1
|
Butic AB, Spencer SA, Shaheen SK, Lukacher AE. Polyomavirus Wakes Up and Chooses Neurovirulence. Viruses 2023; 15:2112. [PMID: 37896889 PMCID: PMC10612099 DOI: 10.3390/v15102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
JC polyomavirus (JCPyV) is a human-specific polyomavirus that establishes a silent lifelong infection in multiple peripheral organs, predominantly those of the urinary tract, of immunocompetent individuals. In immunocompromised settings, however, JCPyV can infiltrate the central nervous system (CNS), where it causes several encephalopathies of high morbidity and mortality. JCPyV-induced progressive multifocal leukoencephalopathy (PML), a devastating demyelinating brain disease, was an AIDS-defining illness before antiretroviral therapy that has "reemerged" as a complication of immunomodulating and chemotherapeutic agents. No effective anti-polyomavirus therapeutics are currently available. How depressed immune status sets the stage for JCPyV resurgence in the urinary tract, how the virus evades pre-existing antiviral antibodies to become viremic, and where/how it enters the CNS are incompletely understood. Addressing these questions requires a tractable animal model of JCPyV CNS infection. Although no animal model can replicate all aspects of any human disease, mouse polyomavirus (MuPyV) in mice and JCPyV in humans share key features of peripheral and CNS infection and antiviral immunity. In this review, we discuss the evidence suggesting how JCPyV migrates from the periphery to the CNS, innate and adaptive immune responses to polyomavirus infection, and how the MuPyV-mouse model provides insights into the pathogenesis of JCPyV CNS disease.
Collapse
Affiliation(s)
| | | | | | - Aron E. Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA; (A.B.B.); (S.A.S.); (S.K.S.)
| |
Collapse
|
2
|
Lauver MD, Lukacher AE. JCPyV VP1 Mutations in Progressive MultifocalLeukoencephalopathy: Altering Tropismor Mediating Immune Evasion? Viruses 2020; 12:v12101156. [PMID: 33053912 PMCID: PMC7600905 DOI: 10.3390/v12101156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Polyomaviruses are ubiquitous human pathogens that cause lifelong, asymptomatic infections in healthy individuals. Although these viruses are restrained by an intact immune system, immunocompromised individuals are at risk for developing severe diseases driven by resurgent viral replication. In particular, loss of immune control over JC polyomavirus can lead to the development of the demyelinating brain disease progressive multifocal leukoencephalopathy (PML). Viral isolates from PML patients frequently carry point mutations in the major capsid protein, VP1, which mediates virion binding to cellular glycan receptors. Because polyomaviruses are non-enveloped, VP1 is also the target of the host's neutralizing antibody response. Thus, VP1 mutations could affect tropism and/or recognition by polyomavirus-specific antibodies. How these mutations predispose susceptible individuals to PML and other JCPyV-associated CNS diseases remains to be fully elucidated. Here, we review the current understanding of polyomavirus capsid mutations and their effects on viral tropism, immune evasion, and virulence.
Collapse
|
3
|
Geoghegan EM, Pastrana DV, Schowalter RM, Ray U, Gao W, Ho M, Pauly GT, Sigano DM, Kaynor C, Cahir-McFarland E, Combaluzier B, Grimm J, Buck CB. Infectious Entry and Neutralization of Pathogenic JC Polyomaviruses. Cell Rep 2018; 21:1169-1179. [PMID: 29091757 DOI: 10.1016/j.celrep.2017.10.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/08/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a lethal brain disease caused by uncontrolled replication of JC polyomavirus (JCV). JCV strains recovered from the brains of PML patients carry mutations that prevent the engagement of sialylated glycans, which are thought to serve as receptors for the infectious entry of wild-type JCV. In this report, we show that non-sialylated glycosaminoglycans (GAGs) can serve as alternative attachment receptors for the infectious entry of both wild-type and PML mutant JCV strains. After GAG-mediated attachment, PML mutant strains engage non-sialylated non-GAG co-receptor glycans, such as asialo-GM1. JCV-neutralizing monoclonal antibodies isolated from patients who recovered from PML appear to block infection by preventing the docking of post-attachment co-receptor glycans in an apical pocket of the JCV major capsid protein. Identification of the GAG-dependent/sialylated glycan-independent alternative entry pathway should facilitate the development of infection inhibitors, including recombinant neutralizing antibodies.
