1
|
Krezanoski P, Musiime A, Oruni A, McClure M, Kyagamba P, Otto G, Adiga J, Wilfred O, Semakula M, Rwatooro JA, Maxwell K, Lobo NF, Arinaitwe E, Nankabirwa JI, Kamya M, Dorsey G, Thomsen EK. Adjusting vector surveillance for human behaviors reveals Anopheles funestus drove a resurgence in malaria despite IRS with clothianidin in Uganda. Sci Rep 2025; 15:17728. [PMID: 40404702 PMCID: PMC12098675 DOI: 10.1038/s41598-025-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/29/2025] [Indexed: 05/24/2025] Open
Abstract
After remarkable success following the implementation of indoor residual spraying (IRS) and repeated rounds of universal distribution of insecticidal treated nets in Tororo District, eastern Uganda, a switch to clothianidin-based IRS in March 2020 was associated with a resurgence of malaria transmission. A previous study suggested Anopheles funestus may be driving the resurgence. This study was undertaken to assess the role of An. funestus in the resurgence and improve our understanding of how human-vector interaction affects malaria transmission in settings with extensive vector control. Using human landing catches and human behavioral observations, we found An. funestus infective biting, calculated from human-behavior adjusted biting rates and species-specific sporozoite rates, was 4.3 (95% Confidence Interval [CI]: 1.81 to 10.33) times higher after multiple rounds of clothianidin-based IRS when transmission was high and then dropped off markedly with a switch back to the organophosphate Actellic in March 2023. This finding was bolstered by a causal analysis showing a link between clothianidin-based IRS and 8.6 (95% CI: 2.0 to 37.0) times higher human-behavior adjusted human biting rates due to An. funestus. These findings highlight the importance of integrating monitoring of human-vector interaction and vector bionomics when introducing or evaluating changes in vector control interventions.
Collapse
Affiliation(s)
| | - Alex Musiime
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Ambrose Oruni
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Max McClure
- University of California, San Francisco, CA, USA
| | | | - Geoffrey Otto
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - James Adiga
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Odol Wilfred
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses Semakula
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Kilama Maxwell
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Neil F Lobo
- University of California, San Francisco, CA, USA
- University of Notre Dame, Notre Dame, IN, USA
| | | | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- University of California, San Francisco, CA, USA
| | | |
Collapse
|
2
|
Blanken SL, Kilama M, Ramjith J, Musiime AK, Lanke K, Ayo D, Huijbers K, Hofste T, Conrad M, Krezanoski P, Dorsey G, Kamya MR, Arinaitwe E, Bousema T. Anopheles mosquito exposure is associated with age, gender and bed net use in areas in Uganda experiencing varying malaria transmission intensity. J Infect 2025; 91:106508. [PMID: 40383398 DOI: 10.1016/j.jinf.2025.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 05/03/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
OBJECTIVES The number of Anopheles mosquito bites a person receives determines the risk of acquiring malaria and the likelihood of transmitting infections to mosquitoes. We assessed heterogeneity in Anopheles biting and associated factors in two settings in Uganda with different endemicity. METHODS Plasmodium falciparum parasites in blood-fed indoor caught Anopheles mosquitoes were quantified using qPCR targeting the Pf18S rRNA gene. Human DNA in dried blood spots from household occupants and mosquito blood meals was profiled using 15 short-tandem repeats (STRs) and analysed using a log-likelihood approach for matching of both single and multi-sourced blood meals and incomplete DNA profiles. RESULTS The distribution of mosquito bites was non-random; school-age children (5-15 years) and adults (≥16 years) had a mosquito biting rate ratio (BRR) 1.76 (95%CI 1.27-2.44, P < 0.001) and 1.96 (95%CI 1.41-2.73, P < 0.0001) times that of children under 5 years, respectively. Biting rates were lower in bed net users (BRR: 0.80, 95%CI 0.65-0.99, P = 0.042), and higher in males (BRR: 1.30, 95%CI 1.01-1.66, P = 0.043) and individuals infected with P. falciparum (BRR: 1.42, 95%CI 1.03-1.96, P = 0.030), though the latter effect lost statistical significance in sensitivity analyses. CONCLUSIONS Adults and school-age children are at higher risk of receiving mosquito bites, and this has implications for the relative importance of demographic populations to onward malaria transmission to mosquitoes.
Collapse
Affiliation(s)
- Sara Lynn Blanken
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Daniel Ayo
- Infectious Disease Collaboration, Kampala, Uganda
| | - Kristiaan Huijbers
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tom Hofste
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Melissa Conrad
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Paul Krezanoski
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Moses R Kamya
- Department of Medicine, Makerere University, Kampala, Uganda
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Nideffer J, Bach F, Nankya F, Musinguzi K, Borna Š, Mantilla M, Zedi M, Garcia Romero A, Gerungan C, Yang N, Kim S, van der Ploeg K, Camanag K, Lopez L, Nansubuga E, Nankabirwa JI, Arinaitwe E, Boonrat P, Strubbe S, Cepika AM, Takahashi S, Dorsey G, Greenhouse B, Rodriguez-Barraquer I, Kamya MR, Bacchetta R, Ssewanyana I, Haque A, Roncarolo MG, Jagannathan P. Clone tracking through repeated malaria identifies high-fidelity memory CD4 T cell responses. Sci Immunol 2025; 10:eads2957. [PMID: 40279404 DOI: 10.1126/sciimmunol.ads2957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/02/2025] [Indexed: 04/27/2025]
Abstract
Few studies have tracked human CD4+ T cell clones through repeated infections. We used longitudinal single-cell RNA and T cell receptor (TCR) tracking to study the functional stability and memory potential of CD4+ T cell clonotypes during repeated Plasmodium falciparum (Pf) infections in Ugandan children and adults. Nearly all clonotypes displayed a strong preference for one of seven CD4+ subsets. This phenomenon of "clonal fidelity" was influenced by clonal expansion, linking T cell polarization and proliferation in vivo. Using clone tracking, we characterized subset-specific activation trajectories and identified antigen-specific clones. Type 1 regulatory T (TR1) cells accounted for nearly 90% of Pf-specific CD4+ T cells in blood. Tracking these clones longitudinally for hundreds of days, we observed malaria-induced expansion of TR1 effectors, long-term persistence of TR1 memory cells, and high-fidelity recall responses after reinfection. This work establishes clonal fidelity as a natural phenomenon and demonstrates the stable, long-term memory potential of TR1 cells.
