1
|
Knutson OS, Choi S, Williams S, Calder VL. Comparative models of uveitis. Eye (Lond) 2025; 39:1446-1450. [PMID: 39966598 PMCID: PMC12089372 DOI: 10.1038/s41433-025-03693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Several clinical subtypes of uveitis exist yet specific immunopathogenic mechanisms involved remain unclear. Ex vivo studies are limited by lack of fresh retinal biopsies and studies have relied on aqueous humour or peripheral blood, which may not directly reflect disease. The aim of this review is to compare the various in vivo models and review their contributions to our understanding of disease processes. These models, although unable to reflect all clinical signs, have provided insight into the contribution of genes and molecules, characterisation of effector T-cells, cell trafficking into retinal tissues, the contribution of tissue-resident myeloid cells and the mechanism(s) of action of several anti-inflammatory compounds. In vivo uveitis models have provided an excellent resource with which to study the molecular and cellular processes involved. Recent refinements in models, improved imaging, and the application of omics have greatly increased the number of readouts and translational opportunities. Future approaches with in vitro models will also be discussed.
Collapse
Affiliation(s)
- Olivia S Knutson
- Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | | | | | | |
Collapse
|
2
|
Wells CC, Petnicki-Ocwieja T, Tan S, Bunnell SC, Telford SR, Hu LT, Bourgeois JS. Differentiating Peromyscus leucopus bone marrow-derived macrophages for characterization of responses to Borrelia burgdorferi and lipopolysaccharide. Infect Immun 2025:e0058124. [PMID: 40422003 DOI: 10.1128/iai.00581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Currently, most tools utilized in host-pathogen interaction studies depend on the use of human or mouse (Mus musculus) cells and tissues. While these species have led to countless breakthroughs in our understanding of infectious disease, there are undoubtedly important biological processes that are missed by limiting studies to these two vertebrate species. For instance, it is well-established that a common deermouse in North America, Peromyscus leucopus, has unique interactions with microbes, which likely shape its ability to serve as a critical reservoir for numerous zoonotic pathogens, including a Lyme disease spirochete, Borrelia burgdorferi. In this work, we expand the immunological toolkit to study P. leucopus biology by performing the first differentiation of deermouse bone marrow to macrophages using P. leucopus M-CSF producing HEK293T cells. We find that P. leucopus BMDMs generated through this method behave broadly very similarly to C57BL/6J macrophages generated with the L-929 supernatant, although RNA sequencing revealed modest differences in transcriptomic responses to B. burgdorferi and lipopolysaccharide. In particular, differences in Il-10 induction and caspase expression were observed between the species.
Collapse
Affiliation(s)
- Christopher C Wells
- Department of Immunology, Tufts University, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Tanja Petnicki-Ocwieja
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Stephen C Bunnell
- Department of Immunology, Tufts University, Boston, Massachusetts, USA
| | - Sam R Telford
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts, USA
| | - Linden T Hu
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Jeffrey S Bourgeois
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Brancewicz J, Wójcik N, Sarnowska Z, Robak J, Król M. The Multifaceted Role of Macrophages in Biology and Diseases. Int J Mol Sci 2025; 26:2107. [PMID: 40076729 PMCID: PMC11900619 DOI: 10.3390/ijms26052107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Macrophages are highly adaptable immune cells capable of responding dynamically to diverse environmental cues. They are pivotal in maintaining homeostasis, orchestrating immune responses, facilitating tissue repair, and, under certain conditions, contributing to disease pathogenesis. This review delves into the complex biology of macrophages, highlighting their polarization states, roles in autoimmune and inflammatory diseases, involvement in cancer progression, and potential as therapeutic targets. By understanding the context-dependent functional plasticity of macrophages, we can better appreciate their contributions to health and disease, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Building 23, Level 0, Laboratory Number 0135, 8 Ciszewskiego St., 02-786 Warsaw, Poland
| |
Collapse
|
4
|
Lv X, Wang W, Dong H, Li W. Glycolysis in asthma: Its role and potential as a diagnostic or therapeutic target. Int Immunopharmacol 2025; 148:114143. [PMID: 39874848 DOI: 10.1016/j.intimp.2025.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation and hyperresponsiveness. A number of immune cells are involved in asthma pathogenesis, such as eosinophils, mast cells, T lymphocytes and neutrophils, as well as airway epithelial cells. Glycolysis plays a crucial role in glucose metabolism, and serves as a bridge between metabolic and inflammatory dysfunction. Research has found that abnormal glycolytic metabolism in various immune cells may contribute to the pathogenesis of asthma by inducing dysregulation in congenital and adaptive immune responses. Therefore, the inhibition of glycolysis can be a viable approach to prevent airway inflammation in asthma. The present study reviews the relationship between glycolysis and inflammatory cells in different asthma subtypes, and its potential therapeutic significance.
Collapse
Affiliation(s)
- Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wenrui Wang
- Department of Hepatopancreatobiliary Medicine, Digestive Diseases Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongna Dong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Selemani MA, Kabandana GKM, Chen C, Martin RS. 3D-Printed Microfluidic-Based Cell Culture System With Analysis to Investigate Macrophage Activation. Electrophoresis 2025. [PMID: 39964958 DOI: 10.1002/elps.8109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025]
Abstract
In this paper, we describe the development of 3D-printed microfluidic cell culture devices that can be coupled with a circulation system to study the dynamics of both intracellular and extracellular (release) processes. Key to this approach is the ability to quantitate key analytes on a minutes timescale with either on-line (in this study, quantitating nitric oxide production using an amperometric flow cell) or off-line (in this work, quantitating intracellular itaconate production with LC/MS) analytical measurements. To demonstrate the usefulness of this approach, we chose to study macrophage polarization as a function of the extracellular matrix (silk) fiber size, a major area of research in tissue engineering. It was found that the use of larger fibers (1280 nm vs. smaller 512 nm fibers) led to increases in the production of both nitric oxide and itaconate. These findings set the foundation for future research for the creation of finely tuned microfluidic 3D cell culture approaches in areas where flow and the extracellular matrix play a significant role in barrier transport and where integrated analysis of key markers is needed.
Collapse
Affiliation(s)
- Major A Selemani
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | | | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland-Baltimore County, Baltimore, Maryland, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
- Saint Louis University Center for Additive Manufacturing, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Gohara Y, Kinoshita R, Tomonobu N, Jiang F, Matsunaga Y, Hashimoto Y, Honjo T, Yamamoto KI, Murata H, Ochi T, Komalasari NLGY, Yamauchi A, Kuribayashi F, Sakaguchi Y, Futami J, Inoue Y, Kondo E, Toyooka S, Morizane S, Ishiko A, Morita S, Sagayama K, Nakao K, Sakaguchi M. An S100A8/A9 Neutralizing Antibody Potently Ameliorates Contact Hypersensitivity and Atopic Dermatitis Symptoms. J Invest Dermatol 2025:S0022-202X(25)00029-6. [PMID: 39848567 DOI: 10.1016/j.jid.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/25/2025]
Abstract
Contact hypersensitivity and atopic dermatitis are pervasive inflammatory skin diseases with similar symptoms, and their global prevalence is steadily increasing. Many compounds and biotics have been developed to target molecules critical to the etiology or pathogenesis of contact hypersensitivity and atopic dermatitis. However, these molecules are sometimes ineffective or lose their potency during the therapeutic course. Therefore, innovative medicines are still needed for the treatment of intractable cases. We focused on S100A8/A9, a heterodimer complex of S100A8 and S100A9 that is abundant in the extracellular milieu of inflammatory skin lesions. Although S100A8/A9 is primarily recognized as a diagnostic marker protein, we have previously shown that it also plays a crucial role in contact hypersensitivity and atopic dermatitis progression. This insight inspired us to develop its inhibitory antibody, leading to the ground-breaking Ab45. In this study, we demonstrated that Ab45 effectively prevented disease symptoms in various models and that its disease-ameliorating activity likely involved the downregulation of several disease-relevant molecules, including Il-23a, Il-36g, S100a8, and S100a9. We also created a humanized version of Ab45, HuAb45, which exhibited similar effectiveness. These antibodies show great promise for the treatment of contact hypersensitivity and atopic dermatitis and possibly for other inflammatory skin diseases.
