1
|
Sumon MSI, Hossain MSA, Al-Sulaiti H, Yassine HM, Chowdhury MEH. Enhancing Influenza Detection through Integrative Machine Learning and Nasopharyngeal Metabolomic Profiling: A Comprehensive Study. Diagnostics (Basel) 2024; 14:2214. [PMID: 39410618 PMCID: PMC11476346 DOI: 10.3390/diagnostics14192214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Nasal and nasopharyngeal swabs are commonly used for detecting respiratory viruses, including influenza, which significantly alters host cell metabolites. This study aimed to develop a machine learning model to identify biomarkers that differentiate between influenza-positive and -negative cases using clinical metabolomics data. Method: A publicly available dataset of 236 nasopharyngeal samples screened via liquid chromatography-quadrupole time-of-flight (LC/Q-TOF) mass spectrometry was used. Among these, 118 samples tested positive for influenza (40 A H1N1, 39 A H3N2, 39 Influenza B), while 118 were negative controls. A stacking-based model was proposed using the top 20 selected features. Thirteen machine learning models were initially trained, and the top three were combined using predicted probabilities to form a stacking classifier. Results: The ExtraTrees stacking model outperformed other models, achieving 97.08% accuracy. External validation on a prospective cohort of 96 symptomatic individuals (48 positive and 48 negatives for influenza) showed 100% accuracy. SHAP values were used to enhance model explainability. Metabolites such as Pyroglutamic Acid (retention time: 0.81 min, m/z: 84.0447) and its in-source fragment ion (retention time: 0.81 min, m/z: 130.0507) showed minimal impact on influenza-positive cases. On the other hand, metabolites with a retention time of 10.34 min and m/z 106.0865, and a retention time of 8.65 min and m/z 211.1376, demonstrated significant positive contributions. Conclusions: This study highlights the effectiveness of integrating metabolomics data with machine learning for accurate influenza diagnosis. The stacking-based model, combined with SHAP analysis, provided robust performance and insights into key metabolites influencing predictions.
Collapse
Affiliation(s)
| | - Md Sakib Abrar Hossain
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (M.S.I.S.); (M.S.A.H.)
| | - Haya Al-Sulaiti
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad E. H. Chowdhury
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (M.S.I.S.); (M.S.A.H.)
| |
Collapse
|
2
|
Gundogan K, Nellis MM, Ozer NT, Ergul SS, Sahin GG, Temel S, Yuksel RC, Teeny S, Alvarez JA, Sungur M, Jones DP, Ziegler TR. High-resolution plasma metabolomics and thiamine status in critically Ill adult patients. Metabolomics 2024; 20:83. [PMID: 39066851 PMCID: PMC11283406 DOI: 10.1007/s11306-024-02144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Thiamine (Vitamin B1) is an essential micronutrient and is classically considered a co-factor in energy metabolism. The association between thiamine status and whole-body metabolism in critical illness has not been studied. OBJECTIVES To determine association between whole blood thiamine pyrophosphate (TPP) concentrations and plasma metabolites and connected metabolic pathways using high resolution metabolomics (HRM) in critically ill patients. METHODS Cross-sectional study performed at Erciyes University Hospital, Kayseri, Turkey and Emory University, Atlanta, GA, USA. Participants were critically ill adults with an expected length of intensive care unit stay longer than 48 h and receiving chronic furosemide therapy. A total of 76 participants were included. Mean age was 69 years (range 33-92 years); 65% were female. Blood for TPP and metabolomics was obtained on the day of ICU admission. Whole blood TPP was measured by HPLC and plasma HRM was performed using liquid chromatography/mass spectrometry. Data was analyzed using regression analysis of TPP levels against all plasma metabolomic features in metabolome-wide association studies (MWAS). MWAS using the highest and lowest TPP concentration tertiles was performed as a secondary analysis. RESULTS Specific metabolic pathways associated with whole blood TPP levels in regression and tertile analysis included pentose phosphate, fructose and mannose, branched chain amino acid, arginine and proline, linoleate, and butanoate pathways. CONCLUSIONS Plasma HRM revealed that thiamine status, determined by whole blood TPP concentrations, was significantly associated with metabolites and metabolic pathways related to metabolism of energy, carbohydrates, amino acids, lipids, and the gut microbiome in adult critically ill patients.