Collapse
Affiliation(s)
- Jason Nideffer
- Department of Medicine, Stanford University, Stanford, CA, USA
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Florian Bach
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Šimon Borna
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Michelle Mantilla
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Chloe Gerungan
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nora Yang
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Soyeon Kim
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Kylie Camanag
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Luis Lopez
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Alma-Martina Cepika
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Grant Dorsey
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Isabel Rodriguez-Barraquer
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Blanken SL, Kilama M, Ramjith J, Musiime AK, Lanke K, Ayo D, Huijbers K, Hofste T, Conrad M, Krezanoski P, Dorsey G, Kamya MR, Arinaitwe E, Bousema T. Anopheles mosquito exposure is associated with age, gender and bed net use in areas in Uganda experiencing varying malaria transmission intensity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.12.24318757. [PMID: 39711707 PMCID: PMC11661323 DOI: 10.1101/2024.12.12.24318757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Objectives The number of Anopheles mosquito bites a person receives determines the risk of acquiring malaria and the likelihood of transmitting infections to mosquitoes. We assessed heterogeneity in Anopheles biting and associated factors in two settings in Uganda with different endemicity. Methods Plasmodium falciparum parasites in blood-fed indoor caught Anopheles mosquitoes were quantified using qPCR targeting the Pf18S rRNA gene. Human DNA in dried blood spots from household occupants and mosquito blood meals was profiled using 15 short-tandem repeats (STRs) and analysed using a log-likelihood approach for matching of both single and multi-sourced blood meals and incomplete DNA profiles. Results The distribution of mosquito bites was non-random; school-age children (5-15 years) and adults (≥16 years) had a mosquito biting rate ratio (BRR) 1.76 (95%CI 1.27-2.44, P < 0.001) and 1.96 (95%CI 1.41-2.73, P < 0.0001) times that of children under 5 years, respectively. Biting rates were lower in bed net users (BRR: 0.80, 95%CI 0.65-0.99, P = 0.042), and higher in males (BRR: 1.30, 95%CI 1.01-1.66, P = 0.043) and individuals infected with P. falciparum (BRR: 1.42, 95%CI 1.03-1.96, P = 0.030), though the latter effect lost statistical significance in sensitivity analyses. Conclusions Adults and school-age children are at higher risk for receiving mosquito bites and this has implications for the relative importance of demographic populations to onward malaria transmission to mosquitoes.
Collapse
Affiliation(s)
- Sara Lynn Blanken
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen
| | | | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen
| | | | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen
| | - Daniel Ayo
- Infectious Disease Collaboration, Kampala, Uganda
| | - Kristiaan Huijbers
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen
| | - Tom Hofste
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen
| | - Melissa Conrad
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, USA
| | - Paul Krezanoski
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, USA
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, USA
| | - Moses R. Kamya
- Department of Medicine, Makerere University, Kampala, Uganda
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen
| |
Collapse
|
5
|
Tukwasibwe S, Lewis SN, Taremwa Y, van der Ploeg K, Press KD, Ty M, Namirimu Nankya F, Musinguzi K, Nansubuga E, Bach F, Chamai M, Okitwi M, Tumusiime G, Nakimuli A, Colucci F, Kamya MR, Nankabirwa JI, Arinaitwe E, Greenhouse B, Dorsey G, Rosenthal PJ, Ssewanyana I, Jagannathan P. Natural killer cell antibody-dependent cellular cytotoxicity to Plasmodium falciparum is impacted by cellular phenotypes, erythrocyte polymorphisms, parasite diversity and intensity of transmission. Clin Transl Immunology 2024; 13:e70005. [PMID: 39493859 PMCID: PMC11528551 DOI: 10.1002/cti2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives Natural killer (NK) cells make important contributions to anti-malarial immunity through antibody-dependent cellular cytotoxicity (ADCC), but the role of different components of this pathway in promoting NK cell activation remains unclear. Methods We compared the functions and phenotypes of NK cells from malaria-exposed and malaria-naive donors, and then varied the erythrocyte genetic background, Plasmodium falciparum strain and opsonising plasma used in ADCC to observe their impacts on NK cell degranulation as measured by CD107a mobilisation. Results Natural killer cells from malaria-exposed adult Ugandan donors had enhanced ADCC, but an impaired pro-inflammatory response to cytokine stimulation, compared to NK cells obtained from malaria-naive adult North American donors. Cellular phenotypes from malaria-exposed donors reflected this specialisation for ADCC, with a compartment-wide downregulation of the Fc receptor γ-chain and enrichment of highly differentiated CD56dim and CD56neg populations. NK cell degranulation was enhanced in response to opsonised P. falciparum schizonts cultured in sickle cell heterozygous erythrocytes relative to wild-type erythrocytes, and when using opsonising plasma collected from donors living in a high transmission area compared to a lower transmission area despite similar levels of 3D7 schizont-specific IgG levels. However, degranulation was lowered in response to opsonised field isolate P. falciparum schizonts isolated from clinical malaria infections, compared to the 3D7 laboratory strain typically used in these assays. Conclusion This work highlights important host and parasite factors that contribute to ADCC efficacy that should be considered in the design of ADCC assays.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Uganda Christian UniversityMukonoUganda
| | | | | | | | | | - Maureen Ty
- Department of MedicineStanford UniversityStanfordCAUSA
| | | | | | | | - Florian Bach
- Department of MedicineStanford UniversityStanfordCAUSA
| | - Martin Chamai
- Infectious Diseases Research CollaborationKampalaUganda
| | - Martin Okitwi
- Infectious Diseases Research CollaborationKampalaUganda
| | | | | | - Francesco Colucci
- Department of Obstetrics and GynaecologyUniversity of CambridgeCambridgeUK
| | - Moses R Kamya
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Makerere UniversityKampalaUganda
| | - Joaniter I Nankabirwa
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Makerere UniversityKampalaUganda
| | | | - Bryan Greenhouse
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Grant Dorsey
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Philip J Rosenthal
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | |
Collapse
|
6
|
Mukisa P, Kitutu FE, Mpimbaza A, Okiring J, Kalyango JN, Nankabirwa JI. Effect of the second and third COVID-19 pandemic waves on routine outpatient malaria indicators and case management practices in Uganda: an interrupted time series analysis. Malar J 2024; 23:323. [PMID: 39472901 PMCID: PMC11520443 DOI: 10.1186/s12936-024-05153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Reports on the impact of COVID-19 pandemic on the quality of malaria care and burden in sub Saharan Africa have provided a mixed picture to date. The impact of the 2nd (Delta) and 3rd (Omicron) COVID-19 waves on outpatient malaria indicators and case management practices was assessed at three public health facilities with varying malaria transmission intensities in Uganda. METHODS Individual level data from all patients presenting to the out-patient departments (OPD) of the three facilities (Kasambya, Walukuba and Lumino) between January 2019 and February 2022 were included in the analysis. Outcomes of interest included total number of outpatient (OPD) visits, proportion of patients suspected to have malaria, proportion of suspected malaria cases tested with a malaria diagnostic test, test positivity rates (TPR) and proportion of malaria cases prescribed artemether-lumefantrine (AL). Using the pre-COVID-19 trends between January 2019 and February 2020, interrupted time series analysis was used to predict the expected trends for these study outcomes during the 2nd wave (May 2021-August 2021) and 3rd wave (November 2021-February 2022). The observed trends of the study outcomes were compared with the expected trends. RESULTS There were no significant differences between the observed versus expected overall outpatient visits in the 2nd wave, however, a significant decline in OPD attendance was observed during the 3rd wave (15,101 vs 31,154; incidence rate ratio (IRR) = 0.48 [0.41-0.56]). No significant differences in the overall observed versus expected proportions of suspected malaria cases and test positivity rates in both COVID waves. However, a significant decrease in the overall proportion of suspected malaria cases tested with a malaria diagnostic test was observed during the 3rd wave (99.86% vs 99.99%; relative percent ratio [RPR] = 0.99 [0.99-0.99]). Finally, a significant decline in the overall proportion of malaria cases prescribed AL was observed during the 2nd wave (94.99% vs 99.85%; RPR = 0.95 [0.92-0.98]) but not the 3rd wave. CONCLUSION Significant declines in OPD attendance and suspected malaria cases tested with malaria diagnostic test were observed during the 3rd COVID-19 wave, while AL prescription significantly reduced during the 2nd COVID-19 wave. These findings add to the body of knowledge highlighting the adverse impact of COVID-19 pandemic on the malaria which could explain the increase in the malaria burden observed during this period.