Collapse
Affiliation(s)
- Eileen M Geoghegan
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Rachel M Schowalter
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Upasana Ray
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Wei Gao
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitchell Ho
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gary T Pauly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Dina M Sigano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | | | | | | | - Jan Grimm
- Neurimmune Holding AG, Schlieren-Zurich, Switzerland
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA.
| |
Collapse
|
4
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Alloimmunity But Not Viral Immunity Promotes Allograft Loss in a Mouse Model of Polyomavirus-Associated Allograft Injury. Transplant Direct 2017; 3:e161. [PMID: 28620645 PMCID: PMC5464780 DOI: 10.1097/txd.0000000000000677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/15/2017] [Indexed: 11/30/2022] Open
Abstract
Background The interplay between viral infection and alloimmunity is known to influence the fate of transplanted organs. Clarifying how local virus-associated inflammation/injury and antiviral immunity can alter host alloimmune responses in transplantation remains a critical question. Methods We used a mouse model of polyomavirus (PyV) infection and kidney transplantation to investigate the roles of direct viral pathology, the antiviral immune response, and alloimmunity in the pathogenesis of PyV-associated allograft injury. We have previously shown that an effective primary T cell response is required in PyV-associated graft injury. Results Here we show that the transfer of primed antidonor, but not antiviral, T cells results in PyV-associated allograft injury. In further studies, we use a surrogate minor antigen model (ovalbumin) and show that only antidonor specific T cells and not antiviral specific T cells are sufficient to mediate injury. Lastly, we demonstrate that local but not systemic virus-mediated inflammation and injury within the graft itself are required. Conclusions These data suggest that in this mouse model, the predominant mechanism of allograft injury in PyV-associated injury is due to an augmented alloimmune T cell response driven by virus-induced inflammation/injury within the graft. These studies highlight the important interplay between viral infection and alloimmunity in a model system.
Collapse
|
6
|
Type I Interferons Regulate the Magnitude and Functionality of Mouse Polyomavirus-Specific CD8 T Cells in a Virus Strain-Dependent Manner. J Virol 2016; 90:5187-99. [PMID: 26984726 DOI: 10.1128/jvi.00199-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/10/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Mouse polyomavirus (MPyV) is a ubiquitous persistent natural mouse pathogen. A glutamic acid (E)-to-glycine (G) difference at position 91 of the VP1 capsid protein shifts the profile of tumors induced by MPyV from an epithelial to a mesenchymal cell origin. Here we asked if this tropism difference affects the MPyV-specific CD8 T cell response, which controls MPyV infection and tumorigenesis. Infection by the laboratory MPyV strain RA (VP1-91G) or a strain A2 mutant with an E-to-G substitution at VP1 residue 91 [A2(91G)] generated a markedly smaller virus-specific CD8 T cell response than that induced by A2(VP1-91E) infection. Mutant A2(91G)-infected mice showed a higher frequency of memory precursor (CD127(hi) KLRG1(lo)) CD8 T cells and a higher recall response than those of A2-infected mice. Using T cell receptor (TCR)-transgenic CD8 T cells and immunization with peptide-pulsed dendritic cells, we found that early bystander inflammation associated with A2 infection contributed to recruitment of the larger MPyV-specific CD8 T cell response. Beta interferon (IFN-β) transcripts were induced early during A2 or A2(91G) infections. IFN-β inhibited replication of A2 and A2(91G) in vitro Using mice lacking IFN-αβ receptors (IFNAR(-/-)), we showed that type I IFNs played a role in controlling MPyV replication in vivo but differentially affected the magnitude and functionality of virus-specific CD8 T cells recruited by A2 and A2(91G) viral infections. These data indicate that type I IFNs are involved in protection against MPyV infection and that their effect on the antiviral CD8 T cell response depends on capsid-mediated tropism properties of the MPyV strain. IMPORTANCE Isolates of the human polyomavirus JC virus from patients with the frequently fatal demyelinating brain disease progressive