Collapse
Affiliation(s)
- Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey.
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey.
| | - Mary M Nellis
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Nurhayat T Ozer
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Serap S Ergul
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Gulsah G Sahin
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Sahin Temel
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey
| | - Recep C Yuksel
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey
| | - Sami Teeny
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jessica A Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Medicine, Emory Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Murat Sungur
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Medicine, Emory Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Medicine, Emory Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Thomas S, Samuel SV, Hoch A, Syphurs C, Diray-Arce J. The Implication of Sphingolipids in Viral Infections. Int J Mol Sci 2023; 24:17303. [PMID: 38139132 PMCID: PMC10743733 DOI: 10.3390/ijms242417303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sphingolipids are involved in cell signaling and metabolic pathways, and their metabolites play a critical role in host defense against intracellular pathogens. Here, we review the known mechanisms of sphingolipids in viral infections and discuss the potential implication of the study of sphingolipid metabolism in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Stephen Varghese Samuel
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore 632004, India
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Caitlin Syphurs
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
4
|
Al-Shalan HAM, Zhou L, Dong Z, Wang P, Nicholls PK, Boughton B, Stumbles PA, Greene WK, Ma B. Systemic perturbations in amino acids/amino acid derivatives and tryptophan pathway metabolites associated with murine influenza A virus infection. Virol J 2023; 20:270. [PMID: 37990229 PMCID: PMC10664681 DOI: 10.1186/s12985-023-02239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) is the only influenza virus causing flu pandemics (i.e., global epidemics of flu disease). Influenza (the flu) is a highly contagious disease that can be deadly, especially in high-risk groups. Worldwide, these annual epidemics are estimated to result in about 3 to 5 million cases of severe illness and in about 290,000 to 650,000 respiratory deaths. We intend to reveal the effect of IAV infection on the host's metabolism, immune response, and neurotoxicity by using a mouse IAV infection model. METHODS 51 metabolites of murine blood plasma (33 amino acids/amino acid derivatives (AADs) and 18 metabolites of the tryptophan pathway) were analyzed by using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry with Electrospray Ionization at the acute (7 days post-infection (dpi)), resolution (14 dpi), and recovery (21 dpi) stages of the virus infection in comparison with controls. RESULTS Among the 33 biogenic amino acids/AADs, the levels of five amino acids/AADs (1-methylhistidine, 5-oxoproline, α-aminobutyric acid, glutamine, and taurine) increased by 7 dpi, whereas the levels of ten amino acids/AADs (4-hydroxyproline, alanine, arginine, asparagine, cysteine, citrulline, glycine, methionine, proline, and tyrosine) decreased. By 14 dpi, the levels of one AAD (3-methylhistidine) increased, whereas the levels of five amino acids/AADs (α-aminobutyric acid, aminoadipic acid, methionine, threonine, valine) decreased. Among the 18 metabolites from the tryptophan pathway, the levels of kynurenine, quinolinic acid, hydroxykynurenine increased by 7 dpi, whereas the levels of indole-3-acetic acid and nicotinamide riboside decreased. CONCLUSIONS Our data may facilitate understanding the molecular mechanisms of host responses to IAV infection and provide a basis for discovering potential new mechanistic, diagnostic, and prognostic biomarkers and therapeutic targets for IAV infection.
