1
|
Hawkins LM, Wang C, Chaput D, Batra M, Marsilia C, Awshah D, Suvorova ES. The Crk4-Cyc4 complex regulates G 2/M transition in Toxoplasma gondii. EMBO J 2024; 43:2094-2126. [PMID: 38600241 PMCID: PMC11148040 DOI: 10.1038/s44318-024-00095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
A versatile division of apicomplexan parasites and a dearth of conserved regulators have hindered the progress of apicomplexan cell cycle studies. While most apicomplexans divide in a multinuclear fashion, Toxoplasma gondii tachyzoites divide in the traditional binary mode. We previously identified five Toxoplasma CDK-related kinases (Crk). Here, we investigated TgCrk4 and its cyclin partner TgCyc4. We demonstrated that TgCrk4 regulates conventional G2 phase processes, such as repression of chromosome rereplication and centrosome reduplication, and acts upstream of the spindle assembly checkpoint. The spatial TgCyc4 dynamics supported the TgCrk4-TgCyc4 complex role in the coordination of chromosome and centrosome cycles. We also identified a dominant TgCrk4-TgCyc4 complex interactor, TgiRD1 protein, related to DNA replication licensing factor CDT1 but played no role in licensing DNA replication in the G1 phase. Our results showed that TgiRD1 also plays a role in controlling chromosome and centrosome reduplication. Global phosphoproteome analyses identified TgCrk4 substrates, including TgORC4, TgCdc20, TgGCP2, and TgPP2ACA. Importantly, the phylogenetic and structural studies suggest the Crk4-Cyc4 complex is limited to a minor group of the binary dividing apicomplexans.
Collapse
Affiliation(s)
- Lauren M Hawkins
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Chengqi Wang
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, FL, 33612, USA
| | - Mrinalini Batra
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Clem Marsilia
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Danya Awshah
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Elena S Suvorova
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
2
|
Jimenéz-Ruiz E, Li W, Meissner M. Where is the EXIT? Phenotypic screens for new egress factors in apicomplexan parasites. Mol Microbiol 2024; 121:359-367. [PMID: 37740453 DOI: 10.1111/mmi.15166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Abstract
Apicomplexans, such as Plasmodium and Toxoplasma are obligate intracellular parasites that invade, replicate and finally EXIT their host cell. During replication within a parasitophorous vacuole (PV), the parasites establish an extensive F-actin-containing network that connects individual parasites and is required for material exchange, recycling and the final steps of daughter cell assembly. After multiple rounds of replication, the parasites exit the host cell involving multiple signalling cascades, disassembly of the network, secretion of microneme proteins and activation of the acto-myosin motor. Blocking the host cell EXIT process leads to the formation of large PVs, making the screening for genes involved in exiting the cell relatively straightforward. Given that apicomplexans are highly diverse from other eukaryotes, approximately 30% of all genes are annotated as hypothetical, some apicomplexan-specific factors are likely to be critical during EXIT. This motivated several labs to design and perform forward genetic and phenotypic screens using various approaches, such as random insertion mutagenesis, temperature-sensitive mutants and, more recently, CRISPR/Cas9-mediated targeted editing and conditional mutagenesis. Here we will provide an overview of the technological developments over recent years and the most successful stories that led to the identification of new critical factors in Toxoplasma gondii.
Collapse
Affiliation(s)
- Elena Jimenéz-Ruiz
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Wei Li
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| |
Collapse
|
3
|
Hanna JC, Corpas-Lopez V, Seizova S, Colon BL, Bacchetti R, Hall GMJ, Sands EM, Robinson L, Baragaña B, Wyllie S, Pawlowic MC. Mode of action studies confirm on-target engagement of lysyl-tRNA synthetase inhibitor and lead to new selection marker for Cryptosporidium. Front Cell Infect Microbiol 2023; 13:1236814. [PMID: 37600947 PMCID: PMC10436570 DOI: 10.3389/fcimb.2023.1236814] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Cryptosporidiosis is a leading cause of diarrheal-associated morbidity and mortality, predominantly affecting children under 5 years old in low-and-middle-income countries. There is no effective treatment and no vaccine. New therapeutics are emerging from drug discovery efforts. It is critical that mode of action studies are performed alongside drug discovery to ensure the best clinical outcomes. Unfortunately, technology to identify and validate drug targets for Cryptosporidium is severely lacking. Methods We used C. parvum lysyl-tRNA synthetase (CpKRS) and DDD01510706 as a target-compound pair to develop both chemical and genetic tools for mode of action studies for Cryptosporidium. We adapted thermal proteome profiling (TPP) for Cryptosporidium, an unbiased approach for target identification. Results Using TPP we identified the molecular target of DDD01510706 and confirm that it is CpKRS. Genetic tools confirm that CpKRS is expressed throughout the life cycle and that this target is essential for parasite survival. Parasites genetically modified to over-express CpKRS or parasites with a mutation at the compound-binding site are resistant to treatment with DDD01510706. We leveraged these mutations to generate a second drug selection marker for genetic modification of Cryptosporidium, KRSR. This second selection marker is interchangeable with the original selection marker, NeoR, and expands the range of reverse genetic approaches available to study parasite biology. Due to the sexual nature of the Cryptosporidium life cycle, parental strains containing different drug selection markers can be crossed in vivo. Discussion Selection with both drug markers produces highly efficient genetic crosses (>99% hybrid progeny), paving the way for forward genetics approaches in Cryptosporidium.
Collapse
Affiliation(s)
- Jack C. Hanna
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Victor Corpas-Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Simona Seizova
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ross Bacchetti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Grant M. J. Hall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Emma M. Sands
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lee Robinson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mattie C. Pawlowic
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
4
|
Zhang L, Zhang H, Du S, Song X, Hu D. In Vitro Transcriptional Response of Eimeria tenella to Toltrazuril Reveals That Oxidative Stress and Autophagy Contribute to Its Anticoccidial Effect. Int J Mol Sci 2023; 24:ijms24098370. [PMID: 37176073 PMCID: PMC10179680 DOI: 10.3390/ijms24098370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/16/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Intestinal coccidiosis is a common parasitic disease in livestock, caused by the infection of Eimeria and Cystoisospora parasites, which results in great economic losses to animal husbandry. Triazine compounds, such as toltrazuril and diclazuril, are widely used in the treatment and chemoprophylaxis of coccidiosis. Unfortunately, widespread drug resistance has compromised their effectiveness. Most studies have focused on prophylaxis and therapeutics with toltrazuril in flocks, while a comprehensive understanding of how toltrazuril treatment alters the transcriptome of E. tenella remains unknown. In this study, merozoites of E. tenella were treated in vitro with 0.5 μg/mL toltrazuril for 0, 1, 2 and 4 h, respectively. The gene transcription profiles were then compared by high-throughput sequencing. Our results showed that protein hydrolysis genes were significantly upregulated after drug treatment, while cell cycle-related genes were significantly downregulated, suggesting that toltrazuril may affect parasite division. The expression of redox-related genes was upregulated and elevated levels of ROS and autophagosomes were detected in the parasite after toltrazuril treatment, suggesting that toltrazuril may cause oxidative stress to parasite cells and lead to its autophagy. Our results provide basic knowledge of the response of Eimeria genes to toltrazuril and further analysis of the identified transcriptional changes can provide useful information for a better understanding of the mechanism of action of toltrazuril against Eimeria.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hongtao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Shiqi Du
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
5
|
Toxoplasma Shelph, a Phosphatase Located in the Parasite Endoplasmic Reticulum, Is Required for Parasite Virulence. mSphere 2022; 7:e0035022. [PMID: 36326242 PMCID: PMC9769683 DOI: 10.1128/msphere.00350-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is a single-celled parasitic eukaryote that evolved to successfully propagate in any nucleated cell. As with any other eukaryote, its life cycle is regulated by signaling pathways controlled by kinases and phosphatases. T. gondii encodes an atypical bacterial-like phosphatase absent from mammalian genomes, named Shelph, after its first identification in the psychrophilic bacterium Schewanella sp. Here, we demonstrate that Toxoplasma Shelph is an active phosphatase localized in the parasite endoplasmic reticulum. The phenotyping of a shelph knockout (KO) line showed a minor impairment in invasion on human fibroblasts, while the other steps of the parasite lytic cycle were not affected. In contrast with Plasmodium ortholog Shelph1, this invasion deficiency was not correlated with any default in the biogenesis of secretory organelles. However, Shelph-KO parasites displayed a much-pronounced defect in virulence in vivo. These phenotypes could be rescued by genetic complementation, thus supporting an important function for Shelph in the context of a natural infection. IMPORTANCE Toxoplasma gondii belongs to the Apicomplexa phylum, which comprises more than 5,000 species, among which is Plasmodium falciparum, the notorious agent of human malaria. Intriguingly, the Apicomplexa genomes encode at least one phosphatase closely related to the bacterial Schewanella phosphatase, or Shelph. To better understand the importance of these atypical bacterial enzymes in eukaryotic parasites, we undertook the functional characterization of T. gondii Shelph. Our results uncovered its subcellular localization and its enzymatic activity, revealed its subtle involvement during the tachyzoite invasion step of the lytic cycle, and more importantly, highlighted a critical requirement of this phosphatase for parasite propagation in mice. Overall, this study revealed an unexpected role for T. gondii Shelph in the maintenance of parasite virulence in vivo.
Collapse
|
6
|
Smith TA, Lopez-Perez GS, Herneisen AL, Shortt E, Lourido S. Screening the Toxoplasma kinome with high-throughput tagging identifies a regulator of invasion and egress. Nat Microbiol 2022; 7:868-881. [PMID: 35484233 PMCID: PMC9167752 DOI: 10.1038/s41564-022-01104-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Protein kinases regulate fundamental aspects of eukaryotic cell biology, making them attractive chemotherapeutic targets in parasites like Plasmodium spp. and Toxoplasma gondii. To systematically examine the parasite kinome, we developed a high-throughput tagging (HiT) strategy to endogenously label protein kinases with an auxin-inducible degron and fluorophore. Hundreds of tagging vectors were assembled from synthetic sequences in a single reaction and used to generate pools of mutants to determine localization and function. Examining 1,160 arrayed clones, we assigned 40 protein localizations and associated 15 kinases with distinct defects. The fitness of tagged alleles was also measured by pooled screening, distinguishing delayed from acute phenotypes. A previously unstudied kinase, associated with a delayed phenotype, was shown to be a regulator of invasion and egress. We named the kinase Store Potentiating/Activating Regulatory Kinase (SPARK), based on its impact on intracellular Ca2+ stores. Despite homology to mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1), SPARK lacks a lipid-binding domain, suggesting a rewiring of the pathway in parasites. HiT screening extends genome-wide approaches into complex cellular phenotypes, providing a scalable and versatile platform to dissect parasite biology.