multifocal leukoencephalopathy (PML) carry single amino acid substitutions in the domain of the VP1 capsid protein that binds the sialic acid moiety of glycoprotein/glycolipid receptors on host cells. These VP1 mutations may alter neural cell tropism or enable escape from neutralizing antibodies. Changes in host cell tropism can affect recruitment of virus-specific CD8 T cells. Using mouse polyomavirus, we demonstrate that a single amino acid difference in VP1 known to shift viral tropism profoundly affects the quantity and quality of the anti-polyomavirus CD8 T cell response and its differentiation into memory cells. These findings raise the possibility that CD8 T cell responses to infections by human polyomaviruses may be influenced by VP1 mutations involving domains that engage host cell receptors.
Collapse
|
7
|
Buck CB, Van Doorslaer K, Peretti A, Geoghegan EM, Tisza MJ, An P, Katz JP, Pipas JM, McBride AA, Camus AC, McDermott AJ, Dill JA, Delwart E, Ng TFF, Farkas K, Austin C, Kraberger S, Davison W, Pastrana DV, Varsani A. The Ancient Evolutionary History of Polyomaviruses. PLoS Pathog 2016; 12:e1005574. [PMID: 27093155 PMCID: PMC4836724 DOI: 10.1371/journal.ppat.1005574] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae. Polyomaviruses are a family of DNA-based viruses that are known to infect various terrestrial vertebrates, including humans. In this report, we describe our discovery of highly divergent polyomaviruses associated with various marine fish. Searches of public deep sequencing databases unexpectedly revealed the existence of polyomavirus-like sequences in scorpion and spider datasets. Our analysis of these new sequences suggests that polyomaviruses have slowly co-evolved with individual host animal lineages through an established mechanism known as intrahost divergence. The proposed model is similar to the mechanisms through with other DNA viruses, such as papillomaviruses, are thought to have evolved. Our analysis also suggests that distantly related polyomaviruses sometimes recombine to produce new chimeric lineages. We propose a possible taxonomic scheme that can account for these inferred ancient recombination events.
Collapse
Affiliation(s)
- Christopher B. Buck
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| | | | - Alberto Peretti
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Eileen M. Geoghegan
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Michael J. Tisza
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua P. Katz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alison A. McBride
- Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Alvin C. Camus
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Alexa J. McDermott
- Animal Health Department, Georgia Aquarium, Inc., Atlanta, Georgia, United States of America
| | - Jennifer A. Dill
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Terry F. F. Ng
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Kata Farkas
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Charlotte Austin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - William Davison
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Diana V. Pastrana
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
8
|
Church ME, Dela Cruz FN, Estrada M, Leutenegger CM, Pesavento PA, Woolard KD. Exposure to raccoon polyomavirus (RacPyV) in free-ranging North American raccoons (Procyon lotor). Virology 2016; 489:292-9. [PMID: 26802526 DOI: 10.1016/j.virol.2015.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
Abstract
There is evidence that raccoon polyomavirus is causative for neuroglial brain tumors in the western United States. It is unknown if infection is limited to geographic locales where tumors have been reported or is widespread, like human polyomaviruses. We demonstrate raccoons in western, eastern and midwestern states have been exposed to RacPyV by detection of antibodies to capsid protein, VP1. While raccoons in eastern and midwestern states are seropositive, exposure is lower than in the western states. Additionally, across geographic areas seropositivity is higher in older as compared to younger raccoons, similar to polyomavirus exposure in humans. Serum titers are significantly higher in raccoons with tumors compared to raccoons without. Unlike polyomavirus-associated diseases in humans, we did not detect significant sequence variation between tumor and non-tumor tissue in raccoons with tumors compared to those without tumors. This warrants further investigation into co-morbid diseases or genetic susceptibility studies of the host.
