1
|
Duymaz D, Kebabci AO, Kizilel S. Harnessing the immunomodulatory potential of chitosan and its derivatives for advanced biomedical applications. Int J Biol Macromol 2025; 307:142055. [PMID: 40090654 DOI: 10.1016/j.ijbiomac.2025.142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The success of biomaterial applications in medicine, particularly in tissue engineering, relies on achieving a balance between promoting tissue regeneration and controlling the immune response. Due to its natural origin, high biocompatibility, and versatility, chitosan has emerged as a promising biomaterial especially for immunomodulation purposes. Immunomodulation, refers to the deliberate alteration of the immune system's activity to achieve a desired therapeutic effect either by enhancing or suppressing the function of specific immune cells, signaling pathways, or cytokine production. This modulation opens up the unlimited possibilities for the use of biomaterials, especially about the use of natural polymers such as chitosan. Although numerous chitosan-based immunoregulatory strategies have been demonstrated over the past two decades, the lack of in-depth exploration hinders the full potential of strategies that include chitosan and its derivatives in biomedical applications. Thus, in this review, the possible immunomodulatory effects of chitosan, chitosan derivatives and their potential combined with various agents and therapies are investigated in detail. Moreover, this report includes agents for localized immune response control, chitosan-based strategies with complementary immunomodulatory properties to create synergistic effects that will influence the success of cell therapies for enhanced tissue acceptance and regeneration. Finally, the challenges and outlook of chitosan-based therapies as a powerful tool for improving immunomodulatory applications are discussed for paving the way for further studies.
Collapse
Affiliation(s)
- Doğukan Duymaz
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Aybaran O Kebabci
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Seda Kizilel
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye.
| |
Collapse
|
2
|
Yahyaei S, Abdoli A, Jamali A, Teimoori A, Arefian E, Eftekhari Z, Jamur P. Targeting Respiratory Viruses: The Efficacy of Intranasal mRNA Vaccination in Generating Protective Mucosal and Systemic Immunity Against Influenza A (H1N1). Influenza Other Respir Viruses 2025; 19:e70093. [PMID: 40127967 PMCID: PMC11932742 DOI: 10.1111/irv.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Four significant influenza outbreaks have occurred over the past 100 years, and the 1918 influenza pandemic is the most severe. Since influenza viruses undergo antigenic evolution, they are the pathogens most likely to trigger a new pandemic shortly. Intranasal vaccination offers a promising strategy for preventing diseases triggered by respiratory viruses by eliciting an immunoglobulin A (IgA) response, limiting virus replication and transmission from the respiratory tract more efficiently than intramuscular vaccines. Combining intranasal administration and mRNA-lipid nanoparticles can be an ideal strategy for limiting the extent of the next flu pandemic. This study explored the immunogenicity of intranasally delivered mRNA encapsulated in mannose-histidine-conjugated chitosan lipid nanoparticles (MHCS-LNPs) as a vaccine against influenza A (H1N1) in BALB/c mice. Intranasal administration of mRNA-MHCS-LNPs resulted in the generation of influenza A (H1N1) hemagglutinin-specific neutralizing antibodies in vaccinated animals. The enzyme-linked immunosorbent assay (ELISA) results indicated a notable increase in the quantity of immunoglobulin G (IgG) and IgA antibodies in serum and the bronchoalveolar lavage fluid (BALF), respectively, and exhibited influenza A-specific IFN-γ secretion in vaccinated mice, as well as a noticeable alteration in IL-5 production. Overall, this study demonstrated an effective immunogenic response against respiratory viral infections through intranasal delivery of an mRNA-MHCS-LNP vaccine.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Administration, Intranasal
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Mice, Inbred BALB C
- Antibodies, Viral/blood
- Antibodies, Viral/analysis
- Mice
