1
|
da Silveira BP, Kahn SK, Legere RM, Bray JM, Cole-Pfeiffer HM, Golding MC, Cohen ND, Bordin AI. Enteral immunization with live bacteria reprograms innate immune cells and protects neonatal foals from pneumonia. Sci Rep 2025; 15:18156. [PMID: 40415003 DOI: 10.1038/s41598-025-02060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
Using a horse foal model, we show that enteral immunization of newborn foals with Rhodococcus equi overcomes neonatal vaccination challenges by reprogramming innate immune responses, inducing R. equi-specific adaptive humoral and cell-mediated immune responses and protecting foals against experimental pneumonia challenge. Foals were immunized twice via gavage of R. equi (immunized group) or saline (control group) at ages 1 and 3 days. At age 28 days, all foals were challenged intrabronchially with R. equi. Post-challenge, all 5 immunized foals remained healthy, whereas 67% (4/6) of control foals developed clinical pneumonia. Immunized foals exhibit changes in the epigenetic profile of blood monocytes, > 1,000 differentially-expressed genes in neutrophils, higher concentrations of R. equi-specific IgG1 and IgG4/7, and a higher number of IFN-γ producing lymphocytes in response to R. equi stimulation indicating T helper type 1 response compared to control foals. Together, our data indicate that early life exposure to R. equi in the gastrointestinal tract can modulate innate immune responses, generate specific antibodies and cell-mediated immunity, and protect against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Susanne K Kahn
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Rebecca M Legere
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jocelyne M Bray
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Hannah M Cole-Pfeiffer
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
McKinney C, Ambruso D. Non-Infectious Complications of Chronic Granulomatous Disease: Knowledge Gaps & Novel Treatment Considerations. Immunol Allergy Clin North Am 2025; 45:287-298. [PMID: 40287173 DOI: 10.1016/j.iac.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Chronic granulomatous disease (CGD) is a rare primary phagocytic immunodeficiency characterized by recurrent infections due to impaired NADPH oxidase activity. Balancing the need for additional immune suppression with the risk of infection in patients with CGD-associated inflammation can be difficult but increased understanding of the underlying pathophysiology may allow for more targeted and rational therapies. Current treatments for inflammatory complications include glucocorticoids, steroid-sparing immunosuppressive agents, antibiotics, and increasingly the use of targeted biologic agents. However, improved curative therapy strategies for patients with suboptimal donor options are needed and autologous gene therapy remains experimental.
Collapse
Affiliation(s)
- Christopher McKinney
- Department of Pediatrics, University of Colorado School of Medicine, Center for Cancer and Blood Disorders, Children's Hospital Colorado, 13123 East 16th Avenue, B115, Aurora, CO 80045, USA.
| | - Daniel Ambruso
- Department of Pediatrics, University of Colorado School of Medicine, Center for Cancer and Blood Disorders, Children's Hospital Colorado, 13123 East 16th Avenue, B115, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Madrid DMDC, Gu W, Karim SJI, Lowke MT, Kelleher AM, Warren WC, Driver JP. Single-cell analysis of pig lung leukocytes and their response to influenza infection and oseltamivir therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf032. [PMID: 40235089 DOI: 10.1093/jimmun/vkaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/24/2025] [Indexed: 04/17/2025]
Abstract
Despite pigs being an important species in influenza A virus (IAV) epidemiology and a reliable preclinical model for human IAV infections, many aspects of the porcine pulmonary immune system remain poorly understood. Here, we characterized the single-cell landscape of lung leukocytes of healthy pigs and then compared them to pigs infected with 2009 pandemic H1N1 IAV with or without oseltamivir antiviral therapy. Our data show conserved features as well as species-specific differences in cell types and cell states compared with human and mouse lung lymphocytes. IAV infection induced a robust antiviral transcriptional response in multiple lymphoid and myeloid cell types, as well as distinct patterns of cell-cell crosstalk. Oseltamivir treatment substantially reduced these responses. Together, our findings describe key events in the pulmonary anti-IAV response of pigs that open new avenues to develop IAV vaccines and therapies. They should also enable the better use of pigs as a model for human IAV infection and immunity.