Collapse
Affiliation(s)
- Yuma Gohara
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fan Jiang
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukiko Matsunaga
- Department of Dermatology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Hashimoto
- Department of Dermatology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Tomoko Honjo
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiki Ochi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Japan
| | | | | | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yusuke Inoue
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Japan
| | - Eisaku Kondo
- Division of Tumor Pathology, Near-Infrared Photo-Immunotherapy Research Institute, Kansai Medical University, Osaka, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Shigeru Morita
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Kazumi Sagayama
- Organization for Research and Innovation Strategy, Okayama University, Okayama, Japan
| | | | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
7
|
Bahr FS, Müller FE, Kasten M, Benen N, Sieve I, Scherr M, Falk CS, Hilfiker-Kleiner D, Ricke-Hoch M, Ponimaskin E. Serotonin receptor 5-HT7 modulates inflammatory-associated functions of macrophages. Cell Mol Life Sci 2025; 82:51. [PMID: 39833622 PMCID: PMC11747067 DOI: 10.1007/s00018-024-05570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
The hormone and neurotransmitter serotonin regulates numerous physiological functions within the central nervous system and in the periphery upon binding to specific receptors. In the periphery, the serotonin receptor 7 (5-HT7R) is expressed on different immune cells including monocytes and macrophages. To investigate the impact of 5-HT7R-mediated signaling on macrophage properties, we used human THP-1 cells and differentiated them into pro-inflammatory M1- and anti-inflammatory M2-like macrophages. Pharmacological 5-HT7R activation with the specific agonist LP-211 especially modulates morphology of M1-like macrophages by increasing the number of rounded cells. Furthermore, 5-HT7R stimulation results in significantly reduced phagocytic and migratory ability of M1-like macrophages. Noteworthy, LP-211 treatment leads to changes in secretory properties of all macrophage types with the highest effects obtained for M0- and M2c-like macrophages. Finally, the importance of 5-HT7R for regulation of phagocytosis was confirmed in human primary CD14+ cells. These results indicate that 5-HT7R activation selectively impairs basic functions of macrophages and might thus be a new access point for the modulation of macrophage responses in the future treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Frauke S Bahr
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | | | - Martina Kasten
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Nils Benen
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Irina Sieve
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, DZIF, TTU-IICH, Hannover-Braunschweig Site, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Medical Faculty of the Philipps-University Marburg, Department of Cardiovascular Complications of Oncologic Therapies, Marburg, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Smyth TR, Brocke S, Kim YH, Christianson C, Kovalcik KD, Pancras JP, Hays MD, Wu W, An Z, Jaspers I. Human Monocyte-Derived Macrophages Demonstrate Distinct Responses to Ambient Particulate Matter in a Polarization State- and Particle Seasonality-Specific Manner. Chem Res Toxicol 2025; 38:73-90. [PMID: 39704336 DOI: 10.1021/acs.chemrestox.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Macrophages are professional phagocytic immune cells that, following activation, polarize on a spectrum between the proinflammatory M1 and the proresolution M2 states. Macrophages have further been demonstrated to retain plasticity, allowing for the reprogramming of their polarization states following exposure to new stimuli. Particulate matter (PM) has been repeatedly shown to modify macrophage function and polarization while also inducing worsening respiratory infection morbidity and mortality. However, limited work has considered the impact of the initial macrophage polarization state on subsequent responses to PM exposure. PM composition can demonstrate seasonality-specific compositional changes based on differences in seasonal weather patterns and energy needs, introducing the need to consider the seasonality-specific effects of airborne PM when investigating its impact on human health. This study sought to determine the impact of airborne PM collected during different seasons of the year in Xinxiang, China, on macrophage function in a polarization state-dependent manner. Macrophages were differentiated using the macrophage colony-stimulating factor (M-CSF) on CD14+CD16- monocytes isolated from the blood of healthy human volunteers. The resulting macrophages were polarized into indicated states using well-characterized polarization methods and assessed for phagocytic function, bioenergetic properties, and secretory profile following exposure to PM collected during a single day during each season of the year. Macrophages demonstrated clear polarization state-dependent phagocytic, bioenergetic, and secretory properties at the baseline and following PM exposure. Specific PM seasonality had a minimal impact on phagocytic function and a minor effect on bioenergetic properties but had clear impacts on the secretory profile as demonstrated by the enriched secretion of well-characterized mediator clusters by particle season. Together, these data suggest that both particle seasonality and macrophage polarization state must be considered when investigating the impact of PM on macrophage function. These factors may contribute to the negative outcomes linked to PM exposure during respiratory infections.
Collapse
Affiliation(s)
- Timothy R Smyth
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| | - Stephanie Brocke
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| | - Yong Ho Kim
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Cara Christianson
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Kasey D Kovalcik
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Joseph Patrick Pancras
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Michael D Hays
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453004, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang 453004, China
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| |
Collapse
|
9
|
Bradshaw TM, Schoenfisch MH. Properties of Electrospun Fibers That Influence Foreign Body Response Modulation. ACS Biomater Sci Eng 2025; 11:55-66. [PMID: 39637403 DOI: 10.1021/acsbiomaterials.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Improving the utility of biomedical devices implanted in subcutaneous tissue by modulating the innate immune response common to these implants is of great interest to improve their utility. Uncontrolled, most biomedical devices produce an immune reaction known broadly as the foreign body response (FBR), which ultimately isolates the device from the native tissue. The use of electrospun fibers to create a porous surface that promotes tissue in-growth and regeneration represents a new paradigm in FBR modulation. A vast number of parameters can be adjusted in the electrospinning process to tune the type and quality of the resulting electrospun matrix, which in turn has varying outcomes with respect to the FBR. In this review, the fabrication and utility of electrospun fiber scaffolds for mitigating the FBR are described, with details of how fiber properties and surface modifications alter immune response for specific biomedical applications.
Collapse
Affiliation(s)
- Taron M Bradshaw
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Restrepo CM, Llanes A, Herrera L, Ellis E, Quintero I, Fernández PL. Baseline gene expression in BALB/c and C57BL/6 peritoneal macrophages influences but does not dictate their functional phenotypes. Exp Biol Med (Maywood) 2025; 249:10377. [PMID: 39830895 PMCID: PMC11740880 DOI: 10.3389/ebm.2024.10377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Macrophages are effector cells of the immune system and essential modulators of immune responses. Different functional phenotypes of macrophages with specific roles in the response to stimuli have been described. The C57BL/6 and BALB/c mouse strains tend to selectively display distinct macrophage activation states in response to pathogens, namely, the M1 and M2 phenotypes, respectively. Herein we used RNA-Seq and differential expression analysis to characterize the baseline gene expression pattern of unstimulated resident peritoneal macrophages from C57BL/6 and BALB/c mice. Our aim is to determine if there is a possible predisposition of these mouse strains to any activation phenotype and how this may affect the interpretation of results in studies concerning their interaction with pathogens. We found differences in basal gene expression patterns of BALB/c and C57BL/6 mice, which were further confirmed using RT-PCR for a subset of relevant genes. Despite these differences, our data suggest that baseline gene expression patterns of both mouse strains do not appear to determine by itself a specific macrophage phenotype.
Collapse
Affiliation(s)
- Carlos M. Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia Tecnología e Innovación (SENACYT), Panama City, Panama
| | - Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia Tecnología e Innovación (SENACYT), Panama City, Panama
| | - Lizzi Herrera
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Esteban Ellis
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Departamento de Biotecnología, Facultad de Ciencias de la Salud, Universidad Latina de Panamá, Panama City, Panama
- Facultad de Ciencia y Tecnología, Universidad Tecnológica de Panamá, Panama City, Panama
| | - Iliana Quintero
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Patricia L. Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia Tecnología e Innovación (SENACYT), Panama City, Panama
| |
Collapse
|
11
|
Nguyen HT, Kan EL, Humayun M, Gurvich N, Offeddu GS, Wan Z, Coughlin MF, Renteria DC, Loew A, Wilson S, Zhang C, Vu V, Lee SWL, Tan SL, Barbie D, Hsu J, Gillrie MR, Kamm RD. Patient-specific vascularized tumor model: Blocking monocyte recruitment with multispecific antibodies targeting CCR2 and CSF-1R. Biomaterials 2025; 312:122731. [PMID: 39153324 DOI: 10.1016/j.biomaterials.2024.122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Tumor-associated inflammation drives cancer progression and therapy resistance, often linked to the infiltration of monocyte-derived tumor-associated macrophages (TAMs), which are associated with poor prognosis in various cancers. To advance immunotherapies, testing on immunocompetent pre-clinical models of human tissue is crucial. We have developed an in vitro model of microvascular networks with tumor spheroids or patient tissues to assess monocyte trafficking into tumors and evaluate immunotherapies targeting the human tumor microenvironment. Our findings demonstrate that macrophages in vascularized breast and lung tumor models can enhance monocyte recruitment via CCL7 and CCL2, mediated by CSF-1R. Additionally, a multispecific antibody targeting CSF-1R, CCR2, and neutralizing TGF-β (CSF1R/CCR2/TGF-β Ab) repolarizes TAMs towards an anti-tumoral M1-like phenotype, reduces monocyte chemoattractant protein secretion, and blocks monocyte migration. This antibody also inhibits monocyte recruitment in patient-specific vascularized tumor models. In summary, this vascularized tumor model recapitulates the monocyte recruitment cascade, enabling functional testing of innovative therapeutic antibodies targeting TAMs in the tumor microenvironment.
