1
|
de Taeye SW, Faye L, Morel B, Schriek AI, Umotoy JC, Yuan M, Kuzmina NA, Turner HL, Zhu X, Grünwald-Gruber C, Poniman M, Burger JA, Caniels TG, Fitchette AC, Desgagnés R, Stordeur V, Mirande L, Beauverger G, de Bree G, Ozorowski G, Ward AB, Wilson IA, Bukreyev A, Sanders RW, Vezina LP, Beaumont T, van Gils MJ, Gomord V. Plant-produced SARS-CoV-2 antibody engineered towards enhanced potency and in vivo efficacy. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:4-16. [PMID: 39563066 DOI: 10.1111/pbi.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/16/2024] [Indexed: 11/21/2024]
Abstract
Prevention of severe COVID-19 disease by SARS-CoV-2 in high-risk patients, such as immuno-compromised individuals, can be achieved by administration of antibody prophylaxis, but producing antibodies can be costly. Plant expression platforms allow substantial lower production costs compared to traditional bio-manufacturing platforms depending on mammalian cells in bioreactors. In this study, we describe the expression, production and purification of the originally human COVA2-15 antibody in plants. Our plant-produced mAbs demonstrated comparable neutralizing activity with COVA2-15 produced in mammalian cells. Furthermore, they exhibited similar capacity to prevent SARS-CoV-2 infection in a hamster model. To further enhance these biosimilars, we performed three glyco- and protein engineering techniques. First, to increase antibody half-life, we introduced YTE-mutation in the Fc tail; second, optimization of N-linked glycosylation by the addition of a C-terminal ER-retention motif (HDEL), and finally; production of mAb in plant production lines lacking β-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO). These engineered biosimilars exhibited optimized glycosylation, enhanced phagocytosis and NK cell activation capacity compared to conventional plant-produced S15 and M15 biosimilars, in some cases outperforming mammalian cell produced COVA2-15. These engineered antibodies hold great potential for enhancing in vivo efficacy of mAb treatment against COVID-19 and provide a platform for the development of antibodies against other emerging viruses in a cost-effective manner.
Collapse
Affiliation(s)
- Steven W de Taeye
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Loïc Faye
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | - Bertrand Morel
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | - Angela I Schriek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Jeffrey C Umotoy
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Tom G Caniels
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | | | | | - Virginie Stordeur
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | - Lucie Mirande
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | | | - Godelieve de Bree
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | | | - Tim Beaumont
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Véronique Gomord
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
- ANGANY Inc, Québec, Quebec, Canada
| |
Collapse
|
2
|
Olivry T, Mirande L, Aglas L, Morel B, Mas-Fontao A, Fitchette AC, Holztrattner L, Stigler M, Roberge J, Martel C, Stordeur V, Desgagnés R, Vézina L, Favrot C, Gomord V. Rapid induction of allergen-blocking IgG in dogs vaccinated with plant-based, Der f 2-expressing bioparticles. Vet Dermatol 2024; 35:672-682. [PMID: 39223106 DOI: 10.1111/vde.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Allergen-carrying virus-like particles are effective and safe means of allergen immunotherapy (AIT) in rodent models. OBJECTIVE To study the development of allergen-blocking immunoglobulin (Ig)G in dogs injected with Der f 2-carrying enveloped plant-based bioparticles (eBPs). MATERIALS AND METHODS Laboratory beagle dogs were injected intradermally (ID) or subcutaneously (SC) with Der f 2-eBP three times at 2-week intervals. A basophil mediator release assay was used to compare the reactivity of Der f 2-eBPs to that of recombinant Der f 2. Allergen-specific IgG serum levels were determined by immunoblotting and ELISA. The allergen-blocking potential of postvaccination IgG was assessed by Pet Allergy Xplorer (PAX) macroarray and basophil mediator release inhibition assays. RESULTS The amount of Der f 2 eBPs needed to induce basophil activation was 1000-fold higher than that of the soluble natural allergen. In both immunisation groups, eBP injections caused no adverse events and induced Der f 2-specific IgG, first detected on Day (D)14 and peaking on D41. The co-incubation of sera with a Der f 2-IgE-rich canine serum pool resulted in a mean PAX inhibition of 70% (ID) to 80% (SC) on D41. For both groups, the inhibition of basophil mediator release reached 75% on D28 and D41. The percentage inhibition of PAX and mediator release correlated significantly with Der f 2 IgG levels. CONCLUSION AND CLINICAL RELEVANCE Intradermal and subcutaneous injections of Der f 2-eBPs were safe and increased Der f 2-specific IgG. The clinical benefit of immunotherapy will be evaluated in future trials enrolling atopic dogs allergic to house dust mites.