Collapse
Affiliation(s)
- Huda A M Al-Shalan
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Department of Microbiology/Virology, College of Veterinary Medicine, Baghdad University, Baghdad, Iraq
| | - Lu Zhou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhifan Dong
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Berin Boughton
- Australian National Phenome Centre, Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Philip A Stumbles
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Wayne K Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
5
|
Gundogan K, Nellis MM, Ozer NT, Ergul SS, Sahin GG, Temel S, Yuksel RC, Teeny S, Alvarez JA, Sungur M, Jones DP, Ziegler TR. High-Resolution Plasma Metabolomics and Thiamine Status in Critically Ill Adult Patients. RESEARCH SQUARE 2023:rs.3.rs-3597052. [PMID: 38014088 PMCID: PMC10680934 DOI: 10.21203/rs.3.rs-3597052/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIM Thiamine (Vitamin B1) is an essential micronutrient and a co-factor for metabolic functions related to energy metabolism. We determined the association between whole blood thiamine pyrophosphate (TPP) concentrations and plasma metabolites using high resolution metabolomics in critically ill patients. Methods Cross-sectional study performed in Erciyes University Hospital, Kayseri, Turkey and Emory University, Atlanta, GA, USA. Participants were ≥ 18 years of age, with an expected length of ICU stay longer than 48 hours, receiving furosemide therapy for at least 6 months before ICU admission. Results Blood for TPP and metabolomics was obtained on the day of ICU admission. Whole blood TPP concentrations were measured using high-performance liquid chromatography (HPLC). Liquid chromatography/mass spectrometry was used for plasma high-resolution metabolomics. Data was analyzed using regression analysis of TPP levels against all plasma metabolomic features in metabolome-wide association studies. We also compared metabolomic features from patients in the highest TPP concentration tertile to patients in the lowest TPP tertile as a secondary analysis. We enrolled 76 participants with a median age of 69 (range, 62.5-79.5) years. Specific metabolic pathways associated with whole blood TPP levels, using both regression and tertile analysis, included pentose phosphate, fructose and mannose, branched chain amino acid, arginine and proline, linoleate, and butanoate pathways. Conclusions Plasma high-resolution metabolomics analysis showed that whole blood TPP concentrations are significantly associated with metabolites and metabolic pathways linked to the metabolism of energy, amino acids, lipids, and the gut microbiome in adult critically ill patients.
Collapse
|
6
|
Li X, Liu Y, Xu G, Xie Y, Wang X, Wu J, Chen H. Plasma metabolomic characterization of SARS-CoV-2 Omicron infection. Cell Death Dis 2023; 14:276. [PMID: 37076483 PMCID: PMC10113737 DOI: 10.1038/s41419-023-05791-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
Omicron variants of SARS-CoV-2 have spread rapidly worldwide; however, most infected patients have mild or no symptoms. This study aimed to understand the host response to Omicron infections by performing metabolomic profiling of plasma. We observed that Omicron infections triggered an inflammatory response and innate immune, and adaptive immunity was suppressed, including reduced T-cell response and immunoglobulin antibody production. Similar to the original SARS-CoV-2 strain circulating in 2019, the host developed an anti-inflammatory response and accelerated energy metabolism in response to Omicron infection. However, differential regulation of macrophage polarization and reduced neutrophil function has been observed in Omicron infections. Interferon-induced antiviral immunity was not as strong in Omicron infections as in the original SARS-CoV-2 infections. The host response to Omicron infections increased antioxidant capacity and liver detoxification more than in the original strain. Hence, these findings suggest that Omicron infections cause weaker inflammatory alterations and immune responses than the original SARS-CoV-2 strain.
Collapse
Affiliation(s)
- Xue Li
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China
| | - Yimeng Liu
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Guiying Xu
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Yi Xie
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China
| | - Ximo Wang
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ injury and ITCWM Repair, Tianjin, China.
| | - Junping Wu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
- Department of Tuberculosis, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
| |
Collapse
|
7
|
Samorodnitsky S, Lock EF, Kruk M, Morris A, Leung JM, Kunisaki KM, Griffin TJ, Wendt CH. Lung proteome and metabolome endotype in HIV-associated obstructive lung disease. ERJ Open Res 2023; 9:00332-2022. [PMID: 36949960 PMCID: PMC10026002 DOI: 10.1183/23120541.00332-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose Obstructive lung disease is increasingly common among persons with HIV, both smokers and nonsmokers. We used aptamer proteomics to identify proteins and associated pathways in HIV-associated obstructive lung disease. Methods Bronchoalveolar lavage fluid (BALF) samples from 26 persons living with HIV with obstructive lung disease were matched to persons living with HIV without obstructive lung disease based on age, smoking status and antiretroviral treatment. 6414 proteins were measured using SomaScan® aptamer-based assay. We used sparse distance-weighted discrimination (sDWD) to test for a difference in protein expression and permutation tests to identify univariate associations between proteins and forced expiratory volume in 1 s % predicted (FEV1 % pred). Significant proteins were entered into a pathway over-representation analysis. We also constructed protein-driven endotypes using K-means clustering and performed over-representation analysis on the proteins that were significantly different between clusters. We compared protein-associated clusters to those obtained from BALF and plasma metabolomics data on the same patient cohort. Results After filtering, we retained 3872 proteins for further analysis. Based on sDWD, protein expression was able to separate cases and controls. We found 575 proteins that were significantly correlated with FEV1 % pred after multiple comparisons adjustment. We identified two protein-driven endotypes, one of which was associated with poor lung function, and found that insulin and apoptosis pathways were differentially represented. We found similar clusters driven by metabolomics in BALF but not plasma. Conclusion Protein expression differs in persons living with HIV with and without obstructive lung disease. We were not able to identify specific pathways differentially expressed among patients based on FEV1 % pred; however, we identified a unique protein endotype associated with insulin and apoptotic pathways.