Collapse
Affiliation(s)
- Darling Melany De Carvalho Madrid
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Weihong Gu
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Shah Jungy Ibna Karim
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Makenzie T Lowke
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, United States
| | - Wesley C Warren
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - John P Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Pesenti L, de Oliveira Formiga R, Tamassia N, Gardiman E, Chable de la Héronnière F, Gasperini S, Chicher J, Kuhn L, Hammann P, Le Gall M, Saraceni-Tasso G, Martin C, Hosmalin A, Breckler M, Hervé R, Decker P, Ladjemi MZ, Pène F, Burgel PR, Cassatella MA, Witko-Sarsat V. Neutrophils Display Novel Partners of Cytosolic Proliferating Cell Nuclear Antigen Involved in Interferon Response in COVID-19 Patients. J Innate Immun 2025; 17:154-175. [PMID: 40015257 PMCID: PMC11867639 DOI: 10.1159/000543633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions. INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions.
Collapse
Affiliation(s)
- Lucie Pesenti
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Morgane Le Gall
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Clémence Martin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Magali Breckler
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Roxane Hervé
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Patrice Decker
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Maha Zohra Ladjemi
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Frédéric Pène
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Intensive Medicine and Reanimation, AP-HP, Cochin Hospital, Paris, France
| | - Pierre-Régis Burgel
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Marco A. Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | |
Collapse
|
5
|
Wolach B, Gavrieli R, Wolach O, Salamon P, de Boer M, van Leeuwen K, Abuzaitoun O, Broides A, Gottesman G, Grisaru-Soen G, Hagin D, Marcus N, Rottem M, Schlesinger Y, Stauber T, Stepensky P, Dinur-Schejter Y, Zeeli T, Hanna S, Etzioni A, Frizinsky S, Somech R, Roos D, Lachover-Roth I. Genotype-phenotype correlations in chronic granulomatous disease: insights from a large national cohort. Blood 2024; 144:1300-1313. [PMID: 38905634 DOI: 10.1182/blood.2023022590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Neutrophils are the first line of defense against invading pathogens. Neutrophils execute and modulate immune responses by generating reactive oxygen species (ROS). Chronic granulomatous disease (CGD) is a primary immune deficiency disorder of phagocytes, caused by inherited mutations in the genes of the nicotinamide adenine dinucleotide phosphate reduced oxidase enzyme. These mutations lead to failure of ROS generation followed by recurrent bacterial and fungal infections, frequently associated with hyperinflammatory manifestations. We report a multicenter cumulative experience in diagnosing and treating patients with CGD. From 1986 to 2021, 2918 patients experiencing frequent infections were referred for neutrophil evaluation. Among them, 110 patients were diagnosed with CGD: 56 of Jewish ancestry, 48 of Arabic ancestry, and 6 of non-Jewish/non-Arabic ancestry. As opposed to other Western countries, the autosomal recessive (AR) CGD subtypes were predominant in Israel (71/110 patients). Thirty-nine patients had X-linked CGD, in most patients associated with severe infections (clinical severity score ≥3) and poor outcomes, presenting at a significantly earlier age than AR-CGD subtypes. The full spectrum of infections and hyperinflammatory manifestations is described. Six patients had hypomorphic mutations with significantly milder phenotype, clinical severity score ≤2, and better outcomes. Hematopoietic stem cell transplantation was implemented in 39 of 110 patients (35.5%). Successful engraftment was achieved in 92%, with 82% long-term survival and 71% full clinical recovery. CGD is a complex disorder requiring a multiprofessional team. Early identification of the genetic mutation is essential for prompt diagnosis, suitable management, and prevention.
