1
|
Chappell KJ, Mordant FL, Li Z, Wijesundara DK, Ellenberg P, Lackenby JA, Cheung STM, Modhiran N, Avumegah MS, Henderson CL, Hoger K, Griffin P, Bennet J, Hensen L, Zhang W, Nguyen THO, Marrero-Hernandez S, Selva KJ, Chung AW, Tran MH, Tapley P, Barnes J, Reading PC, Nicholson S, Corby S, Holgate T, Wines BD, Hogarth PM, Kedzierska K, Purcell DFJ, Ranasinghe C, Subbarao K, Watterson D, Young PR, Munro TP. Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:1383-1394. [PMID: 33887208 PMCID: PMC8055208 DOI: 10.1016/s1473-3099(21)00200-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/25/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Given the scale of the ongoing COVID-19 pandemic, the development of vaccines based on different platforms is essential, particularly in light of emerging viral variants, the absence of information on vaccine-induced immune durability, and potential paediatric use. We aimed to assess the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a novel molecular clamp (spike glycoprotein-clamp [sclamp]). METHODS We did a phase 1, double-blind, placebo-controlled, block-randomised trial of the sclamp subunit vaccine in a single clinical trial site in Brisbane, QLD, Australia. Healthy adults (aged ≥18 to ≤55 years) who had tested negative for SARS-CoV-2, reported no close contact with anyone with active or previous SARS-CoV-2 infection, and tested negative for pre-existing SARS-CoV-2 immunity were included. Participants were randomly assigned to one of five treatment groups and received two doses via intramuscular injection 28 days apart of either placebo, sclamp vaccine at 5 μg, 15 μg, or 45 μg, or one dose of sclamp vaccine at 45 μg followed by placebo. Participants and study personnel, except the dose administration personnel, were masked to treatment. The primary safety endpoints included solicited local and systemic adverse events in the 7 days after each dose and unsolicited adverse events up to 12 months after dosing. Here, data are reported up until day 57. Primary immunogenicity endpoints were antigen-specific IgG ELISA and SARS-CoV-2 microneutralisation assays assessed at 28 days after each dose. The study is ongoing and registered with ClinicalTrials.gov, NCT04495933. FINDINGS Between June 23, 2020, and Aug 17, 2020, of 314 healthy volunteers screened, 120 were randomly assigned (n=24 per group), and 114 (95%) completed the study up to day 57 (mean age 32·5 years [SD 10·4], 65 [54%] male, 55 [46%] female). Severe solicited reactions were infrequent and occurred at similar rates in participants receiving placebo (two [8%] of 24) and the SARS-CoV-2 sclamp vaccine at any dose (three [3%] of 96). Both solicited reactions and unsolicited adverse events occurred at a similar frequency in participants receiving placebo and the SARS-CoV-2 sclamp vaccine. Solicited reactions occurred in 19 (79%) of 24 participants receiving placebo and 86 (90%) of 96 receiving the SARS-CoV-2 sclamp vaccine at any dose. Unsolicited adverse events occurred in seven (29%) of 24 participants receiving placebo and 35 (36%) of 96 participants receiving the SARS-CoV-2 sclamp vaccine at any dose. Vaccination with SARS-CoV-2 sclamp elicited a similar antigen-specific response irrespective of dose: 4 weeks after the initial dose (day 29) with 5 μg dose (geometric mean titre [GMT] 6400, 95% CI 3683-11 122), with 15 μg dose (7492, 4959-11 319), and the two 45 μg dose cohorts (8770, 5526-13 920 in the two-dose 45 μg cohort; 8793, 5570-13 881 in the single-dose 45 μg cohort); 4 weeks after the second dose (day 57) with two 5 μg doses (102 400, 64 857-161 676), with two 15 μg doses (74 725, 51 300-108 847), with two 45 μg doses (79 586, 55 430-114 268), only a single 45 μg dose (4795, 2858-8043). At day 57, 67 (99%) of 68 participants who received two doses of sclamp vaccine at any concentration produced a neutralising immune response, compared with six (25%) of 24 who received a single 45 μg dose and none of 22 who received placebo. Participants receiving two doses of sclamp vaccine elicited similar neutralisation titres, irrespective of dose: two 5 μg doses (GMT 228, 95% CI 146-356), two 15 μg doses (230, 170-312), and two 45 μg doses (239, 187-307). INTERPRETATION This first-in-human trial shows that a subunit vaccine comprising mammalian cell culture-derived, MF59-adjuvanted, molecular clamp-stabilised recombinant spike protein elicits strong immune responses with a promising safety profile. However, the glycoprotein 41 peptide present in the clamp created HIV diagnostic assay interference, a possible barrier to widespread use highlighting the criticality of potential non-spike directed immunogenicity during vaccine development. Studies are ongoing with alternative molecular clamp trimerisation domains to ameliorate this response. FUNDING Coalition for Epidemic Preparedness Innovations, National Health and Medical Research Council, Queensland Government, and further philanthropic sources listed in the acknowledgments.