- Immunity, Mucosal
- Female
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Antibodies, Neutralizing/blood
- Immunoglobulin G/blood
- RNA, Messenger/administration & dosage
- RNA, Messenger/immunology
- RNA, Messenger/genetics
- Immunoglobulin A/blood
- Immunoglobulin A/analysis
- Vaccination/methods
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Interferon-gamma
- mRNA Vaccines/administration & dosage
- Chitosan/chemistry
Collapse
Affiliation(s)
- Sara Yahyaei
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
- Student Research CommitteePasteur Institute of IranTehranIran
| | - Asghar Abdoli
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
| | - Abbas Jamali
- Department of Influenza and Other Respiratory VirusesPasteur Institute of IranTehranIran
| | - Ali Teimoori
- Department of Virology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | | | - Parisa Jamur
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
| |
Collapse
|
3
|
Sinani G, Sessevmez M, Şenel S. Applications of Chitosan in Prevention and Treatment Strategies of Infectious Diseases. Pharmaceutics 2024; 16:1201. [PMID: 39339237 PMCID: PMC11434819 DOI: 10.3390/pharmaceutics16091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan is the most commonly investigated functional cationic biopolymer in a wide range of medical applications due to its promising properties such as biocompatibility, biodegradability, and bioadhesivity, as well as its numerous bioactive properties. Within the last three decades, chitosan and its derivatives have been investigated as biomaterials for drug and vaccine delivery systems, besides for their bioactive properties. Due to the functional groups in its structure, it is possible to tailor the delivery systems with desired properties. There has been a great interest in the application of chitosan-based systems also for the prevention and treatment of infectious diseases, specifically due to their antimicrobial, antiviral, and immunostimulatory effects. In this review, recent applications of chitosan in the prevention and treatment of infectious diseases are reviewed, and possibilities and limitations with regards to technical and regulatory aspects are discussed. Finally, the future perspectives on utilization of chitosan as a biomaterial are discussed.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye;
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe Univesity, 06100 Ankara, Türkiye
| |
Collapse
|
4
|
Li X, Zhang ZW, Zhang FD, Li JH, Lv JL, Zhang LP, Zhai KG, Wang YL, Guo HC, Liu XS, Pan L. Double synergic chitosan-coated poly (lactic-co-glycolic) acid nanospheres loaded with nucleic acids as an intranasally administered vaccine delivery system to control the infection of foot-and-mouth disease virus. Antiviral Res 2024; 226:105900. [PMID: 38705200 DOI: 10.1016/j.antiviral.2024.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND & AIMS The spread of foot-and-mouth disease virus (FMDV) through aerosol droplets among cloven-hoofed ungulates in close contact is a major obstacle for successful animal husbandry. Therefore, the development of suitable mucosal vaccines, especially nasal vaccines, to block the virus at the initial site of infection is crucial. PATIENTS AND METHODS Here, we constructed eukaryotic expression plasmids containing the T and B-cell epitopes (pTB) of FMDV in tandem with the molecular mucosal adjuvant Fms-like tyrosine kinase receptor 3 ligand (Flt3 ligand, FL) (pTB-FL). Then, the constructed plasmid was electrostatically attached to mannose-modified chitosan-coated poly(lactic-co-glycolic) acid (PLGA) nanospheres (MCS-PLGA-NPs) to obtain an active nasal vaccine targeting the mannose-receptor on the surface of antigen-presenting cells (APCs). RESULTS The MCS-PLGA-NPs loaded with pTB-FL not only induced a local mucosal immune response, but also induced a systemic immune response in mice. More importantly, the nasal vaccine afforded an 80% protection rate against a highly virulent FMDV strain (AF72) when it was subcutaneously injected into the soles of the feet of guinea pigs. CONCLUSIONS The nasal vaccine prepared in this study can effectively induce a cross-protective immune response against the challenge with FMDV of same serotype in animals and is promising as a potential FMDV vaccine.
