1
|
Shaukat SN, Nasir F, Raza A, Khanani R, Uddin S, Kazmi SU. Expression profile of KIR3DS1/KIR3DL1 receptors in association with immunological responses in TB, HIV and HIV/TB infected patients. Microb Pathog 2023; 180:106145. [PMID: 37169313 DOI: 10.1016/j.micpath.2023.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Several studies investigated KIR3DS1 and KIR3DL1 in the context of various infections. However, none of the studies were performed on KIR3DS1/L1 in association with IFN-ɣ/IL-10 in TB, HIV-1, and their confections. We aimed to evaluate KIR3DS1/KIR3DL1 expression in association with IFNɣ/IL-10 in HIV-1 and TB mono-infections and HIV-1/TB confection and compared with uninfected controls using RTq PCR. We also performed correlation analysis between KIR3DS1, KIR3DL1, IFN-ɣ and IL-10 in the respective cohorts. The overall expression of KIR3DS1 was found to be downregulated in all groups, whereas in HIV-1 and HIV-1/TB, the frequency of KIR3DS1(+) expression was significantly (p < 0.05) associated with undetected HIV-1 viral load. However, expression of KIR3DL1 was found to be significantly (p < 0.05) upregulated in HIV-1 only. In addition, IFNɣ expression was significantly (p < 0.05) decreased in TB, whereas in HIV-1/TB, IFNɣ expression was significantly (p < 0.05) increased. In contrast, IL-10 expression was significantly (p < 0.05) increased in HIV-1 and HIV-1/TB but not in TB. Also, we found significant positive correlation (p < 0.05, r = 0.61) between KIR3DL1 and IFNɣ expression in TB and negative correlation (p < 0.05, r = - 0.62) between KIR3DS1 and IL-10 in HIV-1/TB. In conclusion, we suggest that expression of KIR3DS1/L1 is associated with IFNɣ/IL-10 responses and it is involved in modulating disease severity in HIV-1 and TB infections.
Collapse
Affiliation(s)
- Sobia Naz Shaukat
- Department of Microbiology, Karachi University, Karachi, Pakistan; Aga Khan University Hospital, Karachi, Pakistan.
| | - Faizan Nasir
- Department of Immunology, Dadabhoy Institute of Higher Education, Karachi, Pakistan.
| | - Afsheen Raza
- College of Health Sciences, Abu Dhabi University, PO Box 59911, Abu Dhabi, United Arab Emirates.
| | - Rafiq Khanani
- Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad, Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | | |
Collapse
|
2
|
Mora-Bitria L, Asquith B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 2023; 75:269-282. [PMID: 36719466 PMCID: PMC9887252 DOI: 10.1007/s00251-023-01293-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence suggests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
3
|
Chaisri S, Pabalan N, Tabunhan S, Tharabenjasin P, Sankuntaw N, Leelayuwat C. Effects of the killer immunoglobulin-like receptor (KIR) polymorphisms on HIV acquisition: A meta-analysis. PLoS One 2019; 14:e0225151. [PMID: 31790432 PMCID: PMC6886768 DOI: 10.1371/journal.pone.0225151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genetic involvement of Killer Immunoglobulin-like Receptor (KIR) polymorphisms and Human Immunodeficiency Virus (HIV)-exposed seronegative (HESN) compared to HIV-infected (HIVI) individuals has been reported. However, inconsistency of the outcomes reduces precision of the estimates. A meta-analysis was applied to obtain more precise estimates of association. METHODS A multi-database literature search yielded thirteen case-control studies. Risks were expressed as odds ratios (ORs) and 95% confidence intervals (CIs) with significance set at a two-tailed P-value of ≤ 0.05. We used two levels of analyses: (1) gene content that included 13 KIR polymorphisms (2DL1-3, 2DL5A, 2DL5B, 2DS1-3, 2DS4F, 2DS4D, 2DS5, 3DL1 and 3DS1); and (2) 3DL1/S1 genotypes. Subgroup analysis was ethnicity-based (Caucasians, Asians and Africans). Outlier treatment was applied to heterogeneous effects which dichotomized the outcomes into pre-outlier (PRO) and post-outlier (PSO). Multiple comparisons were addressed with the Bonferroni correction. RESULTS We generated 52 and 18 comparisons from gene content and genotype analyses, respectively. Of the 70 comparisons, 13 yielded significant outcomes, two (indicating reduced risk) of which survived the Bonferroni correction (Pc). These protective effects pointed to the Caucasian subgroup in 2DL3 (OR 0.19, 95% CI 0.09, 0.40, Pc < 10-3) and 3DS1S1 (OR 0.37, 95% CI 0.24, 0.56, Pc < 10-3). These two PSO outcomes yielded effects of increased magnitude and precision, as well as raised significance and deemed robust by sensitivity analysis. Of the two, the 2DL3 effect was improved with a test of interaction (Pc interaction < 10-4). CONCLUSION Multiple meta-analytical treatments presented strong evidence of the protective effect (up to 81%) of the KIR polymorphisms (2DL3 and 3DS1S1) among Caucasians. The Asian and African outcomes were inconclusive due to the low number of studies.
Collapse
Affiliation(s)
- Suwit Chaisri
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- * E-mail:
| | - Sompong Tabunhan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Phuntila Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Nipaporn Sankuntaw
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Zhao J, Tang W, Yao J, Chen Q, Xu Q, Wu S. The Role of Killer Immunoglobulin-Like Receptor Genes in Susceptibility to HIV-1 Infection and Disease Progression: A Meta-Analysis. AIDS Res Hum Retroviruses 2019; 35:948-959. [PMID: 31288555 DOI: 10.1089/aid.2019.0172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic studies on the association of the killer immunoglobulin-like receptor (KIR) genes with HIV-1 infection and disease progression have been widely carried out with somewhat contradictory results. Therefore, we undertook a quantitative assessment based on 25 studies [involving 3,216 HIV-1 infected subjects, 1,690 exposed uninfected subjects, 1,262 healthy controls (HCs), 748 typical progressors (TPs), and 244 long-term nonprogressors (LTNPs)] to further define the roles of KIR in HIV-1 control/susceptibility. An overall analysis, showed that, among the 16 KIR genes, the presence of KIR2DS4 may associate with an elevated risk of HIV-1 infection (p < .05, using HCs), whereas KIR3DS1 may associate with a reduced risk (p < .001, using HCs). In the subgroup analyses, among Africans, KIR2DS4 also revealed a significant risk of HIV-1 infection (p < .05), whereas KIR2DL2, 2DL5, and 2DS3 conferred a protective role (p < .05). KIR2DL2 and 3DL1 showed an increased risk of acquiring infection among Caucasians (p < .05). A negative effect on susceptibility to infection for KIR2DL1, 2DL3, and 3DS1 was found among East Asians. 3DS1 conferred a protective effect of HIV-1 infection among serodiscordant couples (p < .05). Moreover, among Chinese, KIR2DL3 was significantly lower in frequency in TPs when compared with LTNPs (p < .05), indicating a possible role in the delay of disease progression. This meta-analysis supports the individual studies that associate specific KIR genes with HIV-1 infection and disease progression and further emphasizes that this outcome differs according to specific populations.
Collapse
Affiliation(s)
- Jiangyang Zhao
- Department of Clinical Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenqian Tang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Jun Yao
- National HIV/HCV Reference Laboratory, National Center for AIDS/STD Control and Prevention, Beijing, China
| | - Qiaopei Chen
- Department of Clinical Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingqing Xu
- National HIV/HCV Reference Laboratory, National Center for AIDS/STD Control and Prevention, Beijing, China
| | - Shike Wu
- Department of Gastrointestinal and Anal Surgery, Rui Kang Hospital, Guangxi Traditional Chinese Medical University, Nanning, China
| |
Collapse
|
5
|
Mele D, Pasi A, Cacciatore R, Mantovani S, Oliviero B, Mondelli MU, Varchetta S. Decreased interferon-γ production by NK cells from KIR haplotype B carriers in hepatitis C virus infection. Liver Int 2019; 39:1237-1245. [PMID: 31177636 DOI: 10.1111/liv.14172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Different population genetics studies showed that interactions between killer-cell immunoglobulin-like receptors (KIR) and HLA play a role in viral disease outcome, but functional correlates are missing. Building upon our previous work pointing to a regulatory role for KIR3DL1/DS1 in hepatitis C virus (HCV) infection, we analysed whether its expression may affect natural killer (NK) cell function in the presence or absence of its principal ligand HLA-Bw4 in KIR haplotype A and B carriers, which are characterized by a different representation of activating and inhibitory KIRs. METHODS We performed KIR and HLA class I genotypic analysis in 54 healthy donors (HD) and 50 HCV+ subjects and examined NK cell cytokine secretion and degranulation in the context of KIR3DL1-HLA-Bw4 match stratified by KIR haplotype. RESULTS KIR3DL1-HLA-Bw4 match induced functional NK cell modulation, reflected by reduced interferon (IFN)γ production in haplotype B HCV+ patients compared to HD. This functional impairment could be ascribed to the KIR3DS1 negative HCV-infected patient population, whose NK cells also showed a significantly decreased proportion of KIR3DL1. Haplotype A HCV-infected patients showed increased NK cell degranulation compared with HD in the absence of KIR-HLA-Bw4 match and this activity was associated with increased phosphorylation of signal transducer and activator of transcription (STAT) 1. CONCLUSIONS Our data show that NK cells from HCV+ patients have an unbalanced ability to produce IFNγ and to kill target cells in haplotype A and B carriers, suggesting the existence of complex functional differences governed by KIR-HLA interaction, particularly on KIR3DL1 expressing NK cells.