Collapse
Affiliation(s)
- Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia; Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Zheyi Li
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Danushka K Wijesundara
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Paula Ellenberg
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julia A Lackenby
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Stacey T M Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Michael S Avumegah
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Christina L Henderson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Kym Hoger
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Paul Griffin
- School of Medicine, The University of Queensland, St Lucia, QLD, Australia; Nucleus Network Brisbane Clinic, Herston, QLD, Australia; Department of Infectious Diseases, Mater Health, QLD, Australia
| | | | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sara Marrero-Hernandez
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kevin J Selva
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Mai H Tran
- TetraQ, The University of Queensland, Herston, QLD, Australia
| | - Peter Tapley
- TetraQ, The University of Queensland, Herston, QLD, Australia
| | - James Barnes
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stavroula Corby
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas Holgate
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia; Department of Immunology and Pathology, Monash University, Alfred Health, Melbourne, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Charani Ranasinghe
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia; Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia; Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Trent P Munro
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
2
|
Li Z, Khanna M, Grimley SL, Ellenberg P, Gonelli CA, Lee WS, Amarasena TH, Kelleher AD, Purcell DFJ, Kent SJ, Ranasinghe C. Mucosal IL-4R antagonist HIV vaccination with SOSIP-gp140 booster can induce high-quality cytotoxic CD4 +/CD8 + T cells and humoral responses in macaques. Sci Rep 2020; 10:22077. [PMID: 33328567 PMCID: PMC7744512 DOI: 10.1038/s41598-020-79172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
Inducing humoral, cellular and mucosal immunity is likely to improve the effectiveness of HIV-1 vaccine strategies. Here, we tested a vaccine regimen in pigtail macaques using an intranasal (i.n.) recombinant Fowl Pox Virus (FPV)-gag pol env-IL-4R antagonist prime, intramuscular (i.m.) recombinant Modified Vaccinia Ankara Virus (MVA)-gag pol-IL-4R antagonist boost followed by an i.m SOSIP-gp140 boost. The viral vector-expressed IL-4R antagonist transiently inhibited IL-4/IL-13 signalling at the vaccination site. The SOSIP booster not only induced gp140-specific IgG, ADCC (antibody-dependent cellular cytotoxicity) and some neutralisation activity, but also bolstered the HIV-specific cellular and humoral responses. Specifically, superior sustained systemic and mucosal HIV Gag-specific poly-functional/cytotoxic CD4+ and CD8+ T cells were detected with the IL-4R antagonist adjuvanted strategy compared to the unadjuvanted control. In the systemic compartment elevated Granzyme K expression was linked to CD4+ T cells, whilst Granzyme B/TIA-1 to CD8+ T cells. In contrast, the cytotoxic marker expression by mucosal CD4+ and CD8+ T cells differed according to the mucosal compartment. This vector-based mucosal IL-4R antagonist/SOSIP booster strategy, which promotes cytotoxic mucosal CD4+ T cells at the first line of defence, and cytotoxic CD4+ and CD8+ T cells plus functional antibodies in the blood, may prove valuable in combating mucosal infection with HIV-1 and warrants further investigation.