Collapse
Affiliation(s)
- M E Church
- UC Davis, School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA, United States
| | - F N Dela Cruz
- UC Davis, School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA, United States
| | - M Estrada
- IDEXX Laboratories, Inc., West Sacramento, CA, United States
| | - C M Leutenegger
- IDEXX Laboratories, Inc., West Sacramento, CA, United States
| | - P A Pesavento
- UC Davis, School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA, United States
| | - K D Woolard
- UC Davis, School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA, United States
| |
Collapse
|
9
|
You J, O’Hara SD, Velupillai P, Castle S, Levery S, Garcea RL, Benjamin T. Ganglioside and Non-ganglioside Mediated Host Responses to the Mouse Polyomavirus. PLoS Pathog 2015; 11:e1005175. [PMID: 26474471 PMCID: PMC4608836 DOI: 10.1371/journal.ppat.1005175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022] Open
Abstract
Gangliosides serve as receptors for internalization and infection by members of the polyomavirus family. Specificity is determined by recognition of carbohydrate moieties on the ganglioside by the major viral capsid protein VP1. For the mouse polyomavirus (MuPyV), gangliosides with terminal sialic acids in specific linkages are essential. Although many biochemical and cell culture experiments have implicated gangliosides as MuPyV receptions, the role of gangliosides in the MuPyV-infected mouse has not been investigated. Here we report results of studies using ganglioside-deficient mice and derived cell lines. Knockout mice lacking complex gangliosides were completely resistant to the cytolytic and pathogenic effects of the virus. Embryo fibroblasts from these mice were likewise resistant to infection, and supplementation with specific gangliosides restored infectibility. Although lacking receptors for viral infection, cells from ganglioside-deficient mice retained the ability to respond to the virus. Ganglioside-deficient fibroblasts responded rapidly to virus exposure with a transient induction of c-fos as an early manifestation of a mitogenic response. Additionally, splenocytes from ganglioside-deficient mice responded to MuPyV by secretion of IL-12, previously recognized as a key mediator of the innate immune response. Thus, while gangliosides are essential for infection in the animal, gangliosides are not required for mitogenic responses and innate immune responses to the virus. Biological and structural studies have combined to give a detailed understanding of how the mouse polyomavirus binds to sialyloligosaccharides, how polymorphisms in the sialic acid binding pocket of the major virus capsid protein constitute important determinants of pathogenicity, and how gangliosides function as receptors for cell entry and infection by the virus. We used mice with knockouts in defined ganglioside biosynthetic pathways to determine whether gangliosides alone suffice to mediate lethal infection in the intact host and whether non-gangliosides are also recognized by the virus and utilized for important physiological responses. We confirmed the requirement of specific gangliosides for infection and determined that not all gangliosides that bind in vitro serve as receptors in vivo. Results also revealed two physiologically important responses that do not require MuPyV-ganglioside interactions: i) rapid induction of c-fos in fibroblasts as an early step in cell cycle progression on which the virus depends for its own replication, and ii). activation of cytokine secretion by antigen presenting cells as a critical innate immune response to the virus. We infer that these responses are mediated by non-ganglioside receptors bearing sialic acid. These results serve to illustrate the multiplicity of MuPyV receptors and the complexity of virus-cell surface interactions.