Collapse
Affiliation(s)
- Tyler A Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Hawkins LM, Naumov AV, Batra M, Wang C, Chaput D, Suvorova ES. Novel CRK-Cyclin Complex Controls Spindle Assembly Checkpoint in Toxoplasma Endodyogeny. mBio 2021; 13:e0356121. [PMID: 35130726 PMCID: PMC8822342 DOI: 10.1128/mbio.03561-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 12/21/2022] Open
Abstract
Opportunistic parasites of the Apicomplexa phylum use a variety of division modes built on two types of cell cycles that incorporate two distinctive mechanisms of mitosis: uncoupled from and coupled to parasite budding. Parasites have evolved novel factors to regulate such unique replication mechanisms that are poorly understood. Here, we have combined genetics, quantitative fluorescence microscopy, and global proteomics approaches to examine endodyogeny in Toxoplasma gondii dividing by mitosis coupled to cytokinesis. In the current study, we focus on the steps controlled by the recently described atypical Cdk-related kinase T. gondii Crk6 (TgCrk6). While inspecting protein complexes, we found that this previously orphaned TgCrk6 kinase interacts with a parasite-specific atypical cyclin, TgCyc1. We built conditional expression models and examined primary cell cycle defects caused by the lack of TgCrk6 or TgCyc1. Quantitative microscopy assays revealed that tachyzoites deficient in either TgCrk6 or the cyclin partner TgCyc1 exhibit identical mitotic defects, suggesting cooperative action of the complex components. Further examination of the mitotic structures indicated that the TgCrk6/TgCyc1 complex regulates metaphase. This novel finding confirms a functional spindle assembly checkpoint (SAC) in T. gondii. Measuring global changes in protein expression and phosphorylation, we found evidence that canonical activities of the Toxoplasma SAC are intertwined with parasite-specific tasks. Analysis of phosphorylation motifs suggests that Toxoplasma metaphase is regulated by CDK, mitogen-activated kinase (MAPK), and Aurora kinases, while the TgCrk6/TgCyc1 complex specifically controls the centromere-associated network. IMPORTANCE The rate of Toxoplasma tachyzoite division directly correlates with the severity of the disease, toxoplasmosis, which affects humans and animals. Thus, a better understanding of the tachyzoite cell cycle would offer much-needed efficient tools to control the acute stage of infection. Although tachyzoites divide by binary division, the cell cycle architecture and regulation differ significantly from the conventional binary fission of their host cells. Unlike the unidirectional conventional cell cycle, the Toxoplasma budding cycle is braided and is regulated by multiple essential Cdk-related kinases (Crks) that emerged in the place of missing conventional cell cycle regulators. How these novel Crks control apicomplexan cell cycles is largely unknown. Here, we have discovered a novel parasite-specific complex, TgCrk6/TgCyc1, that orchestrates a major mitotic event, the spindle assembly checkpoint. We demonstrated that tachyzoites incorporated parasite-specific tasks in the canonical checkpoint functions.
Collapse
Affiliation(s)
- Lauren M. Hawkins
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anatoli V. Naumov
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mrinalini Batra
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Changqi Wang
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Elena S. Suvorova
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
8
|
TgAP2IX-5 is a key transcriptional regulator of the asexual cell cycle division in Toxoplasma gondii. Nat Commun 2021; 12:116. [PMID: 33414462 PMCID: PMC7791101 DOI: 10.1038/s41467-020-20216-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/18/2020] [Indexed: 01/22/2023] Open
Abstract
Apicomplexan parasites have evolved efficient and distinctive strategies for intracellular replication where the timing of emergence of the daughter cells (budding) is a decisive element. However, the molecular mechanisms that provide the proper timing of parasite budding remain unknown. Using Toxoplasma gondii as a model Apicomplexan, we identified a master regulator that controls the timing of the budding process. We show that an ApiAP2 transcription factor, TgAP2IX-5, controls cell cycle events downstream of centrosome duplication. TgAP2IX-5 binds to the promoter of hundreds of genes and controls the activation of the budding-specific cell cycle expression program. TgAP2IX-5 regulates the expression of specific transcription factors that are necessary for the completion of the budding cycle. Moreover, TgAP2IX-5 acts as a limiting factor that ensures that asexual proliferation continues by promoting the inhibition of the differentiation pathway. Therefore, TgAP2IX-5 is a master regulator that controls both cell cycle and developmental pathways. The control of the proper timing of emergence of apicomplexan parasite daughter cells during replication is crucial for their proliferation. Here, Khelifa et al. identify a key transcriptional regulator in the model Apicomplexa Toxoplasma gondii, which regulates the expression of transcription factors necessary for completion of the budding cycle.
Collapse
|
9
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Semenovskaya K, Lévêque MF, Berry L, Bordat Y, Dubremetz JF, Lebrun M, Besteiro S. TgZFP2 is a novel zinc finger protein involved in coordinating mitosis and budding in Toxoplasma. Cell Microbiol 2019; 22:e13120. [PMID: 31628778 DOI: 10.1111/cmi.13120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Zinc finger proteins (ZFPs) are one of the most abundant groups of proteins with a wide range of molecular functions. We have characterised a Toxoplasma protein that we named TgZFP2, as it bears a zinc finger domain conserved in eukaryotes. However, this protein has little homology outside this region and contains no other conserved domain that could hint for a particular function. We thus investigated TgZFP2 function by generating a conditional mutant. We showed that depletion of TgZFP2 leads to a drastic arrest in the parasite cell cycle, and complementation assays demonstrated the zinc finger domain is essential for TgZFP2 function. More precisely, whereas replication of the nuclear material is initially essentially unaltered, daughter cell budding is seriously impaired: to a large extent newly formed buds fail to incorporate nuclear material. TgZFP2 is found at the basal complex in extracellular parasites and after invasion, but as the parasites progress into cell division, it relocalises to cytoplasmic punctate structures and, strikingly, accumulates in the pericentrosomal area at the onset of daughter cell elongation. Centrosomes have emerged as major coordinators of the budding and nuclear cycles in Toxoplasma, and our study identifies a novel and important component of this machinery.
Collapse
Affiliation(s)
- Ksenia Semenovskaya
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Maude F Lévêque
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France.,MiVEGEC, Université de Montpellier, CNRS, IRD, CHU de Montpellier, Montpellier, France
| | - Laurence Berry
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Yann Bordat
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Jean-François Dubremetz
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Sébastien Besteiro
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
11
|
Radke JB, Worth D, Hong D, Huang S, Sullivan WJ, Wilson EH, White MW. Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis. PLoS Pathog 2018; 14:e1007035. [PMID: 29718996 PMCID: PMC5951591 DOI: 10.1371/journal.ppat.1007035] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/14/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host. The Toxoplasma biology that underlies the establishment of a chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite-tissue cyst stage. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control formation of the tissue cyst is still poorly understood. A fundamental feature of tissue cyst formation is the expression of bradyzoite-specific genes. Here we show the transcription factor AP2IV-4 directly silences bradyzoite mRNA and protein expression in the acute tachyzoite stage demonstrating that developmental control of tissue cyst formation is as much about when not to express bradyzoite genes as it is about when to activate them. Losing the suppression of bradyzoite gene expression in the acute tachyzoite stage caused by deleting AP2IV-4 blocked the establishment of chronic disease in healthy animals via increased protective immunity suggesting a possible strategy for preventing chronic Toxoplasma infections.
Collapse
Affiliation(s)
- Joshua B. Radke
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - David Hong
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Sherri Huang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - William J. Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - Michael W. White
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
12
|
Varberg JM, Coppens I, Arrizabalaga G, Gaji RY. TgTKL1 Is a Unique Plant-Like Nuclear Kinase That Plays an Essential Role in Acute Toxoplasmosis. mBio 2018; 9:e00301-18. [PMID: 29559568 PMCID: PMC5874906 DOI: 10.1128/mbio.00301-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 11/25/2022] Open
Abstract
In the protozoan parasite Toxoplasma gondii, protein kinases have been shown to play key roles in regulating parasite motility, invasion, replication, egress, and survival within the host. The tyrosine kinase-like (TKL) family of proteins are an unexplored set of kinases in Toxoplasma Of the eight annotated TKLs in the Toxoplasma genome, a recent genome-wide loss-of-function screen showed that six are important for tachyzoite fitness. By utilizing an endogenous tagging approach, we showed that these six T. gondii TKLs (TgTKLs) localize to various subcellular compartments, including the nucleus, the cytosol, the inner membrane complex, and the Golgi apparatus. To gain insight into the function of TKLs in Toxoplasma, we first characterized TgTKL1, which contains the plant-like enhanced disease resistance 1 (EDR1) domain and localizes to the nucleus. TgTKL1 knockout parasites displayed significant defects in progression through the lytic cycle; we show that the defects were due to specific impairment of host cell attachment. Transcriptomics analysis identified over 200 genes of diverse functions that were differentially expressed in TgTKL1 knockout parasites. Importantly, numerous genes implicated in host cell attachment and invasion were among those most significantly downregulated, resulting in defects in microneme secretion and processing. Significantly, all of the mice inoculated intraperitoneally with TgTKL1 knockout parasites survived the infection, suggesting that TgTKL1 plays an essential role in acute toxoplasmosis. Together, these findings suggest that TgTKL1 mediates a signaling pathway that regulates the expression of multiple factors required for parasite virulence, underscoring the potential of this kinase as a novel therapeutic target.IMPORTANCEToxoplasma gondii is a protozoan parasite that can cause chronic and life-threatening disease in mammals; new drugs are greatly needed for treatment. One attractive group of drug targets consists of parasite kinases containing unique features that distinguish them from host proteins. In this report, we identify and characterize a previously unstudied kinase, TgTKL1, that localizes to the nucleus and contains a domain architecture unique to plants and protozoa. By disrupting TgTKL1, we showed that this kinase is required for the proper expression of hundreds of genes, including many that are required for the parasite to gain entry into the host cell. Specifically, parasites lacking TgTKL1 have defects in host cell attachment, resulting in impaired growth in vitro and a complete loss of virulence in mice. This report provides insight into the importance of the parasite tyrosine kinase-like kinases and establishes TgTKL1 as a novel and essential virulence factor in Toxoplasma.