Collapse
Affiliation(s)
| | | | - Lorenz Aglas
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | - Lena Holztrattner
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Maria Stigler
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | - Claude Favrot
- Dermatology Unit, Clinical for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Véronique Gomord
- Angany Innovation, Val de Reuil, France
- Angany Genetics, Val de Reuil, France
| |
Collapse
|
3
|
Li K, Jin J, Yang Y, Luo X, Wang Y, Xu A, Hao K, Wang Z. Application of Nanoparticles for Immunotherapy of Allergic Rhinitis. Int J Nanomedicine 2024; 19:12015-12037. [PMID: 39583318 PMCID: PMC11584337 DOI: 10.2147/ijn.s484327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Allergen Immunotherapy (AIT) is the only etiological therapeutic method available for allergic rhinitis (AR). Currently, several options for AIT in the market, such as subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT), have different routes of administration. These traditional methods have achieved encouraging outcomes in clinic. However, the side effects associated with these methods have raised the need for innovative approaches for AIT that improve safety, shorten the course of treatment and increase local drug concentration. Nanoparticles (NPs) are particles ranging in size from 1 to 100 nm, which have been hired as potential adjuvants for AIT. NPs can be employed as agents for modulating immune responses in AR or/and carriers for loading proteins, peptides or DNA molecules. This review focuses on different kinds of nanoparticle delivery systems, including chitosan nanoparticles, exosomes, metal nanoparticles, and viral nanoparticles. We summarized the advantages and limitations of NPs for the treatment of allergic rhinitis. Overall, NPs are expected to be a therapeutic option for AR, which requires more in-depth studies and long-term therapeutic validation.
Collapse
Affiliation(s)
- Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratories, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yimin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Xuling Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yaling Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Aibo Xu
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Ke Hao
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| |
Collapse
|
4
|
Berreiros-Hortala H, Vilchez-Pinto G, Diaz-Perales A, Garrido-Arandia M, Tome-Amat J. Virus-like Particles as Vaccines for Allergen-Specific Therapy: An Overview of Current Developments. Int J Mol Sci 2024; 25:7429. [PMID: 39000536 PMCID: PMC11242184 DOI: 10.3390/ijms25137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.