Collapse
Affiliation(s)
| | | | - Monica Kruk
- University of Minnesota, Minneapolis, MN, USA
| | - Alison Morris
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Ken M. Kunisaki
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | | | - Chris H. Wendt
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Corresponding author: Chris Wendt ()
| |
Collapse
|
8
|
Bacteria in human lumbar discs - subclinical infection or contamination? Metabolomic evidence for colonization, multiplication, and cell-cell cross-talk of bacteria. Spine J 2023; 23:163-177. [PMID: 35569807 DOI: 10.1016/j.spinee.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND CONTEXT The accumulating evidence associating sub-clinical infection with disc degeneration (DD) and the controversy of contamination versus infection mandates a further understanding of the microbial activity in the disc and host-microbiome interaction. PURPOSE To utilize a novel approach of metabolomics to probe the presence of bacterial metabolites involved in colonization, survival, and replication in human lumbar intervertebral discs (LIVD). STUDY DESIGN An observational case-control study. PATIENT SAMPLE Nucleus pulposus from the LIVD of three brain-dead voluntary organ donors (MRI normal and classified as controls) and of three patients undergoing surgery for disc degeneration (DD) (cases) were utilized. METHODS Untargeted metabolite profiling was carried out in six discs (3-controls and 3-cases) after extraction using methanol: acetonitrile: water (2:2:1) solvent system and acquired through HPLC-MS/MS platform using C18 reversed-phase column. From the total IVD metabolome, microbial metabolites were filtered by mapping against HMDB, ChEBI, SigMol, Siderophore database, ecdmb database, and PaMet databases. The biological functions of the metabolites were then studied by MSEA pipeline from Metaboanalyst, and the enrichment ratio, p-value, and Variably Importance Projection scores of the metabolites were calculated. Degeneration responsive changes in the abundance of the microbial metabolites were calculated based on the peak intensities between the control and cases. RESULTS Mass spectrometry identified a total of 17601 and 15003 metabolites, respectively, in the control and degenerated discs. Preliminary mapping of the above metabolites against HMDB indicated the multiple sources, and of these, 64 metabolites were of microbial origin, accounting for 1.6% of the total IVD metabolome. Principle Component Analysis and Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA) showed distinct clustered patterns between control and disc degene`ration, indicating a strong variation in concentration, peak, and spectral values of the 64 metabolites between controls and cases. After the exclusion of metabolites that were also associated with humans, drugs, and food, 39 metabolites specific to bacteria were isolated. Nine were primary metabolites related to bacterial growth and survival, and the remaining 30 were secondary metabolites related to different environmental stress response activities. The three significant pathways (p<.001) which were predominant in the bacterial metabolites were autoinducer-2 biosynthesis, peptidoglycan biosynthesis, and chorismate pathway. In addition, a significant fold change of >1.0 was found for nine metabolites which included (S)-14-Methyilhexadecanoic acid related to P. acnes, 9-OxoODE, and 13-OxoODE related to gut flora, vibriobactin - a siderophore, tuberculosinol and iso-tuberculosinol, virulence factors of M. tuberculosis. There was also upregulation of Autoinducer- 2, an important "Quorum sensing molecule" involved in bacterial cross-talk. CONCLUSION We identified several bacterial-specific metabolites participating in bacterial growth, survival, and cross-talk pathways. These were found in both groups but up-regulated in degenerated discs. The presence of Quorum sensing molecules and cell-cell interactions provides firm proof of colonization and growth. These findings indicate that the bacterial presence may not be mere contamination but could be colonization with a possible role in infection-mediated inflammation in DD. CLINICAL SIGNIFICANCE Proof of subclinical infection as an initiator of DD and documentation of exact germ and drug sensitivity will change the way millions of patients with non-specific low back pain (NSLBP) are treated across the world.