Collapse
Affiliation(s)
- John You
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samantha D. O’Hara
- BioFrontiers Institute and the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Palanivel Velupillai
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sherry Castle
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Steven Levery
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Robert L. Garcea
- BioFrontiers Institute and the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| | - Thomas Benjamin
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Structural and Functional Analysis of Murine Polyomavirus Capsid Proteins Establish the Determinants of Ligand Recognition and Pathogenicity. PLoS Pathog 2015; 11:e1005104. [PMID: 26474293 PMCID: PMC4608799 DOI: 10.1371/journal.ppat.1005104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/22/2015] [Indexed: 11/29/2022] Open
Abstract
Murine polyomavirus (MuPyV) causes tumors of various origins in newborn mice and hamsters. Infection is initiated by attachment of the virus to ganglioside receptors at the cell surface. Single amino acid exchanges in the receptor-binding pocket of the major capsid protein VP1 are known to drastically alter tumorigenicity and spread in closely related MuPyV strains. The virus represents a rare example of differential receptor recognition directly influencing viral pathogenicity, although the factors underlying these differences remain unclear. We performed structural and functional analyses of three MuPyV strains with strikingly different pathogenicities: the low-tumorigenicity strain RA, the high-pathogenicity strain PTA, and the rapidly growing, lethal laboratory isolate strain LID. Using ganglioside deficient mouse embryo fibroblasts, we show that addition of specific gangliosides restores infectability for all strains, and we uncover a complex relationship between virus attachment and infection. We identify a new infectious ganglioside receptor that carries an additional linear [α-2,8]-linked sialic acid. Crystal structures of all three strains complexed with representative oligosaccharides from the three main pathways of ganglioside biosynthesis provide the molecular basis of receptor recognition. All strains bind to a range of sialylated glycans featuring the central [α-2,3]-linked sialic acid present in the established receptors GD1a and GT1b, but the presence of additional sialic acids modulates binding. An extra [α-2,8]-linked sialic acid engages a protein pocket that is conserved among the three strains, while another, [α-2,6]-linked branching sialic acid lies near the strain-defining amino acids but can be accommodated by all strains. By comparing electron density of the oligosaccharides within the binding pockets at various concentrations, we show that the [α-2,8]-linked sialic acid increases the strength of binding. Moreover, the amino acid exchanges have subtle effects on their affinity for the validated receptor GD1a. Our results indicate that both receptor specificity and affinity influence MuPyV pathogenesis. Viruses are obligate intracellular pathogens, and all of them share one crucial step in their life cycle—the attachment to their host cell via cellular receptors, which are usually proteins or carbohydrates. This step is decisive for the selection of target cells and virus entry. In this study, we investigated murine polyomavirus (MuPyV), which attaches to host gangliosides with its major capsid protein, VP1. We have solved the crystal structures of VP1 in complex with previously known interaction partners as well as with the ganglioside GT1a, which we have identified as a novel functional receptor for MuPyV. Earlier studies have shown that different strains with singular amino acid exchanges in the receptor binding pocket of VP1 display altered pathogenicity and viral spread. Our investigations show that, while these exchanges do not abolish binding or significantly alter interaction modes to our investigated carbohydrates, they have subtle effects on glycan affinity. The combination of receptor specificity, abundance, and affinity reveals a much more intricate regulation of pathogenicity than previously believed. Our results exemplify how delicate changes to the receptor binding pocket of MuPyV VP1 are able to drastically alter virus behavior. This system provides a unique example to study how the first step in the life cycle of a virus can dictate its biological properties.