Collapse
Affiliation(s)
- Huu Tuan Nguyen
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Ellen L Kan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mouhita Humayun
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nadia Gurvich
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Giovanni S Offeddu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengpeng Wan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mark F Coughlin
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Diana C Renteria
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andreas Loew
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Susan Wilson
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Christie Zhang
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Vivian Vu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sharon Wei Ling Lee
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seng-Lai Tan
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - David Barbie
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan Hsu
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Mark Robert Gillrie
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Roger D Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Sigarteu Chindris AM, Rivera M, Ma Y, Nair A, Liu Y, Wang X, Necela BM, Kachergus JM, Casler JD, Brett C, Rivas Mejia AM, Bernet VJ, Copland JA, Knutson KL, Thompson EA, Smallridge RC. BRAFV600E/pTERT double mutated papillary thyroid cancers exhibit immune gene suppression. Front Endocrinol (Lausanne) 2024; 15:1440722. [PMID: 39717106 PMCID: PMC11663634 DOI: 10.3389/fendo.2024.1440722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction BRAFV600E mutation (BRAFmut) is common in papillary thyroid cancer (PTC), and most patients have an excellent outcome. However, a TERT-promoter mutation (pTERTmut) in the presence of BRAFmut (BRAFmutpTERTmut) has been demonstrated to confer a more aggressive behavior to PTC. Lymphocytic infiltration is often present in PTC. In this study, we sought to decipher the relationship between the BRAF and pTERT mutations and immune gene dysregulation in tumor samples from a cohort of 147 samples of PTC. Methods The abundance of 770 immune gene transcripts was determined by multiprex capture/detection and digital counting of mRNA transcripts using the NanoString nCounter® PanCancer Immune Profiling Panel. Results We identified 40 immune transcripts differentially expressed in BRAFmutpTERTmut vs BRAFmutpTERT wildtype (pTERTwt) (P<0.05). Transcripts induced by BRAFmut alone were significantly repressed in BRAFmutpTERTmut samples, such as genes expressed by lymphoid cells, antigen-presenting cells, and cytotoxic cells, including chemokines, cytokines, checkpoint control proteins, interferon downstream markers, TNF superfamily proteins and BMP markers. A validation analysis using 444 samples from The Cancer Genome Atlas (TCGA) PTC dataset yielded similar results. Deconvolution analysis confirmed differences in the immune cell populations such as increased presence of M2 macrophages in the BRAFmutpTERTmut Mayo cohort and a lower abundance of M1 macrophages in the BRAFmutpTERTmut TCGA cohort compared to BRAFmutpTERTwt. Most of the immune gene pathways were enriched in the BRAFmutpTERTwt tumors in both Mayo and TCGA cohorts but not in BRAFmutpTERTmut. BRAFmutpTERTwt had higher stromal lymphocytes infiltration as compared to BRAFwtpTERTwt tumors, corroborating the transcriptomic findings. Discussion To our knowledge this is the first report of a potential link between TERT and the immune microenvironment, offering an explanation for the aggressive nature of BRAFmutpTERTmut PTC.
Collapse
Affiliation(s)
| | - Michael Rivera
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, United States
| | - Yaohua Ma
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Asha Nair
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Yi Liu
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Brian M. Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | | | - John D. Casler
- Department of Otorhinolaryngology/Audiology, Mayo Clinic, Jacksonville, FL, United States
| | - Christopher Brett
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Victor J. Bernet
- Division of Endocrinology, Mayo Clinic, Jacksonville, FL, United States
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Keith L. Knutson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
| | - E. Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | | |
Collapse
|
13
|
Bandaranayake UK, Sato H, Suzuki M. Development of molecular sensors based on fluorescent proteins for polarized macrophages identification. ANAL SCI 2024; 40:2133-2145. [PMID: 39235677 DOI: 10.1007/s44211-024-00649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Macrophages are a type of white blood cells that play key roles in innate immune responses as a part of cellular immunity for host defence and tissue homeostasis. To perform diverse functions, macrophages show high plasticity by transforming to polarized states. They are mainly identified as unpolarized, pro-inflammatory and antiinflammatory states and termed as M0, M1 and M2 macrophages respectively. Discriminating polarized states is important due to strict implication with inflammatory conditions resulting in many diseases as chronic inflammation, neurodegeneration, and cancer etc. Many polarization protein markers have been identified and applied to investigate expression profiles through PCR and other techniques with antibodies. However, they are time and cost consuming and sometimes show insufficient performances. We focused on the mannose receptor (CD206) as representative marker of M2 macrophage recognising terminal mannose. We developed dose dependent mannosylated fluorescent proteins (FPs) by conjugations with mannose derivative for around 20 modifiable sites on FPs surfaces. Maximum modifications did not spoil various features of FPs. We found further sensitive and specific discriminations among M2, M1 and M0 macrophages after treating polarized macrophages with adequately conditioned FPs compared to already established approaches using anti CD206 antibody through flow cytometric analysis. These results might be derived from direct ligand utilizations and increased avidity due to multivalent bindings with abundantly modified multimeric FPs. Our strategy is simple but addresses disadvantages of preceding methods. Moreover, this strategy is applicable to detect other cell surface receptors as FPs can be modified with ligands or recognizable aptamer like molecules.
Collapse
Affiliation(s)
- Udari Kalpana Bandaranayake
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Hiroki Sato
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1298, Japan
| | - Miho Suzuki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.
| |
Collapse
|
14
|
Huth SW, Geri JB, Oakley JV, MacMillan DWC. μMap-Interface: Temporal Photoproximity Labeling Identifies F11R as a Functional Member of the Transient Phagocytic Surfaceome. J Am Chem Soc 2024; 146:32255-32262. [PMID: 39532068 DOI: 10.1021/jacs.4c11058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Phagocytosis is usually carried out by professional phagocytic cells in the context of pathogen response or wound healing. The transient surface proteins that regulate phagocytosis pose a challenging proteomics target; knowledge thereof could lead to new therapeutic insights. Herein, we describe a novel photocatalytic proximity labeling method: "μMap-Interface", allowing for spatiotemporal mapping of phagocytosis. Utilizing photocatalyst-conjugated IGG-opsonized beads and initiating phagocytosis in a synchronized manner, we capture phagocytic interactome "snapshots" at the interface of the phagocyte and its target. This allows profiling of the dynamic surface proteome of human macrophages during the engulfment process. We reveal previously known phagocytic mediators as well as potential novel interactors and validate their presence with super-resolution microscopy. This includes F11R, an important cancer target yet to be investigated in the context of phagocytosis. Further, we demonstrate that knocking down F11R leads to an increased degree of phagocytosis; this insight could contribute to explaining its oncogenic activity. Lastly, we show capture of orthogonal phagocytic surfaceomes across different cells, using a neutrophil-like model. We believe this method will enable new insights into phagocytic processes in a variety of contexts.