Collapse
Affiliation(s)
- Dalila Mele
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Annamaria Pasi
- Laboratory of Immunogenetics, Department of Transfusion Medicine and Immuno-Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rosalia Cacciatore
- Laboratory of Immunogenetics, Department of Transfusion Medicine and Immuno-Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Mantovani
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Oliviero
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario U Mondelli
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Stefania Varchetta
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
6
|
Lin A, Yan WH. The Emerging Roles of Human Leukocyte Antigen-F in Immune Modulation and Viral Infection. Front Immunol 2019; 10:964. [PMID: 31134067 PMCID: PMC6524545 DOI: 10.3389/fimmu.2019.00964] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/15/2019] [Indexed: 12/29/2022] Open
Abstract
Human leukocyte antigens (HLAs) play various critical roles in both innate and adaptive immunity through processes such as presenting antigens to T cells and serving as ligands for receptors expressed on natural killer (NK) cells. Among the HLA class I family, the clinical significance and biological function of HLA-F have been the least investigated and have remained elusive for a long period of time. Previous studies have revealed that HLA-F expression might be involved in various physiological and pathological processes, such as pregnancy, viral infection, cancer, transplantation, and autoimmune diseases. However, recent data have shown that, akin to other HLA family members, HLA-F molecules can interact with both activating and inhibitory receptors on immune cells, such as NK cells, and can present a diverse panel of peptides. These important findings pave new avenues for investigations regarding the functions of HLA-F as an important immune regulatory molecule. In the present review, we summarize the studies on the role of HLA-F in immune modulation, with a special emphasis placed on the roles of HLA-F and KIR3DS1 interactions in viral infection.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
7
|
Inhibitory natural killer cell receptor KIR3DL1 with its ligand Bw4 constraints HIV-1 disease among South Indians. AIDS 2018; 32:2679-2688. [PMID: 30289808 DOI: 10.1097/qad.0000000000002028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the role of genotypic and phenotypic characteristics of killer cell immunoglobulin-like receptors (KIRs) and their human leukocyte antigen (HLA) class-1 ligands in HIV-1 disease progression. STUDY DESIGN AND METHODS This is a nested case-control study including 347 HIV seropositive (HIV-1+) individuals from South India constituting 45 long-term nonprogressors (LTNPs) and 302 disease progressors. KIR genotyping was performed by multiplex sequence-specific primer-directed PCR (SSP-PCR). Phenotypic expressions of KIR3DL1/S1 was studied using multiparametric flow cytometry assay. HLA-Bw4 and Bw6 epitopes were determined by ARMS-PCR. HLA-Bw4I80, HLA-Bw4T80, HLA-C1, HLA-C2, and HLA-Aw4 were genotyped using SSP-PCR. Serum levels of IFN-γ was quantified using ELISA method. RESULTS Overall, 37 different KIR genotypes were observed and the distribution of genotypes with AB-AB (OR = 2.2, P = 0.033) constellations showed significant increase among LTNPs. The frequencies of 3DL1-2DL3-2DL5 (OR = 2.2, Pc = 0.031), 3DL1-Bw4/Aw4 (OR = 2.49, Pc = 0.019), homozygous Bw4 (OR = 2.422, Pc = 0.011) were observed higher in LTNPs and 2DS1-2DS2-2DS3 (OR = 0.475, Pc = 0.03), homozygous Bw6 (OR = 0.413, Pc = 0.011) were higher in the disease progressors. Flow cytometry assay showed the increased expression and maintenance of 3DL1/S1+NK cells in LTNPs (P = 0.0001). Further the expansion of 3DS1+NK cells was higher than 3DL1+NK cells in the heterozygous 3DL1/S1 LTNPs (P = 0.001). CONCLUSION The inhibitory receptor 3DL1 with Bw4 and its A-haplotype defining KIR genes (2DL3/L5) confers protection against HIV-1 disease progression. An increased expression and maintenance of 3DL1/S1+ natural killer cells may contribute to the efficient activation of the natural killer cells and subsequent long-term nonprogression (LTNPn) to the disease.
Collapse
|
8
|
Wang L, Zhang Y, Xu K, Dong T, Rowland-Jones S, Yindom LM. Killer-cell immunoglobulin-like receptors associate with HIV-1 infection in a narrow-source Han Chinese cohort. PLoS One 2018; 13:e0195452. [PMID: 29664957 PMCID: PMC5903672 DOI: 10.1371/journal.pone.0195452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background The HIV pandemic remains the most serious challenge to public health worldwide. The hallmark characteristics of the disease is the eventual failure of the immune system to control opportunistic infections and death. However not everyone who has HIV develops the disease at the same rate and so we are studying how the immune system works to control the virus in those who have been infected for decades and remain relatively healthy without the need of anti-retroviral therapy (ART). Methods Genomic DNA samples from 513 Chinese Han individuals from Henan province were typed for 15 KIR and 3 HLA class I genes. Genotype frequencies were compared between a village cohort of 261 former plasma donors (SM cohort) infected with HIV-1 through an illegal plasma donor scheme who survived more than 10 years of infection without ART and 252 ethnically-matched healthy controls from a nearby village. KIR and HLA were molecularly typed using a combination of polymerase chain reaction (PCR) with sequence-specific primers (PCR-SSP) and sequence based techniques. Results All 15 KIR genes were observed in the study population at various frequencies. KIR2DL3 was significantly less common in the HIV-1 infected group (95.8% vs 99.2%, p = 0.021). The combination of KIR3DS1 with homozygosity for HLA-Bw4 alleles (the putative ligand for KIR3DS1) was significantly less frequent in the HIV-1 infected group than in the control group (6.0% vs 12.0% respectively, p = 0.023). Conclusion Specific KIR-HLA compound genotypes associate with differential outcomes to infection and disease progression following exposure to a narrow-source HIV-1.
Collapse
Affiliation(s)
- Linghang Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Nuffield Department of Medicine, Headington, Oxford, United Kingdom.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Yonghong Zhang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom.,Beijing You An Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Keyi Xu
- Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tao Dong
- Nuffield Department of Medicine, Headington, Oxford, United Kingdom.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | |
Collapse
|
9
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Zhang XH, Lian XD, Dai ZX, Zheng HY, Chen X, Zheng YT. α3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:2030-2042. [PMID: 28784847 DOI: 10.4049/jimmunol.1602183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/14/2017] [Indexed: 01/16/2023]
Abstract
Alternative splicing occurs frequently in many genes, especially those involved in immunity. Unfortunately, the functions of many alternatively spliced molecules from immunologically relevant genes remain unknown. Classical HLA-I molecules are expressed on almost all nucleated cells and play a pivotal role in both innate and adaptive immunity. Although splice variants of HLA-I genes have been reported, the details of their functions have not been reported. In the current study, we determined the characteristics, expression, and function of a novel splice variant of HLA-A11 named HLA-A11svE4 HLA-A11svE4 is located on the cell surface without β2-microglobulin (β2m). Additionally, HLA-A11svE4 forms homodimers as well as heterodimers with HLA-A open conformers, instead of combining with β2m. Moreover, HLA-A11svE4 inhibits the activation of NK cells to protect target cells. Compared with β2m and HLA-A11, the heterodimer of HLA-A11svE4 and HLA-A11 protected target cells from lysis by NK cells more effectively. Furthermore, HLA-AsvE4 expression was upregulated by HIV-1 in vivo and by HSV, CMV, and hepatitis B virus in vitro. In addition, our findings indicated that HLA-A11svE4 molecules were functional in activating CD8+ T cells through Ag presentation. Taken together, these results suggested that HLA-A11svE4 can homodimerize and form a novel heterodimeric complex with HLA-A11 open conformers. Furthermore, the data are consistent with HLA-A11svE4 playing a role in the immune escape of HIV-1.
Collapse
Affiliation(s)
- Xi-He Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Xiao-Dong Lian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Zheng-Xi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| |
Collapse
|
11
|
Ries M, Reynolds MR, Bashkueva K, Crosno K, Capuano S, Prall TM, Wiseman R, O’Connor DH, Rakasz EG, Uno H, Lifson JD, Evans DT. KIR3DL01 upregulation on gut natural killer cells in response to SIV infection of KIR- and MHC class I-defined rhesus macaques. PLoS Pathog 2017; 13:e1006506. [PMID: 28708886 PMCID: PMC5529027 DOI: 10.1371/journal.ppat.1006506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/26/2017] [Accepted: 07/02/2017] [Indexed: 01/29/2023] Open
Abstract
Natural killer cells provide an important early defense against viral pathogens and are regulated in part by interactions between highly polymorphic killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their MHC class I ligands on target cells. We previously identified MHC class I ligands for two rhesus macaque KIRs: KIR3DL01 recognizes Mamu-Bw4 molecules and KIR3DL05 recognizes Mamu-A1*002. To determine how these interactions influence NK cell responses, we infected KIR3DL01+ and KIR3DL05+ macaques with and without defined ligands for these receptors with SIVmac239, and monitored NK cell responses in peripheral blood and lymphoid tissues. NK cell responses in blood were broadly stimulated, as indicated by rapid increases in the CD16+ population during acute infection and sustained increases in the CD16+ and CD16-CD56- populations during chronic infection. Markers of proliferation (Ki-67), activation (CD69 & HLA-DR) and antiviral activity (CD107a & TNFα) were also widely expressed, but began to diverge during chronic infection, as reflected by sustained CD107a and TNFα upregulation by KIR3DL01+, but not by KIR3DL05+ NK cells. Significant increases in the frequency of KIR3DL01+ (but not KIR3DL05+) NK cells were also observed in tissues, particularly in the gut-associated lymphoid tissues, where this receptor was preferentially upregulated on CD56+ and CD16-CD56- subsets. These results reveal broad NK cell activation and dynamic changes in the phenotypic properties of NK cells in response to SIV infection, including the enrichment of KIR3DL01+ NK cells in tissues that support high levels of virus replication.
Collapse
Affiliation(s)
- Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew R. Reynolds
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ksenia Bashkueva
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristin Crosno
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trent M. Prall
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hajime Uno
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Morales-Estevez C, De la Haba-Rodriguez J, Manzanares-Martin B, Porras-Quintela I, Rodriguez-Ariza A, Moreno-Vega A, Ortiz-Morales MJ, Gomez-España MA, Cano-Osuna MT, Lopez-Gonzalez J, Chia-Delgado B, Gonzalez-Fernandez R, Aranda-Aguilar E. KIR Genes and Their Ligands Predict the Response to Anti-EGFR Monoclonal Antibodies in Solid Tumors. Front Immunol 2016; 7:561. [PMID: 27994592 PMCID: PMC5136734 DOI: 10.3389/fimmu.2016.00561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) regulate the killing function of natural killer cells, which play an important role in the antibody-dependent cell-mediated cytotoxicity response exerted by therapeutic monoclonal antibodies (mAbs). However, it is unknown whether the extensive genetic variability of KIR genes and/or their human leukocyte antigen (HLA) ligands might influence the response to these treatments. This study aimed to explore whether the variability in KIR/HLA genes may be associated with the variable response observed to mAbs based anti-epidermal growth factor receptor (EGFR) therapies. Thirty-nine patients treated with anti-EGFR mAbs (trastuzumab for advanced breast cancer, or cetuximab for advanced colorectal or advanced head and neck cancer) were included in the study. All the patients had progressed to mAbs therapy and were grouped into two categories taking into account time to treatment failure (TTF ≤6 and ≥10 months). KIR genotyping (16 genetic variability) was performed in genomic DNA from peripheral blood by PCR sequence-specific primer technique, and HLA ligand typing was performed for HLA-B and -C loci by reverse polymerase chain reaction sequence-specific oligonucleotide methodology. Subjects carrying the KIR/HLA ligand combinations KIR2DS1/HLAC2C2-C1C2 and KIR3DS1/HLABw4w4-w4w6 showed longer TTF than non-carriers counterparts (14.76 vs. 3.73 months, p < 0.001 and 14.93 vs. 4.6 months, p = 0.005, respectively). No other significant differences were observed. Two activating KIR/HLA ligand combinations predict better response of patients to anti-EGFR therapy. These findings increase the overall knowledge on the role of specific gene variants related to responsiveness to anti-EGFR treatment in solid tumors and highlight the importance of assessing gene polymorphisms related to cancer medications.