Collapse
Affiliation(s)
- Joseph M Varberg
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rajshekhar Y Gaji
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Courjol F, Gissot M. A coiled-coil protein is required for coordination of karyokinesis and cytokinesis in Toxoplasma gondii. Cell Microbiol 2018; 20:e12832. [PMID: 29447426 DOI: 10.1111/cmi.12832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Toxoplasma gondii is a unicellular eukaryotic pathogen that belongs to the Apicomplexa phylum, which encompasses some of the deadliest pathogens of medical and veterinary importance. The centrosome is key to the organisation and coordination of the cell cycle and division of apicomplexan parasites. The T. gondii centrosome possesses a particular bipartite structure (outer and inner cores). One of the main roles of the centrosome is to ensure proper coordination of karyokinesis. However, how these 2 events are coordinated is still unknown in T. gondii, for which the centrosome components are poorly described. To gain more insights into the biology and the composition of the T. gondii centrosome, we characterised a protein that resides at the interface of the outer and inner core centrosomes. TgCep530 is a large coiled-coil protein with an essential role in the survival of the parasite. Depletion of this protein leads to the accumulation of parasites lacking nuclei and disruption of the normal cell cycle. Lack of TgCep530 results in a discoordination between the nuclear cycle and the budding cycle that yields fully formed parasites without nuclei. TgCep530 has a crucial role in the coordination of karyokinesis and cytokinesis.
Collapse
Affiliation(s)
- Flavie Courjol
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Univ. Lille, Lille, France
| | - Mathieu Gissot
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Univ. Lille, Lille, France
| |
Collapse
|
14
|
Abstract
Apicomplexan parasites, such as Toxoplasma gondii, cause extensive morbidity and mortality in humans and livestock, highlighting the need for a deeper understanding of their molecular biology. Although techniques for the generation of targeted gene disruptions have long been available for apicomplexans, such methods are not readily scalable to the entire genome. We recently used CRISPR-Cas9 to disrupt all nuclear protein-coding genes in T. gondii using a pooled format. The method relies on transfection of a guide RNA library into parasites constitutively expressing Cas9. Here, we present the complete workflow of such a screen, including preparation of the guide RNA library, growth and testing of the recipient strain, generation of the mutant population, culture conditions for the screen, preparation of genomic DNA libraries, next-generation sequencing of the guide RNA loci, and analysis to detect fitness-conferring genes. This method can be deployed to study how culture conditions affect the repertoire of genes needed by parasites, which will enable studies of their metabolic needs, host specificity, and drug-resistance mechanisms. In addition, by manipulating the background in which the screen is performed, researchers will be able to investigate genetic interactions, which may help uncover redundancy or epistasis in the parasite genome. Using this method, a genome-wide screen and its analysis can be completed in 3 weeks, after ∼1 month of preparation to generate the library and grow the cells needed, making it a powerful tool for uncovering functionally important genes in apicomplexan parasites.
Collapse
Affiliation(s)
- Saima M. Sidik
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Diego Huet
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | | |
Collapse
|
15
|
Ablation of an Ovarian Tumor Family Deubiquitinase Exposes the Underlying Regulation Governing the Plasticity of Cell Cycle Progression in Toxoplasma gondii. mBio 2017; 8:mBio.01846-17. [PMID: 29162714 PMCID: PMC5698556 DOI: 10.1128/mbio.01846-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Toxoplasma genome encodes the capacity for distinct architectures underlying cell cycle progression in a life cycle stage-dependent manner. Replication in intermediate hosts occurs by endodyogeny, whereas a hybrid of schizogony and endopolygeny occurs in the gut of the definitive feline host. Here, we characterize the consequence of the loss of a cell cycle-regulated ovarian tumor (OTU family) deubiquitinase, OTUD3A of Toxoplasma gondii (TgOTUD3A; TGGT1_258780), in T. gondii tachyzoites. Rather than the mutation being detrimental, mutant parasites exhibited a fitness advantage, outcompeting the wild type. This phenotype was due to roughly one-third of TgOTUD3A-knockout (TgOTUD3A-KO) tachyzoites exhibiting deviations from endodyogeny by employing replication strategies that produced 3, 4, or 5 viable progeny within a gravid mother instead of the usual 2. We established the mechanistic basis underlying these altered replication strategies to be a dysregulation of centrosome duplication, causing a transient loss of stoichiometry between the inner and outer cores that resulted in a failure to terminate S phase at the attainment of 2N ploidy and/or the decoupling of mitosis and cytokinesis. The resulting dysregulation manifested as deviations in the normal transitions from S phase to mitosis (S/M) (endopolygeny-like) or M phase to cytokinesis (M/C) (schizogony-like). Notably, these imbalances are corrected prior to cytokinesis, resulting in the generation of normal progeny. Our findings suggest that decisions regarding the utilization of specific cell cycle architectures are controlled by a ubiquitin-mediated mechanism that is dependent on the absolute threshold levels of an as-yet-unknown target(s). Analysis of the TgOTUD3A-KO mutant provides new insights into mechanisms underlying the plasticity of apicomplexan cell cycle architecture. Replication by Toxoplasma gondii can occur by 3 distinct cell cycle architectures. Endodyogeny is used by asexual stages, while a hybrid of schizogony and endopolygeny is used by merozoites in the definitive feline host. Here, we establish that the disruption of an ovarian-tumor (OTU) family deubiquitinase, TgOTUD3A, in tachyzoites results in dysregulation of the mechanism controlling the selection of replication strategy in a subset of parasites. The mechanistic basis for these altered cell cycles lies in the unique biology of the bipartite centrosome that is associated with the transient loss of stoichiometry between the inner and outer centrosome cores in the TgOTUD3A-KO mutant. This highlights the importance of ubiquitin-mediated regulation in the transition from the nuclear to the budding phases of the cell cycle and provides new mechanistic insights into the regulation of the organization of the apicomplexan cell cycle.
Collapse
|
16
|
Abstract
Our knowledge of cell cycle regulatory mechanisms in apicomplexan parasites is very limited. In this study, we describe a novel Toxoplasma gondii factor that has a vital role in chromosome replication and the regulation of cytoplasmic and nuclear mitotic structures, and we named this factor ECR1 for essential for chromosome replication 1. ECR1 was discovered by complementation of a temperature-sensitive (ts) mutant that suffers lethal, uncontrolled chromosome replication at 40°C similar to a ts mutant carrying a defect in topoisomerase. ECR1 is a 52-kDa protein containing divergent RING and TRAF-Sina-like zinc binding domains that are dynamically expressed in the tachyzoite cell cycle. ECR1 first appears in the unique spindle compartment of the Apicomplexa (centrocone) of the nuclear envelope in early S phase and then in the nucleus in late S phase where it reaches maximum expression. Following nuclear division, but before daughter parasites separate from the mother parasite, ECR1 is downregulated and is absent in new daughter parasites. The proteomics of ECR1 identified interactions with the ubiquitin-mediated protein degradation machinery and the minichromosome maintenance complex, and the loss of ECR1 led to increased stability of a key member of this complex, MCM2. ECR1 also forms a stable complex with the cyclin-dependent kinase (CDK)-related kinase, Tgondii Crk5 (TgCrk5), which displays a similar cell cycle expression and localization during tachyzoite replication. Importantly, the localization of ECR1/TgCrk5 in the centrocone indicates that this Apicomplexa-specific spindle compartment houses important regulatory factors that control the parasite cell cycle.IMPORTANCE Parasites of the apicomplexan family are important causes of human disease, including malaria, toxoplasmosis, and cryptosporidiosis. Parasite growth is the underlying cause of pathogenesis, yet despite this importance, the molecular basis for parasite replication is poorly understood. Filling this knowledge gap cannot be accomplished by mining recent whole-genome sequencing data because apicomplexan cell cycles differ substantially and lack many of the key regulatory factors of well-studied yeast and mammalian cell division models. We have utilized forward genetics to discover essential factors that regulate cell division in these parasites using the Toxoplasma gondii model. An example of this approach is described here with the discovery of a putative E3 ligase/protein kinase mechanism involved in regulating chromosome replication and mitotic processes of asexual stage parasites.
Collapse
|
17
|
Alvarez CA, Suvorova ES. Checkpoints of apicomplexan cell division identified in Toxoplasma gondii. PLoS Pathog 2017; 13:e1006483. [PMID: 28671988 PMCID: PMC5510908 DOI: 10.1371/journal.ppat.1006483] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/14/2017] [Accepted: 06/20/2017] [Indexed: 11/18/2022] Open
Abstract
The unusual cell cycles of Apicomplexa parasites are remarkably flexible with the ability to complete cytokinesis and karyokinesis coordinately or postpone cytokinesis for several rounds of chromosome replication, and are well recognized. Despite this surprising biology, the molecular machinery required to achieve this flexibility is largely unknown. In this study, we provide comprehensive experimental evidence that apicomplexan parasites utilize multiple Cdk-related kinases (Crks) to coordinate cell division. We determined that Toxoplasma gondii encodes seven atypical P-, H-, Y- and L- type cyclins and ten Crks to regulate cellular processes. We generated and analyzed conditional tet-OFF mutants for seven TgCrks and four TgCyclins that are expressed in the tachyzoite stage. These experiments demonstrated that TgCrk1, TgCrk2, TgCrk4 and TgCrk6, were required or essential for tachyzoite growth revealing a remarkable number of Crk factors that are necessary for parasite replication. G1 phase arrest resulted from the loss of cytoplasmic TgCrk2 that interacted with a P-type cyclin demonstrating that an atypical mechanism controls half the T. gondii cell cycle. We showed that T. gondii employs at least three TgCrks to complete mitosis. Novel kinases, TgCrk6 and TgCrk4 were required for spindle function and centrosome duplication, respectively, while TgCrk1 and its partner TgCycL were essential for daughter bud assembly. Intriguingly, mitotic kinases TgCrk4 and TgCrk6 did not interact with any cyclin tested and were instead dynamically expressed during mitosis indicating they may not require a cyclin timing mechanism. Altogether, our findings demonstrate that apicomplexan parasites utilize distinctive and complex mechanisms to coordinate their novel replicative cycles. Apicomplexan parasites are unicellular eukaryotes that replicate in unusual ways different from their multicellular hosts. From a single infection, different apicomplexans can produce as few as two or up to many hundreds of progeny. How these flexible division cycles are regulated is poorly understood. In the current study we have defined the major mechanisms controlling the growth of the Toxoplasma gondii acute pathogenic stage called the tachyzoite. We show that T. gondii tachyzoites require not only multiple protein kinases to coordinate chromosome replication and the assembly of new daughter parasites, but also each kinase has unique responsibilities. By contrast, the mammalian cell that T. gondii infects requires far fewer kinase regulators to complete cell division, which suggests that these parasites have unique vulnerabilities. The increased complexity in parasite cell cycle controls likely evolved from the need to adapt to different hosts and the need to construct the specialized invasion apparatus in order to invade those hosts.