Collapse
Affiliation(s)
- Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jacob B Geri
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 PMCID: PMC11641752 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
16
|
Medhasi S, Sangphech N, Permpalung N, Torvorapanit P, Plongla R, Worasilchai N. Functional characterization of macrophages and change of Th1/Th2 balance in patients with pythiosis after Pythium insidiosum antigen immunotherapy. Sci Rep 2024; 14:27363. [PMID: 39521871 PMCID: PMC11550834 DOI: 10.1038/s41598-024-78756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
There has been limited research into the role of the Pythium insidiosum antigen (PIA) in modulating immune response in patients with pythiosis. This study investigated the balance of T helper type 2 (Th2) and T helper type 1 (Th1) responses after receiving PIA immunotherapy in patients with pythiosis. Next, the phagocytic activity and phagocytic index of IFN-γ primed PIA-treated macrophages were examined. Furthermore, the phagocytosis of infective P. insidiosum zoospores by macrophages was investigated. This work showed that the PIA vaccine induced Th1 response and M1 macrophages in patients with vascular pythiosis who survived and those with localized pythiosis. Phagocytic activity and phagocytic index were increased considerably in localized pythiosis patients compared to vascular pythiosis patients with hematological diseases. IFN-γ priming of PIA-treated macrophages against P. insidiosum zoospores enhanced the phagocytic activity and phagocytic index in vascular and localized pythiosis patients. Macrophages engulfed P. insidiosum zoospores, but the zoospores continued germination, resulting in macrophage death. Overall, our results suggest that PIA can modulate the immune responses, contributing to higher levels of Th1-type cytokine and potentially improving the survival of patients with vascular pythiosis. This study is the first to uncover that P. insidiosum zoospores can survive within macrophages.
Collapse
Affiliation(s)
- Sadeep Medhasi
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Research Unit of Medical Mycology Diagnosis, Chulalongkorn University, Bangkok, Thailand
| | - Naunpun Sangphech
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| | - Nitipong Permpalung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pattama Torvorapanit
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Rongpong Plongla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Navaporn Worasilchai
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
- Research Unit of Medical Mycology Diagnosis, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
17
|
Smyth T, Payton A, Hickman E, Rager JE, Jaspers I. Leveraging a comprehensive unbiased RNAseq database to characterize human monocyte-derived macrophage gene expression profiles within commonly employed in vitro polarization methods. Sci Rep 2024; 14:26753. [PMID: 39500943 PMCID: PMC11538326 DOI: 10.1038/s41598-024-78000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Macrophages are pivotal innate immune cells which exhibit high phenotypic plasticity and can exist in different polarization states dependent on exposure to external stimuli. Numerous methods have been employed to simulate macrophage polarization states to test their function in vitro. However, limited research has explored whether these polarization methods yield comparable populations beyond key gene, cytokine, and cell surface marker expression. Here, we employ an unbiased comprehensive analysis using data organized through the all RNA-seq and ChIP-seq sample and signature search (ARCHS4) database, which compiles all RNAseq data deposited into the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). In silico analyses were carried out demonstrating that commonly employed macrophage polarization methods generate distinct gene expression profiles in macrophage subsets that remained poorly described until now. Our analyses confirm existing knowledge on broad macrophage polarization, while expanding nuanced differences between M2a and M2c subsets, suggesting non-interchangeable stimuli for M2a polarization. Furthermore, we characterize divergent gene expression patterns in M1 macrophages following standard polarization protocols, indicating significant subset distinctions. Consequently, equivalence cannot be assumed among polarization regimens for in vitro macrophage studies, particularly in simulating diverse pathogen responses.
Collapse
Affiliation(s)
- Timothy Smyth
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elise Hickman
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- , 116 Manning Drive, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA.
| |
Collapse
|
18
|
Monteiro CF, Almeida CR, Custódio CA, Mano JF. Modeling 3D Tumor Invasiveness to Modulate Macrophage Phenotype in a Human-Based Hydrogel Platform. Macromol Biosci 2024; 24:e2400227. [PMID: 38940700 DOI: 10.1002/mabi.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 06/29/2024]
Abstract
The immune system is a pivotal player in determining tumor fate, contributing to the immunosuppressive microenvironment that supports tumor progression. Considering the emergence of biomaterials as promising platforms to mimic the tumor microenvironment, human platelet lysate (PLMA)-based hydrogel beads are proposed as 3D platforms to recapitulate the tumor milieu and recreate the synergistic tumor-macrophage communication. Having characterized the biomaterial-mediated pro-regenerative macrophage phenotype, an osteosarcoma spheroid encapsulated into a PLMA hydrogel bead is explored to study macrophage immunomodulation through paracrine signaling. The culture of PLMA-Tumor beads on the top of a 2D monolayer of macrophages reveals that tumor cells triggered morphologic and metabolic adaptations in macrophages. The cytokine profile, coupled with the upregulation of gene and protein anti-inflammatory biomarkers clearly indicates macrophage polarization toward an M2-like phenotype. Moreover, the increased gene expression of chemokines identified as pro-tumoral environmental regulators suggest a tumor-associated macrophage phenotype, exclusively stimulated by tumor cells. This pro-tumoral microenvironment is also found to enhance tumor invasiveness ability and proliferation. Besides providing a robust in vitro immunomodulatory tumor model that faithfully recreates the tumor-macrophage interplay, this human-based platform has the potential to provide fundamental insights into immunosuppressive signaling and predict immune-targeted response.
Collapse
Affiliation(s)
- Cátia F Monteiro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Catarina R Almeida
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Catarina A Custódio
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
19
|
Vrieling F, van der Zande HJP, Naus B, Smeehuijzen L, van Heck JIP, Ignacio BJ, Bonger KM, Van den Bossche J, Kersten S, Stienstra R. CENCAT enables immunometabolic profiling by measuring protein synthesis via bioorthogonal noncanonical amino acid tagging. CELL REPORTS METHODS 2024; 4:100883. [PMID: 39437716 PMCID: PMC11573747 DOI: 10.1016/j.crmeth.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Cellular energy metabolism significantly contributes to immune cell function. To further advance immunometabolic research, novel methods to study the metabolism of immune cells in complex samples are required. Here, we introduce CENCAT (cellular energetics through noncanonical amino acid tagging). This technique utilizes click labeling of alkyne-bearing noncanonical amino acids to measure protein synthesis inhibition as a proxy for metabolic activity. CENCAT successfully reproduced known metabolic signatures of lipopolysaccharide (LPS)/interferon (IFN)γ and interleukin (IL)-4 activation in human primary macrophages. Application of CENCAT in peripheral blood mononuclear cells revealed diverse metabolic rewiring upon stimulation with different activators. Finally, CENCAT was used to analyze the cellular metabolism of murine tissue-resident immune cells from various organs. Tissue-specific clustering was observed based on metabolic profiles, likely driven by microenvironmental priming. In conclusion, CENCAT offers valuable insights into immune cell metabolic responses, presenting a powerful platform for studying cellular metabolism in complex samples and tissues in both humans and mice.
Collapse
Affiliation(s)
- Frank Vrieling
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Britta Naus
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Lisa Smeehuijzen
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Julia I P van Heck
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bob J Ignacio
- Department of Synthetic Organic Chemistry, Chemical Biology Lab, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Kimberly M Bonger
- Department of Synthetic Organic Chemistry, Chemical Biology Lab, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Rinke Stienstra
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
20
|
Ahn M, Ali A, Seo JH. Mitochondrial regulation in the tumor microenvironment: targeting mitochondria for immunotherapy. Front Immunol 2024; 15:1453886. [PMID: 39544945 PMCID: PMC11562472 DOI: 10.3389/fimmu.2024.1453886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024] Open
Abstract
Mitochondrial regulation plays a crucial role in cancer immunity in the tumor microenvironment (TME). Infiltrating immune cells, including T cells, natural killer (NK) cells, and macrophages, undergo mitochondrial metabolic reprogramming to survive the harsh conditions of the TME and enhance their antitumor activity. On the other hand, immunosuppressive cells like myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), mast cells, and tumor-associated macrophages (TAMs) rely on mitochondrial regulation to maintain their function as well. Additionally, mitochondrial regulation of cancer cells facilitates immune evasion and even hijacks mitochondria from immune cells to enhance their function. Recent studies suggest that targeting mitochondria can synergistically reduce cancer progression, especially when combined with traditional cancer therapies and immune checkpoint inhibitors. Many mitochondrial-targeting drugs are currently in clinical trials and have the potential to enhance the efficacy of immunotherapy. This mini review highlights the critical role of mitochondrial regulation in cancer immunity and provides lists of mitochondrial targeting drugs that have potential to enhance the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Minseo Ahn
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
- Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Akhtar Ali
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
- Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Jae Ho Seo
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
- Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
- Institute of Wonkwang Medical Science, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
21
|
Whiteside TL. Tumor-derived Exosomes and Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:923-931. [PMID: 39284119 PMCID: PMC11951267 DOI: 10.4049/jimmunol.2400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/01/2024] [Indexed: 11/13/2024]
Abstract
Cancer immunotherapy, including immune checkpoint blockade, has been approved for treatment of patients with many cancer types. However, some patients fail to respond to immunotherapy, and emerging evidence indicates that tumor-derived exosomes (TEX) play a major role in reprogramming the host immune cells by inducing their dysfunction. Focusing on effector T cells, this review illustrates mechanisms of suppression that TEX use, thus promoting tumor escape from the host immune system. TEX carry multiple suppressive signals that drive T cell dysfunction and convert the tumor microenvironment into "an immune desert" in which activated T cells either die or are reprogrammed to mediate protumor functions. The reprogrammed T cells produce a new crop of CD3+ immunoinhibitory exosomes that further amplify suppression mediated by TEX. The result is a profound depletion of antitumor immune effector cells that reflects the defective immune competence of the cancer patient and partly explains why TEX are a significant barrier for cancer immunotherapy.
