduced risk of three or more exacerbations in the subsequent year (OR 0.352 [95% CI, 0.164 to 0.753], P = 0.007). Conclusions Asthma is characterized by mitochondrial dysfunction. Higher mtDNA-CN identifies an exacerbation-resistant asthma phenotype, suggesting mitochondrial function is important in exacerbation risk.
Collapse
Affiliation(s)
- Weiling Xu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| | - Yun Soo Hong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Suzy A. A. Comhair
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| | - Allison J. Janocha
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| | - Joe G. Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ruoying Chen
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - David T. Mauger
- Department of Public Health Sciences, Pennsylvania State University School of Medicine, Hershey, Pennsylvania
| | - Victor E. Ortega
- Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, Arizona
| | | | - Mario Castro
- Department of Medicine, University of Kansas School of Medicine, Kansas City, Kansas
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin
| | - John V. Fahy
- Department of Medicine, San Francisco School of Medicine, University of California, San Francisco, California
| | - Elliot Israel
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Bruce D. Levy
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Nizar N. Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Wendy C. Moore
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Sally E. Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Benjamin Gaston
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Serpil C. Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
12
|
Song MA, Wold LE, Aslaner DM, Archer KJ, Patel D, Jeon H, Chung D, Shields PG, Christman JW, Chung S. Long-Term Impact of Daily E-cigarette Exposure on the Lungs of Asthmatic Mice. Nicotine Tob Res 2023; 25:1904-1908. [PMID: 37349133 PMCID: PMC10664080 DOI: 10.1093/ntr/ntad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Although the greater popularity of electronic cigarettes (EC) among asthmatics is alarming, there is limited knowledge of the long-term consequences of EC exposure in asthmatics. AIMS AND METHODS Mild asthmatic C57/BL6J adult male and female mice were established by intranasal insufflation with three combined allergens. The asthmatic and age and sex-matched' naïve mice were exposed to air, nicotine-free (propylene glycol [PG]/vegetable glycerin [VG]-only), or PG/VG+Nicotine, 4 hours daily for 3 months. The effects of EC exposure were accessed by measuring cytokines in bronchoalveolar lavage, periodic acid-schiff (PAS) staining, mitochondrial DNA copy numbers (mtCN), and the transcriptome in the lung. Significance was false discovery rate <0.2 for transcriptome and 0.05 for the others. RESULTS In asthmatic mice, PG/VG+Nicotine increased PAS-positive cells and IL-13 compared to mice exposed to air and PG/VG-only. In naïve mice exposed to PG/VG+Nicotine and PG/VG-only, higher INF-γ was observed compared to mice exposed only to air. PG/VG-only and PG/VG+Nicotine had significantly higher mtCN compared to air exposure in asthmatic mice, while the opposite pattern was observed in non-asthmatic naïve mice. Different gene expression patterns were profoundly found for asthmatic mice exposed to PG/VG+Nicotine compared to PG/VG-only, including genes involved in mitochondrial dysfunction, oxidative phosphorylation, and p21-activated kinase (PAK) signaling. CONCLUSIONS This study provides experimental evidence of the potential impact of nicotine enhancement on the long-term effects of EC in asthmatics compared to non-asthmatics. IMPLICATIONS The findings from this study indicate the potential impact of EC in asthmatics by addressing multiple biological markers. The long-term health outcomes of EC in the susceptible group can be instrumental in supporting policymaking and educational campaigns and informing the public, healthcare providers, and EC users about the underlying risks of EC use.