Collapse
Affiliation(s)
- Z Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - M Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - S L Grimley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - P Ellenberg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - T H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - A D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - D F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - C Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
3
|
Khanna M, Jackson RJ, Alcantara S, Amarasena TH, Li Z, Kelleher AD, Kent SJ, Ranasinghe C. Mucosal and systemic SIV-specific cytotoxic CD4 + T cell hierarchy in protection following intranasal/intramuscular recombinant pox-viral vaccination of pigtail macaques. Sci Rep 2019; 9:5661. [PMID: 30952887 PMCID: PMC6450945 DOI: 10.1038/s41598-019-41506-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/11/2019] [Indexed: 11/09/2022] Open
Abstract
A HIV vaccine that provides mucosal immunity is urgently needed. We evaluated an intranasal recombinant Fowlpox virus (rFPV) priming vaccine followed by intramuscular Modified Vaccinia Ankara (rMVA) booster vaccine, both expressing SIV antigens. The vaccination generated mucosal and systemic SIV-specific CD4+ T cell mediated immunity and was associated with partial protection against high-dose intrarectal SIVmac251 challenge in outbred pigtail macaques. Three of 12 vaccinees were completely protected and these animals elicited sustained Gag-specific poly-functional, cytotoxic mucosal CD4+ T cells, complemented by systemic poly-functional CD4+ and CD8+ T cell immunity. Humoral immune responses, albeit absent in completely protected macaques, were associated with partial control of viremia in animals with relatively weaker mucosal/systemic T cell responses. Co-expression of an IL-4R antagonist by the rFPV vaccine further enhanced the breadth and cytotoxicity/poly-functionality of mucosal vaccine-specific CD4+ T cells. Moreover, a single FPV-gag/pol/env prime was able to induce rapid anamnestic gp140 antibody response upon SIV encounter. Collectively, our data indicated that nasal vaccination was effective at inducing robust cervico-vaginal and rectal immunity, although cytotoxic CD4+ T cell mediated mucosal and systemic immunity correlated strongly with 'complete protection', the different degrees of protection observed was multi-factorial.
Collapse
Affiliation(s)
- Mayank Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Thakshila H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Zheyi Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia.
| |
Collapse
|
4
|
Juno JA, Wragg KM, Amarasena T, Meehan BS, Mak JYW, Liu L, Fairlie DP, McCluskey J, Eckle SBG, Kent SJ. MAIT Cells Upregulate α4β7 in Response to Acute Simian Immunodeficiency Virus/Simian HIV Infection but Are Resistant to Peripheral Depletion in Pigtail Macaques. THE JOURNAL OF IMMUNOLOGY 2019; 202:2105-2120. [PMID: 30777923 DOI: 10.4049/jimmunol.1801405] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are nonconventional T lymphocytes that recognize bacterial metabolites presented by MR1. Whereas gut bacterial translocation and the loss/dysfunction of peripheral MAIT cells in HIV infection is well described, MAIT cells in nonhuman primate models are poorly characterized. We generated a pigtail macaque (PTM)-specific MR1 tetramer and characterized MAIT cells in serial samples from naive and SIV- or simian HIV-infected PTM. Although PTM MAIT cells generally resemble the phenotype and transcriptional profile of human MAIT cells, they exhibited uniquely low expression of the gut-homing marker α4β7 and were not enriched at the gut mucosa. PTM MAIT cells responded to SIV/simian HIV infection by proliferating and upregulating α4β7, coinciding with increased MAIT cell frequency in the rectum. By 36 wk of infection, PTM MAIT cells were activated and exhibited a loss of Tbet expression but were not depleted as in HIV infection. Our data suggest the following: 1) MAIT cell activation and exhaustion is uncoupled from the hallmark depletion of MAIT cells during HIV infection; and 2) the lack of PTM MAIT cell enrichment at the gut mucosa may prevent depletion during chronic infection, providing a model to assess potential immunotherapeutic approaches to modify MAIT cell trafficking during HIV infection.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia;