Collapse
Affiliation(s)
- Cristina Morales-Estevez
- Medical Oncology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Juan De la Haba-Rodriguez
- Medical Oncology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Manzanares-Martin
- Immunology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Ignacio Porras-Quintela
- Medical Oncology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Antonio Rodriguez-Ariza
- Medical Oncology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Moreno-Vega
- Medical Oncology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Maria J Ortiz-Morales
- Medical Oncology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Maria A Gomez-España
- Medical Oncology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Maria T Cano-Osuna
- Medical Oncology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Javier Lopez-Gonzalez
- Medical Oncology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Beatriz Chia-Delgado
- Medical Oncology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Rafael Gonzalez-Fernandez
- Immunology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Enrique Aranda-Aguilar
- Medical Oncology Department, IMIBIC, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Garcia-Beltran WF, Hölzemer A, Martrus G, Chung AW, Pacheco Y, Simoneau CR, Rucevic M, Lamothe-Molina PA, Pertel T, Kim TE, Dugan H, Alter G, Dechanet-Merville J, Jost S, Carrington M, Altfeld M. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol 2016; 17:1067-74. [PMID: 27455421 PMCID: PMC4992421 DOI: 10.1038/ni.3513] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
The activating natural killer (NK)-cell receptor KIR3DS1 has been linked to the outcome of various human diseases, including delayed progression of disease caused by human immunodeficiency virus type 1 (HIV-1), yet a ligand that would account for its biological effects has remained unknown. We screened 100 HLA class I proteins and found that KIR3DS1 bound to HLA-F, a result we confirmed biochemically and functionally. Primary human KIR3DS1(+) NK cells degranulated and produced antiviral cytokines after encountering HLA-F and inhibited HIV-1 replication in vitro. Activation of CD4(+) T cells triggered the transcription and surface expression of HLA-F mRNA and HLA-F protein, respectively, and induced binding of KIR3DS1. HIV-1 infection further increased the transcription of HLA-F mRNA but decreased the binding of KIR3DS1, indicative of a mechanism for evading recognition by KIR3DS1(+) NK cells. Thus, we have established HLA-F as a ligand of KIR3DS1 and have demonstrated cell-context-dependent expression of HLA-F that might explain the widespread influence of KIR3DS1 in human disease.
Collapse
Affiliation(s)
| | - Angelique Hölzemer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- First Department of Internal Medicine, University Medical Centre Eppendorf, Hamburg, Germany
| | - Gloria Martrus
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Amy W. Chung
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Yovana Pacheco
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nuestra Señora del Rosario, Bogotá, Colombia
| | | | | | | | - Thomas Pertel
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tae-Eun Kim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Haley Dugan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | | | | | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
14
|
Garrido-Rodríguez D, Ávila-Ríos S, García-Morales C, Valenzuela-Ponce H, Ormsby C, Reyes-Gopar H, Fernandez-Lopez JC, Reyes-Terán G. Killer cell immunoglobulin-like receptor and human leukocyte antigen gene profiles in a cohort of HIV-infected Mexican Mestizos. Immunogenetics 2016; 68:703-17. [PMID: 27240860 DOI: 10.1007/s00251-016-0920-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/21/2016] [Indexed: 01/23/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) represent the most polymorphic genes responsible for natural killer cell function, while human leukocyte antigen (HLA) class I molecules define and restrict cytotoxic T lymphocyte responses. Specific KIR, HLA, or KIR-HLA combinations have been implicated in the outcome of human immunodeficiency virus (HIV) disease. The remarkable polymorphism of KIR and HLA genes warrants descriptive gene frequency studies in different populations, as well as their impact on HIV disease progression in different immunogenetic contexts. We report KIR and HLA class I gene profiles of 511 unrelated HIV-infected Mexican Mestizo individuals from 18 states for whom genetic ancestry proportions were assessed. KIR and HLA gene profiles were compared between individuals from the north and central-south regions of the country and between individuals with higher European (EUR) or Amerindian (AMI) genetic ancestry component. A total of 65 KIR genotypes were observed, 11 harboring novel KIR gene combinations. A total of 164 HLA alleles were observed: 43 HLA-A, 87 HLA-B, and 34 HLA-C. Differences in the distribution of 12 HLA alleles were observed between individuals with higher AMI or EUR ancestry components (p < 0.05, q < 0.2). After correcting for genetic ancestry, only individual HLA alleles were associated with HIV disease progression, including a novel association with A*02:06, an Amerindian HLA allele associated with lower CD4+ T cell counts. No KIR effects were significant. Our results highlight the advantages of considering a detailed genetic stratification within populations when studying genetic profiles that could be implicated in disease-association studies.
Collapse
Affiliation(s)
- Daniela Garrido-Rodríguez
- National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Santiago Ávila-Ríos
- National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Claudia García-Morales
- National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Humberto Valenzuela-Ponce
- National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Christopher Ormsby
- National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Helena Reyes-Gopar
- National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | | | - Gustavo Reyes-Terán
- National Institute of Respiratory Diseases, Centre for Research in Infectious Diseases, Calzada de Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
15
|
Hens J, Jennes W, Kestens L. The role of NK cells in HIV-1 protection: autologous, allogeneic or both? AIDS Res Ther 2016; 13:15. [PMID: 26997965 PMCID: PMC4799629 DOI: 10.1186/s12981-016-0099-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 12/03/2022] Open
Abstract
Natural killer (NK) cells specialize in killing virally infected- or tumor cells and are part of the innate immune system. The activational state of NK cells is determined by the balance of incoming activating and inhibitory signals mediated by receptor-ligand binding with the target cell. These receptor-ligand bonds mainly consist of the killer immunoglobulin-like receptors (KIR), which are expressed at the cell surface of NK cells, and their ligands: the highly variable human leukocyte antigen -class I molecules (HLA). Absence of an inhibitory receptor-ligand bond lowers the NK cell activation threshold, whereas an activating receptor-ligand bond stimulates the cell, potentially overcoming this threshold and triggering NK cell activation. NK cells influence the course of infection as well as the acquisition of HIV-1. Several lines of evidence relate the activating NK cell receptor KIR3DS1, in the presence or absence of its putative ligand HLA-Bw4, with slower disease progression as well as resistance to HIV-1 infection. Overall, resistance to HIV-1 infection predominantly correlates with activating KIR/HLA profiles, consisting of e.g. activating KIRs, group B haplotypes, or inhibitory KIRs in absence of their ligands. Such a conclusion is less evident for studies of HIV-1 disease progression, with studies reporting beneficial as well as detrimental effects of activating KIR/HLA genotypes. It is likely that KIR/HLA association studies are complicated by the complexity of the KIR and HLA loci and their mutual interactions, as well as by additional factors like route of HIV exposure, immune activation, presence of co-infections, and the effect of anti-HIV-1 antibodies. One newly discovered NK cell activation pathway associated with resistance to HIV-1 infection involves the presence of an iKIR/HLA mismatch between partners. The absence of such an iKIR/HLA bond renders donor-derived allogeneic HIV-1 infected cells vulnerable to NK cell responses during HIV-1 transmission. Therefore, theoretically, HIV-1 would be eliminated before it has the chance to infect the autologous cells in the recipient. While this “alloreactive” NK cell mechanism is especially relevant to HIV transmission in monogamous couples, it would be interesting to investigate how it could influence resistance to HIV in other settings. The objective of this review is to summarize the knowledge about these autologous and alloreactive NK cell responses with regard to HIV-1 outcome.