Collapse
Affiliation(s)
- Carmelo A. Alvarez
- Department of Global Health and the Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
| | - Elena S. Suvorova
- Department of Global Health and the Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
18
|
Shen B, Powell RH, Behnke MS. QTL Mapping and CRISPR/Cas9 Editing to Identify a Drug Resistance Gene in Toxoplasma gondii. J Vis Exp 2017:55185. [PMID: 28671645 PMCID: PMC5608495 DOI: 10.3791/55185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Scientific knowledge is intrinsically linked to available technologies and methods. This article will present two methods that allowed for the identification and verification of a drug resistance gene in the Apicomplexan parasite Toxoplasma gondii, the method of Quantitative Trait Locus (QTL) mapping using a Whole Genome Sequence (WGS) -based genetic map and the method of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 -based gene editing. The approach of QTL mapping allows one to test if there is a correlation between a genomic region(s) and a phenotype. Two datasets are required to run a QTL scan, a genetic map based on the progeny of a recombinant cross and a quantifiable phenotype assessed in each of the progeny of that cross. These datasets are then formatted to be compatible with R/qtl software that generates a QTL scan to identify significant loci correlated with the phenotype. Although this can greatly narrow the search window of possible candidates, QTLs span regions containing a number of genes from which the causal gene needs to be identified. Having WGS of the progeny was critical to identify the causal drug resistance mutation at the gene level. Once identified, the candidate mutation can be verified by genetic manipulation of drug sensitive parasites. The most facile and efficient method to genetically modify T. gondii is the CRISPR/Cas9 system. This system comprised of just 2 components both encoded on a single plasmid, a single guide RNA (gRNA) containing a 20 bp sequence complementary to the genomic target and the Cas9 endonuclease that generates a double-strand DNA break (DSB) at the target, repair of which allows for insertion or deletion of sequences around the break site. This article provides detailed protocols to use CRISPR/Cas9 based genome editing tools to verify the gene responsible for sinefungin resistance and to construct transgenic parasites.
Collapse
Affiliation(s)
- Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University;
| | - Robin H Powell
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University
| | - Michael S Behnke
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University;
| |
Collapse
|
19
|
Amiar S, MacRae JI, Callahan DL, Dubois D, van Dooren GG, Shears MJ, Cesbron-Delauw MF, Maréchal E, McConville MJ, McFadden GI, Yamaryo-Botté Y, Botté CY. Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase. PLoS Pathog 2016; 12:e1005765. [PMID: 27490259 PMCID: PMC4973916 DOI: 10.1371/journal.ppat.1005765] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 06/22/2016] [Indexed: 12/18/2022] Open
Abstract
Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii.
Collapse
Affiliation(s)
- Souad Amiar
- ApicoLipid group, Institute for Advanced Biosciences UMR5309, CNRS, Université Grenoble Alpes, INSERM, Grenoble, France
| | - James I. MacRae
- The Francis Crick Institute, The Ridgeway, Mill Hill, London, United Kingdom
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Damien L. Callahan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - David Dubois
- ApicoLipid group, Institute for Advanced Biosciences UMR5309, CNRS, Université Grenoble Alpes, INSERM, Grenoble, France
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Melanie J. Shears
- ApicoLipid group, Institute for Advanced Biosciences UMR5309, CNRS, Université Grenoble Alpes, INSERM, Grenoble, France
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Eric Maréchal
- Unité de recherche (UMR) 5168, CNRS, CEA, INRA, Université Grenoble Alpes, Grenoble, France
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Yoshiki Yamaryo-Botté
- ApicoLipid group, Institute for Advanced Biosciences UMR5309, CNRS, Université Grenoble Alpes, INSERM, Grenoble, France
| | - Cyrille Y. Botté
- ApicoLipid group, Institute for Advanced Biosciences UMR5309, CNRS, Université Grenoble Alpes, INSERM, Grenoble, France
| |
Collapse
|
20
|
Wang JL, Huang SY, Behnke MS, Chen K, Shen B, Zhu XQ. The Past, Present, and Future of Genetic Manipulation in Toxoplasma gondii. Trends Parasitol 2016; 32:542-553. [PMID: 27184069 DOI: 10.1016/j.pt.2016.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/16/2022]
Abstract
Toxoplasma gondii is a classic model for studying obligate intracellular microorganisms as various genetic manipulation tools have been developed in T. gondii over the past 20 years. Here we summarize the major strategies for T. gondii genetic manipulation including genetic crosses, insertional mutagenesis, chemical mutagenesis, homologous gene replacement, conditional knockdown techniques, and the recently developed clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system. We evaluate the advantages and limitations of each of these tools in a historical perspective. We also discuss additional applications of modified CRISPR-Cas9 systems for use in T. gondii, such as regulation of gene expression, labeling of specific genomic loci, and epigenetic modifications. These approaches have the potential to revolutionize the analysis of T. gondii biology and help us to better develop new drugs and vaccines.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, PR China
| | - Michael S Behnke
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kai Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, PR China.
| |
Collapse
|
21
|
Abstract
Toxoplasmosis is the clinical and pathological consequence of acute infection with the obligate intracellular apicomplexan parasite Toxoplasma gondii. Symptoms result from tissue destruction that accompanies lytic parasite growth. This review updates current understanding of the host cell invasion, parasite replication, and eventual egress that constitute the lytic cycle, as well as the ways T. gondii manipulates host cells to ensure its survival. Since the publication of a previous iteration of this review 15 years ago, important advances have been made in our molecular understanding of parasite growth and mechanisms of host cell egress, and knowledge of the parasite's manipulation of the host has rapidly progressed. Here we cover molecular advances and current conceptual frameworks that include each of these topics, with an eye to what may be known 15 years from now.
Collapse
Affiliation(s)
- Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14127;
| | - Bradley I Coleman
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| |
Collapse
|
22
|
Suvorova ES, Francia M, Striepen B, White MW. A novel bipartite centrosome coordinates the apicomplexan cell cycle. PLoS Biol 2015; 13:e1002093. [PMID: 25734885 PMCID: PMC4348508 DOI: 10.1371/journal.pbio.1002093] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/30/2015] [Indexed: 12/11/2022] Open
Abstract
Apicomplexan parasites can change fundamental features of cell division during their life cycles, suspending cytokinesis when needed and changing proliferative scale in different hosts and tissues. The structural and molecular basis for this remarkable cell cycle flexibility is not fully understood, although the centrosome serves a key role in determining when and how much replication will occur. Here we describe the discovery of multiple replicating core complexes with distinct protein composition and function in the centrosome of Toxoplasma gondii. An outer core complex distal from the nucleus contains the TgCentrin1/TgSfi1 protein pair, along with the cartwheel protein TgSas-6 and a novel Aurora-related kinase, while an inner core closely aligned with the unique spindle pole (centrocone) holds distant orthologs of the CEP250/C-Nap protein family. This outer/inner spatial relationship of centrosome cores is maintained throughout the cell cycle. When in metaphase, the duplicated cores align to opposite sides of the kinetochores in a linear array. As parasites transition into S phase, the cores sequentially duplicate, outer core first and inner core second, ensuring that each daughter parasite inherits one copy of each type of centrosome core. A key serine/threonine kinase distantly related to the MAPK family is localized to the centrosome, where it restricts core duplication to once per cycle and ensures the proper formation of new daughter parasites. Genetic analysis of the outer core in a temperature-sensitive mutant demonstrated this core functions primarily in cytokinesis. An inhibition of ts-TgSfi1 function at high temperature caused the loss of outer cores and a severe block to budding, while at the same time the inner core amplified along with the unique spindle pole, indicating the inner core and spindle pole are independent and co-regulated. The discovery of a novel bipartite organization in the parasite centrosome that segregates the functions of karyokinesis and cytokinesis provides an explanation for how cell cycle flexibility is achieved in apicomplexan life cycles. The apicomplexan parasite Toxoplasma gondii has a unique centrosome with two specialized compartments, potentially explaining the remarkable flexibility in life cycle that these organisms can show in diverse host cells. Apicomplexan parasites infect many different hosts and tissues, causing numerous human diseases, including malaria. These important pathogens have a peculiar cell cycle in which chromosomes sometimes amplify to remarkable levels, followed by concerted cell division—providing an unusual proliferative capacity. This capacity for proliferation, combined with an ability to change the scale of replication when needed, are hallmarks of the cell cycles of these parasites. Yet the molecular mechanism responsible for these peculiar cell cycles remains one of the unsolved mysteries of Apicomplexa biology. Here we show that the centrosome—an organelle that orchestrates several aspects of the cell cycle—of the apicomplexan parasite Toxoplasma gondii contains specialized structures that coordinate parasite cell division. Our findings demonstrate that a two-part centrosomal architecture, comprising an inner and an outer core with distinct protein compositions, segregates the processes of mitosis from the assembly of new daughter parasites. The modular organization of the centrosome offers an explanation for how cell division can be suspended while the parasites amplify their genome to the biotic scale required for their life cycles. It is unknown whether these distinct centrosome core complexes evolved independently in Apicompexa. Another possibility is that the foundations for these mechanisms were present in the original eukaryote, which could explain how the distinct extranuclear centrosome of animal cells and the novel yeast spindle pole body of the nuclear envelope may have evolved from a common ancestor.