Collapse
Affiliation(s)
- Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA; and UPMC Hillman Cancer Center, Pittsburgh, PA
| |
Collapse
|
22
|
Vella N, Fenech AG, Petroni Magri V. 3D cell culture models in research: applications to lung cancer pharmacology. Front Pharmacol 2024; 15:1438067. [PMID: 39376603 PMCID: PMC11456561 DOI: 10.3389/fphar.2024.1438067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative research methodologies to improve treatment outcomes and develop novel strategies. The advent of three-dimensional (3D) cell cultures has marked a significant advancement in lung cancer research, offering a more physiologically relevant model compared to traditional two-dimensional (2D) cultures. This review elucidates the various types of 3D cell culture models currently used in lung cancer pharmacology, including spheroids, organoids and engineered tissue models, having pivotal roles in enhancing our understanding of lung cancer biology, facilitating drug development, and advancing precision medicine. 3D cell culture systems mimic the complex spatial architecture and microenvironment of lung tumours, providing critical insights into the cellular and molecular mechanisms of tumour progression, metastasis and drug responses. Spheroids, derived from commercialized cell lines, effectively model the tumour microenvironment (TME), including the formation of hypoxic and nutrient gradients, crucial for evaluating the penetration and efficacy of anti-cancer therapeutics. Organoids and tumouroids, derived from primary tissues, recapitulate the heterogeneity of lung cancers and are instrumental in personalized medicine approaches, supporting the simulation of in vivo pharmacological responses in a patient-specific context. Moreover, these models have been co-cultured with various cell types and biomimicry extracellular matrix (ECM) components to further recapitulate the heterotypic cell-cell and cell-ECM interactions present within the lung TME. 3D cultures have been significantly contributing to the identification of novel therapeutic targets and the understanding of resistance mechanisms against conventional therapies. Therefore, this review summarizes the latest findings in drug research involving lung cancer 3D models, together with the common laboratory-based assays used to study drug effects. Additionally, the integration of 3D cell cultures into lung cancer drug development workflows and precision medicine is discussed. This integration is pivotal in accelerating the translation of laboratory findings into clinical applications, thereby advancing the landscape of lung cancer treatment. By closely mirroring human lung tumours, these models not only enhance our understanding of the disease but also pave the way for the development of more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
| | - Anthony G. Fenech
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | |
Collapse
|
23
|
Pandur E, Pap R, Sipos K. Activated THP-1 Macrophage-Derived Factors Increase the Cytokine, Fractalkine, and EGF Secretions, the Invasion-Related MMP Production, and Antioxidant Activity of HEC-1A Endometrium Cells. Int J Mol Sci 2024; 25:9624. [PMID: 39273575 PMCID: PMC11395051 DOI: 10.3390/ijms25179624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Endometrium receptivity is a multifactor-regulated process involving progesterone receptor-regulated signaling, cytokines and chemokines, and additional growth regulatory factors. In the female reproductive system, macrophages have distinct roles in the regulation of receptivity, embryo implantation, immune tolerance, and angiogenesis or oxidative stress. In the present study, we investigated the effects of PMA-activated THP-1 macrophages on the receptivity-related genes, cytokines and chemokines, growth regulators, and oxidative stress-related molecules of HEC-1A endometrium cells. We established a non-contact co-culture in which the culture medium of the PMA-activated macrophages exhibiting the pro-inflammatory phenotype was used for the treatment of the endometrial cells. In the endometrium cells, the expression of the growth-related factors activin and bone morphogenetic protein 2, the growth hormone EGF, and the activation of the downstream signaling molecules pERK1/2 and pAkt were analyzed by ELISA and Western blot. The secretions of cytokines and chemokines, which are involved in the establishment of endometrial receptivity, and the expression of matrix metalloproteinases implicated in invasion were also determined. Based on the results, the PMA-activated THP-1 macrophages exhibiting a pro-inflammatory phenotype may play a role in the regulation of HEC-1A endometrium cells. They alter the secretion of cytokines and chemokines, as well as the protein level of MMPs of HEC-1A cells. Moreover, activated THP-1 macrophages may elevate oxidative stress protection of HEC-1A endometrium cells. All these suggest that pro-inflammatory macrophages have a special role in the regulation of receptivity-related and implantation-related factors of HEC-1A cells.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (R.P.); (K.S.)
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (R.P.); (K.S.)
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (R.P.); (K.S.)
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
24
|
Nadeem A, Lyons S, Kindopp A, Jamieson A, Roxbury D. Machine Learning-Assisted Near-Infrared Spectral Fingerprinting for Macrophage Phenotyping. ACS NANO 2024; 18:22874-22887. [PMID: 39148286 PMCID: PMC12020776 DOI: 10.1021/acsnano.4c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Spectral fingerprinting has emerged as a powerful tool that is adept at identifying chemical compounds and deciphering complex interactions within cells and engineered nanomaterials. Using near-infrared (NIR) fluorescence spectral fingerprinting coupled with machine learning techniques, we uncover complex interactions between DNA-functionalized single-walled carbon nanotubes (DNA-SWCNTs) and live macrophage cells, enabling in situ phenotype discrimination. Utilizing Raman microscopy, we showcase statistically higher DNA-SWCNT uptake and a significantly lower defect ratio in M1 macrophages compared to M2 and naive phenotypes. NIR fluorescence data also indicate that distinctive intraendosomal environments of these cell types give rise to significant differences in many optical features, such as emission peak intensities, center wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and M2 macrophages, achieving an impressive accuracy of >95%. Finally, we observe that the stability of DNA-SWCNT complexes, influenced by DNA sequence length, is a crucial consideration for applications, such as cell phenotyping or mapping intraendosomal microenvironments using AI techniques. Our findings suggest that shorter DNA-sequences like GT6 give rise to more improved model accuracy (>87%) due to increased active interactions of SWCNTs with biomolecules in the endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for cellular identification, holding promise for potential applications in real time monitoring of in vivo cellular differentiation.
Collapse
Affiliation(s)
- Aceer Nadeem
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA
| | - Sarah Lyons
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA
| | - Aidan Kindopp
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA
| | - Amanda Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912 USA
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA
| |
Collapse
|
25
|
Kainulainen K, Niskanen EA, Kinnunen J, Mäki-Mantila K, Hartikainen K, Paakinaho V, Malinen M, Ketola K, Pasonen-Seppänen S. Secreted factors from M1 macrophages drive prostate cancer stem cell plasticity by upregulating NANOG, SOX2, and CD44 through NFκB-signaling. Oncoimmunology 2024; 13:2393442. [PMID: 39175947 PMCID: PMC11340773 DOI: 10.1080/2162402x.2024.2393442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
The inflammatory tumor microenvironment (TME) is a key driver for tumor-promoting processes. Tumor-associated macrophages are one of the main immune cell types in the TME and their increased density is related to poor prognosis in prostate cancer. Here, we investigated the influence of pro-inflammatory (M1) and immunosuppressive (M2) macrophages on prostate cancer lineage plasticity. Our findings reveal that M1 macrophage secreted factors upregulate genes related to stemness while downregulating genes associated with androgen response in prostate cancer cells. The expression of cancer stem cell (CSC) plasticity markers NANOG, KLF4, SOX2, OCT4, and CD44 was stimulated by the secreted factors from M1 macrophages. Moreover, AR and its target gene PSA were observed to be suppressed in LNCaP cells treated with secreted factors from M1 macrophages. Inhibition of NFκB signaling using the IKK16 inhibitor resulted in downregulation of NANOG, SOX2, and CD44 and CSC plasticity. Our study highlights that the secreted factors from M1 macrophages drive prostate cancer cell plasticity by upregulating the expression of CSC plasticity markers through NFκB signaling pathway.