Collapse
Affiliation(s)
- Pius Mukisa
- Clinical Epidemiology Unit, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Freddy Eric Kitutu
- Department of Pharmacy, Makerere University School of Health Sciences, Kampala, Uganda
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, 751 85, Uppsala, Sweden
| | - Arthur Mpimbaza
- Clinical Epidemiology Unit, Makerere University College of Health Sciences, Kampala, Uganda
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Jaffer Okiring
- Clinical Epidemiology Unit, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Joan N Kalyango
- Clinical Epidemiology Unit, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Pharmacy, Makerere University School of Health Sciences, Kampala, Uganda
| | - Joaniter I Nankabirwa
- Clinical Epidemiology Unit, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| |
Collapse
|
7
|
Kamya MR, Nankabirwa JI, Arinaitwe E, Rek J, Zedi M, Maiteki-Sebuguzi C, Opigo J, Staedke SG, Oruni A, Donnelly MJ, Greenhouse B, Briggs J, Krezanoski PJ, Bousema T, Rosenthal PJ, Olwoch P, Jagannathan P, Rodriguez-Barraquer I, Dorsey G. Dramatic resurgence of malaria after 7 years of intensive vector control interventions in Eastern Uganda. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003254. [PMID: 39208072 PMCID: PMC11361418 DOI: 10.1371/journal.pgph.0003254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024]
Abstract
Tororo District, Uganda experienced a dramatic decrease in malaria burden from 2015-19 during 5 years of indoor residual spraying (IRS) with carbamate (Bendiocarb) and then organophosphate (Actellic) insecticides. However, a marked resurgence occurred in 2020, which coincided with a change to a clothianidin-based IRS formulations (Fludora Fusion/SumiShield). To quantify the magnitude of the resurgence, investigate causes, and evaluate the impact of a shift back to IRS with Actellic in 2023, we assessed changes in malaria metrics in regions within and near Tororo District. Malaria surveillance data from Nagongera Health Center, Tororo District was included from 2011-2023. In addition, a cohort of 667 residents from 84 houses was followed from August 2020 through September 2023 from an area bordering Tororo and neighboring Busia District, where IRS has never been implemented. Cohort participants underwent passive surveillance for clinical malaria and active surveillance for parasitemia every 28 days. Mosquitoes were collected in cohort households every 2 weeks using CDC light traps. Female Anopheles were speciated and tested for sporozoites and phenotypic insecticide resistance. Temporal comparisons of malaria metrics were stratified by geographic regions. At Nagongera Health Center average monthly malaria cases varied from 419 prior to implementation of IRS; to 56 after 5 years of IRS with Bendiocarb and Actellic; to 1591 after the change in IRS to Fludora Fusion/SumiShield; to 155 after a change back to Actellic. Among cohort participants living away from the border in Tororo, malaria incidence increased over 8-fold (0.36 vs. 2.97 episodes per person year, p<0.0001) and parasite prevalence increased over 4-fold (17% vs. 70%, p<0.0001) from 2021 to 2022 when Fludora Fusion/SumiShield was used. Incidence decreased almost 5-fold (2.97 vs. 0.70, p<0.0001) and prevalence decreased by 39% (70% vs. 43%, p<0.0001) after shifting back to Actellic. There was a similar pattern among those living near the border in Tororo, with increased incidence between 2021 and 2022 (0.93 vs. 2.40, p<0.0001) followed by a decrease after the change to Actellic (2.40 vs. 1.33, p<0.001). Among residents of Busia, malaria incidence did not change significantly over the 3 years of observation. Malaria resurgence in Tororo was temporally correlated with the replacement of An. gambiae s.s. by An. funestus as the primary vector, with a marked decrease in the density of An. funestus following the shift back to IRS with Actellic. In Busia, An. gambiae s.s. remained the primary vector throughout the observation period. Sporozoite rates were approximately 50% higher among An. funestus compared to the other common malaria vectors. Insecticide resistance phenotyping of An. funestus revealed high tolerance to clothianidin, but full susceptibility to Actellic. A dramatic resurgence of malaria in Tororo was temporally associated with a change to clothianidin-based IRS formulations and emergence of An. funestus as the predominant vector. Malaria decreased after a shift back to IRS with Actellic. This study highlights the ability of malaria vectors to rapidly circumvent control efforts and the importance of high-quality surveillance systems to assess the impact of malaria control interventions and generate timely, actionable data.