Collapse
Affiliation(s)
- Elena S. Suvorova
- Departments of Molecular Medicine & Global Health and the Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
| | - Maria Francia
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Michael W. White
- Departments of Molecular Medicine & Global Health and the Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
23
|
A single mutation in the gatekeeper residue in TgMAPKL-1 restores the inhibitory effect of a bumped kinase inhibitor on the cell cycle. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 5:1-8. [PMID: 25941623 PMCID: PMC4412912 DOI: 10.1016/j.ijpddr.2014.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii is the causative pathogen for Toxoplasmosis. Bumped kinase inhibitor 1NM-PP1 inhibits the growth of T. gondii by targeting TgCDPK1. However, we recently reported that resistance to 1NM-PP1 can be acquired via a mutation in T. gondii mitogen-activated protein kinase like 1 (TgMAPKL-1). Further characterization of how this TgMAPKL-1 mutation restores the inhibitory effect of 1NM-PP1 would shed further light on the function of TgMAPKL-1 in the parasite life cycle. Therefore, we made parasite clones with TgMAPKL-1 mutated at the gatekeeper residue Ser 191, which is critical for 1NM-PP1 susceptibility. Host cell lysis of RH/ku80(-)/HA-TgMAPKL-1(S191A) was completely inhibited at 250 nM 1NM-PP1, whereas that of RH/ku80(-)/HA-TgMAPKL-1(S191Y) was not. By comparing 1NM-PP1-sensitive (RH/ku80(-)/HA-TgMAPKL-1(S191A)) and -resistant (RH/ku80(-)/HA-TgMAPKL-1(S191Y)) clones, we observed that inhibition of TgMAPKL-1 blocked cell cycle progression after DNA duplication. Morphological analysis revealed that TgMAPKL-1 inhibition caused enlarged parasite cells with many daughter cell scaffolds and imcomplete cytokinesis. We conclude that the mutation in TgMAPKL-1 restored the cell cycle-arresting effect of 1NM-PP1 on T. gondii endodyogeny. Given that endodyogeny is the primary mechanism of cell division for both the tachyzoite and bradyzoite stages of this parasite, TgMAPKL-1 may be a promising target for drug development. Exploration of the signals that regulate TgMAPKL-1 will provide further insights into the unique mode of T. gondii cell division.
Collapse
|
24
|
Vinayak S, Brooks CF, Naumov A, Suvorova ES, White MW, Striepen B. Genetic manipulation of the Toxoplasma gondii genome by fosmid recombineering. mBio 2014; 5:e02021. [PMID: 25467441 PMCID: PMC4324243 DOI: 10.1128/mbio.02021-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/06/2014] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Apicomplexa are obligate intracellular parasites that cause important diseases in humans and animals. Manipulating the pathogen genome is the most direct way to understand the functions of specific genes in parasite development and pathogenesis. In Toxoplasma gondii, nonhomologous recombination is typically highly favored over homologous recombination, a process required for precise gene targeting. Several approaches, including the use of targeting vectors that feature large flanks to drive site-specific recombination, have been developed to overcome this problem. We have generated a new large-insert repository of T. gondii genomic DNA that is arrayed and sequenced and covers 95% of all of the parasite's genes. Clones from this fosmid library are maintained at single copy, which provides a high level of stability and enhances our ability to modify the organism dramatically. We establish a robust recombineering pipeline and show that our fosmid clones can be easily converted into gene knockout constructs in a 4-day protocol that does not require plate-based cloning but can be performed in multiwell plates. We validated this approach to understand gene function in T. gondii and produced a conditional null mutant for a nucleolar protein belonging to the NOL1/NOP2/SUN family, and we show that this gene is essential for parasite growth. We also demonstrate a powerful complementation strategy in the context of chemical mutagenesis and whole-genome sequencing. This repository is an important new resource that will accelerate both forward and reverse genetic analysis of this important pathogen. IMPORTANCE Toxoplasma gondii is an important genetic model to understand intracellular parasitism. We show here that large-insert genomic clones are effective tools that enhance homologous recombination and allow us to engineer conditional mutants to understand gene function. We have generated, arrayed, and sequenced a fosmid library of T. gondii genomic DNA in a copy control vector that provides excellent coverage of the genome. The fosmids are maintained in a single-copy state that dramatically improves their stability and allows modification by means of a simple and highly scalable protocol. We show here that modified and unmodified fosmid clones are powerful tools for forward and reverse genetics.
Collapse
Affiliation(s)
- Sumiti Vinayak
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Carrie F Brooks
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Anatoli Naumov
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, Florida, USA
| | - Elena S Suvorova
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, Florida, USA
| | - Michael W White
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, Florida, USA
| | | |
Collapse
|
25
|
Targeting Toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen. EUKARYOTIC CELL 2014; 14:2-12. [PMID: 25380753 DOI: 10.1128/ec.00225-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes serious opportunistic infections, birth defects, and blindness in humans. Microtubules are critically important components of diverse structures that are used throughout the Toxoplasma life cycle. As in other eukaryotes, spindle microtubules are required for chromosome segregation during replication. Additionally, a set of membrane-associated microtubules is essential for the elongated shape of invasive "zoites," and motility follows a spiral trajectory that reflects the path of these microtubules. Toxoplasma zoites also construct an intricate, tubulin-based apical structure, termed the conoid, which is important for host cell invasion and associates with proteins typically found in the flagellar apparatus. Last, microgametes specifically construct a microtubule-containing flagellar axoneme in order to fertilize macrogametes, permitting genetic recombination. The specialized roles of these microtubule populations are mediated by distinct sets of associated proteins. This review summarizes our current understanding of the role of tubulin, microtubule populations, and associated proteins in Toxoplasma; these components are used for both novel and broadly conserved processes that are essential for parasite survival.
Collapse
|
26
|
A nuclear factor of high mobility group box protein in Toxoplasma gondii. PLoS One 2014; 9:e111993. [PMID: 25369210 PMCID: PMC4219823 DOI: 10.1371/journal.pone.0111993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/08/2014] [Indexed: 01/28/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear factor that usually binds DNA and modulates gene expression in multicellular organisms. Three HMGB1 orthologs were predicted in the genome of Toxoplasma gondii, an obligate intracellular protozoan pathogen, termed TgHMGB1a, b and c. Phylogenetic and bioinformatic analyses indicated that these proteins all contain a single HMG box and which shared in three genotypes. We cloned TgHMGB1a, a 33.9 kDa protein that can stimulates macrophages to release TNF-α, and, we demonstrated that the TgHMGB1a binds distorted DNA structures such as cruciform DNA in electrophoretic mobility shift assays (EMSA). Immunofluorescence assay indicated TgHMGB1a concentrated in the nucleus of intracellular tachyzoites but translocated into the cytoplasm while the parasites release to extracellular. There were no significant phenotypic changes when the TgHMGB1a B box was deleted, while transgenic parasites that overexpressed TgHMGB1a showed slower intracellular growth and caused delayed death in mouse, further quantitative RT-PCR analyses showed that the expression levels of many important genes, including virulence factors, increased when TgHMGB1a was overexpressed, but no significant changes were observed in TgHMGB1a B box-deficient parasites. Our findings demonstrated that TgHMGB1a is indeed a nuclear protein that maintains HMG box architectural functions and is a potential proinflammatory factor during the T.gondii infection. Further studies that clarify the functions of TgHMGB1s will increase our knowledge of transcriptional regulation and parasite virulence, and might provide new insight into host-parasite interactions for T. gondii infection.
Collapse
|
27
|
Farrell A, Coleman BI, Benenati B, Brown KM, Blader IJ, Marth GT, Gubbels MJ. Whole genome profiling of spontaneous and chemically induced mutations in Toxoplasma gondii. BMC Genomics 2014; 15:354. [PMID: 24885922 PMCID: PMC4035079 DOI: 10.1186/1471-2164-15-354] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/02/2014] [Indexed: 12/18/2022] Open
Abstract
Background Next generation sequencing is helping to overcome limitations in organisms less accessible to classical or reverse genetic methods by facilitating whole genome mutational analysis studies. One traditionally intractable group, the Apicomplexa, contains several important pathogenic protozoan parasites, including the Plasmodium species that cause malaria. Here we apply whole genome analysis methods to the relatively accessible model apicomplexan, Toxoplasma gondii, to optimize forward genetic methods for chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) and ethylmethane sulfonate (EMS) at varying dosages. Results By comparing three different lab-strains we show that spontaneously generated mutations reflect genome composition, without nucleotide bias. However, the single nucleotide variations (SNVs) are not distributed randomly over the genome; most of these mutations reside either in non-coding sequence or are silent with respect to protein coding. This is in contrast to the random genomic distribution of mutations induced by chemical mutagenesis. Additionally, we report a genome wide transition vs transversion ratio (ti/tv) of 0.91 for spontaneous mutations in Toxoplasma, with a slightly higher rate of 1.20 and 1.06 for variants induced by ENU and EMS respectively. We also show that in the Toxoplasma system, surprisingly, both ENU and EMS have a proclivity for inducing mutations at A/T base pairs (78.6% and 69.6%, respectively). Conclusions The number of SNVs between related laboratory strains is relatively low and managed by purifying selection away from changes to amino acid sequence. From an experimental mutagenesis point of view, both ENU (24.7%) and EMS (29.1%) are more likely to generate variation within exons than would naturally accumulate over time in culture (19.1%), demonstrating the utility of these approaches for yielding proportionally greater changes to the amino acid sequence. These results will not only direct the methods of future chemical mutagenesis in Toxoplasma, but also aid in designing forward genetic approaches in less accessible pathogenic protozoa as well. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-354) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marc-Jan Gubbels
- Department of Biology, Boston College, Higgins Hall 355, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
28
|
Smolarz B, Wilczyński J, Nowakowska D. DNA repair mechanisms and Toxoplasma gondii infection. Arch Microbiol 2014; 196:1-8. [PMID: 24337694 PMCID: PMC3890036 DOI: 10.1007/s00203-013-0944-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/15/2013] [Accepted: 11/23/2013] [Indexed: 01/22/2023]
Abstract
Lately, we can observe significant progress in understanding mechanism of DNA repair owing to fast methods of DNA sequence analysis from different organisms the revealing of structure and function of DNA repair proteins in prokaryota and eukaryota. The protozoan parasites survival depends on DNA repair systems. Better understanding of DNA repair systems can help in new antipathogen drug development. This review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA repair genes regarding Toxoplasma gondii infections and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA damage.