Collapse
Affiliation(s)
- Kirsi Kainulainen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A. Niskanen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Kinnunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Mäki-Mantila
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kiia Hartikainen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Malinen
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Kouvola, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
26
|
Man Y, Zhai Y, Jiang A, Bai H, Gulati A, Plebani R, Mannix RJ, Merry GE, Goyal G, Belgur C, Hall SRR, Ingber DE. Exacerbation of influenza virus induced lung injury by alveolar macrophages and its suppression by pyroptosis blockade in a human lung alveolus chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607799. [PMID: 39211234 PMCID: PMC11361059 DOI: 10.1101/2024.08.13.607799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alveolar macrophages (AMs) are the major sentinel immune cells in human alveoli and play a central role in eliciting host inflammatory responses upon distal lung viral infection. Here, we incorporated peripheral human monocyte-derived macrophages within a microfluidic human Lung Alveolus Chip that recreates the human alveolar-capillary interface under an air-liquid interface along with vascular flow to study how residential AMs contribute to the human pulmonary response to viral infection. When Lung Alveolus Chips that were cultured with macrophages were infected with influenza H3N2, there was a major reduction in viral titers compared to chips without macrophages; however, there was significantly greater inflammation and tissue injury. Pro-inflammatory cytokine levels, recruitment of immune cells circulating through the vascular channel, and expression of genes involved in myelocyte activation were all increased, and this was accompanied by reduced epithelial and endothelial cell viability and compromise of the alveolar tissue barrier. These effects were partially mediated through activation of pyroptosis in macrophages and release of pro-inflammatory mediators, such as interleukin (IL)-1β, and blocking pyroptosis via caspase-1 inhibition suppressed lung inflammation and injury on-chip. These findings demonstrate how integrating tissue resident immune cells within human Lung Alveolus Chip can identify potential new therapeutic targets and uncover cell and molecular mechanisms that contribute to the development of viral pneumonia and acute respiratory distress syndrome (ARDS).
Collapse
|
27
|
Aghakhani A, Pezeshki PS, Rezaei N. The role of extracellular vesicles in immune cell exhaustion and resistance to immunotherapy. Expert Opin Investig Drugs 2024; 33:721-740. [PMID: 38795060 DOI: 10.1080/13543784.2024.2360209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 05/27/2024]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are membrane-bound nanoparticles for intercellular communication. Subtypes of EVs, namely exosomes and microvesicles transfer diverse, bioactive cargo to their target cells and eventually interfere with immune responses. Despite being a promising approach, cancer immunotherapy currently faces several challenges including immune resistance. EVs secreted from various sources in the tumor microenvironment provoke immune cell exhaustion and lower the efficacy of immunological treatments, such as CAR T cells and immune checkpoint inhibitors. AREAS COVERED This article goes through the mechanisms of action of various types of EVs in inhibiting immune response and immunotherapies, and provides a comprehensive review of EV-based treatments. EXPERT OPINION By making use of the distinctive features of EVs, natural or modified EVs are innovatively utilized as novel cancer therapeutics. They are occasionally coupled with currently established treatments to overcome their inadequacies. Investigating the properties and interactions of EVs and EV-based treatments is crucial for determining future steps in cancer therapeutics.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parmida Sadat Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Ciaramellano F, Scipioni L, Belà B, Pignataro G, Giacovazzo G, Angelucci CB, Giacominelli-Stuffler R, Gramenzi A, Oddi S. Combination of Hydrolysable Tannins and Zinc Oxide on Enterocyte Functionality: In Vitro Insights. Biomolecules 2024; 14:666. [PMID: 38927069 PMCID: PMC11201419 DOI: 10.3390/biom14060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The management of gastrointestinal disease in animals represents a significant challenge in veterinary and zootechnic practice. Traditionally, acute symptoms have been treated with antibiotics and high doses of zinc oxide (ZnO). However, concerns have been raised regarding the potential for microbial resistance and ecological detriment due to the excessive application of this compound. These concerns highlight the urgency of minimizing the use of ZnO and exploring sustainable nutritional solutions. Hydrolysable tannins (HTs), which are known for their role in traditional medicine for acute gastrointestinal issues, have emerged as a promising alternative. This study examined the combined effect of food-grade HTs and subtherapeutic ZnO concentration on relevant biological functions of Caco-2 cells, a widely used model of the intestinal epithelial barrier. We found that, when used together, ZnO and HTs (ZnO/HTs) enhanced tissue repair and improved epithelial barrier function, normalizing the expression and functional organization of tight junction proteins. Finally, the ZnO/HTs combination strengthened enterocytes' defense against oxidative stress induced by inflammation stimuli. In conclusion, combining ZnO and HTs may offer a suitable and practical approach for decreasing ZnO levels in veterinary nutritional applications.
Collapse
Affiliation(s)
- Francesca Ciaramellano
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| | - Lucia Scipioni
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy
| | - Benedetta Belà
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | - Giulia Pignataro
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | - Giacomo Giacovazzo
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | | | | | - Alessandro Gramenzi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | - Sergio Oddi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| |
Collapse
|
29
|
Ghosh A, Payton A, Gallant SC, Rogers KL, Mascenik T, Hickman E, Love CA, Schichlein KD, Smyth TR, Kim YH, Rager JE, Gilmour MI, Randell SH, Jaspers I. Burn Pit Smoke Condensate-Mediated Toxicity in Human Airway Epithelial Cells. Chem Res Toxicol 2024; 37:791-803. [PMID: 38652897 PMCID: PMC11251002 DOI: 10.1021/acs.chemrestox.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Burn pits are a method of open-air waste management that was common during military operations in Iraq, Afghanistan, and other regions in Southwest Asia. Veterans returning from deployment have reported respiratory symptoms, potentially from exposure to burn pit smoke, yet comprehensive assessment of such exposure on pulmonary health is lacking. We have previously shown that exposure to condensates from burn pit smoke emissions causes inflammation and cytotoxicity in mice. In this study, we explored the effects of burn pit smoke condensates on human airway epithelial cells (HAECs) to understand their impact on cellular targets in the human lung. HAECs were cultured at the air-liquid interface (ALI) and exposed to burn pit waste smoke condensates (plywood, cardboard, plastic, mixed, and mixed with diesel) generated under smoldering and flaming conditions. Cytotoxicity was evaluated by measuring transepithelial electrical resistance (TEER) and lactate dehydrogenase (LDH) release; toxicity scores (TSs) were quantified for each exposure. Pro-inflammatory cytokine release and modulation of gene expression were examined for cardboard and plastic condensate exposures. Burn pit smoke condensates generated under flaming conditions affected cell viability, with flaming mixed waste and plywood exhibiting the highest toxicity scores. Cardboard and plastic smoke condensates modulated cytokine secretion, with GM-CSF and IL-1β altered in more than one exposure group. Gene expression of detoxifying enzymes (ALDH1A3, ALDH3A1, CYP1A1, CYP1B1, NQO1, etc.), mucins (MUC5AC, MUC5B), and cytokines was affected by several smoke condensates. Particularly, expression of IL6 was elevated following exposure to all burn pit smoke condensates, and polycyclic aromatic hydrocarbon acenaphthene was positively associated with the IL-6 level in the basolateral media of HAECs. These observations demonstrate that exposure to smoke condensates of materials present in burn pits adversely affects HAECs and that aberrant cytokine secretion and altered gene expression profiles following burn pit material smoke exposure could contribute to the development of airway disease.