Collapse
Affiliation(s)
- Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
- Center for Tobacco Research, Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Loren E Wold
- College of Nursing and Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA
| | - David M Aslaner
- College of Nursing and Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, Ohio State University, Columbus, OH, USA
| | - Devki Patel
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
| | - Hyeongseon Jeon
- Department of Biomedical Informatics, Ohio State University and James Cancer Hospital, Columbus, OH, USA
- Comprehensive Cancer Center, Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, Ohio State University and James Cancer Hospital, Columbus, OH, USA
- Comprehensive Cancer Center, Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Peter G Shields
- Comprehensive Cancer Center, Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - John W Christman
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Sangwoon Chung
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Song MA, Kim JY, Gorr MW, Miller RA, Karpurapu M, Nguyen J, Patel D, Archer KJ, Pabla N, Shields PG, Wold LE, Christman JW, Chung S. Sex-specific lung inflammation and mitochondrial damage in a model of electronic cigarette exposure in asthma. Am J Physiol Lung Cell Mol Physiol 2023; 325:L568-L579. [PMID: 37697923 PMCID: PMC11068405 DOI: 10.1152/ajplung.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/14/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
The prevalence of electronic cigarette (EC) use among adult with asthma has continued to increase over time, in part due to the belief of being less harmful than smoking. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. In the present project, we tested the hypothesis that EC use contributes to respiratory damage and worsening inflammation in the lungs of patients with asthma. To define the consequences of EC exposure in established asthma, we used a mouse model with/without preexisting asthma for short-term exposure to EC aerosols. C57/BL6J mice were sensitized and challenged with a DRA (dust mite, ragweed, Aspergillus fumigates, 200 µg/mL) mixture and exposed daily to EC with nicotine (2% nicotine in 30:70 propylene glycol: vegetable glycerin) or filtered air for 2 wk. The mice were evaluated at 24 h after the final EC exposure. After EC exposure in asthmatic mice, lung inflammatory cell infiltration and goblet cell hyperplasia were increased, whereas EC alone did not cause airway inflammation. Our data also show that mitochondrial DNA (mtDNA) content and a key mtDNA regulator, mitochondrial transcription factor A (TFAM), are reduced in asthmatic EC-exposed mice in a sex-dependent manner. Together, these results indicate that TFAM loss in lung epithelium following EC contributes to male-predominant sex pathological differences, including mitochondrial damage, inflammation, and remodeling in asthmatic airways.NEW & NOTEWORTHY Respiratory immunity is dysregulated in preexisting asthma, and further perturbations by EC use could exacerbate asthma severity. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. We found that EC has unique biological impacts in lungs and potential sex differences with loss of TFAM, a key mtDNA regulator, in lung epithelial region from our animal EC study.
Collapse
Affiliation(s)
- Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Matthew W Gorr
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Roy A Miller
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jackie Nguyen
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Devki Patel
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, Ohio, United States
| | - Loren E Wold
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - John W Christman
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sangwoon Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
14
|
Novotny MV, Xu W, Mulya A, Janocha AJ, Erzurum SC. Method for Depletion of Mitochondria DNA in Human Bronchial Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551015. [PMID: 37546956 PMCID: PMC10402132 DOI: 10.1101/2023.07.28.551015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Introduction Mitochondria are increasingly recognized to play a role in the airway inflammation of asthma. Model systems to study the role of mitochondrial gene expression in bronchial epithelium are lacking. Here, we create custom bronchial epithelial cell lines derived from primary airway epithelium that are depleted of mitochondrial DNA. Methods We treated BET-1A and BEAS-2B cells with ethidium bromide (EtBr) with or without 2',3'-dideoxycytidine (ddC) to create cells lacking mitochondrial DNA (mtDNA). Cells' mtDNA copy number were verified by quantitative polymerase chain reaction (qPCR) in comparison to nuclear DNA (nDNA). Cells were also assessed for oxidative phosphorylation by measures of oxygen consumption using the Seahorse analyzer. Results One week of EtBr treatment led to ~95% reduction of mtDNA copy number (mtDNA-CN) in cells (mtDNA-CN, mean±SE, baseline vs. treatment: BEAS-2B, 820 ± 62 vs. 56 ± 9; BET-1A, 957 ± 52 vs. 73 ± 2), which was further reduced by addition of 25 μM ddC (mtDNA-CN: BEAS-2B, 2.8; BET-1A, 47.9). Treatment for up to three weeks with EtBr and ddC led to near complete loss of mtDNA (mtDNA-CN: BEAS-2B, 0.1; BET-1A, 0.3). The basal oxygen consumption rate (OCR) of mtDNA-depleted BET-1A and BEAS-2B cells dropped to near zero. Glycolysis measured by extracellular acidification rate (ECAR) increased ~two-fold in cells when mtDNA was eliminated [ECAR (mpH/min/103 cells), baseline vs. treatment: BEAS-2B, 0.50 ± 0.03 vs. 0.94 ± 0.10 P=0.005; BET-1A, 0.80 ± 0.04 vs. 1.14 ± 0.06 P=0.001]. Conclusion Mitochondrial DNA-depleted BET-1A ρ0 and BEAS-2B ρ0 cell lines are viable, lack the capacity for aerobic respiration, and increase glycolysis. This cell model system can be used to further test mitochondrial mechanisms of inflammation in bronchial epithelial cells.