Collapse
|
16
|
Hölzemer A, Thobakgale CF, Jimenez Cruz CA, Garcia-Beltran WF, Carlson JM, van Teijlingen NH, Mann JK, Jaggernath M, Kang SG, Körner C, Chung AW, Schafer JL, Evans DT, Alter G, Walker BD, Goulder PJ, Carrington M, Hartmann P, Pertel T, Zhou R, Ndung’u T, Altfeld M. Selection of an HLA-C*03:04-Restricted HIV-1 p24 Gag Sequence Variant Is Associated with Viral Escape from KIR2DL3+ Natural Killer Cells: Data from an Observational Cohort in South Africa. PLoS Med 2015; 12:e1001900; discussion e1001900. [PMID: 26575988 PMCID: PMC4648589 DOI: 10.1371/journal.pmed.1001900] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/07/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Viruses can evade immune surveillance, but the underlying mechanisms are insufficiently understood. Here, we sought to understand the mechanisms by which natural killer (NK) cells recognize HIV-1-infected cells and how this virus can evade NK-cell-mediated immune pressure. METHODS AND FINDINGS Two sequence mutations in p24 Gag associated with the presence of specific KIR/HLA combined genotypes were identified in HIV-1 clade C viruses from a large cohort of infected, untreated individuals in South Africa (n = 392), suggesting viral escape from KIR+ NK cells through sequence variations within HLA class I-presented epitopes. One sequence polymorphism at position 303 of p24 Gag (TGag303V), selected for in infected individuals with both KIR2DL3 and HLA-C*03:04, enabled significantly better binding of the inhibitory KIR2DL3 receptor to HLA-C*03:04-expressing cells presenting this variant epitope compared to the wild-type epitope (wild-type mean 18.01 ± 10.45 standard deviation [SD] and variant mean 44.67 ± 14.42 SD, p = 0.002). Furthermore, activation of primary KIR2DL3+ NK cells from healthy donors in response to HLA-C*03:04+ target cells presenting the variant epitope was significantly reduced in comparison to cells presenting the wild-type sequence (wild-type mean 0.78 ± 0.07 standard error of the mean [SEM] and variant mean 0.63 ± 0.07 SEM, p = 0.012). Structural modeling and surface plasmon resonance of KIR/peptide/HLA interactions in the context of the different viral sequence variants studied supported these results. Future studies will be needed to assess processing and antigen presentation of the investigated HIV-1 epitope in natural infection, and the consequences for viral control. CONCLUSIONS These data provide novel insights into how viruses can evade NK cell immunity through the selection of mutations in HLA-presented epitopes that enhance binding to inhibitory NK cell receptors. Better understanding of the mechanisms by which HIV-1 evades NK-cell-mediated immune pressure and the functional validation of a structural modeling approach will facilitate the development of novel targeted immune interventions to harness the antiviral activities of NK cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
- First Department of Internal Medicine, University Medical Center Hamburg—Eppendorf, Hamburg, Germany
| | - Christina F. Thobakgale
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Camilo A. Jimenez Cruz
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | | | | | | | - Jaclyn K. Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Manjeetha Jaggernath
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Seung-gu Kang
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | - Christian Körner
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Amy W. Chung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jamie L. Schafer
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Microbiology, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - David T. Evans
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Microbiology, New England Primate Research Center, Southborough, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Pia Hartmann
- First Department of Internal Medicine, Division of Infectious Diseases, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Thomas Pertel
- Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
17
|
Schafer JL, Ries M, Guha N, Connole M, Colantonio AD, Wiertz EJ, Wilson NA, Kaur A, Evans DT. Suppression of a Natural Killer Cell Response by Simian Immunodeficiency Virus Peptides. PLoS Pathog 2015; 11:e1005145. [PMID: 26333068 PMCID: PMC4557930 DOI: 10.1371/journal.ppat.1005145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses. Natural killer (NK) cells recognize and kill infected cells without prior antigenic stimulation, and thus provide an important early defense against virus infection. NK cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. Inhibitory KIRs normally suppress NK cell responses through interactions with their MHC class I ligands on the surface of healthy cells. However, when these interactions are perturbed, this inhibition is lost resulting in NK cell activation and killing of the target cell. We investigated the functional implications of simian immunodeficiency virus (SIV) peptides bound by a common MHC class I molecule in the rhesus macaque that stabilize or disrupt binding to an inhibitory KIR. Whereas SIV peptides that stabilized KIR-MHC class I binding suppressed NK cell activation, peptides that disrupted this interaction did not and resulted in NK cell lysis. These findings demonstrate that viral peptides can modulate NK cell responses through KIR-MHC class I interactions, and are consistent with the possibility that human and simian immunodeficiency viruses may acquire changes in epitopes that increase the binding of MHC class I ligands to inhibitory KIRs as a mechanism to suppress NK cell responses.
Collapse
Affiliation(s)
- Jamie L. Schafer
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Natasha Guha
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Michelle Connole
- Division of Immunology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Arnaud D. Colantonio
- Division of Immunology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Emmanuel J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nancy A. Wilson
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Amitinder Kaur
- Division of Immunology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - David T. Evans
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Association of KIR3DL1/S1 and HLA-Bw4 with CD4 T cell counts in HIV-infected Mexican mestizos. Immunogenetics 2015; 67:413-24. [PMID: 26033692 DOI: 10.1007/s00251-015-0848-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/22/2015] [Indexed: 12/16/2022]
Abstract
Certain genotypic combinations of killer-cell immunoglobulin-like receptors (KIR) and human leukocyte antigens (HLA) have been associated with favourable outcomes after exposure to human immunodeficiency virus in Caucasoid and African populations. Human immunodeficiency virus (HIV) infection is characterized by a rapid exhaustion of CD4 cells, which results in impaired cellular immunity. During this early phase of infection, it is thought that the natural killer (NK) cells represent the main effector arm of the host immune response to HIV. This study investigates whether KIR and HLA factors are associated to CD4 T cell numbers after HIV infection in Mexican mestizos as assessed at the time of initial medical evaluation and subsequent clinical follow-up. KIR and HLA-B gene carrier frequency differences were compared between groups of patients stratified by CD4 T cell numbers as assessed during their first medical evaluation (a point in time at which all patients were anti-retroviral therapy naïve). In addition, the influence that these genetic factors have on averaged historical CD4 cell counts in patients subjected to follow-up (mostly therapy-experienced) was also evaluated. Our results suggest a protective role for the HLA-Bw4 and KIR3D + Bw4 combination in both therapy-naïve and therapy-experienced patients. This report furthers our understanding on the way that immune genes modulate HIV disease progression in less-studied human populations such as the Mexican mestizos with a special focus on CD4 T cell number and behaviour.
Collapse
|
19
|
Jiang Y, Chen O, Cui C, Zhao B, Han X, Zhang Z, Liu J, Xu J, Hu Q, Liao C, Shang H. KIR3DS1/L1 and HLA-Bw4-80I are associated with HIV disease progression among HIV typical progressors and long-term nonprogressors. BMC Infect Dis 2013; 13:405. [PMID: 24059286 PMCID: PMC3766012 DOI: 10.1186/1471-2334-13-405] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/30/2013] [Indexed: 11/10/2022] Open
Abstract
Background Natural killer (NK) cells have emerged as pivotal players in innate immunity, especially in the defense against viral infections and tumors. Killer immunoglobulin-like receptors (KIRs) – an important recognition receptor expressed on the surface of NK cells – regulate the inhibition and/or activation of NK cells after interacting with human leukocyte antigen (HLA) class I ligands. Various KIR genes might impact the prognosis of many different diseases. The implications of KIR-HLA interaction in HIV disease progression remains poorly understood. Methods Here, we studied KIR genotypes, mRNA levels, HLA genotypes, CD4+ T cell counts and viral loads in our cohort of Human Immunodeficiency Virus (HIV)-infected individuals, a group that includes HIV long-term nonprogressors (LTNPs) and typical progressors (TPs). Results We found that the frequency of KIR3DS1/L1 heterozygotes with HLA-Bw4-80I gene was much higher in LTNPs than in TPs (P = 0.001) and that the KIR3DL1 homozygotes without HLA-Bw4-80I gene had higher viral loads and lower CD4+ T cell counts (P = 0.014 and P = 0.021, respectively). Our study also confirmed that homozygosity for the HLA-Bw6 allele was associated with rapid disease progression. In addition to the aforementioned results on the DNA level, we observed that higher level expression of KIR3DS1 mRNA was in LTNP group, and that higher level expression of KIR3DL1 mRNA was in TP group. Conclusions Our data suggest that different KIR-HLA genotypes and different levels of transcripts associate with HIV disease progression.
Collapse
Affiliation(s)
- Yongjun Jiang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, P, R, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shahid A, Chopera DR, Martin E, Penney KA, Milloy MJ, Brumme ZL. A method for killer-cell immunoglobulin-like receptor (KIR) 3DL1/3DS1 genotyping using DNA recovered from frozen plasma. J Immunol Methods 2013; 391:154-62. [PMID: 23524032 DOI: 10.1016/j.jim.2013.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 11/30/2022]
Abstract
We describe a reliable and semi-automated method for killer-cell immunoglobulin-like receptor (KIR) 3DL1/S1 genotyping using DNA recovered from frozen plasma. The primers and protocol were first validated using two independent genomic DNA reference panels. To confirm the approach using plasma-derived DNA, total nucleic acids were extracted from 69 paired frozen PBMC and plasma specimens representing all common KIR3DL1/S1 genotypes (3DS1/3DS1, 3DS1/3DL1 and 3DL1/3DL1, including rare allele 3DL1*054), and analyzed in a blinded fashion. The method involves independent nested PCR amplification of KIR3DL1/S1 Exon 4, and if required Exon 3, using universal sequence-specific primers, followed by bidirectional sequencing. The free basecalling software RECall is recommended for rapid, semi-automated chromatogram analysis. KIR3DL1/S1 type assignment is based on two key nucleotide polymorphisms in Exon 4 and, if required, up to two additional polymorphisms in exon 3. Assignment can be performed manually or using our web-based algorithm, KIR3D. Extractions from plasma yielded median [IQR] nucleic acid concentrations of 0.9 [below the limit of detection-2.45] ng/μl. PCR was successful for 100% of exon 4 (69/69) and exon 3 (29/29) plasma amplifications. Chromatogram quality was high and concordance between PBMC and plasma-derived types was 100%. The estimated lower limit of input DNA required for reliable typing is 0.01 ng/μl. This method provides reliable and accurate KIR3DL1/S1 typing when conventional sources of high-quality genomic DNA are unavailable or limiting.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Hellmann I, Letvin NL, Schmitz JE. KIR2DL4 copy number variation is associated with CD4+ T-cell depletion and function of cytokine-producing NK cell subsets in SIV-infected Mamu-A*01-negative rhesus macaques. J Virol 2013; 87:5305-10. [PMID: 23449795 PMCID: PMC3624297 DOI: 10.1128/jvi.02949-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/19/2013] [Indexed: 12/17/2022] Open
Abstract
Here, we demonstrate that KIR2DL4 copy number variation (CNV) is associated with CD4(+) T-cell decline and functionality of cytokine-producing NK cells during primary simian immunodeficiency virus (SIV) infection in Mamu-A*01(-) Indian-origin rhesus macaques, with higher KIR2DL4 copy numbers being associated with a better preservation of CD4(+) T cells and an increased gamma interferon (IFN-γ) production from stimulated cytokine-producing NK cell subsets during acute SIVmac251 infection. These findings underscore the crucial role of activating killer-cell immunoglobulin-like receptors (KIRs) in NK cell-mediated SIV responses during early SIV infection.