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Queensland 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Queensland 4072, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Victoria 3053, Australia; and.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Thomas J, Ruggiero A, Procopio FA, Pantaleo G, Paxton WA, Pollakis G. Comparative analysis and generation of a robust HIV-1 DNA quantification assay. J Virol Methods 2018; 263:24-31. [PMID: 30326210 DOI: 10.1016/j.jviromet.2018.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022]
Abstract
HIV-1 infection cannot be cured due to the presence of the latent reservoir (LR). Novel cure or treatment strategies, such as "shock and kill" or therapeutic vaccination, aim to reduce or eradicate the LR. Cure strategies utilise robust DNA quantification assays to measure the change in the LR in low copy scenarios. No standard assay exists, which impedes the reliable comparison of results from different therapy and vaccine trials and HIV-1 total DNA quantification methods have not been previously compared. The HIV-1 long terminal repeat (LTR) has been shown to be the best target for DNA quantification. We have analysed two HIV-1 quantification assays, both able to differentiate between the variant HIV-1 DNA forms via the use of pre-amplification and primers targeting LTR. We identify a strong correlation (r=0.9759, P<0.0001) between assays which is conserved in low copy samples (r=0.8220, P<0.0001) indicating that these assays may be used interchangeably. The RvS assay performed significantly (P=0.0021) better than the CV assay when quantifying HIV-1 total DNA in patient CD4+ T lymphocytes. Sequence analysis demonstrated that viral diversity can limit DNA quantification, however in silico analysis of the primers indicated that within the target region nucleotide miss-matches appear infrequently. Further in silico analysis using up to-date sequence information led to the improvement of primers and enabled us to establish a more broadly specific assay with significantly higher HIV-1 DNA quantification capacity in patient samples (p=0.0057, n=17).
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Francesco A Procopio
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
6
|
Munson P, Liu Y, Bratt D, Fuller JT, Hu X, Pavlakis GN, Felber BK, Mullins JI, Fuller DH. Therapeutic conserved elements (CE) DNA vaccine induces strong T-cell responses against highly conserved viral sequences during simian-human immunodeficiency virus infection. Hum Vaccin Immunother 2018; 14:1820-1831. [PMID: 29648490 PMCID: PMC6067903 DOI: 10.1080/21645515.2018.1448328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HIV-specific T-cell responses play a key role in controlling HIV infection, and therapeutic vaccines for HIV that aim to improve viral control will likely need to improve on the T-cell responses induced by infection. However, in the setting of chronic infection, an effective therapeutic vaccine must overcome the enormous viral genetic diversity and the presence of pre-existing T-cell responses that are biased toward immunodominant T-cell epitopes that can readily mutate to evade host immunity and thus potentially provide inferior protection. To address these issues, we investigated a novel, epidermally administered DNA vaccine expressing SIV capsid (p27Gag) homologues of highly conserved elements (CE) of the HIV proteome in macaques experiencing chronic but controlled SHIV infection. We assessed the ability to boost or induce de novo T-cell responses against the conserved but immunologically subdominant CE epitopes. Two groups of animals were immunized with either the CE DNA vaccine or a full-length SIV p57gag DNA vaccine. Prior to vaccination, CE responses were similar in both groups. The full-length p57gag DNA vaccine, which contains the CE, increased overall Gag-specific responses but did not increase CE responses in any animals (0/4). In contrast, the CE DNA vaccine increased CE responses in all (4/4) vaccinated macaques. In SIV infected but unvaccinated macaques, those that developed stronger CE-specific responses during acute infection exhibited lower viral loads. We conclude that CE DNA vaccination can re-direct the immunodominance hierarchy towards CE in the setting of attenuated chronic infection and that induction of these responses by therapeutic vaccination may improve immune control of HIV.
