1
|
Pourbakhsh M, Jabraili M, Akbari M, Jaymand M, Jahanban Esfahlan R. Poloxamer-based drug delivery systems: Frontiers for treatment of solid tumors. Mater Today Bio 2025; 32:101727. [PMID: 40275957 PMCID: PMC12018049 DOI: 10.1016/j.mtbio.2025.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Pluronics or poloxamers are a type of triblock copolymer. These non-ionic molecules consist of a hydrophobic block embedded in two hydrophilic parts. Pluronics have become favorite materials for use in the field of biomedical research due to having favorable physicochemical and biological properties such as amphiphilicity, solubility in ionic and non-ionic solutions, biocompatibility, biodegradability, self-assembly and low toxicity. The scope of these applications can vary from tissue engineering to drug delivery. One of the important uses of pluronics is to deliver drugs to various cancer cells. Herein we first provide an overview on variety of ploronic biomaterials. And then intensively evaluate their potential as drug delivery systems (DDSs) for treatment of solid tumors with special focus on breast cancers. After explaining the pros and cons of pluronics, the current status in clinical settings and future prospects are highlighted.
Collapse
Affiliation(s)
- Mehdi Pourbakhsh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Jabraili
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rana Jahanban Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Zhang Z, Jin M, Yang X, Zhu H, Li H, Yang Q. Particulate platform for pulmonary drug delivery: Recent advances of formulation and fabricating strategies. Int J Pharm 2025; 676:125601. [PMID: 40250501 DOI: 10.1016/j.ijpharm.2025.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Pulmonary drug delivery for managing respiratory diseases has attained a significant maturity level and holds substantial potential for applications in treating systemic diseases. Advancements in pulmonary delivery techniques have driven the innovative development of dry powder inhalers (DPIs), specifically engineered to optimize the efficacy of pulmonary drug delivery. This review examines recent progress in formulation and manufacturing strategies of inhalable dry powder, focusing on prescription design and fabrication approaches for advanced particulate systems. These include the integration of cutting-edge excipients into conventional formulations, nano-based delivery system, composite particles, and a blend of traditional and next-generation processing techniques, all contributing to enhanced drug delivery efficiency and bioavailability. Additionally, this review discusses the latest advancements in DPI devices. This review aims to provide a clear perspective on emerging inhalable dry powder formulation and processing trends for pulmonary delivery, highlighting the critical role of novel particulate platform in advancing pulmonary drug delivery systems.
Collapse
Affiliation(s)
- Zijia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengya Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyu Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Heng Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijie Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
3
|
George S, Saju H, Jaikumar T, Raj R, Nisarga R, Sontakke S, Sangshetti J, Paul MK, Arote RB. Deciphering a crosstalk between biological cues and multifunctional nanocarriers in lung cancer therapy. Int J Pharm 2025; 674:125395. [PMID: 40064384 DOI: 10.1016/j.ijpharm.2025.125395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
In recent years, the utilization of nanocarriers has significantly broadened across a diverse spectrum of biomedical applications. However, the clinical translation of these tiny carriers is limited and encounters hurdles, particularly in the intricate landscape of the tumor microenvironment. Lung cancer poses unique hurdles for nanocarrier design. Multiple physiological barriers hinder the efficient drug delivery to the lungs, such as the complex anatomy of the lung, the presence of mucus, immune responses, and rapid clearance mechanisms. Overcoming these obstacles necessitates a targeted approach that minimizes off-target effects while effectively penetrating nanoparticles/cargo into specific lung tissues or cells. Furthermore, understanding the cellular uptake mechanisms of these nano carriers is also essential. This knowledge aids in developing nanocarriers that efficiently enter cells and transfer their payload for the most effective therapeutic outcome. Hence, a thorough understanding of biological cues becomes crucial in designing multifunctional nanocarriers tailored for treating lung cancer. This review explores the essential biological cues critical for developing a flexible nanocarrier specifically intended to treat lung cancer. Additionally, it discusses advancements in nanotheranostics in lung cancer.
Collapse
Affiliation(s)
- Sharon George
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Hendry Saju
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Tharun Jaikumar
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Reshma Raj
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - R Nisarga
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Samruddhi Sontakke
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad 431001, India
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India; Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), 90095 CA, USA.
| | - Rohidas B Arote
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India; Dental Research Institute, School of Dentistry, Seoul National University, Gwanak-ku, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Sharma U, Sahni PK, Sharma B, Gupta M, Kaur D, Mathkor DM, Haque S, Khatoon S, Tuli HS, Mishra A, Ahmad F. Silymarin: a promising modulator of apoptosis and survival signaling in cancer. Discov Oncol 2025; 16:66. [PMID: 39836338 PMCID: PMC11751200 DOI: 10.1007/s12672-025-01800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years. Silymarin, a polyphenolic flavonoid with a variety of anti-cancerous properties, was isolated from the plant Silybum marianum. The present review centres on the function of silymarin in controlling important signalling pathways related to apoptosis and survival, such as the JAK/STAT pathway, PI3K/Akt/mTOR, Bcl-2/Bax, and Fas/FasL. It is emphasised that silymarin's capacity to target these pathways is a key mechanism behind its anticancer effects against a variety of malignancies. By upregulating pro-apoptotic and downregulating anti-apoptotic proteins, silymarin controls a series of events that result in tumor suppression and cell death in a variety of cancer types. The low bioavailability and limited therapeutic efficacy of silymarin are improved by the application of various nano-delivery systems. As efficient carriers, liposomes, polymeric micelles, lipid- and metal-based nanoparticles, increase the solubility and distribution of silymarin in target tissues. Lastly, a number of preclinical studies that provide a basis for upcoming therapeutic interventions are highlighted in the review, providing encouraging directions for additional research and advancement.
