1
|
Czub MP, Uliana F, Grubić T, Padeste C, Rosowski KA, Lorenz C, Dufresne ER, Menzel A, Vakonakis I, Gasser U, Steinmetz MO. Phase separation of a microtubule plus-end tracking protein into a fluid fractal network. Nat Commun 2025; 16:1165. [PMID: 39885130 PMCID: PMC11782662 DOI: 10.1038/s41467-025-56468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Microtubule plus-end tracking proteins (+TIPs) participate in nearly all microtubule-based cellular processes and have recently been proposed to function as liquid condensates. However, their formation and internal organization remain poorly understood. Here, we have study the phase separation of Bik1, a CLIP-170 family member and key +TIP involved in budding yeast cell division. Bik1 is a dimer with a rod-shaped conformation primarily defined by its central coiled-coil domain. Its liquid condensation likely involves the formation of higher-order oligomers that phase separate in a manner dependent on the protein's N-terminal CAP-Gly domain and C-terminal EEY/F-like motif. This process is accompanied by conformational rearrangements in Bik1, leading to at least a two-fold increase in multivalent interactions between its folded and disordered domains. Unlike classical liquids, Bik1 condensates exhibit a heterogeneous, fractal supramolecular structure with protein- and solvent-rich regions. This structural evidence supports recent percolation-based models of biomolecular condensates. Together, our findings offer insights into the structure, dynamic rearrangement, and organization of a complex, oligomeric, and multidomain protein in both dilute and condensed states. Our experimental framework can be applied to other biomolecular condensates, including more complex +TIP networks.
Collapse
Affiliation(s)
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
- Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Tarik Grubić
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | | | - Kathryn A Rosowski
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Charlotta Lorenz
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Department of Materials Science and Engineering, Department of Physics, Cornell University, Ithaca, NY, USA
| | - Andreas Menzel
- PSI Center for Photon Science, Villigen PSI, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford, UK
- Lonza Biologics, Microbial Development, Visp, Switzerland
| | - Urs Gasser
- PSI Center for Neutron and Muon Sciences, Villigen PSI, Switzerland
| | - Michel O Steinmetz
- PSI Center for Life Sciences, Villigen PSI, Switzerland.
- University of Basel, Biozentrum, Basel, Switzerland.
| |
Collapse
|
2
|
Kumar S, Panda SP. Comprehensive In Silico Analysis of Uncaria Tomentosa Extract: Chemical Profiling, Antioxidant Assessment, and CLASP Protein Interaction for Drug Design in Neurodegenerative Diseases. Curr Comput Aided Drug Des 2025; 21:94-109. [PMID: 38310572 DOI: 10.2174/0115734099284849231212095407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Uncaria tomentosa is a traditional medicinal herb renowned for its anti-inflammatory, antioxidant, and immune-enhancing properties. In the realm of neurodegenerative diseases (NDDS), CLASP proteins, responsible for regulating microtubule dynamics in neurons, have emerged as critical players. Dysregulation of CLASP proteins is associated with NDDS, such as Alzheimer's, Parkinson's, and Huntington's diseases. Consequently, comprehending the role of CLASP proteins in NDDS holds promise for the development of innovative therapeutic interventions. OBJECTIVES The objectives of the research were to identify phytoconstituents in the hydroalcoholic extract of Uncaria tomentosa (HEUT), to evaluate its antioxidant potential through in vitro free radical scavenging assays and to explore its potential interaction with CLASP using in silico molecular docking studies. METHODS HPLC and LC-MS techniques were used to identify and quantify phytochemicals in HEUT. The antioxidant potential was assessed through DPPH, ferric reducing antioxidant power (FRAP), nitric oxide (NO) and superoxide (SO) free radical scavenging methods. Interactions between conventional quinovic acid, chlorogenic acid, epicatechin, corynoxeine, rhynchophylline and syringic acid and CLASP were studied through in silico molecular docking using Auto Dock 4.2. RESULTS The HEUT extract demonstrated the highest concentration of quinovic acid derivatives. HEUT exhibited strong free radical-scavenging activity with IC50 values of 0.113 μg/ml (DPPH) and 9.51 μM (FRAP). It also suppressed NO production by 47.1 ± 0.37% at 40 μg/ml and inhibited 77.3 ± 0.69% of SO generation. Additionally, molecular docking revealed the potential interaction of quinovic acid with CLASP for NDDS. CONCLUSION The strong antioxidant potential of HEUT and the interaction of quinovic acid with CLASP protein suggest a promising role in treating NDDS linked to CLASP protein dysregulation.