Collapse
|
9
|
Wendt CH, Samorodnitsky S, Lock EF, Kruk M, Morris A, Leung JM, Kunisaki KM, Griffin TJ. Lung and Plasma Metabolome in HIV-Associated Obstructive Lung Disease. J Acquir Immune Defic Syndr 2022; 91:312-318. [PMID: 35849661 PMCID: PMC9588728 DOI: 10.1097/qai.0000000000003061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV is a risk factor for obstructive lung disease (OLD), independent of smoking. We used mass spectrometry (MS) approaches to identify metabolomic biomarkers that inform mechanistic pathogenesis of OLD in persons with HIV (PWH). METHODS We obtained bronchoalveolar lavage fluid (BALF) samples from 52 PWH, in case:control (+OLD/-OLD) pairs matched on age, smoking status, and antiretroviral treatment. Four hundred nine metabolites from 8 families were measured on BALF and plasma samples using a MS-based Biocrates platform. After filtering metabolites with a high proportion of missing values and values below the level of detection, we performed univariate testing using paired t tests followed by false discovery rate corrections. We used distance-weighted discrimination (DWD) to test for an overall difference in the metabolite profile between cases and controls. RESULTS After filtering, there were 252 BALF metabolites for analysis from 8 metabolite families. DWD testing found that collectively, BALF metabolites differentiated cases from controls, whereas plasma metabolites did not. In BALF samples, we identified 3 metabolites that correlated with OLD at the false discovery rate of 10%; all were in the phosphatidylcholine family. We identified additional BALF metabolites when analyzing lung function as a continuous variable, and these included acylcarnitines, triglycerides, and a cholesterol ester. CONCLUSIONS Collectively, BALF metabolites differentiate PWH with and without OLD. These included several BALF lipid metabolites. These findings were limited to BALF and were not found in plasma from the same individuals. Phosphatidylcholine, the most common lipid component of surfactant, was the predominant lipid metabolite differentially expressed.
Collapse
Affiliation(s)
- Chris H. Wendt
- Minneapolis VA Health Care System, Minneapolis, MN, U.S
- University of Minnesota, Minneapolis, MN, U.S
| | | | | | - Monica Kruk
- University of Minnesota, Minneapolis, MN, U.S
| | - Alison Morris
- University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S
| | | | - Ken M. Kunisaki
- Minneapolis VA Health Care System, Minneapolis, MN, U.S
- University of Minnesota, Minneapolis, MN, U.S
| | | |
Collapse
|
10
|
Hu Q, Liu B, Fan Y, Zheng Y, Wen F, Yu U, Wang W. Multi-omics association analysis reveals interactions between the oropharyngeal microbiome and the metabolome in pediatric patients with influenza A virus pneumonia. Front Cell Infect Microbiol 2022; 12:1011254. [PMID: 36389138 PMCID: PMC9651038 DOI: 10.3389/fcimb.2022.1011254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Children are at high risk for influenza A virus (IAV) infections, which can develop into severe illnesses. However, little is known about interactions between the microbiome and respiratory tract metabolites and their impact on the development of IAV pneumonia in children. Using a combination of liquid chromatography tandem mass spectrometry (LC-MS/MS) and 16S rRNA gene sequencing, we analyzed the composition and metabolic profile of the oropharyngeal microbiota in 49 pediatric patients with IAV pneumonia and 42 age-matched healthy children. The results indicate that compared to healthy children, children with IAV pneumonia exhibited significant changes in the oropharyngeal macrobiotic structure (p = 0.001), and significantly lower microbial abundance and diversity (p < 0.05). These changes came with significant disturbances in the levels of oropharyngeal metabolites. Intergroup differences were observed in 204 metabolites mapped to 36 metabolic pathways. Significantly higher levels of sphingolipid (sphinganine and phytosphingosine) and propanoate (propionic acid and succinic acid) metabolism were observed in patients with IAV pneumonia than in healthy controls. Using Spearman’s rank-correlation analysis, correlations between IAV pneumonia-associated discriminatory microbial genera and metabolites were evaluated. The results indicate significant correlations and consistency in variation trends between Streptococcus and three sphingolipid metabolites (phytosphingosine, sphinganine, and sphingosine). Besides these three sphingolipid metabolites, the sphinganine-to-sphingosine ratio and the joint analysis of the three metabolites indicated remarkable diagnostic efficacy in children with IAV pneumonia. This study confirmed significant changes in the characteristics and metabolic profile of the oropharyngeal microbiome in pediatric patients with IAV pneumonia, with high synergy between the two factors. Oropharyngeal sphingolipid metabolites may serve as potential diagnostic biomarkers of IAV pneumonia in children.