Collapse
Affiliation(s)
- Helena Berreiros-Hortala
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gonzalo Vilchez-Pinto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
5
|
Morel B, Favrot C, Mirande L, Grünwald-Gruber C, Stordeur V, Vezina LP, Faye L, Gomord V. Exploring the Potentiality of a Plant Platform for Monoclonal Antibody Production in Veterinary Medicine. Vaccines (Basel) 2024; 12:620. [PMID: 38932349 PMCID: PMC11209382 DOI: 10.3390/vaccines12060620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Canine atopic dermatitis (CAD) is an allergic, inflammatory, and pruritic skin disease associated with the production of IgE antibodies against environmental allergens and mainly house dust mite allergens. This complex dermatological pathology involves Interleukin 31 (IL-31) as a central itch mediator. One of the most effective CAD treatments is a caninized monoclonal antibody (mAb) called Lokivetmab. It is produced in CHO cells and targets specifically canine IL-31 (cIL-31) and blocks its cellular messaging. This treatment has undoubtedly contributed to a breakthrough in dermatitis-related pruritus. However, its production in mammalian cells requires time-consuming procedures, high production costs, and investment. Plants are considered an emerging protein production platform for recombinant biopharmaceuticals due to their cost-effectiveness and rapidity for production. Here, we use transient expression in Nicotiana benthamiana plants to produce recombinant canine Interleukin 31 (cIL-31) and an anti-IL-31 monoclonal antibody (M1). First, we describe the production and characterization of M1 and then its activity on an IL-31-induced pruritic model in dogs compared to its commercial homolog. Dogs treated with the plant-made M1 mAb have shown similar improvements to Lokivetmab-treated ones after different challenges using canine IL-31. Furthermore, M1 injections were not associated with any side effects. These results demonstrate the safety and efficacy of this plant-made Lokivetmab biosimilar to control dogs' pruritus in a well-established model. Finally, this study shows that the plant-production platform can be utilized to produce rapidly functional mAbs and bring hope to the immunotherapy field of veterinary medicine.
Collapse
Affiliation(s)
- Bertrand Morel
- ANGANY Innovation, 1 Voie de l’Innovation, 27100 Val de Reuil, France; (B.M.)
| | - Claude Favrot
- Dermatology Unit, Clinical for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8006 Zurich, Switzerland
| | - Lucie Mirande
- ANGANY Innovation, 1 Voie de l’Innovation, 27100 Val de Reuil, France; (B.M.)
| | | | - Virginie Stordeur
- ANGANY Innovation, 1 Voie de l’Innovation, 27100 Val de Reuil, France; (B.M.)
| | | | - Loïc Faye
- ANGANY Innovation, 1 Voie de l’Innovation, 27100 Val de Reuil, France; (B.M.)
| | - Véronique Gomord
- ANGANY Innovation, 1 Voie de l’Innovation, 27100 Val de Reuil, France; (B.M.)
- ANGANY Inc., Suite 200, 873 St-Jean, Québec, QC G1R 1R2, Canada
| |
Collapse
|
6
|
Busold S, Aglas L, Menage C, Desgagnés R, Faye L, Fitchette AC, de Jong EC, Martel C, Stigler M, Catala-Stordeur V, Tropper G, Auger L, Morel B, Versteeg SA, Vézina LP, Gomord V, Layhadi JA, Shamji M, Geijtenbeek TBH, van Ree R. Plant-produced Der p 2-bearing bioparticles activate Th1/Treg-related activation patterns in dendritic cells irrespective of the allergic background. Clin Exp Allergy 2024; 54:300-303. [PMID: 38279775 DOI: 10.1111/cea.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Affiliation(s)
- Stefanie Busold
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Charlotte Menage
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | | | - Loïc Faye
- Angany Innovation, Val de Reuil, France
| | | | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | | | - Maria Stigler
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | | - Serge A Versteeg
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | | | - Véronique Gomord
- Angany Inc., Québec City, Quebec, Canada
- Angany Innovation, Val de Reuil, France
| | - Janice A Layhadi
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Mohamed Shamji
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Faye L, Grünwald-Gruber C, Vezina LP, Gomord V, Morel B. A fast and easy one-step purification strategy for plant-made antibodies using Protein A magnetic beads. FRONTIERS IN PLANT SCIENCE 2024; 14:1276148. [PMID: 38235198 PMCID: PMC10791999 DOI: 10.3389/fpls.2023.1276148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
A major difficulty to reach commercial- scale production for plant-made antibodies is the complexity and cost of their purification from plant extracts. Here, using Protein A magnetic beads, two monoclonal antibodies are purified in a one-step procedure directly from non-clarified crude plant extracts. This technique provides significant savings in terms of resources, operation time, and equipment.