Collapse
Affiliation(s)
- Sanjesh Kumar
- Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, 281406, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, 281406, India
| |
Collapse
|
3
|
Geng Q, Keya JJ, Hotta T, Verhey KJ. The kinesin-3 KIF1C undergoes liquid-liquid phase separation for accumulation of specific transcripts at the cell periphery. EMBO J 2024; 43:3192-3213. [PMID: 38898313 PMCID: PMC11294625 DOI: 10.1038/s44318-024-00147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
In cells, mRNAs are transported to and positioned at subcellular areas to locally regulate protein production. Recent studies have identified the kinesin-3 family member motor protein KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that the KIF1C C-terminal tail domain contains an intrinsically disordered region (IDR) that drives liquid-liquid phase separation (LLPS). KIF1C forms dynamic puncta in cells that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. Endogenous KIF1C forms condensates in cellular protrusions, where mRNAs are enriched in an IDR-dependent manner. Purified KIF1C tail constructs undergo LLPS in vitro at near-endogenous nM concentrations and in the absence of crowding agents and can directly recruit RNA molecules. Overall, our work uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role in mRNA positioning. In addition, the LLPS activity of KIF1C's tail represents a new mode of motor-cargo interaction that extends our current understanding of cytoskeletal motor proteins.
Collapse
Affiliation(s)
- Qi Geng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Meier SM, Steinmetz MO, Barral Y. Microtubule specialization by +TIP networks: from mechanisms to functional implications. Trends Biochem Sci 2024; 49:318-332. [PMID: 38350804 DOI: 10.1016/j.tibs.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
To fulfill their actual cellular role, individual microtubules become functionally specialized through a broad range of mechanisms. The 'search and capture' model posits that microtubule dynamics and functions are specified by cellular targets that they capture (i.e., a posteriori), independently of the microtubule-organizing center (MTOC) they emerge from. However, work in budding yeast indicates that MTOCs may impart a functional identity to the microtubules they nucleate, a priori. Key effectors in this process are microtubule plus-end tracking proteins (+TIPs), which track microtubule tips to regulate their dynamics and facilitate their targeted interactions. In this review, we discuss potential mechanisms of a priori microtubule specialization, focusing on recent findings indicating that +TIP networks may undergo liquid biomolecular condensation in different cell types.
Collapse
Affiliation(s)
- Sandro M Meier
- Institute of Biochemistry, Department of Biology, and Bringing Materials to Life Initiative, ETH Zürich, Switzerland; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland; Bringing Materials to Life Initiative, ETH Zürich, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland; University of Basel, Biozentrum, CH-4056 Basel, Switzerland.
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, and Bringing Materials to Life Initiative, ETH Zürich, Switzerland; Bringing Materials to Life Initiative, ETH Zürich, Switzerland.
| |
Collapse
|
5
|
Lawrence EJ, Chatterjee S, Zanic M. More is different: Reconstituting complexity in microtubule regulation. J Biol Chem 2023; 299:105398. [PMID: 37898404 PMCID: PMC10694663 DOI: 10.1016/j.jbc.2023.105398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Microtubules are dynamic cytoskeletal filaments that undergo stochastic switching between phases of polymerization and depolymerization-a behavior known as dynamic instability. Many important cellular processes, including cell motility, chromosome segregation, and intracellular transport, require complex spatiotemporal regulation of microtubule dynamics. This coordinated regulation is achieved through the interactions of numerous microtubule-associated proteins (MAPs) with microtubule ends and lattices. Here, we review the recent advances in our understanding of microtubule regulation, focusing on results arising from biochemical in vitro reconstitution approaches using purified multiprotein ensembles. We discuss how the combinatory effects of MAPs affect both the dynamics of individual microtubule ends, as well as the stability and turnover of the microtubule lattice. In addition, we highlight new results demonstrating the roles of protein condensates in microtubule regulation. Our overall intent is to showcase how lessons learned from reconstitution approaches help unravel the regulatory mechanisms at play in complex cellular environments.