Collapse
Affiliation(s)
- Xian Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhong-Wang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Fu-Dong Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jia-Hao Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jian-Liang Lv
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Li-Ping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Kai-Ge Zhai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yong-Lu Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hui-Chen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xin-Sheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
5
|
Hu N, Li W, Zhao Z, Chang Y, Wang C, Zhang Y. Preparation and immunogenicity evaluation of C-HapS-P6 fusion protein vaccine against nontypeable Haemophilus influenzae in mice. Int J Med Microbiol 2024; 314:151616. [PMID: 38461565 DOI: 10.1016/j.ijmm.2024.151616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is the dominant pathogen in several infectious diseases. Currently the use of antibiotics is the main intervention to prevent NTHi infections, however with the emergence of drug resistant strains, it has compromised the treatment of respiratory infections with antibiotics. Therefore there is an urgent need to develop a safe and effective vaccine to prevent NTHi infections. We investigate the potential of C-HapS-P6 fusion protein as a vaccine for treating NTHi in murine models. PGEX-6P2/C-HapS-P6 fusion gene was constructed using overlap extension polymerase chain reaction. The recombined plasmid was transformed into Escherichia coli for protein expression. The mice were subjected to intraperitoneal immunization using purified antigens. Immunoglobulin (Ig) G in serum samples and IgA in nasal and lung lavage fluids were analyzed using enzyme-linked immunosorbent assay. Cytokine release and proliferation capacity of splenic lymphocytes in response to antigens were measured in vitro. The protective effect of the C-HapS-P6 protein against NTHi infection was evaluated by NTHi count and histological examination. The data showed that the C-HapS-P6 fusion protein increased significantly the levels of serum IgG and nasal and lung IgA, and promoted the release of interleukin (IL)-2, interferon-ϒ, IL-4, IL-5, and IL-17 and the proliferation of splenic lymphocytes compared with C-HapS or P6 protein treatment alone. Moreover, C-HapS-P6 effectively reduced the NTHi colonization in the nasopharynx and lungs of mice. In conclusion, our results demonstrated that the C-HapS-P6 fusion protein vaccine can significantly enhance humoral and cell immune responses and effectively prevent against NTHi infection in the respiratory tract in murine models.
Collapse
Affiliation(s)
- Nan Hu
- Institute of Pathogenic Biology and Immunology, North University of Hebei, Zhangjiakou 075000, China
| | - Weifeng Li
- Institute of Pathogenic Biology and Immunology, North University of Hebei, Zhangjiakou 075000, China
| | - Zihong Zhao
- Institute of Pathogenic Biology and Immunology, North University of Hebei, Zhangjiakou 075000, China
| | - Yueli Chang
- Institute of Pathogenic Biology and Immunology, North University of Hebei, Zhangjiakou 075000, China
| | - Cai Wang
- Institute of Pathogenic Biology and Immunology, North University of Hebei, Zhangjiakou 075000, China
| | - Yutuo Zhang
- Institute of Pathogenic Biology and Immunology, North University of Hebei, Zhangjiakou 075000, China.
| |
Collapse
|
6
|
Nordin AH, Husna SMN, Ahmad Z, Nordin ML, Ilyas RA, Azemi AK, Ismail N, Siti NH, Ngadi N, Azami MSM, Mohamad Norpi AS, Reduan MFH, Osman AY, Pratama DAOA, Nabgan W, Shaari R. Natural Polymeric Composites Derived from Animals, Plants, and Microbes for Vaccine Delivery and Adjuvant Applications: A Review. Gels 2023; 9:227. [PMID: 36975676 PMCID: PMC10048722 DOI: 10.3390/gels9030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
A key element in ensuring successful immunization is the efficient delivery of vaccines. However, poor immunogenicity and adverse inflammatory immunogenic reactions make the establishment of an efficient vaccine delivery method a challenging task. The delivery of vaccines has been performed via a variety of delivery methods, including natural-polymer-based carriers that are relatively biocompatible and have low toxicity. The incorporation of adjuvants or antigens into biomaterial-based immunizations has demonstrated better immune response than formulations that just contain the antigen. This system may enable antigen-mediated immunogenicity and shelter and transport the cargo vaccine or antigen to the appropriate target organ. In this regard, this work reviews the recent applications of natural polymer composites from different sources, such as animals, plants, and microbes, in vaccine delivery systems.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Siti Muhamad Nur Husna
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Zuliahani Ahmad
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
- Centre for Veterinary Vaccinology (VetVaCC), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Rushdan Ahmad Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Nordin Hawa Siti
- Pharmacology Unit, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | | | - Abdin Shakirin Mohamad Norpi
- Faculty Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia
| | - Mohd Farhan Hanif Reduan
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
- Centre for Veterinary Vaccinology (VetVaCC), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Abdinasir Yusuf Osman
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK
- National Institutes of Health (NIH), Ministry of Health, Corso Somalia Street, Shingani, Mogadishu P.O. Box 22, Somalia
| | | | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Rumaizi Shaari
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| |
Collapse
|