Collapse
Affiliation(s)
- Baruch Wolach
- Division of Pediatrics, Pediatric Hematology Clinic, Kfar Saba, Israel
- Hemato-Immunology Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Gavrieli
- Division of Pediatrics, Pediatric Hematology Clinic, Kfar Saba, Israel
- Hemato-Immunology Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Wolach
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Pazit Salamon
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, Kfar Saba, Israel
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Arnon Broides
- Immunology Clinic, Soroka Medical Center, Beer Sheva, Israel
- Faculty of Health Sciences, Joyce and Irving Goldman Medical School, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Giora Gottesman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Division of Pediatrics, Meir Medical Center, Kfar Saba, Israel
| | - Galia Grisaru-Soen
- Hemato-Immunology Laboratory, Meir Medical Center, Kfar Saba, Israel
- Pediatric Infectious Diseases Unit, Dana-Dwek Children's Hospital, Sourasky Medical Center, Tel Aviv, Israel
| | - David Hagin
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Allergy and Clinical Immunology Unit, Department of Medicine, Sourasky Medical Center, Tel Aviv, Israel
| | - Nufar Marcus
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Allergy and Immunology Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Menachem Rottem
- Allergy Asthma and Immunology Service, Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Tali Stauber
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Polina Stepensky
- Department of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Medical Center, Jerusalem, Israel
| | - Yael Dinur-Schejter
- Department of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Medical Center, Jerusalem, Israel
- Allergy and Clinical Immunology Unit and The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Zeeli
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Suheir Hanna
- Ruth Children's Hospital and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amos Etzioni
- Ruth Children's Hospital and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shirly Frizinsky
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Raz Somech
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Idit Lachover-Roth
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
6
|
Moffat A, Gwyer Findlay E. Evidence for antigen presentation by human neutrophils. Blood 2024; 143:2455-2463. [PMID: 38498044 DOI: 10.1182/blood.2023023444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Neutrophils are the first migrating responders to sterile and infectious inflammation and act in a powerful but nonspecific fashion to kill a wide variety of pathogens. It is now apparent that they can also act in a highly discriminating fashion; this is particularly evident in their interactions with other cells of the immune system. It is clear that neutrophils are present during the adaptive immune response, interacting with T cells in complex ways that differ between tissue types and disease state. One of the ways in which this interaction is mediated is by neutrophil expression of HLA molecules and presentation of antigen to T cells. In mice, this is well established to occur with both CD4+ and CD8+ T cells. However, the evidence is less strong with human cells. Here, we assembled available evidence for human neutrophil antigen presentation. We find that the human cells are clearly able to upregulate HLA-DR and costimulatory molecules; are able to process protein antigen into fragments recognized by T cells; are able to enter lymph node T cell zones; and, in vitro, are able to present antigen to memory T cells, inducing proliferation and cytokine production. However, many questions remain, particularly concerning whether the cell-cell interactions can last for sufficient time to trigger naïve T cells. These experiments are now critical as we unravel the complex interactions between these cells and their importance for the development of human immunity.
Collapse
Affiliation(s)
- Angus Moffat
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Emily Gwyer Findlay
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
7
|
Casanova JL, MacMicking JD, Nathan CF. Interferon- γ and infectious diseases: Lessons and prospects. Science 2024; 384:eadl2016. [PMID: 38635718 DOI: 10.1126/science.adl2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06477, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
8
|
Blasi-Brugué C, Martínez-Flórez I, Baxarias M, del Rio-Velasco J, Solano-Gallego L. Exploring the Relationship between Neutrophil Activation and Different States of Canine L. infantum Infection: Nitroblue Tetrazolium Test and IFN-γ. Vet Sci 2023; 10:572. [PMID: 37756094 PMCID: PMC10535614 DOI: 10.3390/vetsci10090572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
This study aimed to investigate the role of neutrophils in canine leishmaniosis by assessing neutrophil activation and its relationship with different states of L. infantum infection and antibody and IFN-γ production. Dogs were categorized into five groups: healthy-seronegative (n = 25), healthy-seropositive (n = 21), LeishVet-stage I (n = 25), Leishvet-stage II (n = 41), and LeishVet-stage III-IV (n = 16). Results of the nitroblue tetrazolium reduction test (NBT) showed significantly higher neutrophil activation in stage I (median:17.17, range: [7.33-31.50]%) compared to in healthy-seronegative (4.10 [1.20-18.00]%), healthy-seropositive (7.65 [3.98-21.74]%), stage II (6.50 [1.50-28.70]%), and stage III-IV (7.50 [3.00-16.75]%) groups (p < 0.0001). Healthy-seropositive dogs also displayed higher values than all groups except stage I. Stages II and III-IV did not show significant differences compared to healthy-seronegative. Regarding IFN-γ, stage I dogs had higher concentrations (median:127.90, range: [0-3998.00] pg/mL) than healthy-seronegative (0 [0-109.50] pg/mL) (p = 0.0002), stage II (9.00 [0-5086.00] pg/mL) (p = 0.045), and stage III-IV (3.50 [80.00-548.80] pg/mL) (p = 0.02) dogs. Stage II dogs showed increased IFN-γ compared to healthy-seronegative dogs (p = 0.015), while stage III-IV dogs had no significant differences compared to healthy-seronegative dogs (p = 0.12). Healthy-seropositive dogs had elevated IFN-γ concentrations compared to healthy-seronegative dogs (p = 0.001) and dogs in stage III-IV (p = 0.03). In conclusion, neutrophil activation was higher in dogs with mild disease and healthy-seropositive dogs, and a relationship between neutrophil activation and the production of IFN-γ was found.