Collapse
Affiliation(s)
- Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Saptarshi Chatterjee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
6
|
Miesch J, Wimbish RT, Velluz MC, Aumeier C. Phase separation of +TIP networks regulates microtubule dynamics. Proc Natl Acad Sci U S A 2023; 120:e2301457120. [PMID: 37603768 PMCID: PMC10469336 DOI: 10.1073/pnas.2301457120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/12/2023] [Indexed: 08/23/2023] Open
Abstract
Regulation of microtubule dynamics is essential for diverse cellular functions, and proteins that bind to dynamic microtubule ends can regulate network dynamics. Here, we show that two conserved microtubule end-binding proteins, CLIP-170 and EB3, undergo phase separation and form dense liquid networks. When CLIP-170 and EB3 act together, the multivalency of the network increases, which synergistically increases the amount of protein in the dense phase. In vitro and in cells, these liquid networks can concentrate tubulin. In vitro, in the presence of microtubules, phase separation of EB3/CLIP-170 can enrich tubulin all along the microtubule. In this condition, microtubule growth speed increases up to twofold and the frequency of depolymerization events are strongly reduced compared to conditions in which there is no phase separation. Our data show that phase separation of EB3/CLIP-170 adds an additional layer of regulation to the control of microtubule growth dynamics.
Collapse
Affiliation(s)
- Julie Miesch
- Department of Biochemistry, University of Geneva, Geneva1211, Switzerland
| | - Robert T. Wimbish
- Department of Biochemistry, University of Geneva, Geneva1211, Switzerland
| | | | - Charlotte Aumeier
- Department of Biochemistry, University of Geneva, Geneva1211, Switzerland
| |
Collapse
|
7
|
Sahu S, Chauhan P, Lumen E, Moody K, Peddireddy K, Mani N, Subramanian R, Robertson-Anderson R, Wolfe AJ, Ross JL. Interplay of self-organization of microtubule asters and crosslinking protein condensates. PNAS NEXUS 2023; 2:pgad231. [PMID: 37497046 PMCID: PMC10367440 DOI: 10.1093/pnasnexus/pgad231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
The cytoskeleton is a major focus of physical studies to understand organization inside cells given its primary role in cell motility, cell division, and cell mechanics. Recently, protein condensation has been shown to be another major intracellular organizational strategy. Here, we report that the microtubule crosslinking proteins, MAP65-1 and PRC1, can form phase separated condensates at physiological salt and temperature without additional crowding agents in vitro. The size of the droplets depends on the concentration of protein. MAP65 condensates are liquid at first and can gelate over time. We show that these condensates can nucleate and grow microtubule bundles that form asters, regardless of the viscoelasticity of the condensate. The droplet size directly controls the number of projections in the microtubule asters, demonstrating that the MAP65 concentration can control the organization of microtubules. When gel-like droplets nucleate and grow asters from a shell of tubulin at the surface, the microtubules are able to re-fluidize the MAP65 condensate, returning the MAP65 molecules to solution. This work implies that there is an interplay between condensate formation from microtubule-associated proteins, microtubule organization, and condensate dissolution that could be important for the dynamics of intracellular organization.