Collapse
Affiliation(s)
- Ina Hellmann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
22
|
Natural killer KIR3DS1 is closely associated with HCV viral clearance and sustained virological response in HIV/HCV patients. PLoS One 2013; 8:e61992. [PMID: 23613999 PMCID: PMC3629002 DOI: 10.1371/journal.pone.0061992] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 03/17/2013] [Indexed: 12/22/2022] Open
Abstract
Aim To evaluate the influence of the presence of the killer cell immunoglobulin-like receptor (KIR) 3DS1 on HCV treatment response in HIV/HCV genotype 1 co-infected patients Methods HIV/HCV co-infected patients were included. KIR3DS1, their specific HLA-B ligands and IL28B gene were genotyped. Reductions of plasma HCV RNA levels between baseline and week 1, week 2 and week 4 were analyzed for IL28B genotype and KIR3DS1 (HLA Bw4 or Bw6). Rapid and sustained virological response (RVR and SVR) rates were also analyzed. Results Sixty HIV/HCV genotype 1 co-infected patients were included. Patients with KIR3DS1 and Bw4 had higher rates of HCV viral decline than those who were not carriers of KIR3DS1 (week1: p = 0.01; week2: p = 0.038; week 4: p = 0.03). Patients carrying KIR3DS1/Bw4 had higher rates of RVR and SVR than those who did not carry KIR3DS1 (RVR: 46.15% versus 17.02%, p = 0.012; SVR: 63.6% versus 13 26.5%, p = 0.031). With respect to patients carrying the IL28B-CC genotype, those with KIR3DS1/Bw4 had greater rates of HCV viral clearance (week1: p<0.001; week2: p = 0.01; week 4: p = 0.02), RVR (p = 0.015) and SVR (p = 0.029) than those not carrying KIR3DS1. Conclusion Our results show that the KIR3DS1 genotype has a positive effect on HCV viral clearance during the first weeks of Peg-IFN/RBV treatment in HCV/HCV co-infected patients bearing genotype 1, and higher RVR and SVR rates.
Collapse
|
23
|
Abstract
Natural killer (NK) cells are key components of innate immune responses, providing surveillance against cells undergoing tumorigenesis or infection, by viruses or internal pathogens. NK cells can directly eliminate compromised cells and regulate downstream responses of the innate and acquired immune systems through the release of immune modulators (cytokines, interferons). The importance of the role NK cells play in immune defense was demonstrated originally in herpes viral infections, usually mild or localized, which become severe and life threatening in NK-deficient patients . NK cell effector functions are governed by balancing opposing signals from a diverse array of activating and inhibitory receptors. Many NK receptors occur in paired activating and inhibitory isoforms and recognize major histocompatibility complex (MHC) class I proteins with varying degrees of peptide specificity. Structural studies have made considerable inroads into understanding the molecular mechanisms employed to broadly recognize multiple MHC ligands or specific pathogen-associated antigens and the strategies employed by viruses to thwart these defenses. Although many details of NK development, signaling, and integration remain mysterious, it is clear that NK receptors are key components of a system exquisitely tuned to sense any dysregulation in MHC class I expression, or the expression of certain viral antigens, resulting in the elimination of affected cells.
Collapse
Affiliation(s)
- Kathryn A Finton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
24
|
Inhibitory KIR/HLA incompatibility between sexual partners confers protection against HIV-1 transmission. Blood 2012; 121:1157-64. [PMID: 23243280 DOI: 10.1182/blood-2012-09-455352] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Killer immunoglobulin-like receptors (KIRs) regulate natural killer (NK) cells in a human leukocyte antigen (HLA)-dependent manner. KIR/HLA mismatched hematopoietic stem cell transplants induce alloreactive NK cells, which prevent leukemia relapse. Certain KIR/HLA combinations protect against HIV-1 infection, but the effect of KIR/HLA mismatches between sexual partners has never been investigated. In this study, we analyzed the effect of allogeneic KIR/HLA combinations on HIV-1 transmission in a West African population of HIV-1-discordant and concordant couples. HIV-1-discordant couples were characterized by recipient partners with homozygous KIR2DL2, and by a mismatched recipient partner KIR2DL1/HLA-C2 with index partner HLA-C1/C1 combination expected to allow licensed missing self NK cell killing of index partners' cells. HIV-1-concordant couples on the other hand were characterized by KIR2DL3 homozygous recipient partners with HLA-C1/C2 bearing index partners, resulting in a matched KIR/HLA combination expected to inhibit NK cell killing. In vitro cocultures of healthy donor-derived NK cells and HIV-1 patient-derived CD4(+) T cells confirmed the involvement of these allogeneic KIR/HLA combinations in NK cell-mediated CD4(+) T-cell killing. Our data suggest that KIR/HLA incompatibility between sexual partners confers protection against HIV-1 transmission and that this may be due to alloreactive NK cell killing of the HIV-1-infected partner's cells.
Collapse
|
25
|
Abstract
The function of natural killer (NK) cells is controlled by several activating and inhibitory receptors, including the family of killer-immunoglobulin-like receptors (KIRs). One distinctive feature of KIRs is the extensive number of various haplotypes generated by the gene content within the KIR gene locus as well as by highly polymorphic members of the KIR gene family, namely KIR3DL1/S1. Within the KIR3DL1/S1 gene locus, KIR3DS1 represents a conserved allelic variant and displays other unique features in comparison to the highly polymorphic KIR3DL1 allele. KIR3DS1 is present in all human populations and belongs to the KIR haplotype group B. KIR3DS1 encodes for an activating receptor featuring the characteristic short cytoplasmic tail and a positively charged residue within the transmembrane domain, which allows recruitment of the ITAM-bearing adaptor molecule DAP12. Although HLA class I molecules are thought to represent natural KIR ligands, and HLA-Bw4 molecules serve as ligands for KIR3DL1, the ligand for KIR3DS1 still needs to be identified. Despite the lack of formal evidence for an interaction of KIR3DS1 with HLA-Bw4-I80 or any other HLA class I subtype to date, a growing number of associations between the presence of KIR3DS1 and the outcome of viral infections have been described. Especially, the potential protective role of KIR3DS1 in combination with HLA-Bw4-I80 in the context of HIV-1 infection has been studied intensively. In addition, a number of recent studies have associated the presence or absence of KIR3DS1 with the occurrence and outcome of some malignancies, autoimmune diseases, and graft-versus-host disease (GVHD). In this review, we summarize the present knowledge regarding the characteristics of KIRD3S1 and discuss its role in various human diseases.
Collapse
Affiliation(s)
- Christian Körner
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University Charlestown, MA, USA
| | | |
Collapse
|
26
|
Merino AM, Song W, He D, Mulenga J, Allen S, Hunter E, Tang J, Kaslow RA. HLA-B signal peptide polymorphism influences the rate of HIV-1 acquisition but not viral load. J Infect Dis 2012; 205:1797-805. [PMID: 22492862 PMCID: PMC3571229 DOI: 10.1093/infdis/jis275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/28/2011] [Indexed: 01/03/2023] Open
Abstract
Human leukocyte antigen alleles influence the immune response to HIV-1. Signal peptides cleaved from those alleles bind to HLA-E and mediate natural killer cell function. Signal peptides of HLA-A and HLA-C proteins carry methionine (Met) at anchor position 2 (P2); those of HLA-B carry Met or threonine (Thr). Different P2 residues alter HLA-E binding to its cognate receptors and may impact HIV-1 acquisition. Among Zambian couples (N = 566) serodiscordant for HIV-1, P2-Met accelerated acquisition in the HIV-1-negative partner (relative hazard [RH], 1.79). Among seroconverting Zambian (n = 240) and Rwandan (n = 64) partners, P2-Met also accelerated acquisition (RH, 1.47 and RH, 1.83 respectively). HLA-B alleles displaying the reportedly protective Bw4 epitope carry P2-Thr. Bw4/P2-Thr and Bw6/P2-Thr showed similar protective effects compared with Bw6/P2-Met. Neither motif was associated with viral load. The influence of HLA-B alleles on HIV/AIDS may derive from multiple motifs in and beyond the mature proteins.
Collapse
Affiliation(s)
| | | | | | | | - Susan Allen
- Rwanda-Zambia HIV-1 Research Group, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine
| | - Eric Hunter
- Vaccine Research Center, Emory University, Atlanta, Georgia
| | | | - Richard A. Kaslow
- Department of Medicine
- Department of Microbiology
- Department of Epidemiology, University of Alabama at Birmingham
| |
Collapse
|
27
|
Brown BK, Wieczorek L, Kijak G, Lombardi K, Currier J, Wesberry M, Kappes JC, Ngauy V, Marovich M, Michael N, Ochsenbauer C, Montefiori DC, Polonis VR. The role of natural killer (NK) cells and NK cell receptor polymorphisms in the assessment of HIV-1 neutralization. PLoS One 2012; 7:e29454. [PMID: 22509241 PMCID: PMC3324450 DOI: 10.1371/journal.pone.0029454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
The importance of innate immune cells in HIV-1 pathogenesis and protection has been highlighted by the role of natural killer (NK) cells in the containment of viral replication. Use of peripheral blood mononuclear cells (PBMC) in immunologic studies provides both HIV-1 target cells (ie. CD4+ T cells), as well as anti-HIV-1 effector cells, such as NK cells. In this study, NK and other immune cell populations were analyzed in HIV-negative donor PBMC for an impact on the anti-HIV activity of polyclonal and monoclonal antibodies. NK cell percentages were significantly higher in donor PBMC that supported lower levels of viral replication. While the percentage of NK cells was not directly associated with neutralization titers, NK cell-depletion significantly diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor (KIR) and FcγRIIIa alleles appear to be associated with this affect. These findings demonstrate that NK cells and NK cell receptor polymorphisms may influence assessment of traditional HIV-1 neutralization in a platform where antibody is continuously present. This format appears to simultaneously assess conventional entry inhibition (neutralization) and non-neutralizing antibody-dependent HIV inhibition, which may provide the opportunity to delineate the dominant antibody function(s) in polyclonal vaccine responses.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Genotype
- HIV-1/immunology
- HIV-1/physiology
- Host-Pathogen Interactions
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Neutralization Tests
- Polymorphism, Genetic
- Receptors, IgG/genetics
- Receptors, KIR3DS1/genetics
- Receptors, Natural Killer Cell/genetics
Collapse
Affiliation(s)
- Bruce K. Brown
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Lindsay Wieczorek
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Gustavo Kijak
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Kara Lombardi
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Jeffrey Currier
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Maggie Wesberry
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - John C. Kappes
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Viseth Ngauy
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mary Marovich
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Nelson Michael
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | | | | | - Victoria R. Polonis
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Chen H, Hayashi G, Lai OY, Dilthey A, Kuebler PJ, Wong TV, Martin MP, Fernandez Vina MA, McVean G, Wabl M, Leslie KS, Maurer T, Martin JN, Deeks SG, Carrington M, Bowcock AM, Nixon DF, Liao W. Psoriasis patients are enriched for genetic variants that protect against HIV-1 disease. PLoS Genet 2012; 8:e1002514. [PMID: 22577363 PMCID: PMC3343879 DOI: 10.1371/journal.pgen.1002514] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/11/2011] [Indexed: 02/08/2023] Open
Abstract
An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis.