Collapse
Affiliation(s)
- Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Kampala, Uganda
| | - Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Kampala, Uganda
| | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Catherine Maiteki-Sebuguzi
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Sarah G. Staedke
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ambrose Oruni
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Paul J. Krezanoski
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Peter Olwoch
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Isabel Rodriguez-Barraquer
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
8
|
Nankabirwa JI, Gonahasa S, Katureebe A, Mutungi P, Nassali M, Kamya MR, Westercamp N. The Uganda housing modification study - association between housing characteristics and malaria burden in a moderate to high transmission setting in Uganda. Malar J 2024; 23:223. [PMID: 39080697 PMCID: PMC11290271 DOI: 10.1186/s12936-024-05051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Scale up of proven malaria control interventions has not been sufficient to control malaria in Uganda, emphasizing the need to explore innovative new approaches. Improved housing is one such promising strategy. This paper describes housing characteristics and their association with malaria burden in a moderate to high transmission setting in Uganda. METHODS Between October and November 2021, a household survey was conducted in 1500 randomly selected households in Jinja and Luuka districts. Information on demographics, housing characteristics, use of malaria prevention measures, and proxy indicators of wealth were collected for each household. A finger-prick blood sample was obtained for thick blood smears for malaria from all children aged 6 months to 14 years in the surveyed households. Febrile children had a malaria rapid diagnostics test (RDT) done; positive cases were managed according to national treatment guidelines. Haemoglobin was assessed in children aged < 5 years. Households were stratified as having modern houses (defined as having finished materials for roofs, walls, and floors and closed eaves) or traditional houses (those not meeting the definition of modern house). Associations between malaria burden and house type were estimated using mixed effects models and adjusted for age, wealth, and bed net use. RESULTS Most (65.5%) of the households surveyed lived in traditional houses. Most of the houses had closed eaves (85.5%), however, the use of other protective features like window/vent screens and installed ceilings was limited (0.4% had screened windows, 2.8% had screened air vents, and 5.2% had ceiling). Overall, 3,443 children were included in the clinical survey, of which 31.4% had a positive smear. RDT test positivity rate was 56.6% among children with fever. Participants living in modern houses had a significantly lower parasite prevalence by microscopy (adjusted prevalence ratio [aPR = 0.80]; 95% confidence interval [CI] 0.71 - 0.90), RDT test positivity rate (aPR = 0.90, 95%CI 0.81 - 0.99), and anaemia (aPR = 0.80, 95%CI 0.65 - 0.97) compared to those in traditional houses. CONCLUSION The study found that even after adjusting for wealth, higher quality housing had a moderate protective effect against malaria, on top of the protection already afforded by recently distributed nets.
Collapse
Affiliation(s)
- Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.
- Department of Internal Medicine, Makerere University College of Health Science, Kampala, Uganda.
| | | | | | - Peter Mutungi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Martha Nassali
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Internal Medicine, Makerere University College of Health Science, Kampala, Uganda
| | - Nelli Westercamp
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| |
Collapse
|
9
|
Bagala I, Namuganga JF, Nayebare P, Cuu G, Katairo T, Nabende I, Gonahasa S, Nassali M, Tukwasibwe S, Dorsey G, Nankabirwa J, Kitaka SB, Kiguli S, Greenhouse B, Ssewanyana I, Kamya MR, Briggs J. Seroprevalence of SARS-CoV-2 and risk factors for infection among children in Uganda: a serial cross-sectional study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.09.24308673. [PMID: 38947039 PMCID: PMC11213087 DOI: 10.1101/2024.06.09.24308673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Understanding COVID-19's impact on children is vital for public health policy, yet age-specific data is scarce, especially in Uganda. This study examines SARS-CoV-2 seroprevalence and risk factors among Ugandan children at two timepoints, along with COVID-19-related knowledge and practices in households, including adult vaccination status. Methods Baseline surveys were conducted in 12 communities from April to May 2021 (post-Alpha wave) and follow-up surveys in 32 communities from November 2021 to March 2022 (Omicron wave). Household questionnaires and blood samples were collected to test for malaria by microscopy and for SARS-CoV-2 using a Luminex assay. Seroprevalence was estimated at both the survey and community level. Mixed-effects logistic regression models assessed the association between individual and household factors and SARS-CoV-2 seropositivity in children, adjusting for household clustering. Results More households reported disruptions in daily life at baseline compared to follow-up, though economic impacts lingered. By the follow-up survey, 52.7% of adults had received at least one COVID-19 vaccine dose. Overall seroprevalence in children was higher at follow-up compared to baseline (71.6% versus 19.2%, p < 0.001). Seroprevalence in children ranged across communities from 6-37% at baseline and 50-90% at follow-up. At baseline, children from the poorest households were more likely to be infected. Increasing age remained the only consistent risk factor for SARS-CoV-2 seroconversion at both timepoints. Conclusions Results indicate that a larger number of children were infected by the Delta and Omicron waves of COVID-19 compared to the Alpha wave. This study is the largest seroprevalence survey in children in Uganda, providing evidence that most children were infected with SARS-CoV-2 before the vaccine was widely available to pediatric populations. Pediatric infections were vastly underreported by case counts, highlighting the importance of seroprevalence surveys in assessing disease burden when testing and reporting rates are limited and many cases are mild or asymptomatic.
Collapse
Affiliation(s)
- Irene Bagala
- Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Gloria Cuu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Isaiah Nabende
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Martha Nassali
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Joaniter Nankabirwa
- Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Sarah Kiguli
- Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Central Public Health Laboratory, Butabika, Uganda
| | - Moses R Kamya
- Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | |
Collapse
|
10
|
Ocan M, Bakubi R, Nakalembe L, Ekusai-Sebatta D, Sam N. Experience of healthcare personnel on Co-payment mechanism and the implications on its use in private drug outlets in Uganda. PLoS One 2024; 19:e0297416. [PMID: 38758832 PMCID: PMC11101086 DOI: 10.1371/journal.pone.0297416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Malaria treatment is faced with the challenge of access, affordability, availability, and quality of antimalarial medicines. Affordable medicines facility-malaria (AMFm) program and subsequently Co-payment mechanism were developed to help increase access to quality assured Artemisinin-based combination therapies (ACTs) in seven countries in sub-Saharan Africa. We explored through a qualitative study, experience of healthcare personnel on Co-payment mechanism and the implication on its use in private drug outlets in Uganda. METHOD Private drug outlets that reported stocking antimalarial agents in moderate-to-high and low malaria transmission settings were purposively selected for inclusion in the study. In each drug outlet, data was collected from a pharmacist/dispenser through key informant interview. The interview was done using a key informant interview guide which covered the following areas, (i) sociodemographic characteristics, ii) awareness of healthcare personnel on the co-payment mechanism, (iii) awareness of healthcare personnel on quality assured artemisinin combination therapies (QAACT), (iv) antimalarial stocking in private drug outlets, (v) antimalarial dispensing prices, (vi) considerations made while stocking, and pricing antimalarial agents, vii) challenges in antimalarial dispensing, and (viii) access to antimalarial agents in private drug outlets. Data was managed using Atlas.ti and analyzed using framework methodology. RESULTS Data was collected from 25 key informants (12 pharmacists and 13 dispensers). Five themes emerged following data analysis, (i) antimalarial stocking influenced by price and client demand, (ii) access and purchasing behavior of drug outlet clients, (iii) basis of dispensing antimalarial agents in private drug outlets, (iv) awareness of QAACT, and (v) awareness of Co-payment mechanism. None of the study participants was aware of the existence of Co-payment mechanism and QAACT in the private sector. Duocotecin brand of ACTs was the most mentioned and dispensed ACT among the study participants in private drug outlets. Nearly all the pharmacists/dispensers said that many clients who request to purchase ACTs don't come with a prescription and prefer buying cheaper antimalarial agents. Study participants reported stocking and selling both ACTs and non-ACT antimalarial agents in the drug outlets. Pharmacists/dispensers in the drug outlets reported that most clients could not afford buying a full dose of an ACT. None of the study participants considered using Co-payment mechanism while stocking ACTs in the drug outlets. CONCLUSION There is lack of awareness and utilization of Co-payment mechanism in stocking, pricing, and dispensing of ACTs among pharmacists/dispensers in private drug outlets in Uganda. The antimalarial dispensing in drug outlets was mostly based on prescriptions, clients' preferences, and medicine affordability. The Ministry of Health needs to create demand for Co-payment mechanism through public awareness campaigns, training of healthcare personnel and behavior change communication in the private sector.