Collapse
Affiliation(s)
- Sumon Sahu
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- Department of Physics, New York University, New York, NY 10003, USA
| | - Prashali Chauhan
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Ellie Lumen
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY 13084, USA
| | - Kelsey Moody
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | | | - Nandini Mani
- Massachusetts General Hospital, Boston, MA 02115, USA
| | | | | | - Aaron J Wolfe
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Jennifer L Ross
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
8
|
Biomolecular condensation involving the cytoskeleton. Brain Res Bull 2023; 194:105-117. [PMID: 36690162 DOI: 10.1016/j.brainresbull.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Biomolecular condensation of proteins contributes to the organization of the cytoplasm and nucleoplasm. A number of condensation processes appear to be directly involved in regulating the structure, function and dynamics of the cytoskeleton. Liquid-liquid phase separation of cytoskeleton proteins, together with polymerization modulators, promotes cytoskeletal fiber nucleation and branching. Furthermore, the attachment of protein condensates to the cytoskeleton can contribute to cytoskeleton stability and organization, regulate transport, create patterns of functional reaction containers, and connect the cytoskeleton with membranes. Surface-bound condensates can exert and buffer mechanical forces that give stability and flexibility to the cytoskeleton, thus, may play a large role in cell biology. In this review, we introduce the concept and role of cellular biomolecular condensation, explain its special function on cytoskeletal fiber surfaces, and point out potential definition and experimental caveats. We review the current literature on protein condensation processes related to the actin, tubulin, and intermediate filament cytoskeleton, and discuss some of them in the context of neurobiology. In summary, we provide an overview about biomolecular condensation in relation to cytoskeleton structure and function, which offers a base for the exploration and interpretation of cytoskeletal condensates in neurobiology.
Collapse
|
9
|
Tension of plus-end tracking protein Clip170 confers directionality and aggressiveness during breast cancer migration. Cell Death Dis 2022; 13:856. [PMID: 36209218 PMCID: PMC9547975 DOI: 10.1038/s41419-022-05306-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
The microtubule (MT) plus-end binding protein Clip170 is associated closely with breast cancer invasion and migration. In this study, Clip170 tension observed by a newly designed cpstFRET tension probe was suggested to be positive related to breast cancer aggressiveness, which could be regulated by α-tubulin detyrosination-induced MT disassembly. Clip170 phosphorylation induced by Ribosomal protein S6 kinase (RSK) could also increase its tension and promote the conversion of a discrete comet-like Clip-170 distribution into a spotty pattern during cancer metastasis. Heightened Clip170 tension was correlated with the formation of cortactin-associated filopodia and lamellipodia, and then promoted invasion and metastasis both in vitro and in vivo. Meanwhile, Clip170 tension enhanced at the leading edge in directional migration, accompanying with IQGAP1 subcellular distribution variation. Our work indicates that the malignancy and directionality during breast cancer migration depend on the magnitude and polarization of Clip170 tension, and we suggest Clip170 tension as a new potential drug target for breast cancer therapy.
Collapse
|
10
|
Tomares DT, Whitlock S, Mann M, DiBernardo E, Childers WS. Repurposing Peptide Nanomaterials as Synthetic Biomolecular Condensates in Bacteria. ACS Synth Biol 2022; 11:2154-2162. [PMID: 35658421 DOI: 10.1021/acssynbio.2c00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide nanomaterials exhibit diverse applications in vitro, such as drug delivery. Here, we consider the utility of de novo peptide nanomaterials to organize biochemistry within the bacterial cytoplasm. Toward this goal, we discovered that ABC coiled-coil triblock peptides form gel-like biomolecular condensates with a csat of 10 μM in addition to their well-known hydrogel-forming capabilities. Expression of the coiled-coil triblock peptides in bacteria leads to cell pole accumulation via a nucleoid occlusion mechanism. We then provide a proof of principle that these synthetic biomolecular condensates could sequester clients at the cell pole. Finally, we demonstrate that triblock peptides and another biomolecular condensate, RNase E, phase-separate as distinct protein-rich assemblies in vitro and in vivo. These results reveal the potential of using peptide nanomaterials to divide the bacterial cytoplasm into distinct subcellular zones with future metabolic engineering and synthetic biology applications.