Collapse
Affiliation(s)
- Arunava Ghosh
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Alexis Payton
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Environmental Sciences and Engineering (ESE), Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Samuel C. Gallant
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Keith L. Rogers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599-7310 USA
| | - Teresa Mascenik
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Elise Hickman
- Department of Environmental Sciences and Engineering (ESE), Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599-7310 USA
| | - Charlotte A. Love
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Kevin D. Schichlein
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Timothy R. Smyth
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Julia E. Rager
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Environmental Sciences and Engineering (ESE), Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599-7310 USA
| | - M. Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Scott H. Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Environmental Sciences and Engineering (ESE), Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599-7310 USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
30
|
Vanessa V, Rachmawati H, Barlian A. Anti-inflammatory potential of goldenberry-derived exosome-like nanoparticles in macrophage polarization. Future Sci OA 2024; 10:FSO943. [PMID: 38827806 PMCID: PMC11140644 DOI: 10.2144/fsoa-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 06/05/2024] Open
Abstract
Objective: Overpopulated M1 macrophages can trigger chronic inflammation. Plant-derived exosome-like nanoparticles have been reported to show beneficial bioactivities. Aim: To isolate PDEN from goldenberry fruits and evaluate its anti-inflammatory potential in macrophage polarization. Methods: GDEN were isolated by centrifugation and precipitation methods. LPS-induced RAW 264.7 cells were treated with GDEN before being evaluated with nitric oxide production assay and flow cytometry of CD80 and CD209. Results: GDEN averaged 227.7 nm in size and spherical-shaped. GDEN 40 μg/ml decreased NO production in LPS-induced cells. Flow cytometry showed that CD209 (M2 marker) positive cells were up-regulated after being treated with 20 μg/ml GDEN. Conclusion: GDEN showed anti-inflammatory potential through the ability to reduce M1 macrophages product and promote M2 polarization.
Collapse
Affiliation(s)
- Vanessa Vanessa
- School of Life Sciences & Technology, Institut Teknologi Bandung (ITB), Bandung, West Java, 40132, Indonesia
| | - Heni Rachmawati
- Research Center for Nanoscience & Nanotechnology, Institut Teknologi Bandung (ITB), Bandung, West Java, 40132, Indonesia
| | - Anggraini Barlian
- School of Life Sciences & Technology, Institut Teknologi Bandung (ITB), Bandung, West Java, 40132, Indonesia
- Research Center for Nanoscience & Nanotechnology, Institut Teknologi Bandung (ITB), Bandung, West Java, 40132, Indonesia
| |
Collapse
|
31
|
Pecksen E, Tkachuk S, Schröder C, Vives Enrich M, Neog A, Johnson CP, Lachmann N, Haller H, Kiyan Y. Monocytes prevent apoptosis of iPSCs and promote differentiation of kidney organoids. Stem Cell Res Ther 2024; 15:132. [PMID: 38702808 PMCID: PMC11069262 DOI: 10.1186/s13287-024-03739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.
Collapse
Affiliation(s)
- Ekaterina Pecksen
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
| | - Sergey Tkachuk
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
| | - Cristoph Schröder
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
| | - Marc Vives Enrich
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Anindita Neog
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Cory P Johnson
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Niko Lachmann
- Department of Pediatric Pneumology Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Hermann Haller
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Yulia Kiyan
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
32
|
Nadeem A, Lyons S, Kindopp A, Jamieson A, Roxbury D. Machine Learning Assisted Spectral Fingerprinting for Immune Cell Phenotyping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583608. [PMID: 38496523 PMCID: PMC10942323 DOI: 10.1101/2024.03.05.583608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Spectral fingerprinting has emerged as a powerful tool, adept at identifying chemical compounds and deciphering complex interactions within cells and engineered nanomaterials. Using near-infrared (NIR) fluorescence spectral fingerprinting coupled with machine learning techniques, we uncover complex interactions between DNA-functionalized single-walled carbon nanotubes (DNA-SWCNTs) and live macrophage cells, enabling in situ phenotype discrimination. Through the use of Raman microscopy, we showcase statistically higher DNA-SWCNT uptake and a significantly lower defect ratio in M1 macrophages as compared to M2 and naïve phenotypes. NIR fluorescence data also indicate that distinctive intra-endosomal environments of these cell types give rise to significant differences in many optical features such as emission peak intensities, center wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and M2 macrophages, achieving an impressive accuracy of > 95%. Finally, we observe that the stability of DNA-SWCNT complexes, influenced by DNA sequence length, is a crucial consideration for applications such as cell phenotyping or mapping intra-endosomal microenvironments using AI techniques. Our findings suggest that shorter DNA-sequences like GT 6 give rise to more improved model accuracy (> 87%) due to increased active interactions of SWCNTs with biomolecules in the endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for cellular identification, holding promise for potential applications in real time monitoring of in vivo cellular differentiation. TOC Graphic
Collapse
|
33
|
Vittori C, Faia C, Wyczechowska D, Trauth A, Plaisance-Bonstaff K, Meyaski-Schluter M, Reiss K, Peruzzi F. IKAROS expression drives the aberrant metabolic phenotype of macrophages in chronic HIV infection. Clin Immunol 2024; 260:109915. [PMID: 38286172 PMCID: PMC10922842 DOI: 10.1016/j.clim.2024.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
The increased risk for acquiring secondary illnesses in people living with HIV (PLWH) has been associated with immune dysfunction. We have previously found that circulating monocytes from PLWH display a trained phenotype. Here, we evaluated the metabolic profile of these cells and found increased mitochondrial respiration and glycolysis of monocyte-derived macrophages (MDMs) from PLWH. We additionally found that cART shifted the energy metabolism of MDMs from controls toward increased utilization of mitochondrial respiration. Importantly, both downregulation of IKAROS expression and inhibition of the mTOR pathway reversed the metabolic profile of MDMs from PLWH and cART-treated control-MDMs. Altogether, this study reveals a very specific metabolic adaptation of MDMs from PLWH, which involves an IKAROS/mTOR-dependent increase of mitochondrial respiration and glycolysis. We propose that this metabolic adaptation decreases the ability of these cells to respond to environmental cues by "locking" PLWH monocytes in a pro-inflammatory and activated phenotype.
Collapse
Affiliation(s)
- Cecilia Vittori
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Celeste Faia
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Dorota Wyczechowska
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Amber Trauth
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Karlie Plaisance-Bonstaff
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Mary Meyaski-Schluter
- Clinical and Translational Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Krzysztof Reiss
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA; Louisiana State University Health Sciences Center, Department of Medicine, Louisiana Cancer Research Center; New Orleans, LA 70112, USA.
| |
Collapse
|
34
|
Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: understanding the unstable plaque. Basic Res Cardiol 2024; 119:35-56. [PMID: 38244055 DOI: 10.1007/s00395-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University Health Centre, McGill University, Montreal, Canada.
- Department of Medicine, Research Institute of the McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, EM1.2210, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
35
|
Schelemei P, Wagner E, Picard FSR, Winkels H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J 2024; 38:e23424. [PMID: 38275140 DOI: 10.1096/fj.202302001r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Macrophages are major players in myocardial infarction (MI) and atherosclerosis, two major cardiovascular diseases (CVD). Atherosclerosis is caused by the buildup of cholesterol-rich lipoproteins in blood vessels, causing inflammation, vascular injury, and plaque formation. Plaque rupture or erosion can cause thrombus formation resulting in inadequate blood flow to the heart muscle and MI. Inflammation, particularly driven by macrophages, plays a central role in both atherosclerosis and MI. Recent integrative approaches of single-cell analysis-based classifications in both murine and human atherosclerosis as well as experimental MI showed overlap in origin, diversity, and function of macrophages in the aorta and the heart. We here discuss differences and communalities between macrophages in the heart and aorta at steady state and in atherosclerosis or upon MI. We focus on markers, mediators, and functional states of macrophage subpopulations. Recent trials testing anti-inflammatory agents show a major benefit in reducing the inflammatory burden of CVD patients, but highlight a necessity for a broader understanding of immune cell ontogeny and heterogeneity in CVD. The novel insights into macrophage biology in CVD represent exciting opportunities for the development of novel treatment strategies against CVD.