Collapse
Affiliation(s)
- Haoyan Chen
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Genki Hayashi
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Olivia Y. Lai
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Alexander Dilthey
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Peter J. Kuebler
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Tami V. Wong
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, National Cancer Institute, Frederick, Maryland, United States of America
| | | | - Gil McVean
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Kieron S. Leslie
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Toby Maurer
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Steven G. Deeks
- HIV/AIDS Program, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, National Cancer Institute, Frederick, Maryland, United States of America
| | - Anne M. Bowcock
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Douglas F. Nixon
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
29
|
Hong HA, Loubser AS, de Assis Rosa D, Naranbhai V, Carr W, Paximadis M, Lewis DA, Tiemessen CT, Gray CM. Killer-cell immunoglobulin-like receptor genotyping and HLA killer-cell immunoglobulin-like receptor-ligand identification by real-time polymerase chain reaction. ACTA ACUST UNITED AC 2012; 78:185-94. [PMID: 21810083 DOI: 10.1111/j.1399-0039.2011.01749.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effector function of natural killer (NK) cells is modulated by surface expression of a range of killer-cell immunoglobulin-like receptors (KIRs) that interact with human leukocyte antigen (HLA) class I ligands. We describe the use of real-time polymerase chain reaction (PCR) assays that allow easy and quick detection of 16 KIR genes and the presence/absence of KIR-ligands based on allelic discrimination at codon 80 in the HLA-A/B Bw4 and HLA-C C1/C2 genes. These methods overcome the tedious and expensive nature of conventional KIR genotyping and HLA class I typing using sequence-specific primer (SSP) PCR, sequence-specific oligonucleotide (SSO) hybridization or sequence-based typing (SBT). Using these two cost-effective assays, we measured the frequencies of KIRs, KIR-ligands and KIR/KIR-ligand pairs in a cohort of Black women recruited in South Africa.
Collapse
Affiliation(s)
- H A Hong
- AIDS Virus Research Unit, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pelak K, Need AC, Fellay J, Shianna KV, Feng S, Urban TJ, Ge D, De Luca A, Martinez-Picado J, Wolinsky SM, Martinson JJ, Jamieson BD, Bream JH, Martin MP, Borrow P, Letvin NL, McMichael AJ, Haynes BF, Telenti A, Carrington M, Goldstein DB, Alter G, on behalf of NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI). Copy number variation of KIR genes influences HIV-1 control. PLoS Biol 2011; 9:e1001208. [PMID: 22140359 PMCID: PMC3226550 DOI: 10.1371/journal.pbio.1001208] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/20/2011] [Indexed: 11/19/2022] Open
Abstract
A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3DS1 count associates with a lower viral set point if its putative ligand is present (p = 0.00028), as does an increase in KIR3DL1 count in the presence of KIR3DS1 and appropriate ligands for both receptors (p = 0.0015). We further provide functional data that demonstrate that NK cells from individuals with multiple copies of KIR3DL1, in the presence of KIR3DS1 and the appropriate ligands, inhibit HIV-1 replication more robustly, and associated with a significant expansion in the frequency of KIR3DS1+, but not KIR3DL1+, NK cells in their peripheral blood. Our results suggest that the relative amounts of these activating and inhibitory KIR play a role in regulating the peripheral expansion of highly antiviral KIR3DS1+ NK cells, which may determine differences in HIV-1 control following infection.
Collapse
Affiliation(s)
- Kimberly Pelak
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Anna C. Need
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jacques Fellay
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kevin V. Shianna
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sheng Feng
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Thomas J. Urban
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Dongliang Ge
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Andrea De Luca
- Institute of Clinical Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy
- Division of Infectious Diseases, Siena University Hospital, Siena, Italy
| | - Javier Martinez-Picado
- irsiCaixa Foundation and Hospital Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jeremy J. Martinson
- Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Beth D. Jamieson
- Department of Medicine, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford and Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Norman L. Letvin
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew J. McMichael
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Amalio Telenti
- Institute of Microbiology, University Hospital Center; and University of Lausanne, Lausanne, Switzerland
| | - Mary Carrington
- Department of Medicine, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - David B. Goldstein
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | | |
Collapse
|
31
|
Paximadis M, Mathebula TY, Gentle NL, Vardas E, Colvin M, Gray CM, Tiemessen CT, Puren A. Human leukocyte antigen class I (A, B, C) and II (DRB1) diversity in the black and Caucasian South African population. Hum Immunol 2011; 73:80-92. [PMID: 22074999 DOI: 10.1016/j.humimm.2011.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 09/05/2011] [Accepted: 10/03/2011] [Indexed: 01/24/2023]
Abstract
A cross-section of black and Caucasian South Africans (N = 302) were genotyped at high resolution (class I HLA-A, -B, -C and class II HLA-DRB1). Five new class I alleles (A*30:01:02, A*30:02:02, A*68:27, B*42:06, and B*45:07) and one new confirmatory allele (A*29:11) were identified in the black population. Alleles and haplotypes showed expected differences between the black and Caucasian populations, with the black population, on average, showing a broader spectrum of allele representation (less single allele dominance). The most prevalent alleles at the four loci in the black population were A*30:01, B*58:02, C*06:02, and DRB1*13:01 and in the Caucasian population were A*02:01:01, B*07:02:01, C*07:01, and DRB1*03:01. HLA-B, and HLA-C loci showed the strongest overall linkage disequilibrium (LD) and HLA-B/HLA-C two locus haplotypes also showed the strongest LD (D'(ij)) in both population groups. Bw allotype representation was similar between the two populations; however C allotypes differed significantly (C1 higher representation in Caucasians; C2 higher representation in blacks). HLA-A Supertype family phenotypic frequencies did not differ between the two populations, but four (B08, B27, B58, and B62) HLA-B Supertype families differed significantly. However, vaccine coverage estimation came close to 100% in both population groups, with inclusion of only four Supertype families (A1, A2, B7, B58).
Collapse
Affiliation(s)
- Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services and the University of the Witwatersrand, Johannesburg, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sobieszczyk ME, Lingappa JR, McElrath MJ. Host genetic polymorphisms associated with innate immune factors and HIV-1. Curr Opin HIV AIDS 2011; 6:427-34. [PMID: 21734565 DOI: 10.1097/coh.0b013e3283497155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Our understanding of the early events in HIV-1 infection continues to grow, along with the heightened recognition of the important contribution that innate immunity plays in response to HIV-1. Here, we review the epidemiological and functional studies of genetic polymorphisms associated with innate immune factors that are believed to modulate host responses, focusing specifically on recent findings related to Toll-like receptor, cytokine, host restriction and KIR genes and their activities. RECENT FINDINGS A growing number of genomic studies have described polymorphisms in innate immune genes that are associated with early postseroconversion events, including TLR4, TLR9, IRF-3, TRIM5α and the ABOBEC3 gene family. Genetic and functional data confirm the importance of KIR-HLA interactions and provide new understanding of the role of innate restriction factors in resistance to HIV-1 and disease progression. SUMMARY Single-gene, genome-wide association and expression studies have permitted the identification of innate immune genes and their variants that contribute to protection from disease progression. Characterization of the pathogen-innate immune system interactions and discovery of new and rare host genetic variants that account for a portion of the observed variance in the HIV-1 phenotype is critical to gain new insights into promising treatment and prevention strategies.
Collapse
Affiliation(s)
- Magdalena E Sobieszczyk
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | |
Collapse
|
33
|
Jamil KM, Khakoo SI. KIR/HLA interactions and pathogen immunity. J Biomed Biotechnol 2011; 2011:298348. [PMID: 21629750 PMCID: PMC3100571 DOI: 10.1155/2011/298348] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/14/2011] [Indexed: 12/11/2022] Open
Abstract
The innate immune system is the first line of defence in response to pathogen infection. Natural killer (NK) cells perform a vital role in this response with the ability to directly kill infected cells, produce cytokines, and cross-talk with the adaptive immune system. These effector functions are dependent on activation of NK cells which is determined by surface receptor interactions with ligands on target cells. Of these receptors, the polymorphic killer immunoglobulin-like receptors (KIRs), which interact with MHC class 1 (also highly polymorphic), are largely inhibitory, and exhibit substantial genetic diversity. The result is a significant variation of NK cell repertoire between individuals and also between populations, with a multitude of possible KIR:HLA combinations. As each KIR:ligand interaction may have differential effects on NK cell activation and inhibition, this diversity has important potential influences on the host response to infections. Genetic studies have demonstrated associations between specific KIR:ligand combinations and the outcome of viral (and other) infections, in particular hepatitis C and HIV infection. Detailed functional studies are not required to define the mechanisms underpinning these disease associations.
Collapse
Affiliation(s)
- Khaleel M. Jamil
- Department of Hepatology, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Salim I. Khakoo
- Department of Hepatology, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
34
|
Human immunodeficiency virus type 1 infection is associated with increased NK cell polyfunctionality and higher levels of KIR3DL1+ NK cells in ugandans carrying the HLA-B Bw4 motif. J Virol 2011; 85:4802-11. [PMID: 21411516 DOI: 10.1128/jvi.00111-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Natural killer (NK) cells are important innate effector cells controlled by an array of activating and inhibitory receptors. Some alleles of the inhibitory killer-cell immunoglobulin-like receptor KIR3DL1 in combination with its HLA class I ligand Bw4 have been genetically associated with slower HIV-1 disease progression. Here, we observed that the presence of HLA-B Bw4 was associated with elevated frequencies of KIR3DL1(+) CD56(dim) NK cells in chronically HIV-1-infected individuals from the rural district of Kayunga, Uganda. In contrast, levels of KIR2DL1(+) CD56(dim) NK cells were decreased, and levels of KIR2DL3(+) CD56(dim) NK cells were unchanged in infected subjects carrying their respective HLA-C ligands. Furthermore, the size of the KIR3DL1(+) NK cell subset correlated directly with viral load, and this effect occurred only in HLA-B Bw4(+) patients, suggesting that these cells expand in response to viral replication but may have relatively poor antiviral capacity. In contrast, no association with viral load was present for KIR2DL1(+) and KIR2DL3(+) NK cells. Interestingly, chronic HIV-1 infection was associated with an increased polyfunctional response in the NK cell compartment, and, upon further investigation, KIR3DL1(+) CD56(dim) NK cells exhibited a significantly increased functional response in the patients carrying HLA-B Bw4. These results indicate that chronic HIV-1 infection is associated with increased NK cell polyfunctionality and elevated levels of KIR3DL1(+) NK cells in Ugandans carrying the HLA-B Bw4 motif.