Collapse
Affiliation(s)
- Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Praveen Kumar Sahni
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Bunty Sharma
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Darin Mansor Mathkor
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Universidad Espiritu Santo, Samborondon, Ecuador
| | - Sabiha Khatoon
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Astha Mishra
- Department of Optometry, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
5
|
Hirad AH, Alarfaj AA, Ravindran B, Narasimhamoorthi SP. Betanin inspired zinc oxide nanoparticles: The potential antioxidant and anticancer activity against human lung cancer cell line (A549). Biochem Biophys Res Commun 2025; 742:151019. [PMID: 39642708 DOI: 10.1016/j.bbrc.2024.151019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND INFORMATION Lung cancer is the most frequently reported disease on a global scale. The bioactive substances are less successful in specifically destroying cancer cells. To prevent early inactivation and ensure targeted delivery of bioactive chemicals to cancer cells. Betanin is known as nitrogenous water-soluble molecule which possess anti-inflammatory, hepatoprotective, antioxidant, and anticancer properties. AIM OF THE STUDY This work evaluates the anti-cancer and anti-oxidant properties of Betanin coated zinc oxide nanoparticles on the A549 lung cancer cell line. MATERIALS AND METHODS In the current work, Betanin coated Zinc oxide nanoparticles (Betanin coated ZnO NPs) were made utilizing Betanin, a phytochemical. SEM, FTIR, DLS, and UV-Vis were used to evaluate their properties. Trypan blue and MTT were used to confirm cell survival and cytotoxicity of ZnO nanoparticles at various dosages. The morphological evaluation of A549 cells was investigated by phase contrast microscopy and apoptosis by propidium iodide staining. The membrane integrity of mitochondria was investigated by rhodamine 123 staining and observed under fluorescence microscope. The anti-oxidant ability of ZnO nanoparticles was analyzed by level of catalase, glutathione, nitric oxide, lipid peroxidation, and superoxide dismutase using UV spectrophotometric analysis. Studies on gene expression (Bcl2, P53and BAX) were conducted to assess the molecular mechanism of apoptosis mediated by synthesized nanoparticle and level of matrix metalloproteinase -2 (MMP-2) by gelatin zymography. RESULTS At the peak of 383 nm in the UV band, zinc oxide NP synthesis was confirmed. The FT-IR data demonstrated that zinc oxide nanoparticles were effectively coated with Betanin and by dynamic light scattering analysis confirmed particle size to be 100.8 nm. The presence of cubic, spherical, and platelet-shaped zinc oxide nanoparticles has been observed by SEM analysis. The nanoparticles of zinc oxide (ZnO) were synthesized chemically and exhibited decreasing cell viability and increasing cytotoxicity and apoptosis in dose dependent manner. The levels of LPO activity increased significantly and NO, antioxidant enzymes (GSH, SOD, and CAT) activity decreased significantly (P <0.0001). Our results demonstrated that A549 cells treated with Betanin loaded ZnO nanoparticles to prevent oxidation by scavenging free radicals and increased levels of gene expression related to apoptotic proteins BAX, p53 and decreased level of expression in Bcl2. Further, level of matrix metalloproteinase -2 (MMP-2) decreased with increase in concentration of nanoparticle. CONCLUSION As per the research described above, lung cancer cells were effectively targeted by the anticancer and antioxidant abilities of ZnO nanoparticles inspired by Betanin (A549).
Collapse
Affiliation(s)
- Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box.2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box.2455, Riyadh, 11451, Saudi Arabia
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Shilpa Perumal Narasimhamoorthi
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Villapiano F, Piccioni M, D’Aria F, Crispi S, Rassu G, Giunchedi P, Gavini E, Giancola C, Serri C, Biondi M, Mayol L. Silibinin-Loaded Amphiphilic PLGA-Poloxamer Nanoparticles: Physicochemical Characterization, Release Kinetics, and Bioactivity Evaluation in Lung Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5480. [PMID: 39597304 PMCID: PMC11595691 DOI: 10.3390/ma17225480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Despite its potential against several carcinomas, the pharmacological efficacy of silibinin (SLB) is hampered by poor solubility, absorption, and oral bioavailability. To face these issues, we developed polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) coated with hydrophilic polyethene oxide (PEO) for controlled and targeted SLB delivery. NPs were produced at two different SLB loadings and presented a spherical shape with smooth surfaces and stable size in water and cell culture medium. The encapsulation efficiencies were found to be >84%, and thermal analysis revealed that the SLB was present in an amorphous state within the NPs. In vitro SLB release experiments revealed that at the lowest SLB loading, desorption of the active molecule from the surface or nanoporosities of the NPs mainly dictates release. In contrast, at the highest SLB loading, diffusion primarily regulates release, with negligible contributions from other mechanisms. Cell experiments showed that, compared with the free drug, SLB loaded in the produced NPs significantly increased the bioactivity against H1299, H1975, and H358 cells.
Collapse
Affiliation(s)
- Fabrizio Villapiano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Motesano 49, 80131 Naples, Italy; (F.V.); (F.D.); (C.G.)
| | - Miriam Piccioni
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), 80100 Naples, Italy; (M.P.); (S.C.)
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, Via Domenico Motesano 49, 80131 Naples, Italy; (F.V.); (F.D.); (C.G.)
| | - Stefania Crispi
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), 80100 Naples, Italy; (M.P.); (S.C.)
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (G.R.); (P.G.); (E.G.)
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (G.R.); (P.G.); (E.G.)
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (G.R.); (P.G.); (E.G.)