Collapse
Affiliation(s)
- Loïc Faye
- ANGANY Innovation, 1 voie de l’innovation, Pharmaparc II, Val de Reuil, France
| | - Clemens Grünwald-Gruber
- Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | | | - Véronique Gomord
- ANGANY Innovation, 1 voie de l’innovation, Pharmaparc II, Val de Reuil, France
- Angany Inc, St-Jean, QC, Canada
| | - Bertrand Morel
- ANGANY Innovation, 1 voie de l’innovation, Pharmaparc II, Val de Reuil, France
| |
Collapse
|
8
|
Castenmiller C, Nagy NA, Kroon PZ, Auger L, Desgagnés R, Martel C, Mirande L, Morel B, Roberge J, Stordeur V, Tropper G, Vézina LP, van Ree R, Gomord V, de Jong EC. A novel peanut allergy immunotherapy: Plant-based enveloped Ara h 2 Bioparticles activate dendritic cells and polarize T cell responses to Th1. World Allergy Organ J 2023; 16:100839. [PMID: 38020282 PMCID: PMC10679945 DOI: 10.1016/j.waojou.2023.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction As the only market-authorized allergen immunotherapy (AIT) for peanut allergy is accompanied by a high risk of side effects and mainly induces robust desensitization without sustained efficacy, novel treatment options are required. Peanut-specific plant-derived eBioparticles (eBPs) surface expressing Ara h 2 at high density have been shown to be very hypoallergenic. Here, we assessed the dendritic cell (DC)-activating and T cell polarization capacity of these peanut-specific eBPs. Methods Route and kinetics of eBP uptake were studied by (imaging) flow cytometry using monocyte-derived DCs incubated with fluorescently-labelled Ara h 2 eBPs or natural Ara h 2 (nAra h 2) in the presence or absence of inhibitors that block pathways involved in macropinocytosis, phagocytosis, and/or receptor-mediated uptake. DC activation was monitored by flow cytometry (maturation marker expression) and ELISA (cytokine production). T cell polarization was assessed by co-culturing DCs exposed to Ara h 2 eBPs or nAra h 2 with naïve CD4+ T cells, followed by flow cytometry assessment of intracellular IFNγ+ (Th1) and IL-13+ (Th2), and CD25+CD127-Foxp3+ regulatory T cells (Tregs). The suppressive activity of Tregs was tested using a suppressor assay. Results Ara h 2 eBPs were taken up by DCs through actin-dependent pathways. They activated DCs demonstrated by an induced expression of CD83 and CD86, and production of TNFα, IL-6, and IL-10. eBP-treated DCs polarized naïve CD4+ T cells towards Th1 cells, while reducing Th2 cell development. Furthermore, eBP-treated DCs induced reduced the frequency of Foxp3+ Tregs but did not significantly affect T cell IL-10 production or T cells with suppressive capacity. In contrast, DC activation and Th1 cell polarization were not observed for nAra h 2. Conclusion Ara h 2 eBPs activate DCs that subsequently promote Th1 cell polarization and reduce Th2 cell polarization. These characteristics mark Ara h 2 eBPs as a promising novel candidate for peanut AIT.