Collapse
Affiliation(s)
- Qian Hu
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Baiming Liu
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yanqun Fan
- Department of Trans-omics Research, Biotree Metabolomics Technology Research Center, Shanghai, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Uet Yu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Wenjian Wang, ; Uet Yu,
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Wenjian Wang, ; Uet Yu,
| |
Collapse
|
11
|
Albrich WC, Ghosh TS, Ahearn-Ford S, Mikaeloff F, Lunjani N, Forde B, Suh N, Kleger GR, Pietsch U, Frischknecht M, Garzoni C, Forlenza R, Horgan M, Sadlier C, Negro TR, Pugin J, Wozniak H, Cerny A, Neogi U, O’Toole PW, O’Mahony L. A high-risk gut microbiota configuration associates with fatal hyperinflammatory immune and metabolic responses to SARS-CoV-2. Gut Microbes 2022; 14:2073131. [PMID: 35574937 PMCID: PMC9116414 DOI: 10.1080/19490976.2022.2073131] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and associated clinical sequelae requires well-coordinated metabolic and immune responses that limit viral spread and promote recovery of damaged systems. However, the role of the gut microbiota in regulating these responses has not been thoroughly investigated. In order to identify mechanisms underpinning microbiota interactions with host immune and metabolic systems that influence coronavirus disease 2019 (COVID-19) outcomes, we performed a multi-omics analysis on hospitalized COVID-19 patients and compared those with the most severe outcome (i.e. death, n = 41) to those with severe non-fatal disease (n = 89), or mild/moderate disease (n = 42), that recovered. A distinct subset of 8 cytokines (e.g. TSLP) and 140 metabolites (e.g. quinolinate) in sera identified those with a fatal outcome to infection. In addition, elevated levels of multiple pathobionts and lower levels of protective or anti-inflammatory microbes were observed in the fecal microbiome of those with the poorest clinical outcomes. Weighted gene correlation network analysis (WGCNA) identified modules that associated severity-associated cytokines with tryptophan metabolism, coagulation-linked fibrinopeptides, and bile acids with multiple pathobionts, such as Enterococcus. In contrast, less severe clinical outcomes are associated with clusters of anti-inflammatory microbes such as Bifidobacterium or Ruminococcus, short chain fatty acids (SCFAs) and IL-17A. Our study uncovered distinct mechanistic modules that link host and microbiome processes with fatal outcomes to SARS-CoV-2 infection. These features may be useful to identify at risk individuals, but also highlight a role for the microbiome in modifying hyperinflammatory responses to SARS-CoV-2 and other infectious agents.