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Via Domenico Motesano 49, 80131 Naples, Italy; (F.V.); (F.D.); (C.G.)
| | - Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (G.R.); (P.G.); (E.G.)
| | - Marco Biondi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Motesano 49, 80131 Naples, Italy; (F.V.); (F.D.); (C.G.)
| | - Laura Mayol
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 80131 Naples, Italy;
| |
Collapse
|
7
|
Alexandru I, Davidescu L, Motofelea AC, Ciocarlie T, Motofelea N, Costachescu D, Marc MS, Suppini N, Șovrea AS, Coșeriu RL, Bondor DA, Bobeică LG, Crintea A. Emerging Nanomedicine Approaches in Targeted Lung Cancer Treatment. Int J Mol Sci 2024; 25:11235. [PMID: 39457017 PMCID: PMC11508987 DOI: 10.3390/ijms252011235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Lung cancer, the leading cause of cancer-related deaths worldwide, is characterized by its aggressive nature and poor prognosis. As traditional chemotherapy has the disadvantage of non-specificity, nanomedicine offers innovative approaches for targeted therapy, particularly through the development of nanoparticles that can deliver therapeutic agents directly to cancer cells, minimizing systemic toxicity and enhancing treatment efficacy. VEGF and VEGFR are shown to be responsible for activating different signaling cascades, which will ultimately enhance tumor development, angiogenesis, and metastasis. By inhibiting VEGF and VEGFR signaling pathways, these nanotherapeutics can effectively disrupt tumor angiogenesis and proliferation. This review highlights recent advancements in nanoparticle design, including lipid-based, polymeric, and inorganic nanoparticles, and their clinical implications in improving lung cancer outcomes, exploring the role of nanomedicine in lung cancer diagnoses and treatment.
Collapse
Affiliation(s)
- Isaic Alexandru
- Department X of General Surgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Lavinia Davidescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Tudor Ciocarlie
- Department VII Internal Medicine II, Discipline of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Nadica Motofelea
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
| | - Dan Costachescu
- Radiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Monica Steluta Marc
- Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (M.S.M.); (N.S.)
| | - Noemi Suppini
- Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (M.S.M.); (N.S.)
| | - Alina Simona Șovrea
- Department of Morphological Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Răzvan-Lucian Coșeriu
- Department of Microbiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu-Mures, Romania;
| | - Daniela-Andreea Bondor
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| | - Laura-Gabriela Bobeică
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| | - Andreea Crintea
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| |
Collapse
|
8
|
Kassaee SN, Richard D, Ayoko GA, Islam N. Lipid polymer hybrid nanoparticles against lung cancer and their application as inhalable formulation. Nanomedicine (Lond) 2024; 19:2113-2133. [PMID: 39143915 PMCID: PMC11486133 DOI: 10.1080/17435889.2024.2387530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer is a leading cause of global cancer mortality, often treated with chemotherapeutic agents. However, conventional approaches such as oral or intravenous administration of drugs yield low bioavailability and adverse effects. Nanotechnology has unlocked new gateways for delivering medicine to their target sites. Lipid-polymer hybrid nanoparticles (LPHNPs) are one of the nano-scaled delivery platforms that have been studied to exploit advantages of liposomes and polymers, enhancing stability, drug loading, biocompatibility and controlled release. Pulmonary administration of drug-loaded LPHNPs enables direct lung deposition, rapid onset of action and heightened efficacy at low doses of drugs. In this manuscript, we will review the potential of LPHNPs in management of lung cancer through pulmonary administration.
Collapse
Affiliation(s)
- Seyedeh Negin Kassaee
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Derek Richard
- Centre for Genomics & Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Godwin A. Ayoko
- School of Chemistry & Physics & Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| |
Collapse
|
9
|
Karimi Z, Zarifkar A, Mirzaei E, Dianatpour M, Dara M, Aligholi H. Therapeutic effects of nanosilibinin in valproic acid-zebrafish model of autism spectrum disorder: Focusing on Wnt signaling pathway and autism spectrum disorder-related cytokines. Int J Dev Neurosci 2024; 84:454-468. [PMID: 38961588 DOI: 10.1002/jdn.10348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024] Open
Abstract
In this study, we delved into the intricate world of autism spectrum disorder (ASD) and its connection to the disturbance in the Wnt signaling pathway and immunological abnormalities. Our aim was to evaluate the impact of silibinin, a remarkable modulator of both the Wnt signaling pathway and the immune system, on the neurobehavioral and molecular patterns observed in a zebrafish model of ASD induced by valproic acid (VPA). Because silibinin is a hydrophobic molecule and highly insoluble in water, it was used in the form of silibinin nanoparticles (nanosilibinin, NS). After assessing survival, hatching rate, and morphology of zebrafish larvae exposed to different concentrations of NS, the appropriate concentrations were chosen. Then, zebrafish embryos were exposed to VPA (1 μM) and NS (100 and 200 μM) at the same time for 120 h. Next, anxiety and inattentive behaviors and the expression of CHD8, CTNNB, GSK3beta, LRP6, TNFalpha, IL1beta, and BDNF genes were assessed 7 days post fertilization. The results indicated that higher concentrations of NS had adverse effects on survival, hatching, and morphological development. The concentrations of 100 and 200 μM of NS could ameliorate the anxiety-like behavior and learning deficit and decrease ASD-related cytokines (IL1beta and TNFalpha) in VPA-treated larvae. In addition, only 100 μM of NS prevented raising the gene expression of Wnt signaling-related factors (CHD8, CTNNB, GSK3beta, and LRP6). In conclusion, NS treatment for the first 120 h showed therapeutic effect on an autism-like phenotype probably via reducing the expression of pro-inflammatory cytokines genes and changing the expression of Wnt signaling components genes.