Collapse
|
11
|
Frost EL, Lukacher AE. The importance of mouse models to define immunovirologic determinants of progressive multifocal leukoencephalopathy. Front Immunol 2015; 5:646. [PMID: 25601860 PMCID: PMC4283601 DOI: 10.3389/fimmu.2014.00646] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/03/2014] [Indexed: 12/02/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a severely debilitating and often fatal demyelinating disease of the central nervous system (CNS) in immunosuppressed individuals caused by JC polyomavirus (JCV), a ubiquitous human pathogen. Demyelination results from lytically infected oligodendrocytes, whose clearance is impaired in the setting of depressed JCV-specific T cell-mediated CNS surveillance. Although mutations in the viral capsid and genomic rearrangements in the viral non-coding region appear to set the stage for PML in the immunosuppressed population, mechanisms of demyelination and CNS antiviral immunity are poorly understood in large part due to absence of a tractable animal model that mimics PML neuropathology in humans. Early studies using mouse polyomavirus (MPyV) in T cell-deficient mice demonstrated productive viral replication in the CNS and demyelination; however, these findings were confounded by spinal cord compression by virus-induced vertebral bone tumors. Here, we review current literature regarding animal models of PML, focusing on current trends in antiviral T cell immunity in non-lymphoid organs, including the CNS. Advances in our understanding of polyomavirus lifecycles, viral and host determinants of persistent infection, and T cell-mediated immunity to viral infections in the CNS warrant revisiting polyomavirus CNS infection in the mouse as a bona fide animal model for JCV-PML.
Collapse
Affiliation(s)
- Elizabeth L Frost
- Immunology and Molecular Pathogenesis Graduate Program, Emory University , Atlanta, GA , USA
| | - Aron E Lukacher
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine , Hershey, PA , USA
| |
Collapse
|
12
|
O'Hara SD, Stehle T, Garcea R. Glycan receptors of the Polyomaviridae: structure, function, and pathogenesis. Curr Opin Virol 2014; 7:73-8. [PMID: 24983512 DOI: 10.1016/j.coviro.2014.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/27/2014] [Indexed: 11/16/2022]
Abstract
Multiple glycans have been identified as potential cell surface binding motifs for polyomaviruses (PyVs) using both crystallographic structural determinations and in vitro binding assays. However, binding alone does not necessarily imply that a glycan is a functional receptor, and confirmation that specific glycans are important for infection has proved challenging. In vivo analysis of murine polyomavirus (MPyV) infection has shown that subtle alterations in PyV-glycan interactions alone can result in dramatic changes in pathogenicity, implying that similar effects will be found for other PyVs. Our discussion will review the assays used for determining virus-glycan binding, and how these relate to known PyV tropism and pathogenesis.
Collapse
Affiliation(s)
- Samantha D O'Hara
- Department of Molecular, Cellular, Developmental Biology, University of Colorado-Boulder, 347 UCB, Boulder, CO 80309, United States; BioFrontiers Institute, University of Colorado-Boulder, 596 UCB, Boulder, CO 80309, United States
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Robert Garcea
- Department of Molecular, Cellular, Developmental Biology, University of Colorado-Boulder, 347 UCB, Boulder, CO 80309, United States; BioFrontiers Institute, University of Colorado-Boulder, 596 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
13
|
Production of a natural antibody to the mouse polyoma virus is a multigenic trait. G3-GENES GENOMES GENETICS 2012; 2:353-5. [PMID: 22413089 PMCID: PMC3291505 DOI: 10.1534/g3.111.001701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/10/2012] [Indexed: 11/21/2022]
Abstract
MA/MyJ mice express a natural antibody to the highly oncogenic polyoma virus. C57BR/cdJ mice lack this antibody but mount an adaptive T-cell response to the virus. Analysis of F2 progeny of a cross between these strains reveals a pattern of inheritance of expression of the natural antibody involving two genes in an epistatic relationship.