Collapse
Affiliation(s)
- Charlotte Castenmiller
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | - Noémi Anna Nagy
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | - Pascal Zion Kroon
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Esther Christina de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Castenmiller C, Stigler M, Kirpas ME, Versteeg S, Akkerdaas JH, Pena-Castellanos G, Blokhuis BR, Dreskin SC, Auger L, Desgagnés R, Martel C, Mirande L, Morel B, Roberge J, Stordeur V, Tropper G, Vézina LP, Gomord V, de Jong EC, Redegeld F, Shreffler WG, Aglas L, van Ree R. Plant-based enveloped Ara h 2 bioparticles display exceptional hypo-allergenicity. Clin Exp Allergy 2023; 53:577-581. [PMID: 36779573 PMCID: PMC10402690 DOI: 10.1111/cea.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/14/2023]
Affiliation(s)
- C. Castenmiller
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - M. Stigler
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - M. E. Kirpas
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass; Harvard Medical School and Massachusetts General Hospital, Boston, Mass; Food Allergy Center, Massachusetts General Hospital, Boston, Mass, USA
| | - S. Versteeg
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - J. H. Akkerdaas
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - G. Pena-Castellanos
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - B. R. Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - S. C. Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - L. Auger
- Angany Inc., Québec, Québec, Canada
| | | | | | | | - B. Morel
- Angany Innovation, Val-de-Reuil, France
| | | | | | | | | | - V. Gomord
- Angany Innovation, Val-de-Reuil, France
| | - E. C. de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - W. G. Shreffler
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass; Harvard Medical School and Massachusetts General Hospital, Boston, Mass; Food Allergy Center, Massachusetts General Hospital, Boston, Mass, USA
| | - L. Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - R. van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Johnson L, Aglas L, Punz B, Dang HH, Christ C, Pointner L, Wenger M, Hofstaetter N, Hofer S, Geppert M, Andosch A, Ferreira F, Horejs-Hoeck J, Duschl A, Himly M. Mechanistic insights into silica nanoparticle-allergen interactions on antigen presenting cell function in the context of allergic reactions. NANOSCALE 2023; 15:2262-2275. [PMID: 36630186 PMCID: PMC9893438 DOI: 10.1039/d2nr05181h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The incorporation of nanomaterials into consumer products has substantially increased in recent years, raising concerns about their safety. The inherent physicochemical properties of nanoparticles allow them to cross epithelial barriers and gain access to immunocompetent cells. Nanoparticles in cosmetic products can potentially interact with environmental allergens, forming a protein corona, and together penetrate through damaged skin. Allergen-nanoparticle interactions may influence the immune response, eventually resulting in an adverse or beneficial outcome in terms of allergic reactivity. This study determines the impact of silica nanoparticle-allergen interactions on allergic sensitization by studying the major molecular mechanisms affecting allergic responses. The major birch pollen allergen Bet v 1 was chosen as a model allergen and the birch pollen extract as a comparator. Key events in immunotoxicity including allergen uptake, processing, presentation, expression of costimulatory molecules and cytokine release were studied in human monocyte-derived dendritic cells. Using an in vivo sensitization model, murine Bet v 1-specific IgG and IgE levels were monitored. Upon the interaction of allergens with silica nanoparticles, we observed an enhanced uptake of the allergen by macropinocytosis, improved proteolytic processing, and presentation concomitant with a propensity to increase allergen-specific IgG2a and decrease IgE antibody levels. Together, these events suggest that upon nanoparticle interactions the immune response is biased towards a type 1 inflammatory profile, characterized by the upregulation of T helper 1 (Th1) cells. In conclusion, the interaction of the birch pollen allergen with silica nanoparticles will not worsen allergic sensitization, a state of type 2-inflammation, but rather seems to decrease it by skewing towards a Th1-dominated immune response.