Collapse
Affiliation(s)
| | - Weiling Xu
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anny Mulya
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Serpil C. Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
15
|
Xiao S, Sahasrabudhe N, Yang M, Hu D, Sleiman P, Hochstadt S, Cabral W, Gilliland F, Gauderman WJ, Martinez F, Hakonarson H, Kumar R, Burchard EG, Williams LK. Differences in Self-Reported Food Allergy and Food-Associated Anaphylaxis by Race and Ethnicity Among SAPPHIRE Cohort Participants. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1123-1133.e11. [PMID: 36403896 PMCID: PMC10085828 DOI: 10.1016/j.jaip.2022.10.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/13/2022] [Accepted: 10/29/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although food allergies are considered common, relatively little is known about disparities in food allergy by race in the United States. OBJECTIVE To evaluate differences in reported food allergy and food-associated anaphylaxis among individuals enrolled in a longitudinal cohort study from metropolitan Detroit, Michigan. METHODS Participants in the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity (SAPPHIRE) were asked about food allergies, including the inciting food and associated symptoms. Individuals were considered to have food-associated anaphylaxis if symptoms coincided with established clinical criteria. Logistic regression was used to assess whether race difference persisted after adjusting for and stratifying by potential confounders. African genetic ancestry was individually estimated among African American SAPPHIRE participants to assess whether ancestry was associated with food allergy. RESULTS Within the SAPPHIRE cohort, African American participants were significantly more likely to report food allergy (26.1% vs 17%; P = 3.47 × 10-18) and have food-associated anaphylactic symptoms (12.7% vs 7%; P = 4.65 × 10-14) when compared with European American participants. Allergy to seafood accounted for the largest difference (13.1% vs 4.6%; P = 1.38 × 10-31). Differences in food allergy by race persisted after adjusting for potential confounders including asthma status. Among African American participants, the proportion of African ancestry was not associated with any outcome evaluated. CONCLUSION Compared with European Americans, African Americans appear to be at higher risk for developing food allergy and food-associated anaphylaxis, particularly with regard to seafood allergy. The lack of association with genetic ancestry suggests that socioenvironmental determinants may play a role in these disparities.
Collapse
Affiliation(s)
- Shujie Xiao
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, Mich
| | - Neha Sahasrabudhe
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, Mich
| | - Mao Yang
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, Mich
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Patrick Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Samantha Hochstadt
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, Mich
| | - Whitney Cabral
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, Mich
| | - Frank Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Fernando Martinez
- Arizona Respiratory Center and Department of Pediatrics, University of Arizona, Tucson, Ariz
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Rajesh Kumar
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, Calif
| | - L Keoki Williams
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, Mich.
| |
Collapse
|
16
|
Singh S, Dutta J, Ray A, Karmakar A, Mabalirajan U. Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics (Basel) 2023; 13:diagnostics13040808. [PMID: 36832296 PMCID: PMC9955099 DOI: 10.3390/diagnostics13040808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The features of allergic asthma are believed to be mediated mostly through the Th2 immune response. In this Th2-dominant concept, the airway epithelium is presented as the helpless victim of Th2 cytokines. However, this Th2-dominant concept is inadequate to fill some of the vital knowledge gaps in asthma pathogenesis, like the poor correlation between airway inflammation and airway remodeling and severe asthma endotypes, including Th2-low asthma, therapy resistance, etc. Since the discovery of type 2 innate lymphoid cells in 2010, asthma researchers started believing in that the airway epithelium played a crucial role, as alarmins, which are the inducers of ILC2, are almost exclusively secreted by the airway epithelium. This underscores the eminence of airway epithelium in asthma pathogenesis. However, the airway epithelium has a bipartite functionality in sustaining healthy lung homeostasis and asthmatic lungs. On the one hand, the airway epithelium maintains lung homeostasis against environmental irritants/pollutants with the aid of its various armamentaria, including its chemosensory apparatus and detoxification system. Alternatively, it induces an ILC2-mediated type 2 immune response through alarmins to amplify the inflammatory response. However, the available evidence indicates that restoring epithelial health may attenuate asthmatic features. Thus, we conjecture that an epithelium-driven concept in asthma pathogenesis could fill most of the gaps in current asthma knowledge, and the incorporation of epithelial-protective agents to enhance the robustness of the epithelial barrier and the combative capacity of the airway epithelium against exogenous irritants/allergens may mitigate asthma incidence and severity, resulting in better asthma control.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Atmaja Karmakar