Collapse
Affiliation(s)
- Moses Ocan
- Department of Pharmacology & Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Racheal Bakubi
- Department of Health Policy, Planning and Management, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Loyce Nakalembe
- Department of Pharmacology, Soroti University, Soroti, Uganda
| | | | - Nsobya Sam
- Infectious Disease Research Collaboration (IDRC), Kampala, Uganda
| |
Collapse
|
11
|
Goodwin J, Kajubi R, Wang K, Li F, Wade M, Orukan F, Huang L, Whalen M, Aweeka FT, Mwebaza N, Parikh S. Persistent and multiclonal malaria parasite dynamics despite extended artemether-lumefantrine treatment in children. Nat Commun 2024; 15:3817. [PMID: 38714692 PMCID: PMC11076639 DOI: 10.1038/s41467-024-48210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024] Open
Abstract
Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Francis Orukan
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Liusheng Huang
- University of California, San Francisco, San Francisco, CA, USA
| | - Meghan Whalen
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Kamya MR, Nankabirwa JI, Arinaitwe E, Rek J, Zedi M, Maiteki-Sebuguzi C, Opigo J, Staedke SG, Oruni A, Donnelly MJ, Greenhouse B, Briggs J, Krezanoski PJ, Bousema T, Rosenthal PJ, Olwoch P, Jagannathan P, Rodriguez-Barraquer I, Dorsey G. Dramatic resurgence of malaria after 7 years of intensive vector control interventions in Eastern Uganda. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304352. [PMID: 38559091 PMCID: PMC10980127 DOI: 10.1101/2024.03.15.24304352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Tororo District, Uganda experienced a dramatic decrease in malaria burden from 2015-19 following 5 years of indoor residual spraying (IRS) with carbamate (Bendiocarb) and then organophosphate (Actellic) insecticides. However, a marked resurgence occurred in 2020, which coincided with a change to a clothianidin-based IRS formulations (Fludora Fusion/SumiShield). To quantify the magnitude of the resurgence, investigate causes, and evaluate the impact of a shift back to IRS with Actellic in 2023, we assessed changes in malaria metrics in regions within and near Tororo District. Methods Malaria surveillance data from Nagongera Health Center, Tororo District was included from 2011-2023. In addition, a cohort of 667 residents from 84 houses was followed from August 2020 through September 2023 from an area bordering Tororo and neighboring Busia District, where IRS has never been implemented. Cohort participants underwent passive surveillance for clinical malaria and active surveillance for parasitemia every 28 days. Mosquitoes were collected in cohort households every 2 weeks using CDC light traps. Female Anopheles were speciated and tested for sporozoites and phenotypic insecticide resistance. Temporal comparisons of malaria metrics were stratified by geographic regions. Findings At Nagongera Health Center average monthly malaria cases varied from 419 prior to implementation of IRS; to 56 after 5 years of IRS with Bendiocarb and Actellic; to 1591 after the change in IRS to Fludora Fusion/SumiShield; to 155 after a change back to Actellic. Among cohort participants living away from the border in Tororo, malaria incidence increased over 8-fold (0.36 vs. 2.97 episodes per person year, p<0.0001) and parasite prevalence increased over 4-fold (17% vs. 70%, p<0.0001) from 2021 to 2022 when Fludora Fusion/SumiShield was used. Incidence decreased almost 5-fold (2.97 vs. 0.70, p<0.0001) and prevalence decreased by 39% (70% vs. 43%, p<0.0001) after shifting back to Actellic. There was a similar pattern among those living near the border in Tororo, with increased incidence between 2021 and 2022 (0.93 vs. 2.40, p<0.0001) followed by a decrease after the change to Actellic (2.40 vs. 1.33, p<0.001). Among residents of Busia, malaria incidence did not change significantly over the 3 years of observation. Malaria resurgence in Tororo was temporally correlated with the replacement of An. gambiae s.s. by An. funestus as the primary vector, with a marked decrease in the density of An. funestus following the shift back to IRS with Actellic. In Busia, An. gambiae s.s. remained the primary vector throughout the observation period. Sporozoite rates were approximately 50% higher among An. funestus compared to the other common malaria vectors. Insecticide resistance phenotyping of An. funestus revealed high tolerance to clothianidin, but full susceptibility to Actellic. Conclusions A dramatic resurgence of malaria in Tororo was temporally associated with a change to clothianidin-based IRS formulations and emergence of An. funestus as the predominant vector. Malaria decreased after a shift back to IRS with Actellic. This study highlights the ability of malaria vectors to rapidly circumvent control efforts and the importance of high-quality surveillance systems to assess the impact of malaria control interventions and generate timely, actionable data.
Collapse
Affiliation(s)
- Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Uganda
| | - Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Uganda
| | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Catherine Maiteki-Sebuguzi
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Sarah G. Staedke
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ambrose Oruni
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Paul J. Krezanoski
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Netherlands
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Peter Olwoch
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, USA
| | | | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Ayo D, Onyige I, Okoth J, Musasizi E, Oruni A, Ramjith J, Arinaitwe E, Rek JC, Drakeley C, Staedke SG, Donnelly MJ, Bousema T, Conrad M, Blanken SL. Susceptibility of Anopheles gambiae to Natural Plasmodium falciparum Infection: A Comparison between the Well-Established Anopheles gambiae s.s Line and a Newly Established Ugandan Anopheles gambiae s.s. Line. Am J Trop Med Hyg 2024; 110:209-213. [PMID: 38150729 PMCID: PMC10859803 DOI: 10.4269/ajtmh.23-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/23/2023] [Indexed: 12/29/2023] Open
Abstract
Much of our understanding of malaria transmission comes from mosquito feeding assays using Anopheles mosquitoes from colonies that are well adapted to membrane feeding. This raises the question whether results from colony mosquitoes lead to overestimates of outcomes in wild Anopheles mosquitoes. We successfully established an Anopheles colony using progeny of wild Anopheles gambiae s.s. mosquitoes (Busia mosquitoes) and directly compared their susceptibility to infection with Plasmodium falciparum with the widely used An. gambiae s.s. mosquitoes (Kisumu mosquitoes) using gametocyte-infected Ugandan donor blood. The proportion of infectious feeds did not differ between Busia (71.8%, 23/32) and Kisumu (68.8%, 22/32, P = 1.00) mosquitoes. When correcting for random effects of donor blood, we observed a 23% higher proportion of infected Busia mosquitoes than infected Kisumu mosquitoes (RR, 1.23; 95% CI, 1.10-1.38, P < 0.001). This study suggests that feeding assays with Kisumu mosquitoes do not overestimate outcomes in wild An. gambiae s.s. mosquitoes, the mosquito species most relevant to malaria transmission in Uganda.