Collapse
Affiliation(s)
- Zahra Karimi
- Department of Neuroscience, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Guérin M, Lepeltier E. Nanomedicines via the pulmonary route: a promising strategy to reach the target? Drug Deliv Transl Res 2024; 14:2276-2297. [PMID: 38587757 DOI: 10.1007/s13346-024-01590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Over the past decades, research on nanomedicines as innovative tools in combating complex pathologies has increased tenfold, spanning fields from infectiology and ophthalmology to oncology. This process has further accelerated since the introduction of SARS-CoV-2 vaccines. When it comes to human health, nano-objects are designed to protect, transport, and improve the solubility of compounds to allow the delivery of active ingredients on their targets. Nanomedicines can be administered by different routes, such as intravenous, oral, intramuscular, or pulmonary routes. In the latter route, nanomedicines can be aerosolized or nebulized to reach the deep lung. This review summarizes existing nanomedicines proposed for inhalation administration, from their synthesis to their potential clinical use. It also outlines the respiratory organs, their structure, and particularities, with a specific emphasis on how these factors impact the administration of nanomedicines. Furthermore, the review addresses the organs accessible through pulmonary administration, along with various pathologies such as infections, genetic diseases, or cancer that can be addressed through inhaled nanotherapeutics. Finally, it examines the existing devices suitable for the aerosolization of nanomedicines and the range of nanomedicines in clinical development.
Collapse
Affiliation(s)
- Mélina Guérin
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, 49000, Angers, France
| | - Elise Lepeltier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, 49000, Angers, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
11
|
Al Alabdullah MAA, Goodarzi MT, Homayouni Tabrizi M. The silibinin-loaded Zein-β cyclodextrin nano-carriers (SZBC-NCs) as a novel selective cancer cell drug delivery system in HT-29 cell line. Sci Rep 2024; 14:14769. [PMID: 38926533 PMCID: PMC11208413 DOI: 10.1038/s41598-024-65881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024] Open
Abstract
Entrapping phytochemical bioactive compounds into nano-structured biocompatible polymers has been successfully utilized for improving cancer treatment efficiency. Silibinin is a potent compound that shows promising anticancer properties. In the present study, the Zein-β-cyclodextrin complex was used to encapsulate silibinin and evaluate the induced cell death type and cytotoxic impacts on human cancer cells. The silibinin-loaded Zein-β cyclodextrin nano-carriers (SZBC-NCs) were synthesized utilizing a gradual ultrasound-mediated homogenization technique and characterized by Zeta potential, DLS, FESEM, and FTIR analysis. The SZBC-NCs' antioxidant activity was studied by conducting ABTS and DPPH radical scavenging assays. Finally, the SZBC-NCs selective toxicity and cellular death induction mechanism were studied on the HT-29 and AGS cancer cells by measuring the cell survival and apoptotic gene (Caspase 3, 9), respectively, which were verified by conducting the DAPI staining analysis. The negatively charged (- 27.47 mV) nanoparticles (286.55 nm) showed significant ABTS and DPPH radical scavenging activity. Moreover, the remarkable decrease in the IC50 concentrations of the SZBC-NCs among the HT-29 and AGS cancer cell lines exhibited their selective cytotoxic potential. Also, the overexpressed apoptotic (Caspases 3 and 9) and down-regulated necrotic (NFKB) gene expressions following the SZBC-NCs treatment doses indicated the apoptotic activity of SZBC-NCs, which were verified by the increased apoptotic morphology of the DAPI-stained HT-29 cancer cells. The antioxidant and colon cancer cell-related apoptotic activity of the SZBC-NCs make it an appropriate anti-colon cancer nano delivery system. Therefore, they can potentially be used as a safe efficient colon cancer treatment strategy. However, further in vivo experiments including animal cancer models have to be studied.
Collapse
|
12
|
Siddiquee T, Bhaskaran NA, Nathani K, Sawarkar SP. Empowering lung cancer treatment: Harnessing the potential of natural phytoconstituent-loaded nanoparticles. Phytother Res 2024. [PMID: 38806412 DOI: 10.1002/ptr.8241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Lung cancer, the second leading cause of cancer-related deaths, accounts for a substantial portion, representing 18.4% of all cancer fatalities. Despite advances in treatment modalities such as chemotherapy, surgery, and immunotherapy, significant challenges persist, including chemoresistance, non-specific targeting, and adverse effects. Consequently, there is an urgent need for innovative therapeutic approaches to overcome these limitations. Natural compounds, particularly phytoconstituents, have emerged as promising candidates due to their potent anticancer properties and relatively low incidence of adverse effects compared to conventional treatments. However, inherent challenges such as poor solubility, rapid metabolism, and enzymatic degradation hinder their clinical utility. To address these obstacles, researchers have increasingly turned to nanotechnology-based drug delivery systems (DDS). Nanocarriers offer several advantages, including enhanced drug stability, prolonged circulation time, and targeted delivery to tumor sites, thereby minimizing off-target effects. By encapsulating phytoconstituents within nanocarriers, researchers aim to optimize their bioavailability and therapeutic efficacy while reducing systemic toxicity. Moreover, the integration of nanotechnology with phytoconstituents allows for a nuanced understanding of the intricate molecular pathways involved in lung cancer pathogenesis. This integrated approach holds promise for modulating key cellular processes implicated in tumor growth and progression. Additionally, by leveraging the synergistic effects of phytoconstituents and nanocarriers, researchers seek to develop tailored therapeutic strategies that maximize efficacy while minimizing adverse effects. In conclusion, the integration of phytoconstituents with nanocarriers represents a promising avenue for advancing lung cancer treatment. This synergistic approach has the potential to revolutionize current therapeutic paradigms by offering targeted, efficient, and minimally toxic interventions. Continued research in this field holds the promise of improving patient outcomes and addressing unmet clinical needs in lung cancer management.