Collapse
|
14
|
Velupillai P, Sung CK, Tian Y, Dahl J, Carroll J, Bronson R, Benjamin T. Polyoma virus-induced osteosarcomas in inbred strains of mice: host determinants of metastasis. PLoS Pathog 2010; 6:e1000733. [PMID: 20107604 PMCID: PMC2809769 DOI: 10.1371/journal.ppat.1000733] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 12/18/2009] [Indexed: 11/18/2022] Open
Abstract
The mouse polyoma virus induces a broad array of solid tumors in mice of many inbred strains. In most strains tumors grow rapidly but fail to metastasize. An exception has been found in the Czech-II/Ei mouse in which bone tumors metastasize regularly to the lung. These tumors resemble human osteosarcoma in their propensity for pulmonary metastasis. Cell lines established from these metastatic tumors have been compared with ones from non-metastatic osteosarcomas arising in C3H/BiDa mice. Osteopontin, a chemokine implicated in migration and metastasis, is known to be transcriptionally induced by the viral middle T antigen. Czech-II/Ei and C3H/BiDa tumor cells expressed middle T and secreted osteopontin at comparable levels as the major chemoattractant. The tumor cell lines migrated equally well in response to recombinant osteopontin as the sole attractant. An important difference emerged in assays for invasion in which tumor cells from Czech-II/Ei mice were able to invade across an extracellular matrix barrier while those from C3H/BiDa mice were unable to invade. Invasive behavior was linked to elevated levels of the metalloproteinase MMP-2 and of the transcription factor NFAT. Inhibition of either MMP-2 or NFAT inhibited invasion by Czech-II/Ei osteosarcoma cells. The metastatic phenotype is dominant in F1 mice. Osteosarcoma cell lines from F1 mice expressed intermediate levels of MMP-2 and NFAT and were invasive. Osteosarcomas in Czech-II/Ei mice retain functional p53. This virus-host model of metastasis differs from engineered models targeting p53 or pRb and provides a system for investigating the genetic and molecular basis of bone tumor metastasis in the absence of p53 loss. The oncogenic mouse polyoma virus and its mutants have previously been used to investigate viral determinants of tumor induction using a standard inbred mouse strain as a common host. Here we use wild type virus to investigate the role of the host genetic background, focusing on two host strains that differ with respect to bone tumor metastasis. Comparing osteosarcoma cell lines from these mice, we have identified a molecular pathway that underlies invasive behavior in vitro and correlates with metastasis in vivo. The pathway involves secretion of the metalloproteinase MMP-2 under partial control of NFAT as a transcriptional regulator. This virus-host system reflects an important feature of human osteosarcoma with respect to pulmonary metastasis. Based on naturally occurring differences among inbred mice, the model differs from genetically engineered models targeting p53 or pRb as known risk factors in the human disease. Here, metastatic osteosarcomas retain functional p53. As noted by others, the frequency of p53 loss in patients with localized versus metastatic disease is the same, suggesting that events beyond p53 loss are important in metastasis. While the downstream effectors of metastasis in the genetically engineered models remain unknown, evidence presented here implicates upregulation of an NFAT → MMP-2 pathway in the development of metastatic osteosarcoma.
Collapse
Affiliation(s)
- Palanivel Velupillai
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chang Kyoo Sung
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yu Tian
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean Dahl
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John Carroll
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roderick Bronson
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas Benjamin
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Swanson PA, Lukacher AE, Szomolanyi-Tsuda E. Immunity to polyomavirus infection: the polyomavirus-mouse model. Semin Cancer Biol 2009; 19:244-51. [PMID: 19505652 PMCID: PMC2694952 DOI: 10.1016/j.semcancer.2009.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/01/2009] [Accepted: 02/06/2009] [Indexed: 11/28/2022]
Abstract
A ubiquitous clinically silent murine pathogen, polyomavirus has enjoyed long-term co-evolution with the mouse, a highly tractable and genetically and immunologically informative small animal model. Thus, polyomavirus has provided a valuable experimental construct to decipher the host immune mechanisms that come into play to control systemic low-level persistent viral infections. Impaired immunosurveillance for infected cells puts the murine host at risk both to injury resulting from excessive direct virus cytolysis and development of virus-induced tumors. In this review, we present our current understanding of the multifaceted immune response invoked by the mouse to maintain détente with this potentially deleterious persistent natural pathogen, and discuss implications of these studies for therapeutic interventions for human polyomavirus infection.