Collapse
|
35
|
Jennes W, Verheyden S, Demanet C, Menten J, Vuylsteke B, Nkengasong JN, Kestens L. Low CD4+ T cell counts among African HIV-1 infected subjects with group B KIR haplotypes in the absence of specific inhibitory KIR ligands. PLoS One 2011; 6:e17043. [PMID: 21347267 PMCID: PMC3038936 DOI: 10.1371/journal.pone.0017043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/14/2011] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells are regulated by interactions between polymorphic killer immunoglobulin-like receptors (KIR) and human leukocyte antigens (HLA). Genotypic combinations of KIR3DS1/L1 and HLA Bw4-80I were previously shown to influence HIV-1 disease progression, however other KIR genes have not been well studied. In this study, we analyzed the influence of all activating and inhibitory KIR, in association with the known HLA inhibitory KIR ligands, on markers of disease progression in a West African population of therapy-naïve HIV-1 infected subjects. We observed a significant association between carriage of a group B KIR haplotype and lower CD4+ T cell counts, with an additional effect for KIR3DS1 within the frame of this haplotype. In contrast, we found that individuals carrying genes for the inhibitory KIR ligands HLA-Bw4 as well as HLA-C1 showed significantly higher CD4+ T cell counts. These associations were independent from the viral load and from individual HIV-1 protective HLA alleles. Our data suggest that group B KIR haplotypes and lack of specific inhibitory KIR ligand genes, genotypes considered to favor NK cell activation, are predictive of HIV-1 disease progression.
Collapse
Affiliation(s)
- Wim Jennes
- Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
36
|
Paximadis M, Minevich G, Winchester R, Schramm DB, Gray GE, Sherman GG, Coovadia AH, Kuhn L, Tiemessen CT. KIR-HLA and maternal-infant HIV-1 transmission in sub-Saharan Africa. PLoS One 2011; 6:e16541. [PMID: 21346814 PMCID: PMC3035631 DOI: 10.1371/journal.pone.0016541] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/02/2011] [Indexed: 11/27/2022] Open
Abstract
Numerous studies have suggested a role for natural killer (NK) cells in attenuation of HIV-1 disease progression via recognition by killer-cell immunoglobulin-like receptors (KIRs) of specific HLA class I molecules. The role of KIR and HLA class I has not been addressed in the context of maternal-infant HIV-1 transmission. KIR and HLA class I B and C genes from 224 HIV-1-infected mothers and 222 infants (72 infected and 150 uninfected) from South Africa were characterized. Although a number of significant associations were determined in both the total group and in the nevirapine (NVP) exposed group, the most significant findings involved KIR2DL2 and KIR2DL3 and HLA-C. KIR2DL2/KIR2DL3 was underrepresented in intrapartum (IP)-transmitting mothers compared to non-transmitting (NT) mothers (P = 0.008) and remained significant (P = 0.036) after correction for maternal viral load (MVL). Homozygosity for KIR2DL3 alone and in combination with HLA-C allotype heterozygosity (C1C2) was elevated in IP-transmitting mothers compared to NT mothers (P = 0.034 and P = 0.01 respectively), and after MVL correction (P = 0.033 and P = 0.027, respectively). In infants, KIR2DL3 in combination with its HLA-C1 ligand (C1) as well as homozygosity for KIR2DL3 with C1C2, were both found to be underrepresented in infected infants compared to exposed uninfected infants in the total group (P = 0.06 and P = 0.038, respectively) and in the sub-group of infants whose mothers received NVP (P = 0.007 and P = 0.03, respectively). These associations were stronger post MVL adjustment (total group: P = 0.02 and P = 0.009, respectively; NVP group: P = 0.004 and P = 0.02, respectively). Upon stratification according to low and high MVL, all significant associations fell within the low MVL group, suggesting that with low viral load, the effects of genotype can be more easily detected. In conclusion this study has identified a number of significant associations that suggest an important role for NK cells in maternal-to-infant HIV-1 transmission.
Collapse
Affiliation(s)
- Maria Paximadis
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Multiple epidemiological studies have demonstrated associations between the human leukocyte antigen (HLA) loci and human immunodeficiency virus (HIV) disease, and more recently the killer cell immunoglobulin-like (KIR) locus has been implicated in differential responses to the virus. Genome-wide association studies have convincingly shown that the HLA class I locus is the most significant host genetic contributor to the variation in HIV control, underscoring a central role for CD8 T cells in resistance to the virus. However, both genetic and functional data indicate that part of the HLA effect on HIV is due to interactions between KIR and HLA genes, also implicating natural killer cells in defense against viral infection and viral expansion prior to initiation of an adaptive response. We review the HLA and KIR associations with HIV disease and the progress that has been made in understanding the mechanisms that explain these associations.
Collapse
Affiliation(s)
- Arman A Bashirova
- Ragon Institute of Massachusetts General Hospital, MIT, Boston, Massachusetts 02129, USA.
| | | | | |
Collapse
|
38
|
McErlean C, Gonzalez AA, Cunningham R, Meenagh A, Shovlin T, Middleton D. Differential RNA expression of KIR alleles. Immunogenetics 2010; 62:431-40. [PMID: 20454893 DOI: 10.1007/s00251-010-0449-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
Allelic polymorphisms dramatically influence the phenotype of human killer immunoglobulin-like receptors (KIR) by modifying their expression in cell surfaces. It is unclear though to what extent this involves transcriptional or post-transcriptional mechanisms, as quantitative RNA expression of KIR alleles has not been systematically compared. We measured RNA transcript abundance of common KIR alleles by real-time quantitative reverse transcriptase PCR (RT-PCR) in 85 PBL samples that were allele-typed in parallel. Allele type showed little influence on transcript abundance for a given KIR gene, except for: (1) KIR2DL5B*002, which consistently showed undetectable transcripts levels; (2) truncated KIR2DS4 alleles, associated with lowered expression levels; and (3) alleles of KIR2DL4 with a single-base deletion, associated with higher expression than average. Lowered levels of truncated KIR2DS4 transcripts were confirmed by dot blot of RT-PCR products, indicating imbalanced allelic RNA expression in heterozygote genotypes containing these alleles. Imbalanced expression of truncated KIR2DS4 alleles was corroborated in family samples. Gene copy number of KIR2DL1, KIR2DL3 and KIR3DL1 influenced RNA expression, genotypes with a single copy expressing on average lower transcript amounts than those with two copies. The data show that for a given KIR gene, the common allele types found in our population express comparable RNA levels, except truncated or null alleles. Thus, variation of KIR expression on cell surfaces more likely involves post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Colum McErlean
- Northern Ireland Regional Histocompatibility and Immunogenetics Laboratory, City Hospital, Belfast, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
39
|
Boulet S, Song R, Kamya P, Bruneau J, Shoukry NH, Tsoukas CM, Bernard NF. HIV protective KIR3DL1 and HLA-B genotypes influence NK cell function following stimulation with HLA-devoid cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:2057-64. [PMID: 20061407 DOI: 10.4049/jimmunol.0902621] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epidemiological studies in humans have implicated carriage of combinations of genes encoding certain KIR3DL1 (killer Ig-like receptor 3DL1) alleles and their HLA-Bw4 ligands in slower progression to AIDS, lower viral load and protection from infection. Given that the KIR3DL1*h/*y/HLA-B*57 genetic combination is strongly associated with favorable HIV outcomes, we measured responses from NK cells isolated from these individuals by multiparametric flow cytometry for cytokine secretion and degranulation in response to stimulation with HLA-devoid cells to assess whether the KIR/HLA compound genotypes linked to better HIV outcome favor increased NK cell functional potential. Our results indicate that NK cells from these individuals had increased functional potential, particularly in the KIR3DL1(+) NK cell subset. These results support a link between KIR/HLA genotypes and NK cell function and could provide an explanation for the observation that some KIR/HLA combinations are associated protective phenotypes in the context of host-HIV interactions.
Collapse
Affiliation(s)
- Salix Boulet
- Division of Clinical Immunology, Research Institute of the McGill University Health Centre, McGill University, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Host factors associated with outcome from primary human immunodeficiency virus-1 infection. Curr Opin HIV AIDS 2009; 3:28-35. [PMID: 19372941 DOI: 10.1097/coh.0b013e3282f18ac0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The early events in human immunodeficiency virus-1 infection are increasingly recognized as critical for the overall evolution of the disease. Viral and host factors interact to establish a point of equilibrium defined by the viral set point. This review highlights new opportunities in the understanding of the genetic and genomic determinants of those early events. RECENT FINDINGS The field of human immunodeficiency virus host genetics is shifting from the measure of long-term consequences of infection to the analysis of quantitative biological endpoints of viral control, with particular attention on the earliest events as study phenotypes. The field has also been enriched by a better understanding of the determinant and complex role of human leukocyte antigen and killer cell immunoglobulin-like-receptor variation, and by the completion of the first genome-wide study of determinants of human immunodeficiency virus-1 replication. The genome analysis highlights the central influence of acquired immunity in viral control, and provides an extensive catalogue of novel gene candidates. SUMMARY Host genetics and genomic analyses of precise quantitative study phenotypes offer an unprecedented opportunity to dissect critical steps in human immunodeficiency virus-1 pathogenesis.
Collapse
|
41
|
Abstract
HIV host genetic studies seek to describe as comprehensively as possible the effect of human genetic variation on the individual response to HIV type-1 (HIV-1) infection. Many associations between specific gene variants and HIV-1 disease outcomes have been reported over the past 15 years. Although most of them have yet to be confirmed or have been proven false-positives, the identification of several definitive genotype-phenotype associations has shed new light on HIV-1 pathogenesis. This review discusses these results in the context of the new genome-wide approaches that now make it possible to globally assess the influence of the host genome on HIV-1-related outcomes.