Collapse
Affiliation(s)
- Patrik Schelemei
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Wagner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
36
|
Bui I, Bonavida B. Polarization of M2 Tumor-Associated Macrophages (TAMs) in Cancer Immunotherapy. Crit Rev Oncog 2024; 29:75-95. [PMID: 38989739 DOI: 10.1615/critrevoncog.2024053830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We have witnessed in the last decade new milestones in the treatment of various resistant cancers with new immunotherapeutic modalities. These advances have resulted in significant objective durable clinical responses in a subset of cancer patients. These findings strongly suggested that immunotherapy should be considered for the treatment of all subsets of cancer patients. Accordingly, the mechanisms underlying resistance to immunotherapy must be explored and develop new means to target these resistant factors. One of the pivotal resistance mechanisms in the tumor microenvironment (TME) is the high infiltration of tumor-associated macrophages (TAMs) that are highly immunosuppressive and responsible, in large part, of cancer immune evasion. Thus, various approaches have been investigated to target the TAMs to restore the anti-tumor immune response. One approach is to polarize the M2 TAMS to the M1 phenotype that participates in the activation of the anti-tumor response. In this review, we discuss the various and differential properties of the M1 and M2 phenotypes, the molecular signaling pathways that participate in the polarization, and various approaches used to target the polarization of the M2 TAMs into the M1 anti-tumor phenotype. These approaches include inhibitors of histone deacetylases, PI3K inhibitors, STAT3 inhibitors, TLR agonists, and metabolic reprogramming. Clearly, due to the distinct features of various cancers and their heterogeneities, a single approach outlined above might only be effective against some cancers and not others. In addition, targeting by itself may not be efficacious unless used in combination with other therapeutic modalities.
Collapse
Affiliation(s)
- Indy Bui
- University of California Los Angeles
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
37
|
Smyth T, Jaspers I. Diesel exhaust particles induce polarization state-dependent functional and transcriptional changes in human monocyte-derived macrophages. Am J Physiol Lung Cell Mol Physiol 2024; 326:L83-L97. [PMID: 38084400 PMCID: PMC11279754 DOI: 10.1152/ajplung.00085.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Macrophage populations exist on a spectrum between the proinflammatory M1 and proresolution M2 states and have demonstrated the ability to reprogram between them after exposure to opposing polarization stimuli. Particulate matter (PM) has been repeatedly linked to worsening morbidity and mortality following respiratory infections and has been demonstrated to modify macrophage function and polarization. The purpose of this study was to determine whether diesel exhaust particles (DEP), a key component of airborne PM, would demonstrate polarization state-dependent effects on human monocyte-derived macrophages (hMDMs) and whether DEP would modify macrophage reprogramming. CD14+CD16- monocytes were isolated from the blood of healthy human volunteers and differentiated into macrophages with macrophage colony-stimulating factor (M-CSF). Resulting macrophages were left unpolarized or polarized into the proresolution M2 state before being exposed to DEP, M1-polarizing conditions (IFN-γ and LPS), or both and tested for phagocytic function, secretory profile, gene expression patterns, and bioenergetic properties. Contrary to previous reports, we observed a mixed M1/M2 phenotype in reprogrammed M2 cells when considering the broader range of functional readouts. In addition, we determined that DEP exposure dampens phagocytic function in all polarization states while modifying bioenergetic properties in M1 macrophages preferentially. Together, these data suggest that DEP exposure of reprogrammed M2 macrophages results in a highly inflammatory, highly energetic subpopulation of macrophages that may contribute to the poor health outcomes following PM exposure during respiratory infections.NEW & NOTEWORTHY We determined that reprogramming M2 macrophages in the presence of diesel exhaust particles (DEP) results in a highly inflammatory mixed M1/M2 phenotype. We also demonstrated that M1 macrophages are particularly vulnerable to particulate matter (PM) exposure as seen by dampened phagocytic function and modified bioenergetics. Our study suggests that PM causes reprogrammed M2 macrophages to become a highly energetic, highly secretory subpopulation of macrophages that may contribute to negative health outcomes observed in humans after PM exposure.
Collapse
Affiliation(s)
- Timothy Smyth
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
38
|
Nguyen HT, Gurvich N, Gillrie MR, Offeddu G, Humayun M, Kan EL, Wan Z, Coughlin MF, Zhang C, Vu V, Lee SWL, Tan SL, Barbie D, Hsu J, Kamm RD. Patient-Specific Vascularized Tumor Model: Blocking TAM Recruitment with Multispecific Antibodies Targeting CCR2 and CSF-1R. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568627. [PMID: 38076998 PMCID: PMC10705378 DOI: 10.1101/2023.11.28.568627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Tumor-associated inflammation drives cancer progression and therapy resistance, with the infiltration of monocyte-derived tumor-associated macrophages (TAMs) associated with poor prognosis in diverse cancers. Targeting TAMs holds potential against solid tumors, but effective immunotherapies require testing on immunocompetent human models prior to clinical trials. Here, we develop an in vitro model of microvascular networks that incorporates tumor spheroids or patient tissues. By perfusing the vasculature with human monocytes, we investigate monocyte trafficking into the tumor and evaluate immunotherapies targeting the human tumor microenvironment. Our findings demonstrate that macrophages in vascularized breast and lung tumor models can enhance monocyte recruitment via TAM-produced CCL7 and CCL2, mediated by CSF-1R. Additionally, we assess a novel multispecific antibody targeting CCR2, CSF-1R, and neutralizing TGF-β, referred to as CSF1R/CCR2/TGF-β Ab, on monocytes and macrophages using our 3D models. This antibody repolarizes TAMs towards an anti-tumoral M1-like phenotype, reduces monocyte chemoattractant protein secretion, and effectively blocks monocyte migration. Finally, we show that the CSF1R/CCR2/TGF-β Ab inhibits monocyte recruitment in patient-specific vascularized tumor models. Overall, this vascularized tumor model offers valuable insights into monocyte recruitment and enables functional testing of innovative therapeutic antibodies targeting TAMs in the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Huu Tuan Nguyen
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Nadia Gurvich
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - Mark Robert Gillrie
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
- Department of Medicine, University of Calgary, Calgary, AB, T2N 1N4 Canada
| | - Giovanni Offeddu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Mouhita Humayun
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Ellen L. Kan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Zhengpeng Wan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Mark Frederick Coughlin
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Christie Zhang
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - Vivian Vu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Sharon Wei Ling Lee
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Seng-Lai Tan
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - David Barbie
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan Hsu
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| |
Collapse
|
39
|
Avila-Ponce de León U, Vázquez-Jiménez A, Padilla-Longoria P, Resendis-Antonio O. Uncoding the interdependency of tumor microenvironment and macrophage polarization: insights from a continuous network approach. Front Immunol 2023; 14:1150890. [PMID: 37283734 PMCID: PMC10240616 DOI: 10.3389/fimmu.2023.1150890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
The balance between pro- and anti-inflammatory immune system responses is crucial to preventing complex diseases like cancer. Macrophages are essential immune cells that contribute to this balance constrained by the local signaling profile of the tumor microenvironment. To understand how pro- and anti-inflammatory unbalance emerges in cancer, we developed a theoretical analysis of macrophage differentiation that is derived from activated monocytes circulating in the blood. Once recruited to the site of inflammation, monocytes can be polarized based on the specific interleukins and chemokines in the microenvironment. To quantify this process, we used a previous regulatory network reconstructed by our group and transformed Boolean Network attractors of macrophage polarization to an ODE scheme, it enables us to quantify the activation of their genes in a continuous fashion. The transformation was developed using the interaction rules with a fuzzy logic approach. By implementing this approach, we analyzed different aspects that cannot be visualized in the Boolean setting. For example, this approach allows us to explore the dynamic behavior at different concentrations of cytokines and transcription factors in the microenvironment. One important aspect to assess is the evaluation of the transitions between phenotypes, some of them characterized by an abrupt or a gradual transition depending on specific concentrations of exogenous cytokines in the tumor microenvironment. For instance, IL-10 can induce a hybrid state that transits between an M2c and an M2b macrophage. Interferon- γ can induce a hybrid between M1 and M1a macrophage. We further demonstrated the plasticity of macrophages based on a combination of cytokines and the existence of hybrid phenotypes or partial polarization. This mathematical model allows us to unravel the patterns of macrophage differentiation based on the competition of expression of transcriptional factors. Finally, we survey how macrophages may respond to a continuously changing immunological response in a tumor microenvironment.
Collapse
Affiliation(s)
- Ugo Avila-Ponce de León
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de Mexico, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de Mexico, Mexico
| | - Pablo Padilla-Longoria
- Institute for Applied Mathematics (IIMAS), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de Mexico, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|