Collapse
Affiliation(s)
- Daniel Ayo
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - Ismail Onyige
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - Joseph Okoth
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - Eric Musasizi
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - Ambrose Oruni
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jordache Ramjith
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - John C. Rek
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah G. Staedke
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen
| | - Melissa Conrad
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California
| | - Sara Lynn Blanken
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen
| |
Collapse
|
14
|
Kirosingh AS, Delmastro A, Kakuru A, van der Ploeg K, Bhattacharya S, Press KD, Ty M, Parte LDL, Kizza J, Muhindo M, Devachanne S, Gamain B, Nankya F, Musinguzi K, Rosenthal PJ, Feeney ME, Kamya M, Dorsey G, Jagannathan P. Malaria-specific Type 1 regulatory T cells are more abundant in first pregnancies and associated with placental malaria. EBioMedicine 2023; 95:104772. [PMID: 37634385 PMCID: PMC10474374 DOI: 10.1016/j.ebiom.2023.104772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Malaria in pregnancy (MIP) causes higher morbidity in primigravid compared to multigravid women; however, the correlates and mechanisms underlying this gravidity-dependent protection remain incompletely understood. We aimed to compare the cellular immune response between primigravid and multigravid women living in a malaria-endemic region and assess for correlates of protection against MIP. METHODS We characterised the second trimester cellular immune response among 203 primigravid and multigravid pregnant women enrolled in two clinical trials of chemoprevention in eastern Uganda, utilizing RNA sequencing, flow cytometry, and functional assays. We compared responses across gravidity and determined associations with parasitaemia during pregnancy and placental malaria. FINDINGS Using whole blood RNA sequencing, no significant differentially expressed genes were identified between primigravid (n = 12) and multigravid (n = 11) women overall (log 2(FC) > 2, FDR < 0.1). However, primigravid (n = 49) women had higher percentages of malaria-specific, non-naïve CD4+ T cells that co-expressed IL-10 and IFNγ compared with multigravid (n = 85) women (p = 0.000023), and higher percentages of these CD4+ T cells were associated with greater risks of parasitaemia in pregnancy (Rs = 0.49, p = 0.001) and placental malaria (p = 0.0073). These IL-10 and IFNγ co-producing CD4+ T cells had a genomic signature of Tr1 cells, including expression of transcription factors cMAF and BATF and cell surface makers CTLA4 and LAG-3. INTERPRETATION Malaria-specific Tr1 cells were highly prevalent in primigravid Ugandan women, and their presence correlated with a higher risk of malaria in pregnancy. Understanding whether suppression of Tr1 cells plays a role in naturally acquired gravidity-dependent immunity may aid the development of new vaccines or treatments for MIP. FUNDING This work was funded by NIH (PO1 HD059454, U01 AI141308, U19 AI089674, U01 AI155325, U01 AI150741), the March of Dimes (Basil O'Connor award), and the Bill and Melinda Gates Foundation (OPP 1113682).
Collapse
Affiliation(s)
| | | | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | - Maureen Ty
- Stanford University School of Medicine, Stanford, USA
| | | | | | | | | | - Benoit Gamain
- Université Paris Cité, INSERM, BIGR, F-75014 Paris, France
| | | | | | | | | | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda; Makerere University, Kampala, Uganda
| | | | | |
Collapse
|
15
|
Iga J, Ochaya S, Echodu R, Opiyo EA, Musiime AK, Nakamaanya A, Malinga GM. Sibling Species Composition and Susceptibility Status of Anopheles gambiae s.l. to Insecticides Used for Indoor Residual Spraying in Eastern Uganda. J Parasitol Res 2023; 2023:2225233. [PMID: 37469527 PMCID: PMC10352534 DOI: 10.1155/2023/2225233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Background Malaria remains one of the most critical disease causing morbidity and mortality in Uganda. Indoor residual spraying (IRS) and the use of insecticide-treated bed nets are currently the predominant malaria vector control interventions. However, the emergence and spread of insecticide resistance among malaria vectors threaten the continued effectiveness of these interventions to control the disease, particularly in high transmission areas. To inform decisions on vector control, the current study evaluated the Anopheles malaria vector species and their susceptibility levels to 0.1% bendiocarb and 0.25% pirimiphos-methyl insecticides used in IRS intervention program in Namutumba district, Eastern Uganda. Methods Anopheles larvae were collected between March and May 2017 from different breeding sites in the parishes of Nsinze and Nawaikona in Nsinze sub-county and reared to adults to assess the susceptibility status of populations in the study area. Mosquitoes were identified using morphological keys and species-specific polymerase chain reaction (PCR) assays. Susceptibility tests were conducted on 2- to 5-day-old non-blood-fed adult female Anopheles that emerged using insecticide-impregnated papers with 0.1% bendiocarb and 0.25% pirimiphos-methyl following standard World Health Organization (WHO) insecticide susceptibility bioassays. A Log-probit regression model was used to derive the knock-down rates for 50% and 95% of exposed mosquitoes. Results A total of 700 mosquito larvae were collected from different breeding sites. Morphological identification showed that 500 individuals that emerged belonged to Anopheles gambiae sensu lato (s.l.), the main malaria vector. The PCR results showed that the dominant sibling species under the A. gambiae complex was Anopheles arabiensis 99.5% (395/397). WHO bioassay tests revealed that the population of mosquitoes exhibited high levels of susceptibility (24-hour post-exposure mortality 98-100%) to both insecticides tested. The median knock-down time, KDT50, ranged from 6.6 to 81.4 minutes, while the KDT95 ranged from 21.6 to 118.9 minutes for 0.25% pirimiphos-methyl. The KDT50 for 0.1% bendiocarb ranged from 2.8 to 62.9 minutes, whereas the KDT95 ranged from 36.0 to 88.5 minutes. Conclusions These findings indicate that bendiocarb and pirimiphos-methyl are still effective against the major malaria vector, A. arabiensis in Nsinze sub-county, Namutumba district, Uganda and can be effectively used for IRS. The study has provided baseline information on the insecticide susceptibility status on malaria vectors in the study area. However, routine continuous monitoring program of insecticide susceptibility and malaria vector composition is required so as to guide future decisions on insecticide use for IRS intervention toward malaria elimination and to track future changes in vector population.