Collapse
Affiliation(s)
- Taufique Siddiquee
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Khushali Nathani
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| |
Collapse
|
13
|
Mohammed SW, El-Megrab NA, Hasan AA, Gomaa E. A remodeled ivermectin polycaprolactone-based nanoparticles for inhalation as a promising treatment of pulmonary inflammatory diseases. Eur J Pharm Sci 2024; 195:106714. [PMID: 38301972 DOI: 10.1016/j.ejps.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
In recent years, ivermectin (IVM), an antiparasitic drug of low water solubility and poor oral bioavailability, has shown a profound effect on inflammatory mediators involved in diseases, such as acute lung injury, lung fibrosis, and COVID-19. In order to maximize drug bioavailability, polymeric nanoparticles can be delivered through nebulizers for pulmonary administration. The aim of this study was to prepare IVM-loaded polycaprolactone (PCL) nanoparticles (NPs) by solvent evaporation method. Box-Benkhen design (BBD) was used to optimize entrapment efficiency (Y1), percent drug release after 6 h (Y2), particle size (Y3), and zeta potential (Y4). A study was conducted examining the effects of three independent variables: PCL-IVM ratio (A), polyvinyl alcohol (PVA) concentration (B), and sonication time (C). The optimized formula was also compared to the oral IVM dispersion for lung deposition, in-vivo behavior, and pharmacokinetic parameters. The optimized IVM-PCL-NPs formulation was spherical in shape with entrapment efficiency (% EE) of 93.99 ± 0.96 %, about 62.71 ± 0.53 % released after 6 h, particle size of 100.07 ± 0.73 nm and zeta potential of -3.30 ± 0.23 mV. Comparing the optimized formulation to IVM-dispersion, the optimized formulation demonstrated greater bioavailability with greater area under the curve AUC0-t of 710.91 ± 15.22 μg .ml-1.h for lung and 637.97 ± 15.43 μg .ml-1.h for plasma. Based on the results, the optimized NPs accumulated better in lung tissues, exhibiting a twofold longer residence time (MRT 4.78 ± 0.55 h) than the IVM-dispersion (MRT 2.64 ± 0.64 h). The optimized nanoparticle formulation also achieved higher cmax (194.90 ± 5.01 μg/ml), and lower kel (0.21 ± 0.04 h-1) in lungs. Additionally, the level of inflammatory mediators was markedly reduced. To conclude, inhalable IVM-PCL-NPs formulation was suitable for the pulmonary delivery and may be one of the most promising approaches to increase IVM bioavailability for the successful treatment of a variety of lung diseases.
Collapse
Affiliation(s)
- Sabaa Wafiq Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Nagia Ahmed El-Megrab
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Azza A Hasan
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Patel P, Raval M, Airao V, Ali N, Shazly GA, Khan R, Prajapati B. Formulation of Folate Receptor-Targeted Silibinin-Loaded Inhalable Chitosan Nanoparticles by the QbD Approach for Lung Cancer Targeted Delivery. ACS OMEGA 2024; 9:10353-10370. [PMID: 38463259 PMCID: PMC10918659 DOI: 10.1021/acsomega.3c07954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Aim: Targeted delivery of chemotherapeutics by functionalized nanoparticles exhibits a wonderful prospect for cancer treatment. The main objective of this research was to develop folate receptor-targeted silibinin (SB)-loaded inhalable polymeric nanoparticles (FA-CS-SB-NPs) for the treatment of lung cancer. Method: The qbD approach was implemented to prepare SB-loaded nanoparticles. Folic acid was conjugated by electrostatic conjugation in an optimized batch. The therapeutic potentials of formulations were determined using a lung cancer cell-bearing rat model. Result: Optimized formulation exhibited a spherical surface with a mean particle size of 275 ± 1.20 nm, a PDI of 0.234 ± 0.07, a ζ-potential of 32.50 ± 0.21, an entrapment efficiency of 75.52 ± 0.87%, and a CDR of 63.25 ± 1.21% at 48 h. Aerodynamic behaviors such as the mass median aerodynamic diameter (MMAD) and geometric size distribution (GSD) were found to be 2.75 ± 1.02 and 3.15 ± 0.88 μm, respectively. After 24 h of incubation with FA-CS-SB-NPs, the IC50 value was found to be 24.5 g/mL. FA-SB-CS-NPs maintained a significantly higher deposition of SB in lung tissues. Conclusions: Thus, the noninvasive nature and target specificity of FA-CS-SB-NPs pave the way for pulmonary delivery for treating lung cancer.
Collapse
Affiliation(s)
- Priya Patel
- Department
of Pharmaceutical Sciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Mihir Raval
- Department
of Pharmaceutical Sciences, Sardar Patel
University, Vallabh Vidya Nagar 388120, Gujarat, India
| | - Vishal Airao
- Department
of Pharmaceutical Sciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Gamal A. Shazly
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Rehan Khan
- Public
Health Research Institute (PHRI), Rutgers,
New Jersey Medical School (NJMS), 225 Warren Street, Newark, New Jersey 07103, United States
| | - Bhupendra Prajapati
- Shree S.
K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| |
Collapse
|
15
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
16
|
Yousry C, Goyal M, Gupta V. Excipients for Novel Inhaled Dosage Forms: An Overview. AAPS PharmSciTech 2024; 25:36. [PMID: 38356031 DOI: 10.1208/s12249-024-02741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Pulmonary drug delivery is a form of local targeting to the lungs in patients with respiratory disorders like cystic fibrosis, pulmonary arterial hypertension (PAH), asthma, chronic pulmonary infections, and lung cancer. In addition, noninvasive pulmonary delivery also presents an attractive alternative to systemically administered therapeutics, not only for localized respiratory disorders but also for systemic absorption. Pulmonary delivery offers the advantages of a relatively low dose, low incidence of systemic side effects, and rapid onset of action for some drugs compared to other systemic administration routes. While promising, inhaled delivery of therapeutics is often complex owing to factors encompassing mechanical barriers, chemical barriers, selection of inhalation device, and limited choice of dosage form excipients. There are very few excipients that are approved by the FDA for use in developing inhaled drug products. Depending upon the dosage form, and inhalation devices such as pMDIs, DPIs, and nebulizers, different excipients can be used to provide physical and chemical stability and to deliver the dose efficiently to the lungs. This review article focuses on discussing a variety of excipients that have been used in novel inhaled dosage forms as well as inhalation devices.