Collapse
Affiliation(s)
- Beata Smolarz
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 281/289 Rzgowska Street, 93-338 Lodz, Poland
| | - Jan Wilczyński
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 281/289 Rzgowska Street, 93-338 Lodz, Poland
| | - Dorota Nowakowska
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 281/289 Rzgowska Street, 93-338 Lodz, Poland
| |
Collapse
|
29
|
Strategies to discover the structural components of cyst and oocyst walls. EUKARYOTIC CELL 2013; 12:1578-87. [PMID: 24096907 DOI: 10.1128/ec.00213-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cysts of Giardia lamblia and Entamoeba histolytica and oocysts of Toxoplasma gondii and Cryptosporidium parvum are the infectious and sometimes diagnostic forms of these parasites. To discover the structural components of cyst and oocyst walls, we have developed strategies based upon a few simple assumptions. Briefly, the most abundant wall proteins are identified by monoclonal antibodies or mass spectrometry. Structural components include a sugar polysaccharide (chitin for Entamoeba, β-1,3-linked glucose for Toxoplasma, and β-1,3-linked GalNAc for Giardia) and/or acid-fast lipids (Toxoplasma and Cryptosporidium). Because Entamoeba cysts and Toxoplasma oocysts are difficult to obtain, studies of walls of nonhuman pathogens (E. invadens and Eimeria, respectively) accelerate discovery. Biochemical methods to dissect fungal walls work well for cyst and oocyst walls, although the results are often unexpected. For example, echinocandins, which inhibit glucan synthases and kill fungi, arrest the development of oocyst walls and block their release into the intestinal lumen. Candida walls are coated with mannans, while Entamoeba cysts are coated in a dextran-like glucose polymer. Models for cyst and oocyst walls derive from their structural components and organization within the wall. Cyst walls are composed of chitin fibrils and lectins that bind chitin (Entamoeba) or fibrils of the β-1,3-GalNAc polymer and lectins that bind the polymer (Giardia). Oocyst walls of Toxoplasma have two distinct layers that resemble those of fungi (β-1,3-glucan in the inner layer) or mycobacteria (acid-fast lipids in the outer layer). Oocyst walls of Cryptosporidium have a rigid bilayer of acid-fast lipids and inner layer of oocyst wall proteins.
Collapse
|
30
|
Suvorova ES, Radke JB, Ting LM, Vinayak S, Alvarez CA, Kratzer S, Kim K, Striepen B, White MW. A nucleolar AAA-NTPase is required for parasite division. Mol Microbiol 2013; 90:338-55. [PMID: 23964771 DOI: 10.1111/mmi.12367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 01/02/2023]
Abstract
Apicomplexa division involves several distinct phases shared with other eukaryote cell cycles including a gap period (G1) prior to chromosome synthesis, although how progression through the parasite cell cycle is controlled is not understood. Here we describe a cell cycle mutant that reversibly arrests in the G1 phase. The defect in this mutant was mapped by genetic complementation to a gene encoding a novel AAA-ATPase/CDC48 family member called TgNoAP1. TgNoAP1 is tightly regulated and expressed in the nucleolus during the G1/S phases. A tyrosine to a cysteine change upstream of the second AAA+ domain in the temperature sensitive TgNoAP1 allele leads to conditional protein instability, which is responsible for rapid cell cycle arrest and a primary defect in 28S rRNA processing as confirmed by knock-in of the mutation back into the parent genome. The interaction of TgNoAP1 with factors of the snoRNP and R2TP complexes indicates this protein has a role in pre-rRNA processing. This is a novel role for a cdc48-related chaperone protein and indicates that TgNoAP1 may be part of a dynamic mechanism that senses the health of the parasite protein machinery at the initial steps of ribosome biogenesis and conveys that information to the parasite cell cycle checkpoint controls.
Collapse
Affiliation(s)
- Elena S Suvorova
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, FL, 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Morlon-Guyot J, Berry L, Chen CT, Gubbels MJ, Lebrun M, Daher W. The Toxoplasma gondii calcium-dependent protein kinase 7 is involved in early steps of parasite division and is crucial for parasite survival. Cell Microbiol 2013; 16:95-114. [PMID: 24011186 DOI: 10.1111/cmi.12186] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022]
Abstract
Apicomplexan parasites express various calcium-dependent protein kinases (CDPKs), and some of them play essential roles in invasion and egress. Five of the six CDPKs conserved in most Apicomplexa have been studied at the molecular and cellular levels in Plasmodium species and/or in Toxoplasma gondii parasites, but the function of CDPK7 was so far uncharacterized. In T. gondii, during intracellular replication, two parasites are formed within a mother cell through a unique process called endodyogeny. Here we demonstrate that the knock-down of CDPK7 protein in T. gondii results in pronounced defects in parasite division and a major growth deficiency, while it is dispensable for motility, egress and microneme exocytosis. In cdpk7-depleted parasites, the overall DNA content was not impaired, but the polarity of daughter cells budding and the fate of several subcellular structures or proteins involved in cell division were affected, such as the centrosomes and the kinetochore. Overall, our data suggest that CDPK7 is crucial for proper maintenance of centrosome integrity required for the initiation of endodyogeny. Our findings provide a first insight into the probable role of calcium-dependent signalling in parasite multiplication, in addition to its more widely explored role in invasion and egress.
Collapse
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université de Montpellier I et II, Montpellier, France
| | | | | | | | | | | |
Collapse
|
32
|
Kong-Hap MA, Mouammine A, Daher W, Berry L, Lebrun M, Dubremetz JF, Besteiro S. Regulation of ATG8 membrane association by ATG4 in the parasitic protist Toxoplasma gondii. Autophagy 2013; 9:1334-48. [PMID: 23748741 DOI: 10.4161/auto.25189] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the process of autophagy, the Atg8 protein is conjugated, through a ubiquitin-like system, to the lipid phosphatidylethanolamine (PE) to associate with the membrane of forming autophagosomes. There, it plays a crucial role in the genesis of these organelles and in autophagy in general. In most eukaryotes, the cysteine peptidase Atg4 processes the C terminus of cytosolic Atg8 to regulate its association with autophagosomal membranes and also delipidates Atg8 to release this protein from membranes. The parasitic protist Toxoplasma gondii contains a functional, yet apparently reduced, autophagic machinery. T. gondii Atg8 homolog, in addition to a cytosolic and occasionally autophagosomal localization, also localizes to the apicoplast, a nonphotosynthetic plastid bounded by four membranes. Our attempts to interfere with TgATG8 function showed that it appears to be essential for parasite multiplication inside its host cell. This protein also displays a peculiar C terminus that does not seem to necessitate processing prior to membrane association and yet an unusually large Toxoplasma homolog of ATG4 is predicted in the parasite genome. A TgATG4 conditional expression mutant that we have generated is severely affected in growth, and displays significant alterations at the organellar level, noticeably with a fragmentation of the mitochondrial network and a loss of the apicoplast. TgATG4-depleted parasites appear to be defective in the recycling of membrane-bound TgATG8. Overall, our data highlight a role for the TgATG8 conjugation pathway in maintaining the homeostasis of the parasite's organelles and suggest that Toxoplasma has evolved a specialized autophagic machinery with original regulation.
Collapse
Affiliation(s)
- Marie A Kong-Hap
- UMR 5235 CNRS; Universités de Montpellier 1 et 2; Dynamique des Interactions Membranaires Normales et Pathologiques; Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Chen CT, Gubbels MJ. The Toxoplasma gondii centrosome is the platform for internal daughter budding as revealed by a Nek1 kinase mutant. J Cell Sci 2013; 126:3344-55. [PMID: 23729737 DOI: 10.1242/jcs.123364] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathology and severity of toxoplasmosis results from the rapid replication cycle of the apicomplexan parasite Toxoplasma gondii. The tachyzoites divide asexually through endodyogeny, wherein two daughter cells bud inside the mother cell. Before mitosis is completed, the daughter buds form around the duplicated centrosomes and subsequently elongate to serve as the scaffold for organellogenesis and organelle partitioning. The molecular control mechanism of this process is poorly understood. Here, we characterized a T. gondii NIMA-related kinase (Nek) ortholog that was identified in a chemical mutagenesis screen. A temperature-sensitive mutant, V-A15, possesses a Cys316Arg mutation in TgNek1 (a novel mutant allele in Neks), which is responsible for growth defects at the restrictive temperature. Phenotypic analysis of V-A15 indicated that TgNek1 is essential for centrosome splitting, proper formation of daughter cells and faithful segregation of genetic material. In vitro kinase assays showed that the mutation abolishes the kinase activity of TgNek1. TgNek1 is recruited to the centrosome prior to its duplication and localizes on the duplicated centrosomes facing the spindle poles in a cell-cycle-dependent manner. Mutational analysis of the activation loop suggests that localization and activity are spatio-temporally regulated by differential phosphorylation. Collectively, our results identified a novel temperature-sensitive allele for a Nek kinase and highlight its essential function in centrosome splitting in Toxoplasma. Moreover, these results conclusively show for the first time that Toxoplasma bud assembly is facilitated by the centrosome because defective centrosome splitting results in single daughter cell budding.
Collapse
Affiliation(s)
- Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
34
|
Sugi T, Kobayashi K, Takemae H, Gong H, Ishiwa A, Murakoshi F, Recuenco FC, Iwanaga T, Horimoto T, Akashi H, Kato K. Identification of mutations in TgMAPK1 of Toxoplasma gondii conferring resistance to 1NM-PP1. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 3:93-101. [PMID: 24533298 PMCID: PMC3862444 DOI: 10.1016/j.ijpddr.2013.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1NM-PP1 resistant clones were established from chemically random mutated parasites. Resistant clones had a mutation in TgMAPK1. Resistant clones had less susceptibility to 1NM-PP1 at cell division. The mutation was not found at the gatekeeper residue.