Collapse
Affiliation(s)
- Phillip A. Swanson
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Aron E. Lukacher
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eva Szomolanyi-Tsuda
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
16
|
Sullivan CS, Sung CK, Pack CD, Grundhoff A, Lukacher AE, Benjamin TL, Ganem D. Murine Polyomavirus encodes a microRNA that cleaves early RNA transcripts but is not essential for experimental infection. Virology 2009; 387:157-67. [PMID: 19272626 PMCID: PMC2722155 DOI: 10.1016/j.virol.2009.02.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/10/2008] [Accepted: 02/06/2009] [Indexed: 12/24/2022]
Abstract
MicroRNAs are small regulatory RNAs that post-transcriptionally regulate gene expression and can be encoded by viral as well as cellular genomes. The functions of most viral miRNAs are unknown and few have been studied in an in vivo context. Here we show that the murine polyomavirus (PyV) encodes a precursor microRNA that is processed into two mature microRNAs, both of which are active at directing the cleavage of the early PyV mRNAs. Furthermore, we identify a deletion mutant of polyomavirus that is defective in encoding the microRNAs. This mutant replicates normally and transforms cultured cells with efficiencies comparable to wildtype PyV. The miRNA mutant is competent to establish a transient infection of mice following parenteral inoculation, and is cleared post infection at approximately the same rate as the wildtype virus. In addition, under these laboratory conditions, we observe no differences in anti-viral CD8 T cell responses. These results indicate that PyV miRNA expression is not essential for infection of cultured cells or experimentally inoculated mice, and raise the possibility that its role in natural infection might involve aspects of acquisition or spread that are not recapitulated by experimental inoculation.
Collapse
Affiliation(s)
- Christopher S Sullivan
- The University of Texas at Austin, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, 1 University Station A5000, Austin TX 78712-0162, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Misra V, Dumonceaux T, Dubois J, Willis C, Nadin-Davis S, Severini A, Wandeler A, Lindsay R, Artsob H. Detection of polyoma and corona viruses in bats of Canada. J Gen Virol 2009; 90:2015-2022. [PMID: 19357225 DOI: 10.1099/vir.0.010694-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Several instances of emerging diseases in humans appear to be caused by the spillover of viruses endemic to bats, either directly or through other animal intermediaries. The objective of this study was to detect, identify and characterize viruses in bats in the province of Manitoba and other regions of Canada. Bats were sampled from three sources: live-trapped Myotis lucifugus from Manitoba, rabies-negative Eptesicus fuscus, M. lucifugus, M. yumanensis, M. septentrionalis, M. californicus, M. evotis, Lasionycteris (L.) noctivagans and Lasiurus (Las.) cinereus, provided by the Centre of Expertise for Rabies of the Canadian Food Inspection Agency (CFIA), and L. noctivagans, Las. cinereus and Las. borealis collected from a wind farm in Manitoba. We attempted to isolate viruses from fresh tissue samples taken from trapped bats in cultured cells of bat, primate, rodent, porcine, ovine and avian origin. We also screened bat tissues by PCR using primers designed to amplify nucleic acids from members of certain families of viruses. We detected RNA of a group 1 coronavirus from M. lucifugus (3 of 31 animals) and DNA from an as-yet undescribed polyomavirus from female M. lucifugus (4 of 31 animals) and M. californicus (pooled tissues from two females).
Collapse
Affiliation(s)
- Vikram Misra
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, 52 Campus Road, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Timothy Dumonceaux
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Disease, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Jack Dubois
- Manitoba Conservation, Wildlife and Ecosystem Protection Branch, Box 24, 200 Saulteaux Crescent, Winnipeg, MB R3J 3W3, Canada
| | - Craig Willis
- Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Susan Nadin-Davis
- Centre of Expertise for Rabies, Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - Alberto Severini
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Disease, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Alex Wandeler
- Centre of Expertise for Rabies, Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - Robbin Lindsay
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Disease, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Harvey Artsob
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Disease, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|