Collapse
Affiliation(s)
- Carol Yousry
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA.
| |
Collapse
|
17
|
Sharma Y, Mahar R, Chakraborty A, Nainwal N. Optimizing the formulation variables for encapsulation of linezolid into polycaprolactone inhalable microspheres using double emulsion solvent evaporation. Tuberculosis (Edinb) 2023; 143:102417. [PMID: 37827017 DOI: 10.1016/j.tube.2023.102417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Inhaled antibiotics delivered through dry powder inhalers (DPIs) effectively treat severe bacterial infections by directly targeting the lungs. Our study focused on developing inhalable dry powder microspheres of linezolid (LNZ) using biodegradable polycaprolactone (PCL) polymer. The LNZ-PCL microspheres were fabricated using a double emulsification solvent evaporation method. Optimization of formulation parameters was performed using a factorial design. Evaluation of the microspheres included size, shape, drug loading, entrapment efficiency, aerosolization, and drug release. The morphological analysis confirmed spherical-shaped rough particles within the inhalable size range. The encapsulation efficiency was determined to be 52.84%, indicating successful drug incorporation. Aerosolization efficiency was significantly enhanced when LNZ-PCL microspheres were combined with lactose as a carrier, achieving a fine particle fraction (FPF) value of 70.90%. In-vitro dissolution studies demonstrated sustained drug release for over 24 h under lung pH conditions. Overall, our study highlights the potential of inhalable LNZ-PCL microspheres as a targeted approach for treating pulmonary tuberculosis. Further research and in-vivo studies are needed to validate their effectiveness in life-threatening bacterial infections.
Collapse
Affiliation(s)
- Yuwanshi Sharma
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India
| | - Riya Mahar
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India
| | | | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, India.
| |
Collapse
|
18
|
Sakr MG, El-Zahaby SA, Al-Mahallawi AM, Ghorab DM. A novel reverse micelle based cationic double nanoemulsion as a potential nanoplatform for enhancing the anitglucomal activity of betaxolol hydrochloride; formulation, in vitro characterization, ex vivo permeation and in vivo pharmacodynamic evaluation in glaucomatous rabbits’ eyes. J Drug Deliv Sci Technol 2023; 90:105112. [DOI: 10.1016/j.jddst.2023.105112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
|
19
|
Alsaikhan F. Hyaluronic acid-empowered nanotheranostics in breast and lung cancers therapy. ENVIRONMENTAL RESEARCH 2023; 237:116951. [PMID: 37633628 DOI: 10.1016/j.envres.2023.116951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanomedicine application in cancer therapy is an urgency because of inability of current biological therapies for complete removal of tumor cells. The development of smart and novel nanoplatforms for treatment of cancer can provide new insight in tumor suppression. Hyaluronic acid is a biopolymer that can be employed for synthesis of smart nanostructures capable of selective targeting CD44-overexpressing tumor cells. The breast and lung cancers are among the most malignant and common tumors in both females and males that environmental factors, lifestyle and genomic alterations are among the risk factors for their pathogenesis and development. Since etiology of breast and lung tumors is not certain and multiple factors participate in their development, preventative measures have not been completely successful and studies have focused on developing new treatment strategies for them. The aim of current review is to provide a comprehensive discussion about application of hyaluronic acid-based nanostructures for treatment of breast and lung cancers. The main reason of using hyaluronic acid-based nanoparticles is their ability in targeting breast and lung cancers in a selective way due to upregulation of CD44 receptor on their surface. Moreover, nanocarriers developed from hyaluronic acid or functionalized with hyaluronic acid have high biocompatibility and their safety is appreciated. The drugs and genes used for treatment of breast and lung cancers lack specific accumulation at cancer site and their cytotoxicity is low, but hyaluronic acid-based nanostructures provide their targeted delivery to tumor site and by increasing internalization of drugs and genes in breast and lung tumor cells, they improve their therapeutic index. Furthermore, hyaluronic acid-based nanostructures can be used for phototherapy-mediated breast and lung cancers ablation. The stimuli-responsive and smart kinds of hyaluronic acid-based nanostructures such as pH- and light-responsive can increase selective targeting of breast and lung cancers.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| |
Collapse
|
20
|
Faglie A, Emerine R, Chou SF. Effects of Poloxamers as Excipients on the Physicomechanical Properties, Cellular Biocompatibility, and In Vitro Drug Release of Electrospun Polycaprolactone (PCL) Fibers. Polymers (Basel) 2023; 15:2997. [PMID: 37514386 PMCID: PMC10383550 DOI: 10.3390/polym15142997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Electrospun microfibers are emerging as one of the advanced wound dressing materials for acute and/or chronic wounds, especially with their ability to carry drugs and excipients at a high loading while being able to deliver them in a controlled manner. Various attempts were made to include excipients in electrospun microfibers as wound dressing materials, and one of them is poloxamer, an amphiphilic polymer that exhibits wound debridement characteristics. In this study, we formulated two types of poloxamers (i.e., P188 and P338) at 30% (w/w) loading into electrospun polycaprolactone (PCL) fibers to evaluate their physicomechanical properties, biocompatibility, and in vitro drug release of a model drug. Our findings showed that the incorporation of poloxamers in the PCL solutions during electrospinning resulted in a greater "whipping" process for a larger fiber deposition area. These fibers were mechanically stiffer and stronger, but less ductile as compared to the PCL control fibers. The incorporation of poloxamers into electrospun PCL fibers reduced the surface hydrophobicity of fibers according to our water contact angle studies and in vitro degradation studies. The fibers' mechanical properties returned to those of the PCL control groups after "dumping" the poloxamers. Moreover, poloxamer-loaded PCL fibers accelerated the in vitro release of the model drug due to surface wettability. These poloxamer-loaded PCL fibers were biocompatible, as validated by MTT assays using A549 cells. Overall, we demonstrated the ability to achieve a high loading of poloxamers in electrospun fibers for wound dressing applications. This work provided the basic scientific understanding of materials science and bioengineering with an emphasis on the engineering applications of advanced wound dressings.