Collapse
Affiliation(s)
- Julius Iga
- Department of Biology, Faculty of Science, Gulu University, P.O. Box 166 Gulu, Uganda
| | - Stephen Ochaya
- Department of Immunology and Microbiology, Faculty of Medicine, Gulu University, P.O. Box 166 Gulu, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, P.O. Box 166 Gulu, Uganda
| | - Elizabeth A. Opiyo
- Department of Biology, Faculty of Science, Gulu University, P.O. Box 166 Gulu, Uganda
| | - Alex K. Musiime
- National Malaria Control Division, Ministry of Health, Uganda
| | | | - Geoffrey M. Malinga
- Department of Biology, Faculty of Science, Gulu University, P.O. Box 166 Gulu, Uganda
| |
Collapse
|
16
|
Namayanja C, Eregu EEI, Ongodia P, Okalebo CB, Okiror W, Okello F, Okibure A, Paasi G, Kakungulu H, Grace A, Muhindo R, Banks D, Martin C, Taylor-Robinson S, Olupot-Olupot P. Unusual clinical spectra of childhood severe malaria during malaria epidemic in eastern Uganda: a prospective study. Malar J 2023; 22:169. [PMID: 37259110 DOI: 10.1186/s12936-023-04586-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND In sub-Saharan Africa (SSA), malaria remains a public health problem despite recent reports of declining incidence. Severe malaria is a multiorgan disease with wide-ranging clinical spectra and outcomes that have been reported to vary by age, geographical location, transmission intensity over time. There are reports of recent malaria epidemics or resurgences, but few data, if any, focus on the clinical spectrum of severe malaria during epidemics. This describes the clinical spectrum and outcomes of childhood severe malaria during the disease epidemic in Eastern Uganda. METHODS This prospective cohort study from October 1, 2021, to September 7, 2022, was nested within the 'Malaria Epidemiological, Pathophysiological and Intervention studies in Highly Endemic Eastern Uganda' (TMA2016SF-1514-MEPIE Study) at Mbale Regional Referral Hospital, Uganda. Children aged 60 days to 12 years who at admission tested positive for malaria and fulfilled the clinical WHO criteria for surveillance of severe malaria were enrolled on the study. Follow-up was performed until day 28. Data were collected using a customized proforma on social demographic characteristics, clinical presentation, treatment, and outcomes. Laboratory analyses included complete blood counts, malaria RDT (SD BIOLINE Malaria Ag P.f/Pan, Ref. 05FK60-40-1) and blood slide, lactate, glucose, blood gases and electrolytes. In addition, urinalysis using dipsticks (Multistix® 10 SG, SIEMENS, Ref.2300) at the bedside was done. Data were analysed using STATA V15.0. The study had prior ethical approval. RESULTS A total of 300 participants were recruited. The median age was 4.6 years, mean of 57.2 months and IQR of 44.5 months. Many children, 164/300 (54.7%) were under 5 years, and 171/300 (57.0%) were males. The common clinical features were prostration 236/300 (78.7%), jaundice in 205/300 (68.3%), severe malarial anaemia in 158/300 (52.7%), black water fever 158/300 (52.7%) and multiple convulsions 51/300 (17.0%), impaired consciousness 50/300(16.0%), acidosis 41/300(13.7%), respiratory distress 26/300(6.7%) and coma in 18/300(6.0%). Prolonged hospitalization was found in 56/251 (22.3%) and was associated with acidosis, P = 0.041. The overall mortality was 19/300 (6.3%). Day 28 follow-up was achieved in 247/300 (82.3%). CONCLUSION During the malaria epidemic in Eastern Uganda, severe malaria affected much older children and the spectrum had more of prostration, jaundice severe malarial anaemia, black water fever and multiple convulsions with less of earlier reported respiratory distress and cerebral malaria.
Collapse
Affiliation(s)
- Cate Namayanja
- Mbale Clinical Research Institute, P.O. Box 1966, Mbale, Uganda.
- Department of Pediatrics and Child Health, Busitema University Faculty of Health Sciences, Mbale, Uganda.
| | - Egiru Emma Isaiah Eregu
- Mbale Clinical Research Institute, P.O. Box 1966, Mbale, Uganda
- Department of Pediatrics and Child Health, Busitema University Faculty of Health Sciences, Mbale, Uganda
| | - Paul Ongodia
- Mbale Clinical Research Institute, P.O. Box 1966, Mbale, Uganda
| | - Charles Benard Okalebo
- Mbale Clinical Research Institute, P.O. Box 1966, Mbale, Uganda
- Department of Community and Public Health, Busitema University Faculty of Health Sciences, Mbale, Uganda
| | - William Okiror
- Mbale Clinical Research Institute, P.O. Box 1966, Mbale, Uganda
- Department of Community and Public Health, Busitema University Faculty of Health Sciences, Mbale, Uganda
| | - Francis Okello
- Department of Community and Public Health, Busitema University Faculty of Health Sciences, Mbale, Uganda
- Varimetrics Group Limited, Mbale, Uganda
| | | | - George Paasi
- Mbale Clinical Research Institute, P.O. Box 1966, Mbale, Uganda
- Department of Community and Public Health, Busitema University Faculty of Health Sciences, Mbale, Uganda
| | - Hellen Kakungulu
- Mbale Clinical Research Institute, P.O. Box 1966, Mbale, Uganda
- Department of Community and Public Health, Busitema University Faculty of Health Sciences, Mbale, Uganda
- Varimetrics Group Limited, Mbale, Uganda
| | - Abongo Grace
- Mbale Clinical Research Institute, P.O. Box 1966, Mbale, Uganda
| | - Rita Muhindo
- Mbale Clinical Research Institute, P.O. Box 1966, Mbale, Uganda
| | - Duncan Banks
- Busitema University, TORORO, Uganda
- The Open University, Milton Keynes, UK
| | - Chebet Martin
- Department of Pediatrics and Child Health, Busitema University Faculty of Health Sciences, Mbale, Uganda
| | - Simon Taylor-Robinson
- Department of Community and Public Health, Busitema University Faculty of Health Sciences, Mbale, Uganda
- Imperial College London, London, UK
| | - Peter Olupot-Olupot
- Mbale Clinical Research Institute, P.O. Box 1966, Mbale, Uganda
- Department of Community and Public Health, Busitema University Faculty of Health Sciences, Mbale, Uganda
| |
Collapse
|
17
|