Toxoplasma gondii is an important food and waterborne pathogen that causes severe disease in immunocompromised patients. Bumped kinase inhibitors (BKIs) have an antiparasitic effect on T. gondii tachyzoite growth by targeting T. gondii calmodulin-domain protein kinase 1 (TgCDPK1). To identify mutations that confer resistance to BKIs, chemical mutagenesis was performed, followed by selection in media containing either 250 or 1000 nM 1NM-PP1. Whole-genome sequence analysis of resistant clones revealed single nucleotide mutations in T. gondii mitogen-activated protein kinase 1 (TgMAPK1) at amino acids 162 (L162Q) and 171 (I171N). Plasmid constructs having the TgMAPK1 L162Q mutant sequence successfully replaced native TgMAPK1 genome locus in the presence of 1000 nM 1NM-PP1. The inhibitory effect of 1NM-PP1 on cell division observed in the parent clone was decreased in 1NM-PP1-resistant clones; however, effects on parasite invasion and calcium-induced egress were similar in both parent and resistant clones. A plasmid construct expressing the full length TgMAPK1 splicing isoform with L162Q mutation successfully complemented TgMAPK1 function in the pressure of 250 nM 1NM-PP1 in plaque assay. 1NM-PP1-resistant clones showed resistance to other BKIs (3MB-PP1 and 3BrB-PP1) with different levels. Here we identify TgMAPK1 as a novel target for 1NM-PP1 activity. This inhibitory effect is mediated through inhibition of tachyzoite cell division, and can be overcome through mutations at multiple residues in TgMAPK1.
Collapse
Affiliation(s)
- Tatsuki Sugi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kyousuke Kobayashi
- Department of Host-Parasite Interaction, Division of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hitoshi Takemae
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Haiyan Gong
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akiko Ishiwa
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumi Murakoshi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Frances C Recuenco
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tatsuya Iwanaga
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan ; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
35
|
Carvalho TG, Doerig C, Reininger L. Nima- and Aurora-related kinases of malaria parasites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1336-45. [PMID: 23462523 DOI: 10.1016/j.bbapap.2013.02.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
Abstract
Completion of the life cycle of malaria parasite requires a succession of developmental stages which vary greatly with respect to proliferation status, implying a tightly regulated control of the parasite's cell cycle, which remains to be understood at the molecular level. Progression of the eukaryotic cell cycle is controlled by members of mitotic kinase of the families CDK (cyclin-dependent kinases), Aurora, Polo and NIMA. Plasmodium parasites possess cyclin-dependent protein kinases and cyclins, which strongly suggests that some of the principles underlying cell cycle control in higher eukaryotes also operate in this organism. However, atypical features of Plasmodium cell cycle organization and important divergences in the composition of the cell cycle machinery suggest the existence of regulatory mechanisms that are at variance with those of higher eukaryotes. This review focuses on several recently described Plasmodium protein kinases related to the NIMA and Aurora kinase families and discusses their functional involvement in parasite's biology. Given their demonstrated essential roles in the erythrocytic asexual cycle and/or sexual stages, these enzymes represent novel potential drug targets for antimalarial intervention aiming at inhibiting parasite replication and/or blocking transmission of the disease. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Teresa Gil Carvalho
- Department of Microbiology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | | | | |
Collapse
|
36
|
Discovery of a splicing regulator required for cell cycle progression. PLoS Genet 2013; 9:e1003305. [PMID: 23437009 PMCID: PMC3578776 DOI: 10.1371/journal.pgen.1003305] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/19/2012] [Indexed: 01/30/2023] Open
Abstract
In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms. The study of eukaryotic cell division has overwhelmingly focused on cells from two branches of evolution, fungal and metazoan, with more distant eukaryotes rarely studied. One exception is apicomplexan pathogens where in the last two decades development of genetic models has been rapid. While not a perfect solution to fill the missing evolutionary diversity, Apicomplexans represent one of the oldest eukaryotic lineages possibly pre-dating the divergence of plant and animal kingdoms. A key to uncovering novel and conserved cell cycle mechanisms in these protists was the development of forward genetic approaches that permit unbiased discovery of essential growth factors. The apicomplexan, Toxoplasma has provided the best resource so far with ∼60,000 chemical mutants yielding a collection of 165 temperature-sensitive isolates that arrest in all phases of the parasite cell cycle. Efforts to identify the defective genes in this model are providing insights into the regulatory factors possibly active in the original eukaryote cell cycle, like the mRNA splicing factor discovered in this study.
Collapse
|
37
|
Adomako-Ankomah Y, Wier GM, Boyle JP. Beyond the genome: recent advances in Toxoplasma gondii functional genomics. Parasite Immunol 2012; 34:80-9. [PMID: 21722143 DOI: 10.1111/j.1365-3024.2011.01312.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent years have witnessed an explosion in the amount of genomic information available for Toxoplasma gondii and other closely related pathogens. These data, many of which have been made publicly available prior to publication, have facilitated a wide variety of functional genomics studies. In this review, we provide a brief overview of existing database tools for querying the Toxoplasma genome and associated genome-wide data and review recent publications that have been facilitated by these data. Topics covered include strain comparisons and quantitative trait loci mapping, gene expression analyses during the cell cycle as well as during parasite differentiation, and proteomics.
Collapse
Affiliation(s)
- Y Adomako-Ankomah
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
38
|
Szatanek T, Anderson-White BR, Faugno-Fusci DM, White M, Saeij JPJ, Gubbels MJ. Cactin is essential for G1 progression in Toxoplasma gondii. Mol Microbiol 2012; 84:566-77. [PMID: 22486860 DOI: 10.1111/j.1365-2958.2012.08044.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite whose rapid lytic replication cycles define its pathogenicity. We identified a temperature-sensitive growth mutant, FV-P6, which irreversibly arrests before the middle of the G1 stage of the tachyzoite cell cycle. This arrest is caused by a point mutation in a gene conserved across eukaryotes, Cactin, whose product localizes to the nucleus. To elucidate the role of TgCactin we performed genome-wide expression profiling. Besides the expected G1 expression profile, many genes associated with the extracellular state as well as with the bradyzoite cyst stage were identified. Consistent with these profiles were the expression of AP2 transcription factors typically associated with extracellular and bradyzoite stage parasites. This suggests a role for TgCactin in control of gene expression. As TgCactin does not contain any functionally defined domains we reasoned TgCactin exerts its function through interactions with other proteins. In support of this model we demonstrated that TgCactin is present in a protein complex and can oligomerize. Taken together, these results suggest that TgCactin acts as a pivotal protein potentially regulating gene expression at several transition points in parasite development.
Collapse
Affiliation(s)
- Tomasz Szatanek
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | |
Collapse
|
39
|
Coleman BI, Gubbels MJ. A genetic screen to isolate Toxoplasma gondii host-cell egress mutants. J Vis Exp 2012:3807. [PMID: 22349295 DOI: 10.3791/3807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The widespread, obligate intracellular, protozoan parasite Toxoplasma gondii causes opportunistic disease in immuno-compromised patients and causes birth defects upon congenital infection. The lytic replication cycle is characterized by three stages: 1. active invasion of a nucleated host cell; 2. replication inside the host cell; 3. active egress from the host cell. The mechanism of egress is increasingly being appreciated as a unique, highly regulated process, which is still poorly understood at the molecular level. The signaling pathways underlying egress have been characterized through the use of pharmacological agents acting on different aspects of the pathways. As such, several independent triggers of egress have been identified which all converge on the release of intracellular Ca(2+), a signal that is also critical for host cell invasion. This insight informed a candidate gene approach which led to the identification of plant like calcium dependent protein kinase (CDPK) involved in egress. In addition, several recent breakthroughs in understanding egress have been made using (chemical) genetic approaches. To combine the wealth of pharmacological information with the increasing genetic accessibility of Toxoplasma we recently established a screen permitting the enrichment for parasite mutants with a defect in host cell egress. Although chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) or ethyl methanesulfonate (EMS) has been used for decades in the study of Toxoplasma biology, only recently has genetic mapping of mutations underlying the phenotypes become routine. Furthermore, by generating temperature-sensitive mutants, essential processes can be dissected and the underlying genes directly identified. These mutants behave as wild-type under the permissive temperature (35 °C), but fail to proliferate at the restrictive temperature (40 °C) as a result of the mutation in question. Here we illustrate a new phenotypic screening method to isolate mutants with a temperature-sensitive egress phenotype. The challenge for egress screens is to separate egressed from non-egressed parasites, which is complicated by fast re-invasion and general stickiness of the parasites to host cells. A previously established egress screen was based on a cumbersome series of biotinylation steps to separate intracellular from extracellular parasites. This method also did not generate conditional mutants resulting in weak phenotypes. The method described here overcomes the strong attachment of egressing parasites by including a glycan competitor, dextran sulfate (DS), that prevents parasites from sticking to the host cell. Moreover, extracellular parasites are specifically killed off by pyrrolidine dithiocarbamate (PDTC), which leaves intracellular parasites unharmed. Therefore, with a new phenotypic screen to specifically isolate parasite mutants with defects in induced egress, the power of genetics can now be fully deployed to unravel the molecular mechanisms underlying host cell egress.
Collapse
|
40
|
Farrell A, Thirugnanam S, Lorestani A, Dvorin JD, Eidell KP, Ferguson DJ, Anderson-White BR, Duraisingh MT, Marth GT, Gubbels MJ. A DOC2 protein identified by mutational profiling is essential for apicomplexan parasite exocytosis. Science 2012; 335:218-21. [PMID: 22246776 PMCID: PMC3354045 DOI: 10.1126/science.1210829] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exocytosis is essential to the lytic cycle of apicomplexan parasites and required for the pathogenesis of toxoplasmosis and malaria. DOC2 proteins recruit the membrane fusion machinery required for exocytosis in a Ca(2+)-dependent fashion. Here, the phenotype of a Toxoplasma gondii conditional mutant impaired in host cell invasion and egress was pinpointed to a defect in secretion of the micronemes, an apicomplexan-specific organelle that contains adhesion proteins. Whole-genome sequencing identified the etiological point mutation in TgDOC2.1. A conditional allele of the orthologous gene engineered into Plasmodium falciparum was also defective in microneme secretion. However, the major effect was on invasion, suggesting that microneme secretion is dispensable for Plasmodium egress.