Collapse
Affiliation(s)
- Addison Faglie
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Rachel Emerine
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| |
Collapse
|
21
|
Freire N, Barbosa RDM, García-Villén F, Viseras C, Perioli L, Fialho R, Albuquerque E. Environmentally Friendly Strategies for Formulating Vegetable Oil-Based Nanoparticles for Anticancer Medicine. Pharmaceutics 2023; 15:1908. [PMID: 37514094 PMCID: PMC10386571 DOI: 10.3390/pharmaceutics15071908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The development of green synthesized polymeric nanoparticles with anticancer studies has been an emerging field in academia and the pharmaceutical and chemical industries. Vegetable oils are potential substitutes for petroleum derivatives, as they present a clean and environmentally friendly alternative and are available in abundance at relatively low prices. Biomass-derived chemicals can be converted into monomers with a unique structure, generating materials with new properties for the synthesis of sustainable monomers and polymers. The production of bio-based polymeric nanoparticles is a promising application of green chemistry for biomedical uses. There is an increasing demand for biocompatible and biodegradable materials for specific applications in the biomedical area, such as cancer therapy. This is encouraging scientists to work on research toward designing polymers with enhanced properties and clean processes, containing oncology active pharmaceutical ingredients (APIs). The nanoencapsulation of these APIs in bio-based polymeric nanoparticles can control the release of the substances, increase bioavailability, reduce problems of volatility and degradation, reduce side effects, and increase treatment efficiency. This review discusses the use of green chemistry for bio-based nanoparticle production and its application in anticancer medicine. The use of castor oil for the production of renewable monomers and polymers is proposed as an ideal candidate for such applications, as well as more suitable methods for the production of bio-based nanoparticles and some oncology APIs available for anticancer application.
Collapse
Affiliation(s)
- Nathália Freire
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Av. de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Luana Perioli
- Department of Pharmaceutic Science, University of Perugia, 06123 Perugia, Italy
| | - Rosana Fialho
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Elaine Albuquerque
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| |
Collapse
|
22
|
Jiang P, Liang B, Zhang Z, Fan B, Zeng L, Zhou Z, Mao Z, Xu Q, Yao W, Shen Q. New insights into nanosystems for non-small-cell lung cancer: diagnosis and treatment. RSC Adv 2023; 13:19540-19564. [PMID: 37388143 PMCID: PMC10300523 DOI: 10.1039/d3ra03099g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Lung cancer is caused by a malignant tumor that shows the fastest growth in both incidence and mortality and is also the greatest threat to human health and life. At present, both in terms of incidence and mortality, lung cancer is the first in male malignant tumors, and the second in female malignant tumors. In the past two decades, research and development of antitumor drugs worldwide have been booming, and a large number of innovative drugs have entered clinical trials and practice. In the era of precision medicine, the concept and strategy of cancer from diagnosis to treatment are experiencing unprecedented changes. The ability of tumor diagnosis and treatment has rapidly improved, the discovery rate and cure rate of early tumors have greatly improved, and the overall survival of patients has benefited significantly, with a tendency to transform to a chronic disease with tumor. The emergence of nanotechnology brings new horizons for tumor diagnosis and treatment. Nanomaterials with good biocompatibility have played an important role in tumor imaging, diagnosis, drug delivery, controlled drug release, etc. This article mainly reviews the advancements in lipid-based nanosystems, polymer-based nanosystems, and inorganic nanosystems in the diagnosis and treatment of non-small-cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Piao Jiang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- The First Clinical Medical College, Nanchang University Nanchang China
| | - Bin Liang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Lin Zeng
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhiyong Zhou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhifang Mao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Quan Xu
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Weirong Yao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Qinglin Shen
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| |
Collapse
|
23
|
Mahar R, Chakraborty A, Nainwal N. Formulation of Resveratrol-Loaded Polycaprolactone Inhalable Microspheres Using Tween 80 as an Emulsifier: Factorial Design and Optimization. AAPS PharmSciTech 2023; 24:131. [PMID: 37291478 DOI: 10.1208/s12249-023-02587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Resveratrol (RSV) is a bioactive phytoconstituent that has potential applications in respiratory diseases. However, poor oral bioavailability is the major hurdle to its clinical use. In the present work, resveratrol-loaded polycaprolactone (PCL) inhalable microspheres (MSs) were formulated to improve their therapeutic potential. The inhalable microspheres were formulated using the emulsion-solvent evaporation method. In this research, inhalable resveratrol microspheres were prepared using Tween 80 in place of polyvinyl alcohol which formed insoluble lumps. A 32 factorial design was applied taking polymer (PCL) and emulsifier (Tween 80) as independent variables and drug loading (DL) and encapsulation efficiency (EE) as dependent variables. The DL and EE of the optimized formulation were found to be 30.6% and 63.84% respectively. The in vitro aerosolization study performed using the Anderson cascade impactor showed that the fine particle fraction (FPF) of optimized resveratrol polycaprolactone microspheres (RSV-PCL-MSs) blended with lactose, and RSV-PCL-MSs were significantly higher than those of the pure drugs. The MMADT (theoretical mass median aerodynamic diameter) of optimized RSV-PCL-MSs was found to be 3.25 ± 1.15. The particle size of microspheres was within the inhalable range, i.e., between 1 and 5 µm. The morphological analysis showed spherical-shaped particles with smooth surfaces. The in vitro release study showed sustained drug release from the microspheres for up to 12 h. The study concluded that resveratrol-loaded inhalable microspheres may be an efficient delivery system to treat COPD.