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
17
|
Hussain SRA, Grayson MH. Chronic allergy signaling: is it all stressed-out mitochondria? Fac Rev 2022; 11:37. [PMID: 36644297 PMCID: PMC9816874 DOI: 10.12703/r/11-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Allergic diseases in general, and chronic allergic inflammation in particular, are on the rise in the United States and other developed countries. The idea of chronic allergic disease as a chronic type 2 immune response has been around for several decades. However, data suggest that other mechanisms may be important in chronic disease. Therefore, we believe it is time for a paradigm shift in understanding the mechanistic causes of disease symptoms in these diseases. In this review, we have avoided the classic canonical pathways and focused on the emerging idea that oxidative stress, changes in immuno-metabolism, mitochondrial dysfunction, and epigenetic changes (particularly microRNA profile) may be working concurrently or synergistically to potentiate allergic disease symptoms. Furthermore, we have addressed how the epidemic of obesity exacerbates allergic disease via the dysregulation of the aforementioned factors.
Collapse
Affiliation(s)
- Syed-Rehan A Hussain
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital - The Ohio State University College of Medicine, Columbus, OH, USA
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- mailto:
| | - Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital - The Ohio State University College of Medicine, Columbus, OH, USA
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
18
|
Mori KM, McElroy JP, Weng DY, Chung S, Fadda P, Reisinger SA, Ying KL, Brasky TM, Wewers MD, Freudenheim JL, Shields PG, Song MA. Lung mitochondrial DNA copy number, inflammatory biomarkers, gene transcription and gene methylation in vapers and smokers. EBioMedicine 2022; 85:104301. [PMID: 36215783 PMCID: PMC9561685 DOI: 10.1016/j.ebiom.2022.104301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mitochondrial DNA copy number (mtCN) maintains cellular function and homeostasis, and is linked to nuclear DNA methylation and gene expression. Increased mtCN in the blood is associated with smoking and respiratory disease, but has received little attention for target organ effects for smoking or electronic cigarette (EC) use. METHODS Bronchoscopy biospecimens from healthy EC users, smokers (SM), and never-smokers (NS) were assessed for associations of mtCN with mtDNA point mutations, immune responses, nuclear DNA methylation and gene expression using linear regression. Ingenuity pathway analysis was used for enriched pathways. GEO and TCGA respiratory disease datasets were used to explore the involvement of mtCN-associated signatures. FINDINGS mtCN was higher in SM than NS, but EC was not statistically different from either. Overall there was a negative association of mtCN with a point mutation in the D-loop but no difference within groups. Positive associations of mtCN with IL-2 and IL-4 were found in EC only. mtCN was significantly associated with 71,487 CpGs and 321 transcripts. 263 CpGs were correlated with nearby transcripts for genes enriched in the immune system. EC-specific mtCN-associated-CpGs and genes were differentially expressed in respiratory diseases compared to controls, including genes involved in cellular movement, inflammation, metabolism, and airway hyperresponsiveness. INTERPRETATION Smoking may elicit a lung toxic effect through mtCN. While the impact of EC is less clear, EC-specific associations of mtCN with nuclear biomarkers suggest exposure may not be harmless. Further research is needed to understand the role of smoking and EC-related mtCN on lung disease risks. FUNDING The National Cancer Institute, the National Heart, Lung, and Blood Institute, the Food and Drug Administration Center for Tobacco Products, the National Center For Advancing Translational Sciences, and Pelotonia Intramural Research Funds.
Collapse
Affiliation(s)
- Kellie M Mori
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Joseph P McElroy
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Sangwoon Chung
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Paolo Fadda
- Genomics Shared Resource, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Sarah A Reisinger
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Kevin L Ying
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Mark D Wewers
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States.