Collapse
Affiliation(s)
- Jacques Fellay
- Center for Human Genome Variation, Institute for Genome Sciences & Policy, Duke University, Durham, NC, USA.
| |
Collapse
|
42
|
Morvan M, Willem C, Gagne K, Kerdudou N, David G, Sébille V, Folléa G, Bignon JD, Retière C. Phenotypic and Functional Analyses of KIR3DL1+and KIR3DS1+NK Cell Subsets Demonstrate Differential Regulation by Bw4 Molecules and Induced KIR3DS1 Expression on Stimulated NK Cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:6727-35. [DOI: 10.4049/jimmunol.0900212] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Abstract
Following their discovery in the early 1970s, classical human leukocyte antigen (HLA) loci have been the prototypical candidates for genetic susceptibility to infectious disease. Indeed, the original hypothesis for the extreme variability observed at HLA loci (H-2 in mice) was the major selective pressure from infectious diseases. Now that both the human genome and the molecular basis of innate and acquired immunity are understood in greater detail, do the classical HLA loci still stand out as major genes that determine susceptibility to infectious disease? This review looks afresh at the evidence supporting a role for classical HLA loci in susceptibility to infectious disease, examines the limitations of data reported to date, and discusses current advances in methodology and technology that will potentially lead to greater understanding of their role in infectious diseases in the future.
Collapse
Affiliation(s)
- Jenefer M Blackwell
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, P.O. Box 855, West Perth, Western Australia, Australia 6872.
| | | | | |
Collapse
|
44
|
Abstract
Following their discovery in the early 1970s, classical human leukocyte antigen (HLA) loci have been the prototypical candidates for genetic susceptibility to infectious disease. Indeed, the original hypothesis for the extreme variability observed at HLA loci (H-2 in mice) was the major selective pressure from infectious diseases. Now that both the human genome and the molecular basis of innate and acquired immunity are understood in greater detail, do the classical HLA loci still stand out as major genes that determine susceptibility to infectious disease? This review looks afresh at the evidence supporting a role for classical HLA loci in susceptibility to infectious disease, examines the limitations of data reported to date, and discusses current advances in methodology and technology that will potentially lead to greater understanding of their role in infectious diseases in the future.
Collapse
Affiliation(s)
- Jenefer M Blackwell
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, P.O. Box 855, West Perth, Western Australia, Australia 6872.
| | | | | |
Collapse
|
45
|
Role of natural killer cells in a cohort of elite suppressors: low frequency of the protective KIR3DS1 allele and limited inhibition of human immunodeficiency virus type 1 replication in vitro. J Virol 2009; 83:5028-34. [PMID: 19211742 DOI: 10.1128/jvi.02551-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are associated with the innate immune response and are important in many viral infections. Recent studies indicate that NK cells can control human immunodeficiency virus type 1 (HIV-1) replication. We studied the effect of NK cells on HIV-1 replication in a subpopulation of HIV-1-infected individuals termed elite suppressors (ES) or elite controllers. These patients maintain a clinically undetectable viral load without treatment and thus provide a fascinating cohort in which to study the immunological response to HIV-1. Using an autologous system, we analyzed the effects of NK cells and CD8(+) T cells on viral replication in CD4(+) T lymphoblasts. Although we had postulated that NK cells of ES would be highly effective at controlling viral replication, we found that NK cells from some, but not all, ES were capable of inhibiting replication in the presence of interleukin-2, and the inhibition was less robust than that mediated by CD8(+) T cells. Additionally, we examined whether particular alleles of the KIR receptors, specifically KIR3DS1 and KIR3DL1, or allele-ligand combinations correlated with the control of HIV-1 replication by NK cells and whether any specific KIR alleles were overrepresented in ES. Our ES cohort did not differ from the general population with respect to the frequency of individual KIR. However, of the eight ES studied, the four exhibiting the most NK cell-mediated control of viral replication also had the fewest activating KIR and were haplotype A. Thus, the strong NK cell-mediated inhibition of viral replication is not necessary for the immunological control of HIV-1 in all ES.
Collapse
|
46
|
Boulet S, Bernard NF. [Carrying certain KIR3DL1 alleles with HLA-B*57 is associated with protection from HIV infection]. Med Sci (Paris) 2009; 24:1030-2. [PMID: 19116110 DOI: 10.1051/medsci/200824121030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Carrington M, Martin MP, van Bergen J. KIR-HLA intercourse in HIV disease. Trends Microbiol 2008; 16:620-7. [PMID: 18976921 PMCID: PMC3463869 DOI: 10.1016/j.tim.2008.09.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/10/2008] [Accepted: 09/15/2008] [Indexed: 11/29/2022]
Abstract
Human leukocyte antigen (HLA) class I loci are essential to an effective immune response against a wide variety of pathogenic microorganisms, and they represent the prototypes for genetic polymorphism that are sustained through balancing selection. The functional significance of HLA class I variation is better exemplified by studies involving HIV type 1 (HIV-1) than any other infectious organism. HLA class I molecules are essential to the acquired immune response, but they are also important in innate immunity as ligands for the killer cell immunoglobulin-like receptors (KIR), which modulate natural killer cell activity. Here we concentrate on the interaction between the HLA-B and KIR3DL1/KIR3DS1 genes, describe the effects of these loci on HIV disease, and discuss questions that remain unresolved.
Collapse
Affiliation(s)
- Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
48
|
A combined genotype of KIR3DL1 high expressing alleles and HLA-B*57 is associated with a reduced risk of HIV infection. AIDS 2008; 22:1487-91. [PMID: 18614872 DOI: 10.1097/qad.0b013e3282ffde7e] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Coexpression of certain combinations of natural killer cell receptor KIR3DL1 and HLA-B alleles is associated with slower time to AIDS. The strongest protection in terms of disease outcome in KIR3DL1 homozygotes (3DL1 hmz) is coexpression of HLA-B*57 and a set of KIR3DL1 genotypes (3DL1*h/*y) lacking alleles expressed at low levels on natural killer cells. We questioned whether this allele combination could also influence resistance to infection. DESIGN The genetic distribution of 3DL1*h/*y and HLA-B*57 was compared in 41 HIV-exposed uninfected and 186 recently HIV-infected 3DL1 hmz. METHODS KIR3DL1 subtyping was performed by sequencing the exons 3, 4, 5, 7-9. The major histocompatibility complex class IB locus was typed by sequence specific oligonucleotide PCR and sequencing to resolve Bw4 and Bw6 alleles and the amino acid present at position 80. RESULTS Percentage carriers of HLA-B*57 in HIV-exposed uninfected and individuals in a primary infection cohort was 12.2 and 4.3%, respectively (P = 0.0631), whereas that of 3DL1*h/*y was similar in both populations (P = 0.221). The 3DL1*h/*y-HLA-B*57 combined genotype was more frequent in exposed uninfected individuals (12.2%) than individuals in primary infection (2.7%) (P = 0.019; odds ratio, 5.03; 95% confidence intervals, 1.38-18.3). CONCLUSION Coexpression of 3DL1*h/*y and B*57, which has been associated with a reduced risk of progressing to AIDS in HIV-infected individuals also lowers the risk of HIV infection in exposed uninfected individuals.
Collapse
|
49
|
Maness NJ, Yant LJ, Chung C, Loffredo JT, Friedrich TC, Piaskowski SM, Furlott J, May GE, Soma T, León EJ, Wilson NA, Piontkivska H, Hughes AL, Sidney J, Sette A, Watkins DI. Comprehensive immunological evaluation reveals surprisingly few differences between elite controller and progressor Mamu-B*17-positive simian immunodeficiency virus-infected rhesus macaques. J Virol 2008; 82:5245-54. [PMID: 18385251 PMCID: PMC2395202 DOI: 10.1128/jvi.00292-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/25/2008] [Indexed: 01/20/2023] Open
Abstract
The association between particular major histocompatibility complex class I (MHC-I) alleles and control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication implies that certain CD8(+) T-lymphocyte (CD8-TL) responses are better able than others to control viral replication in vivo. However, possession of favorable alleles does not guarantee improved prognosis or viral control. In rhesus macaques, the MHC-I allele Mamu-B*17 is correlated with reduced viremia and is overrepresented in macaques that control SIVmac239, termed elite controllers (ECs). However, there is so far no mechanistic explanation for this phenomenon. Here we show that the chronic-phase Mamu-B*17-restricted repertoire is focused primarily against just five epitopes-VifHW8, EnvFW9, NefIW9, NefMW9, and env(ARF)cRW9-in both ECs and progressors. Interestingly, Mamu-B*17-restricted CD8-TL do not target epitopes in Gag. CD8-TL escape variation occurred in all targeted Mamu-B*17-restricted epitopes. However, recognition of escape variant peptides was commonly observed in both ECs and progressors. Wild-type sequences in the VifHW8 epitope tended to be conserved in ECs, but there was no evidence that this enhances viral control. In fact, no consistent differences were detected between ECs and progressors in any measured parameter. Our data suggest that the narrowly focused Mamu-B*17-restricted repertoire suppresses virus replication and drives viral evolution. It is, however, insufficient in the majority of individuals that express the "protective" Mamu-B*17 molecule. Most importantly, our data indicate that the important differences between Mamu-B*17-positive ECs and progressors are not readily discernible using standard assays to measure immune responses.
Collapse
Affiliation(s)
- Nicholas J Maness
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight recent advances in our understanding of host genetic determinants of HIV pathogenesis and to provide a theoretical framework for interpreting these studies in the context of our evolving understanding of HIV immunopathogenesis. RECENT FINDINGS The first genome-wide association analysis of host determinants of HIV pathogenesis and other recent studies evaluating the interaction between killer cell immunoglobulin-like receptors and human leukocyte antigen alleles have implicated both adaptive and innate immune responses in the control of HIV replication. Furthermore, genetic variation associated with the expression of CCR5 and its ligand have been strongly associated with both decreased susceptibility to HIV infection and delayed clinical progression, independent of their effects on viral replication, suggesting a potential role for CCR5 inhibitors as immune-based therapies in HIV disease. SUMMARY Host factors associated with the control of HIV replication may help identify important targets for vaccine design, while those associated with delayed clinical progression provide targets for future immune-based therapies against HIV infection.
Collapse
Affiliation(s)
- Peter W Hunt
- San Francisco General Hospital AIDS Division, University of California, San Francisco, California 94110, USA.
| | | |
Collapse
|