Mwakibete L, Takahashi S, Ahyong V, Black A, Rek J, Ssewanyana I, Kamya M, Dorsey G, Jagannathan P, Rodríguez-Barraquer I, Tato CM, Greenhouse B. Metagenomic next-generation sequencing to characterize potential etiologies of non-malarial fever in a cohort living in a high malaria burden area of Uganda. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001675. [PMID: 37134083 PMCID: PMC10156012 DOI: 10.1371/journal.pgph.0001675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Causes of non-malarial fevers in sub-Saharan Africa remain understudied. We hypothesized that metagenomic next-generation sequencing (mNGS), which allows for broad genomic-level detection of infectious agents in a biological sample, can systematically identify potential causes of non-malarial fevers. The 212 participants in this study were of all ages and were enrolled in a longitudinal malaria cohort in eastern Uganda. Between December 2020 and August 2021, respiratory swabs and plasma samples were collected at 313 study visits where participants presented with fever and were negative for malaria by microscopy. Samples were analyzed using CZ ID, a web-based platform for microbial detection in mNGS data. Overall, viral pathogens were detected at 123 of 313 visits (39%). SARS-CoV-2 was detected at 11 visits, from which full viral genomes were recovered from nine. Other prevalent viruses included Influenza A (14 visits), RSV (12 visits), and three of the four strains of seasonal coronaviruses (6 visits). Notably, 11 influenza cases occurred between May and July 2021, coinciding with when the Delta variant of SARS-CoV-2 was circulating in this population. The primary limitation of this study is that we were unable to estimate the contribution of bacterial microbes to non-malarial fevers, due to the difficulty of distinguishing bacterial microbes that were pathogenic from those that were commensal or contaminants. These results revealed the co-circulation of multiple viral pathogens likely associated with fever in the cohort during this time period. This study illustrates the utility of mNGS in elucidating the multiple potential causes of non-malarial febrile illness. A better understanding of the pathogen landscape in different settings and age groups could aid in informing diagnostics, case management, and public health surveillance systems.
Collapse
Affiliation(s)
- Lusajo Mwakibete
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Saki Takahashi
- Department of Medicine, Division of HIV, ID, and Global Medicine, EPPIcenter Research Program, University of California San Francisco, San Francisco, CA, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Allison Black
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Palo Alto, CA, United States of America
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, United States of America
| | - Isabel Rodríguez-Barraquer
- Department of Medicine, Division of HIV, ID, and Global Medicine, EPPIcenter Research Program, University of California San Francisco, San Francisco, CA, United States of America
| | - Cristina M. Tato
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Bryan Greenhouse
- Department of Medicine, Division of HIV, ID, and Global Medicine, EPPIcenter Research Program, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
18
|
Briggs J, Takahashi S, Nayebare P, Cuu G, Rek J, Zedi M, Kizza T, Arinaitwe E, Nankabirwa JI, Kamya M, Jagannathan P, Jacobson K, Rosenthal PJ, Dorsey G, Greenhouse B, Ssewanyana I, Rodríguez-Barraquer I. Seroprevalence of Antibodies to SARS-CoV-2 in Rural Households in Eastern Uganda, 2020-2022. JAMA Netw Open 2023; 6:e2255978. [PMID: 36790811 PMCID: PMC9932849 DOI: 10.1001/jamanetworkopen.2022.55978] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 02/16/2023] Open
Abstract
Importance Estimating the true burden of SARS-CoV-2 infection has been difficult in sub-Saharan Africa owing to asymptomatic infections and inadequate testing capacity. Antibody responses from serologic surveys can provide an estimate of SARS-CoV-2 exposure at the population level. Objective To estimate SARS-CoV-2 seroprevalence, attack rates, and reinfection in eastern Uganda using serologic surveillance from 2020 to early 2022. Design, Setting, and Participants This cohort study was conducted in the Tororo and Busia districts of eastern Uganda. Plasma samples from participants in the Program for Resistance, Immunology, Surveillance, and Modeling of Malaria in Uganda Border Cohort were obtained at 4 sampling intervals: October to November 2020, March to April 2021, August to September 2021, and February to March 2022. Each participant contributed up to 4 time points for SARS-CoV-2 serology, with almost half of all participants contributing at all 4 time points, and almost 90% contributing at 3 or 4 time points. Information on SARS-CoV-2 vaccination status was collected from participants, with the earliest reported vaccinations in the cohort occurring in May 2021. Main Outcomes and Measures The main outcomes of this study were antibody responses to the SARS-CoV-2 spike protein as measured with a bead-based serologic assay. Individual-level outcomes were aggregated to population-level SARS-CoV-2 seroprevalence, attack rates, and boosting rates. Estimates were weighted by the local age distribution according to census data. Results A total of 1483 samples from 441 participants living in 76 households were tested. Of the 441 participants, 245 (55.6%) were female, and their mean (SD) age was 16.04 (16.04) years. By the end of the Delta wave and before widespread vaccination, adjusted SARS-CoV-2 seroprevalence was 67.7% (95% credible interval [CrI], 62.5%-72.6%) in the study population. During the subsequent Omicron wave, 84.8% (95% CrI, 67.9%-93.7%) of unvaccinated, previously seronegative individuals were infected for the first time, and 50.8% (95% CrI, 40.6%-59.7%) of unvaccinated, already seropositive individuals were likely reinfected, leading to an overall seropositivity of 96.0% (95% CrI, 93.4%-97.9%) in this population. These results suggest a lower probability of reinfection in individuals with higher preexisting antibody levels. There was evidence of household clustering of SARS-CoV-2 seroconversion. No significant associations were found between SARS-CoV-2 seroconversion and gender, household size, or recent Plasmodium falciparum malaria exposure. Conclusions and Relevance In this cohort study in a rural population in eastern Uganda, there was evidence of very high SARS-CoV-2 infection rates throughout the pandemic inconsistent with national level case data and high reinfection rates during the Omicron wave.
Collapse
Affiliation(s)
- Jessica Briggs
- Division of HIV, ID, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco
| | - Saki Takahashi
- Division of HIV, ID, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco
| | | | - Gloria Cuu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Timothy Kizza
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, California
- Department of Microbiology and Immunology, Stanford University, Stanford, California
| | - Karen Jacobson
- Department of Medicine, Stanford University, Stanford, California
| | - Philip J. Rosenthal
- Division of HIV, ID, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco
| | - Grant Dorsey
- Division of HIV, ID, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco
| | - Bryan Greenhouse
- Division of HIV, ID, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Central Public Health Laboratories, Butabika, Uganda
| | - Isabel Rodríguez-Barraquer
- Division of HIV, ID, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco
| |
Collapse
|