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
19
|
Liu Y, Qu HQ, Qu J, Chang X, Mentch FD, Nguyen K, Tian L, Glessner J, Sleiman PMA, Hakonarson H. Burden of rare coding variants reveals genetic heterogeneity between obese and non-obese asthma patients in the African American population. Respir Res 2022; 23:116. [PMID: 35524249 PMCID: PMC9078008 DOI: 10.1186/s12931-022-02039-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Asthma is a complex condition largely attributed to the interactions among genes and environments as a heterogeneous phenotype. Obesity is significantly associated with asthma development, and genetic studies on obese vs. non-obese asthma are warranted. Methods To investigate asthma in the minority African American (AA) population with or without obesity, we performed a whole genome sequencing (WGS) study on blood-derived DNA of 4289 AA individuals, included 2226 asthma patients (1364 with obesity and 862 without obesity) and 2006 controls without asthma. The burden analysis of functional rare coding variants was performed by comparing asthma vs. controls and by stratified analysis of obese vs. non-obese asthma, respectively. Results Among the top 66 genes with P < 0.01 in the asthma vs. control analysis, stratified analysis by obesity showed inverse correlation of natural logarithm (LN) of P value between obese and non-obese asthma (r = − 0.757, P = 1.90E−13). Five genes previously reported in a genome-wide association study (GWAS) on asthma, including TSLP, SLC9A4, PSMB8, IGSF5, and IKZF4 were demonstrated association in the asthma vs. control analysis. The associations of IKZF4 and IGSF5 are only associated with obese asthma; and the association of SLC9A4 is only observed in non-obese asthma. In addition, the association of RSPH3 (the gene is related to primary ciliary dyskinesia) is observed in non-obese asthma. Conclusions These findings highlight genetic heterogeneity between obese and non-obese asthma in patients of AA ancestry. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02039-0.
Collapse
Affiliation(s)
- Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jingchun Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Frank D Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kenny Nguyen
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Lifeng Tian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Joseph Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
20
|
A model to predict a risk of allergic rhinitis based on mitochondrial DNA copy number. Eur Arch Otorhinolaryngol 2022; 279:4997-5008. [DOI: 10.1007/s00405-022-07341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
|
21
|
Baek SH, Foer D, Cahill KN, Israel E, Maiorino E, Röhl A, Boyce JA, Weiss ST. Systems Approaches to Treatment Response to Imatinib in Severe Asthma: A Pilot Study. J Pers Med 2021; 11:240. [PMID: 33805900 PMCID: PMC8064376 DOI: 10.3390/jpm11040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
There is an acute need for advances in pharmacologic therapies and a better understanding of novel drug targets for severe asthma. Imatinib, a tyrosine kinase inhibitor, has been shown to improve forced expiratory volume in 1 s (FEV1) in a clinical trial of patients with severe asthma. In a pilot study, we applied systems biology approaches to epithelium gene expression from these clinical trial patients treated with imatinib to better understand lung function response with imatinib treatment. Bronchial brushings from ten imatinib-treated patient samples and 14 placebo-treated patient samples were analyzed. We used personalized perturbation profiles (PEEPs) to characterize gene expression patterns at the individual patient level. We found that strong responders-patients with greater than 20% increase in FEV1-uniquely shared multiple downregulated mitochondrial-related pathways. In comparison, weak responders (5-10% FEV1 increase), and non-responders to imatinib shared none of these pathways. The use of PEEP highlights its potential for application as a systems biology tool to develop individual-level approaches to predicting disease phenotypes and response to treatment in populations needing innovative therapies. These results support a role for mitochondrial pathways in airflow limitation in severe asthma and as potential therapeutic targets in larger clinical trials.
Collapse
Affiliation(s)
- Seung Han Baek
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (S.H.B.); (E.M.); (A.R.); (S.T.W.)
| | - Dinah Foer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (E.I.); (J.A.B.)
| | - Katherine N. Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Elliot Israel
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (E.I.); (J.A.B.)
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Enrico Maiorino
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (S.H.B.); (E.M.); (A.R.); (S.T.W.)
| | - Annika Röhl
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (S.H.B.); (E.M.); (A.R.); (S.T.W.)
| | - Joshua A. Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (E.I.); (J.A.B.)
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (S.H.B.); (E.M.); (A.R.); (S.T.W.)
| |
Collapse
|