Collapse
Affiliation(s)
- Riya Mahar
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248161, India
- School of Pharmaceutical Sciences, Himgiri Zee University, Dehradun, Sherpur, 248197, Uttarakhand, India
| | | | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences and Technology, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
24
|
Kuznetsova EV, Sedush NG, Puchkova YA, Aleshin SV, Yastremsky EV, Nazarov AA, Chvalun SN. Highly Stable Docetaxel-Loaded Nanoparticles Based on Poly(D,L-lactide)- b-Poly(ethylene glycol) for Cancer Treatment: Preparation, Characterization, and In Vitro Cytotoxicity Studies. Polymers (Basel) 2023; 15:polym15102296. [PMID: 37242871 DOI: 10.3390/polym15102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Stability and narrow size distribution are among the main requirements that apply to drug formulations based on polymeric nanoparticles. In this study, we obtained a series of particles based on biodegradable poly(D,L-lactide)-b-poly(ethylene glycol) (P(D,L)LAn-b-PEG113) copolymers with varied hydrophobic P(D,L)LA block length n from 50 to 1230 monomer units stabilized by poly(vinyl alcohol) (PVA) by a simple "oil-in-water" emulsion method. We found that nanoparticles of P(D,L)LAn-b-PEG113 copolymers with relatively short P(D,L)LA block (n ≤ 180) are prone to aggregate in water. P(D,L)LAn-b-PEG113 copolymers with n ≥ 680 can form spherical unimodal particles with values of hydrodynamic diameter less than 250 nm and polydispersity less than 0.2. The aggregation behavior of P(D,L)LAn-b-PEG113 particles was elucidated in terms of tethering density and conformation of PEG chains at the P(D,L)LA core. Docetaxel (DTX) loaded nanoparticles based on P(D,L)LA680-b-PEG113 and P(D,L)LA1230-b-PEG113 copolymers were formulated and studied. It was observed that DTX-loaded P(D,L)LAn-b-PEG113 (n = 680, 1230) particles are characterized by high thermodynamic and kinetic stability in aqueous medium. The cumulative release of DTX from the P(D,L)LAn-b-PEG113 (n = 680, 1230) particles is sustained. An increase in P(D,L)LA block length results in a decrease in DTX release rate. The in vitro antiproliferative activity and selectivity studies revealed that DTX-loaded P(D,L)LA1230-b-PEG113 nanoparticles demonstrate better anticancer performance than free DTX. Favorable freeze-drying conditions for DTX nanoformulation based on P(D,L)LA1230-b-PEG113 particles were also established.
Collapse
Affiliation(s)
| | - Nikita G Sedush
- National Research Center "Kurchatov Institute", Moscow 123182, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia
| | - Yulia A Puchkova
- National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | - Sergei V Aleshin
- National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | - Evgeny V Yastremsky
- Shubnikov Institute of Crystallography, Federal Science Research Center "Crystallography and Photonics", Russian Academy of Sciences, Moscow 119333, Russia
| | - Alexey A Nazarov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergei N Chvalun
- National Research Center "Kurchatov Institute", Moscow 123182, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia
| |
Collapse
|
25
|
Pourmadadi M, Mahdi Eshaghi M, Ostovar S, Mohammadi Z, K. Sharma R, Paiva-Santos AC, Rahmani E, Rahdar A, Pandey S. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug deliveryapplications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
26
|
Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V. Application of PLGA as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs. AAPS PharmSciTech 2023; 24:39. [PMID: 36653547 DOI: 10.1208/s12249-023-02502-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Pulmonary administration of biodegradable polymeric formulation is beneficial in the treatment of various respiratory diseases. For respiratory delivery, the polymer must be non-toxic, biodegradable, biocompatible, and stable. Poly D, L-lactic-co-glycolic acid (PLGA) is a widely used polymer for inhalable formulations because of its attractive mechanical and processing characteristics which give great opportunities to pharmaceutical industries to formulate novel inhalable products. PLGA has many pharmaceutical applications and its biocompatible nature produces non-toxic degradation products. The degradation of PLGA takes place through the non-enzymatic hydrolytic breakdown of ester bonds to produce free lactic acid and glycolic acid. The biodegradation products of PLGA are eliminated in the form of carbon dioxide (CO2) and water (H2O) by the Krebs cycle. The biocompatible properties of PLGA are investigated in various in vivo and in vitro studies. The high structural integrity of PLGA particles provides better stability, excellent drug loading, and sustained drug release. This review provides detailed information about PLGA as an inhalable grade polymer, its synthesis, advantages, physicochemical properties, biodegradability, and biocompatible characteristics. The important formulation aspects that must be considered during the manufacturing of inhalable PLGA formulations and the toxicity of PLGA in the lungs are also discussed in this paper. Additionally, a thorough overview is given on the application of PLGA as a particulate carrier in the treatment of major respiratory diseases, such as cystic fibrosis, lung cancer, tuberculosis, asthma, and pulmonary hypertension.
Collapse
Affiliation(s)
- Riya Mahar
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Arpita Chakraborty
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India.
| | - Richa Bahuguna
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Meenakshi Sajwan
- Department of Pharmacy, GRD (PG) IMT, 214 Raipur Road, Dehradun, 248001, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
27
|
Wang Y, Yuan AJ, Wu YJ, Wu LM, Zhang L. Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
28
|
Mechanistic Insights into the Pharmacological Significance of Silymarin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165327. [PMID: 36014565 PMCID: PMC9414257 DOI: 10.3390/molecules27165327] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70–80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, β-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.
Collapse
|