Collapse
Affiliation(s)
| | | | | | | | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.B.-B.); (I.M.-F.); (M.B.); (J.d.R.-V.)
| |
Collapse
|
9
|
Kroon EE, Correa-Macedo W, Evans R, Seeger A, Engelbrecht L, Kriel JA, Loos B, Okugbeni N, Orlova M, Cassart P, Kinnear CJ, Tromp GC, Möller M, Wilkinson RJ, Coussens AK, Schurr E, Hoal EG. Neutrophil extracellular trap formation and gene programs distinguish TST/IGRA sensitization outcomes among Mycobacterium tuberculosis exposed persons living with HIV. PLoS Genet 2023; 19:e1010888. [PMID: 37616312 PMCID: PMC10470897 DOI: 10.1371/journal.pgen.1010888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Persons living with HIV (PLWH) have an increased risk for tuberculosis (TB). After prolonged and repeated exposure, some PLWH never develop TB and show no evidence of immune sensitization to Mycobacterium tuberculosis (Mtb) as defined by persistently negative tuberculin skin tests (TST) and interferon gamma release assays (IGRA). This group has been identified and defined as HIV+ persistently TB, tuberculin and IGRA negative (HITTIN). To investigate potential innate mechanisms unique to individuals with the HITTIN phenotype we compared their neutrophil Mtb infection response to that of PLWH, with no TB history, but who test persistently IGRA positive, and tuberculin positive (HIT). Neutrophil samples from 17 HITTIN (PMNHITTIN) and 11 HIT (PMNHIT) were isolated and infected with Mtb H37Rv for 1h and 6h. RNA was extracted and used for RNAseq analysis. Since there was no significant differential transcriptional response at 1h between infected PMNHITTIN and PMNHIT, we focused on the 6h timepoint. When compared to uninfected PMN, PMNHITTIN displayed 3106 significantly upregulated and 3548 significantly downregulated differentially expressed genes (DEGs) (absolute cutoff of a log2FC of 0.2, FDR < 0.05) whereas PMNHIT demonstrated 3816 significantly upregulated and 3794 significantly downregulated DEGs following 6h Mtb infection. Contrasting the log2FC 6h infection response to Mtb from PMNHITTIN against PMNHIT, 2285 genes showed significant differential response between the two groups. Overall PMNHITTIN had a lower fold change response to Mtb infection compared to PMNHIT. According to pathway enrichment, Apoptosis and NETosis were differentially regulated between HITTIN and HIT PMN responses after 6h Mtb infection. To corroborate the blunted NETosis transcriptional response measured among HITTIN, fluorescence microscopy revealed relatively lower neutrophil extracellular trap formation and cell loss in PMNHITTIN compared to PMNHIT, showing that PMNHITTIN have a distinct response to Mtb.
Collapse
Affiliation(s)
- Elouise E. Kroon
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Rachel Evans
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department Medical Biology (WEHI), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Allison Seeger
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Lize Engelbrecht
- Central Analytical Facilities, Microscopy Unit, Stellenbosch University, Cape Town, South Africa
| | - Jurgen A. Kriel
- Central Analytical Facilities, Microscopy Unit, Stellenbosch University, Cape Town, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Naomi Okugbeni
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Pauline Cassart
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
| | - Craig J. Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Gerard C. Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, University of Stellenbosch, Cape Town, South Africa
- SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, University of Stellenbosch, Cape Town, South Africa
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, South Africa
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department Medical Biology (WEHI), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Eileen G. Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
10
|
Efficacy and Safety of Interferon-Gamma in Chronic Granulomatous Disease: a Systematic Review and Meta-analysis. J Clin Immunol 2023; 43:578-584. [PMID: 36385358 DOI: 10.1007/s10875-022-01391-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a primary immunodeficiency with increased susceptibility to several bacteria, fungi, and mycobacteria, caused by defective or null superoxide production by the NADPH oxidase enzymatic complex. Accepted treatment consists mainly of antimicrobial prophylaxis. The role of human recombinant subcutaneous interferon-gamma (IFNγ) is less clear since the available evidence on its efficacy derives mainly from a single clinical trial that has been challenged. OBJECTIVE We aimed to assess the efficacy and safety of IFNγ as an added treatment for CGD when compared to antimicrobial prophylaxis alone. METHODS A literature search was conducted using MeSH terms "Chronic granulomatous disease" AND ("interferon gamma" OR "interferon-gamma"), as well as antibiotics, placebo, no therapy, clinical trial, and trial, on MEDLINE, EMBASE, LILACS, WHOs, CENTRAL, KOREAMED, The Cochrane Library, clinicaltrials.gov, and abstracts from meetings, from 1976 to July 2022. We included clinical trials (CT) and prospective follow-up studies and registered the number of serious infections (requiring hospitalization and IV antibiotics) and deaths, adverse events, and autoimmune complications, in patients treated for CGD with antimicrobial prophylaxis plus IFN-γ, versus antimicrobial prophylaxis alone. We assessed the quality of the studies using risk of bias and STROBE. We performed a meta-analysis by calculating both Peto's odds ratio (OR) and risk reduction (RR) through the Mantel-Haenszel method with a fixed-effect model, using Review Manager 5.4, and we reported the number needed to treat (NNT). RESULTS We identified 54 matches from databases and 4 from other sources. We excluded 12 duplicates, 7 titles, and 9 abstracts for relevance, after which we had 30 eligible studies. Twenty-four were then excluded after reading the full text. Six papers were included: one randomized CT and 5 follow-up studies. In total, 324 patients with Chronic granulomatous disease were followed for 319 months under treatment with antibiotic prophylaxis plus interferon-gamma or placebo (or antibiotic prophylaxis alone), reported between the years 1991 and 2016. Three of the studies included a control group, allowing for the aggregate analysis of efficacy (prevention of serious infections). The aggregate OR was 0.49, with a 95% confidence interval of 0.19 to 1.23. The risk ratio for serious infection was 0.56 (95%CI 0.35-0.90) under IFN-γ. The meta-analysis thus favors interferon-gamma for a risk reduction of serious infection. DISCUSSION The results from this meta-analysis support the use of IFN-γ in the treatment of patients with CGD. However, we found insufficient clinical evidence and believe more clinical trials are needed to better assess the efficacy and long-term safety of IFN-γ.
Collapse
|
11
|
Joshi I, Carney WP, Rock EP. Utility of monocyte HLA-DR and rationale for therapeutic GM-CSF in sepsis immunoparalysis. Front Immunol 2023; 14:1130214. [PMID: 36825018 PMCID: PMC9942705 DOI: 10.3389/fimmu.2023.1130214] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Sepsis, a heterogeneous clinical syndrome, features a systemic inflammatory response to tissue injury or infection, followed by a state of reduced immune responsiveness. Measurable alterations occur in both the innate and adaptive immune systems. Immunoparalysis, an immunosuppressed state, associates with worsened outcomes, including multiple organ dysfunction syndrome, secondary infections, and increased mortality. Multiple immune markers to identify sepsis immunoparalysis have been proposed, and some might offer clinical utility. Sepsis immunoparalysis is characterized by reduced lymphocyte numbers and downregulation of class II human leukocyte antigens (HLA) on innate immune monocytes. Class II HLA proteins present peptide antigens for recognition by and activation of antigen-specific T lymphocytes. One monocyte class II protein, mHLA-DR, can be measured by flow cytometry. Downregulated mHLA-DR indicates reduced monocyte responsiveness, as measured by ex-vivo cytokine production in response to endotoxin stimulation. Our literature survey reveals low mHLA-DR expression on peripheral blood monocytes correlates with increased risks for infection and death. For mHLA-DR, 15,000 antibodies/cell appears clinically acceptable as the lower limit of immunocompetence. Values less than 15,000 antibodies/cell are correlated with sepsis severity; and values at or less than 8000 antibodies/cell are identified as severe immunoparalysis. Several experimental immunotherapies have been evaluated for reversal of sepsis immunoparalysis. In particular, sargramostim, a recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF), has demonstrated clinical benefit by reducing hospitalization duration and lowering secondary infection risk. Lowered infection risk correlates with increased mHLA-DR expression on peripheral blood monocytes in these patients. Although mHLA-DR has shown promising utility for identifying sepsis immunoparalysis, absence of a standardized, analytically validated method has thus far prevented widespread adoption. A clinically useful approach for patient inclusion and identification of clinically correlated output parameters could address the persistent high unmet medical need for effective targeted therapies in sepsis.
Collapse
Affiliation(s)
- Ila Joshi
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States,*Correspondence: Ila Joshi,
| | - Walter P. Carney
- Walt Carney Biomarkers Consulting, LLC., North Andover, MA, United States
| | - Edwin P. Rock
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States
| |
Collapse
|