Collapse
Affiliation(s)
- Werner C. Albrich
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen;St. Gallen, Switzerland,CONTACT Liam O’Mahony Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Tarini Shankar Ghosh
- School of Microbiology, University College Cork;Cork, Ireland,APC Microbiome Ireland, University College Cork; Cork, Ireland
| | | | - Flora Mikaeloff
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute;Stockholm, Sweden
| | - Nonhlanhla Lunjani
- APC Microbiome Ireland, University College Cork; Cork, Ireland,Department of Dermatology, University of Cape Town; Cape Town, South Africa
| | - Brian Forde
- School of Microbiology, University College Cork;Cork, Ireland,APC Microbiome Ireland, University College Cork; Cork, Ireland
| | - Noémie Suh
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine;Geneva, Switzerland
| | - Gian-Reto Kleger
- Division of Intensive Care, Cantonal Hospital St. Gallen;St. Gallen, Switzerland
| | - Urs Pietsch
- Department of Anesthesia, Intensive Care, Emergency and Pain Medicine, Cantonal Hospital St. Gallen;St. Gallen, Switzerland
| | - Manuel Frischknecht
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen;St. Gallen, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco;Lugano, Switzerland,Department of Infectious Diseases, Bern University Hospital; Bern, Switzerland
| | | | - Mary Horgan
- Department of Medicine, University College Cork; Cork, Ireland,Department of Infectious Diseases, Cork University Hospital; Cork, Ireland
| | - Corinna Sadlier
- Department of Medicine, University College Cork; Cork, Ireland,Department of Infectious Diseases, Cork University Hospital; Cork, Ireland
| | - Tommaso Rochat Negro
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine;Geneva, Switzerland
| | - Jérôme Pugin
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine;Geneva, Switzerland
| | - Hannah Wozniak
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine;Geneva, Switzerland
| | | | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute;Stockholm, Sweden
| | - Paul W. O’Toole
- School of Microbiology, University College Cork;Cork, Ireland,APC Microbiome Ireland, University College Cork; Cork, Ireland
| | - Liam O’Mahony
- School of Microbiology, University College Cork;Cork, Ireland,APC Microbiome Ireland, University College Cork; Cork, Ireland,Department of Medicine, University College Cork; Cork, Ireland,Werner C. Albrich School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Guillon A, Brea-Diakite D, Cezard A, Wacquiez A, Baranek T, Bourgeais J, Picou F, Vasseur V, Meyer L, Chevalier C, Auvet A, Carballido JM, Nadal Desbarats L, Dingli F, Turtoi A, Le Gouellec A, Fauvelle F, Donchet A, Crépin T, Hiemstra PS, Paget C, Loew D, Herault O, Naffakh N, Le Goffic R, Si-Tahar M. Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein. EMBO J 2022; 41:e108306. [PMID: 35506364 PMCID: PMC9194747 DOI: 10.15252/embj.2021108306] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria‐derived succinate that accumulated both in the respiratory fluids of virus‐challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus‐triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate‐dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.
Collapse
Affiliation(s)
- Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France.,Service de Médecine Intensive Réanimation, CHRU de Tours, Tours, France
| | - Deborah Brea-Diakite
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Adeline Cezard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Alan Wacquiez
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Jérôme Bourgeais
- Université de Tours, Tours, France.,CNRS ERL 7001 LNOx "Leukemic niche and redox metabolism", Tours, France.,Service d'Hématologie Biologique, CHRU de Tours, Tours, France
| | - Frédéric Picou
- Université de Tours, Tours, France.,CNRS ERL 7001 LNOx "Leukemic niche and redox metabolism", Tours, France.,Service d'Hématologie Biologique, CHRU de Tours, Tours, France
| | - Virginie Vasseur
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Léa Meyer
- Virologie et Immunologie Moléculaires, INRAe, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christophe Chevalier
- Virologie et Immunologie Moléculaires, INRAe, Université Paris-Saclay, Jouy-en-Josas, France
| | - Adrien Auvet
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France.,Service de Médecine Intensive Réanimation, CHRU de Tours, Tours, France
| | | | | | - Florent Dingli
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Andrei Turtoi
- Tumor Microenvironment Laboratory, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier, France.,Institut du Cancer de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Audrey Le Gouellec
- CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, University Grenoble Alpes, Grenoble, France
| | - Florence Fauvelle
- UGA/INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France.,UGA/INSERM US17, Grenoble MRI Facility IRMaGe, Grenoble, France
| | - Amélie Donchet
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - Thibaut Crépin
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Olivier Herault
- Université de Tours, Tours, France.,CNRS ERL 7001 LNOx "Leukemic niche and redox metabolism", Tours, France.,Service d'Hématologie Biologique, CHRU de Tours, Tours, France
| | - Nadia Naffakh
- Institut Pasteur, Unité Biologie des ARN et Virus Influenza, CNRS UMR3569, Paris, France
| | - Ronan Le Goffic
- Virologie et Immunologie Moléculaires, INRAe, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| |
Collapse
|