Collapse
Affiliation(s)
- Andrew Farrell
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | - Jeffrey D. Dvorin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
- Division of Infectious Diseases, Children’s Hospital Boston, Boston, MA 02115, USA
| | - Keith P. Eidell
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - David J.P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Gabor T. Marth
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
41
|
Anderson-White B, Beck JR, Chen CT, Meissner M, Bradley PJ, Gubbels MJ. Cytoskeleton assembly in Toxoplasma gondii cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:1-31. [PMID: 22878103 PMCID: PMC4066374 DOI: 10.1016/b978-0-12-394309-5.00001-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell division across members of the protozoan parasite phylum Apicomplexa displays a surprising diversity between different species as well as between different life stages of the same parasite. In most cases, infection of a host cell by a single parasite results in the formation of a polyploid cell from which individual daughters bud in a process dependent on a final round of mitosis. Unlike other apicomplexans, Toxoplasma gondii divides by a binary process consisting of internal budding that results in only two daughter cells per round of division. Since T. gondii is experimentally accessible and displays the simplest division mode, it has manifested itself as a model for apicomplexan daughter formation. Here, we review newly emerging insights in the prominent role that assembly of the cortical cytoskeletal scaffold plays in the process of daughter parasite formation.
Collapse
Affiliation(s)
| | - Josh R. Beck
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Chun-Ti Chen
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| | - Markus Meissner
- Division of Infection and Immunity, Institute of Biomedical Life Sciences, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Peter J. Bradley
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Marc-Jan Gubbels
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| |
Collapse
|
42
|
Kato K, Sugi T, Iwanaga T. Roles of Apicomplexan protein kinases at each life cycle stage. Parasitol Int 2011; 61:224-34. [PMID: 22209882 DOI: 10.1016/j.parint.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/12/2011] [Accepted: 12/18/2011] [Indexed: 01/21/2023]
Abstract
Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
43
|
Pfander C, Anar B, Schwach F, Otto TD, Brochet M, Volkmann K, Quail MA, Pain A, Rosen B, Skarnes W, Rayner JC, Billker O. A scalable pipeline for highly effective genetic modification of a malaria parasite. Nat Methods 2011; 8:1078-82. [PMID: 22020067 PMCID: PMC3431185 DOI: 10.1038/nmeth.1742] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/29/2011] [Indexed: 11/08/2022]
Abstract
In malaria parasites, the systematic experimental validation of drug and vaccine targets by reverse genetics is constrained by the inefficiency of homologous recombination and by the difficulty of manipulating adenine and thymine (A+T)-rich DNA of most Plasmodium species in Escherichia coli. We overcame these roadblocks by creating a high-integrity library of Plasmodium berghei genomic DNA (>77% A+T content) in a bacteriophage N15-based vector that can be modified efficiently using the lambda Red method of recombineering. We built a pipeline for generating P. berghei genetic modification vectors at genome scale in serial liquid cultures on 96-well plates. Vectors have long homology arms, which increase recombination frequency up to tenfold over conventional designs. The feasibility of efficient genetic modification at scale will stimulate collaborative, genome-wide knockout and tagging programs for P. berghei.
Collapse
|
44
|
Nuclear actin-related protein is required for chromosome segregation in Toxoplasma gondii. Mol Biochem Parasitol 2011; 181:7-16. [PMID: 21963440 DOI: 10.1016/j.molbiopara.2011.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 09/10/2011] [Accepted: 09/15/2011] [Indexed: 12/30/2022]
Abstract
Apicomplexa parasites use complex cell cycles to replicate that are not well understood mechanistically. We have established a robust forward genetic strategy to identify the essential components of parasite cell division. Here we describe a novel temperature sensitive Toxoplasma strain, mutant 13-20C2, which growth arrests due to a defect in mitosis. The primary phenotype is the mis-segregation of duplicated chromosomes with chromosome loss during nuclear division. This defect is conditional-lethal with respect to temperature, although relatively mild in regard to the preservation of the major microtubule organizing centers. Despite severe DNA loss many of the physical structures associated with daughter budding and the assembly of invasion structures formed and operated normally at the non-permissive temperature before completely arresting. These results suggest there are coordinating mechanisms that govern the timing of these events in the parasite cell cycle. The defect in mutant 13-20C2 was mapped by genetic complementation to Toxoplasma chromosome III and to a specific mutation in the gene encoding an ortholog of nuclear actin-related protein 4. A change in a conserved isoleucine to threonine in the helical structure of this nuclear actin related protein leads to protein instability and cellular mis-localization at the higher temperature. Given the age of this protist family, the results indicate a key role for nuclear actin-related proteins in chromosome segregation was established very early in the evolution of eukaryotes.
Collapse
|
45
|
Abstract
As biomedical research becomes increasingly data-intensive, it is increasingly essential to integrate genomic-scale datasets, so as to generate a more holistic picture of complex biological processes. The systems biology paradigm may differ in strategy from traditional reductionist scientific methods, but the goal remains the same: to generate tenable hypotheses driving the experimental elucidation of biological mechanisms. Intracellular pathogens provide an excellent opportunity for systems analysis, as many of these organisms are amenable to genetic manipulation, allowing their biology to be played off against that of the host. Moreover, many of the most fundamental biological properties of these microbes (host cell invasion, immune evasion, intracellular replication, long-term persistence) are directly linked to pathogenesis and readily quantifiable using genomic-scale technologies. In this review, we summarize and discuss some of the available and foreseeable functional genomics datasets pertaining to host-pathogen interactions and suggest that the host-pathogen interface represents a promising, tractable challenge for systems biological analysis. Success will require developing and leveraging new technologies, expanding data acquisition, and increasing public access to comprehensive datasets, to assemble quantitative and testable models of the host-pathogen relationship.
Collapse
Affiliation(s)
- Daniel P Beiting
- Department of Biology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
46
|
Limenitakis J, Soldati-Favre D. Functional genetics in Apicomplexa: potentials and limits. FEBS Lett 2011; 585:1579-88. [PMID: 21557944 DOI: 10.1016/j.febslet.2011.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 01/15/2023]
Abstract
The Apicomplexans are obligate intracellular protozoan parasites and the causative agents of severe diseases in humans and animals. Although complete genome sequences are available since many years and for several parasites, they are replete with putative genes of unassigned function. Forward and reverse genetic approaches are limited only to a few Apicomplexans that can either be propagated in vitro or in a convenient animal model. This review will compare and contrast the most recent strategies developed for the genetic manipulation of Plasmodium falciparum, Plasmodium berghei and Toxoplasma gondii that have taken advantage of the intrinsic features of their respective genomes. Efforts towards the improvement of the transfection efficiencies in malaria parasites, the development of approaches to study essential genes and the elaboration of high-throughput methods for the identification of gene function will be discussed.
Collapse
Affiliation(s)
- Julien Limenitakis
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
47
|
Tewari R, Straschil U, Bateman A, Böhme U, Cherevach I, Gong P, Pain A, Billker O. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe 2011; 8:377-87. [PMID: 20951971 PMCID: PMC2977076 DOI: 10.1016/j.chom.2010.09.006] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/02/2010] [Accepted: 09/13/2010] [Indexed: 12/23/2022]
Abstract
Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified.
Collapse
Affiliation(s)
- Rita Tewari
- Institute of Genetics, QMC, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contributing factor for their pathogenesis in the host. As with other eukaryotes, successful mitosis is an essential requirement for Plasmodium reproduction; however, some aspects of Plasmodium mitosis are quite distinct and not fully understood. In this review, we will discuss the current understanding of the architecture and key events of mitosis in Plasmodium falciparum and related parasites and compare them with the traditional mitotic events described for other eukaryotes.
Collapse
|
49
|
Lescault PJ, Thompson AB, Patil V, Lirussi D, Burton A, Margarit J, Bond J, Matrajt M. Genomic data reveal Toxoplasma gondii differentiation mutants are also impaired with respect to switching into a novel extracellular tachyzoite state. PLoS One 2010; 5:e14463. [PMID: 21209930 PMCID: PMC3012682 DOI: 10.1371/journal.pone.0014463] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/22/2010] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii pathogenesis includes the invasion of host cells by extracellular parasites, replication of intracellular tachyzoites, and differentiation to a latent bradyzoite stage. We present the analysis of seven novel T. gondii insertional mutants that do not undergo normal differentiation to bradyzoites. Microarray quantification of the variation in genome-wide RNA levels for each parasite line and times after induction allowed us to describe states in the normal differentiation process, to analyze mutant lines in the context of these states, and to identify genes that may have roles in initiating the transition from tachyzoite to bradyzoite. Gene expression patterns in wild-type parasites undergoing differentiation suggest a novel extracellular state within the tachyzoite stage. All mutant lines exhibit aberrant regulation of bradyzoite gene expression and notably some of the mutant lines appear to exhibit high proportions of the intracellular tachyzoite state regardless of whether they are intracellular or extracellular. In addition to the genes identified by the insertional mutagenesis screen, mixture model analysis allowed us to identify a small number of genes, in mutants, for which expression patterns could not be accounted for using the three parasite states – genes that may play a mechanistic role in switching from the tachyzoite to bradyzoite stage.
Collapse
Affiliation(s)
- Pamela J. Lescault
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Ann B. Thompson
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Veerupaxagouda Patil
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Dario Lirussi
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Amanda Burton
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Juan Margarit
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Jeffrey Bond
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Mariana Matrajt
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
50
|
Santos JM, Ferguson DJP, Blackman MJ, Soldati-Favre D. Intramembrane cleavage of AMA1 triggers Toxoplasma to switch from an invasive to a replicative mode. Science 2010; 331:473-7. [PMID: 21205639 DOI: 10.1126/science.1199284] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Apicomplexan parasites invade host cells and immediately initiate cell division. The extracellular parasite discharges transmembrane proteins onto its surface to mediate motility and invasion. These are shed by intramembrane cleavage, a process associated with invasion but otherwise poorly understood. Functional analysis of Toxoplasma rhomboid 4, a surface intramembrane protease, by conditional overexpression of a catalytically inactive form produced a profound block in replication. This was completely rescued by expression of the cleaved cytoplasmic tail of Toxoplasma or Plasmodium apical membrane antigen 1 (AMA1). These results reveal an unexpected function for AMA1 in parasite replication and suggest that invasion proteins help to promote parasite switch from an invasive to a replicative mode.
Collapse
Affiliation(s)
- Joana M Santos
- Department of Microbiology, Faculty of Medicine, University of Geneva, 1 rue-Michel Servet, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|