Collapse
Affiliation(s)
- Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sara Whitlock
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew Mann
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Emma DiBernardo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Wu YFO, Miller RA, Alberico EO, Huang YAP, Bryant AT, Nelson NT, Jonasson EM, Goodson HV. The CLIP-170 N-terminal domain binds directly to both F-actin and microtubules in a mutually exclusive manner. J Biol Chem 2022; 298:101820. [PMID: 35283190 PMCID: PMC9062740 DOI: 10.1016/j.jbc.2022.101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022] Open
Abstract
The cooperation between the actin and microtubule (MT) cytoskeletons is important for cellular processes such as cell migration and muscle cell development. However, a full understanding of how this cooperation occurs has yet to be sufficiently developed. The MT plus-end tracking protein CLIP-170 has been implicated in this actin-MT coordination by associating with the actin-binding signaling protein IQGAP1 and by promoting actin polymerization through binding with formins. Thus far, the interactions of CLIP-170 with actin were assumed to be indirect. Here, we demonstrate using high-speed cosedimentation assays that CLIP-170 can bind to filamentous actin (F-actin) directly. We found that the affinity of this binding is relatively weak but strong enough to be significant in the actin-rich cortex, where actin concentrations can be extremely high. Using CLIP-170 fragments and mutants, we show that the direct CLIP-170-F-actin interaction is independent of the FEED domain, the region that mediates formin-dependent actin polymerization, and that the CLIP-170 F-actin-binding region overlaps with the MT-binding region. Consistent with these observations, in vitro competition assays indicate that CLIP-170-F-actin and CLIP-170-MT interactions are mutually exclusive. Taken together, these observations lead us to speculate that direct CLIP-170-F-actin interactions may function to reduce the stability of MTs in actin-rich regions of the cell, as previously proposed for MT end-binding protein 1.
Collapse
Affiliation(s)
- Yueh-Fu O Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel A Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Emily O Alberico
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yaobing A P Huang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Annamarie T Bryant
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nora T Nelson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Erin M Jonasson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Holly V Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
12
|
Fang X, Svitkina TM. Adenomatous polyposis coli (APC) in cell migration. Eur J Cell Biol 2022; 101:151228. [DOI: 10.1016/j.ejcb.2022.151228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
|
13
|
Jijumon AS, Bodakuntla S, Genova M, Bangera M, Sackett V, Besse L, Maksut F, Henriot V, Magiera MM, Sirajuddin M, Janke C. Lysate-based pipeline to characterize microtubule-associated proteins uncovers unique microtubule behaviours. Nat Cell Biol 2022; 24:253-267. [PMID: 35102268 DOI: 10.1038/s41556-021-00825-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
The microtubule cytoskeleton forms complex macromolecular assemblies with a range of microtubule-associated proteins (MAPs) that have fundamental roles in cell architecture, division and motility. Determining how an individual MAP modulates microtubule behaviour is an important step in understanding the physiological roles of various microtubule assemblies. To characterize how MAPs control microtubule properties and functions, we developed an approach allowing for medium-throughput analyses of MAPs in cell-free conditions using lysates of mammalian cells. Our pipeline allows for quantitative as well as ultrastructural analyses of microtubule-MAP assemblies. Analysing 45 bona fide and potential mammalian MAPs, we uncovered previously unknown activities that lead to distinct and unique microtubule behaviours such as microtubule coiling or hook formation, or liquid-liquid phase separation along the microtubule lattice that initiates microtubule branching. We have thus established a powerful tool for a thorough characterization of a wide range of MAPs and MAP variants, thus opening avenues for the determination of mechanisms underlying their physiological roles and pathological implications.
Collapse
Affiliation(s)
- A S Jijumon
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Mamata Bangera
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Violet Sackett
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Laetitia Besse
- Institut Curie, Université Paris-Saclay, Centre d'Imagerie Multimodale INSERM US43, CNRS UMS2016, Orsay, France
| | - Fatlinda Maksut
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Veronique Henriot
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Maria M Magiera
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | | | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.
- Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| |
Collapse
|