Collapse
Affiliation(s)
- Litty Johnson
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Benjamin Punz
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Constantin Christ
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Lisa Pointner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Mario Wenger
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Norbert Hofstaetter
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Sabine Hofer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Mark Geppert
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Ancuela Andosch
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Fatima Ferreira
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Albert Duschl
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Martin Himly
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
11
|
Warmenhoven H, Leboux R, Bethanis A, van Strien J, Logiantara A, van Schijndel H, Aglas L, van Rijt L, Slütter B, Kros A, Jiskoot W, van Ree R. Cationic liposomes bearing Bet v 1 by coiled coil-formation are hypo-allergenic and induce strong immunogenicity in mice. FRONTIERS IN ALLERGY 2023; 3:1092262. [PMID: 36704756 PMCID: PMC9872006 DOI: 10.3389/falgy.2022.1092262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Although aluminum hydroxide (alum) is widely accepted and used as safe vaccine adjuvant, there is some concern about possible toxicity upon long-lasting repeated exposure during subcutaneous allergen immunotherapy (SCIT). Our objective was to evaluate allergen-bearing liposomes as possible alternative for alum-adsorption in SCIT. A self-assembling, coiled-coil forming peptide pair was used to anchor the major birch pollen allergen Bet v 1 to the surface of cationic liposomes. The resulting nanoparticulate liposomes were characterized with respect to their physicochemical, allergenic and immunological properties. Allergenicity was studied by ImmunoCAP inhibition and rat basophil leukemia (RBL) cell assays. Immunogenicity (immunoglobulin responses) and immune skewing (cytokine responses) were evaluated upon immunization of naïve mice, and compared to alum-adsorbed Bet v 1. Bet v 1-bearing cationic liposomes with a diameter of ∼200 nm showed a positive zeta potential. The coiled-coil conjugation of Bet v 1 to the surface of liposomes resulted in about a 15-fold lower allergenicity than soluble Bet v 1 as judged by RBL assays. Moreover, the nanoparticles induced Bet v 1-specific IgG1/IgG2a responses in mice that were several orders of magnitude higher than those induced by alum-adsorbed Bet v 1. This strong humoral response was accompanied by a relatively strong IL-10 induction upon PBMC stimulation with Bet v 1. In conclusion, their hypo-allergenic properties, combined with their capacity to induce a strong humoral immune response and a relatively strong IL-10 production, makes these allergen-covered cationic liposomes a promising alternative for aluminum salt-adsorption of allergen currently used in SCIT.
Collapse
Affiliation(s)
- Hans Warmenhoven
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- HAL Allergy BV, J.H. Oortweg, Leiden, Netherlands
| | - Romain Leboux
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - Jolinde van Strien
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Adrian Logiantara
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
| | | | - Lorenz Aglas
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Leonie van Rijt
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
| |
Collapse
|
12
|
Busold S, Aglas L, Menage C, Auger L, Desgagnés R, Faye L, Fitchette AC, de Jong EC, Martel C, Stigler M, Catala-Stordeur V, Tropper G, Vézina LP, Gomord V, Geijtenbeek TBH, van Ree R. Fel d 1 surface expression on plant-made eBioparticles combines potent immune activation and hypoallergenicity. Allergy 2022; 77:3124-3126. [PMID: 35916123 DOI: 10.1111/all.15464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Stefanie Busold
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity,Inflammatory Diseases, Amsterdam, The Netherlands
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Charlotte Menage
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity,Inflammatory Diseases, Amsterdam, The Netherlands
| | | | | | - Loïc Faye
- Angany Innovation, Val-de-Reuil, France
| | | | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity,Inflammatory Diseases, Amsterdam, The Netherlands
| | | | - Maria Stigler
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | | | | | | | | | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity,Inflammatory Diseases, Amsterdam, The Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity,Inflammatory Diseases, Amsterdam, The Netherlands.,Department of Otorhinolaryngology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Allergen immunotherapy is the only recognized causal treatment for allergic disease that modulates the immune system toward a tolerogenic or desensitized state. Allergens or their derivative preparations are formulated with adjuvants of different origin and having diverse immunological functions, such as prolonged tissue release and specific immunomodulatory properties. In the last 2 decades, thanks to developments in the field of nanotechnology, more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. RECENT FINDINGS Nanomaterials possess unique and versatile properties which can be employed to develop drug carriers with safer profiles, better stability in physiological conditions and immunomodulatory properties. Nanoparticles can have an adjuvant effect per se or also when they are packed in structures whose physical-chemical properties can be handled in a way that also influences its release dynamics. In particular, it has been suggested that nanoparticle preparations can be put in complexes or loaded with allergens or allergenic extracts, opening the way to innovative paradigms. SUMMARY In this review, we analyze allergen/nanoparticle properties in terms of cytotoxicity, stability and immunogenic reaction in in-vitro and animal systems.
Collapse
|