Collapse
Affiliation(s)
- Paul Munson
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US.,b Washington National Primate Research Center , Seattle , WA , US
| | - Yi Liu
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US
| | - Debra Bratt
- b Washington National Primate Research Center , Seattle , WA , US
| | - James T Fuller
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US
| | - Xintao Hu
- c Human Retrovirus Pathogenesis Section and Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , US
| | - George N Pavlakis
- d Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick , MD , US
| | - Barbara K Felber
- c Human Retrovirus Pathogenesis Section and Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , US
| | - James I Mullins
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US.,e Department of Medicine , University of Washington , Seattle , WA , US.,f Department of Global Health , University of Washington , Seattle , WA , US.,g Department of Laboratory Medicine , University of Washington , Seattle , WA , US
| | - Deborah Heydenburg Fuller
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US.,b Washington National Primate Research Center , Seattle , WA , US
| |
Collapse
|
7
|
Alinejad-Rokny H, Ebrahimi D. A method to avoid errors associated with the analysis of hypermutated viral sequences by alignment-based methods. J Biomed Inform 2015; 58:220-225. [PMID: 26494601 DOI: 10.1016/j.jbi.2015.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/30/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
Abstract
The human genome encodes for a family of editing enzymes known as APOBEC3 (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like3). They induce context dependent G-to-A changes, referred to as "hypermutation", in the genome of viruses such as HIV, SIV, HBV and endogenous retroviruses. Hypermutation is characterized by aligning affected sequences to a reference sequence. We show that indels (insertions/deletions) in the sequences lead to an incorrect assignment of APOBEC3 targeted and non-target sites. This can result in an incorrect identification of hypermutated sequences and erroneous biological inferences made based on hypermutation analysis.
Collapse
Affiliation(s)
| | - Diako Ebrahimi
- Department of Biochemistry, Molecular Biology and Biophysics; Masonic Cancer Center; Institute for Molecular Virology; University of Minnesota, MN, USA.
| |
Collapse
|
8
|
Mylvaganam GH, Silvestri G, Amara RR. HIV therapeutic vaccines: moving towards a functional cure. Curr Opin Immunol 2015; 35:1-8. [PMID: 25996629 DOI: 10.1016/j.coi.2015.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 11/17/2022]
Abstract
Anti-viral T-cell and B-cell responses play a crucial role in suppressing HIV and SIV replication during chronic infection. However, these infections are rarely controlled by the host immune response, and most infected individuals need lifelong antiretroviral therapy (ART). Recent advances in our understanding of how anti-HIV immune responses are elicited and regulated prompted a surge of interest in harnessing these responses to reduce the HIV 'residual disease' that is present in ART-treated HIV-infected individuals. Novel approaches that are currently explored include both conventional therapeutic vaccines (i.e., active immunization strategies using HIV-derived immunogens) as well as the use of checkpoint blockers such as anti-PD-1 antibodies. These approaches appear promising as key components of complex therapeutic strategies aimed at curing HIV infection.
Collapse
Affiliation(s)
- Geetha H Mylvaganam
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Guido Silvestri
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rama Rao Amara
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
9
|
Martyushev AP, Petravic J, Grimm AJ, Alinejad-Rokny H, Gooneratne SL, Reece JC, Cromer D, Kent SJ, Davenport MP. Epitope-specific CD8+ T cell kinetics rather than viral variability determine the timing of immune escape in simian immunodeficiency virus infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:4112-21. [PMID: 25825438 DOI: 10.4049/jimmunol.1400793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/01/2015] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells are important for the control of chronic HIV infection. However, the virus rapidly acquires "escape mutations" that reduce CD8(+) T cell recognition and viral control. The timing of when immune escape occurs at a given epitope varies widely among patients and also among different epitopes within a patient. The strength of the CD8(+) T cell response, as well as mutation rates, patterns of particular amino acids undergoing escape, and growth rates of escape mutants, may affect when escape occurs. In this study, we analyze the epitope-specific CD8(+) T cells in 25 SIV-infected pigtail macaques responding to three SIV epitopes. Two epitopes showed a variable escape pattern and one had a highly monomorphic escape pattern. Despite very different patterns, immune escape occurs with a similar delay of on average 18 d after the epitope-specific CD8(+) T cells reach 0.5% of total CD8(+) T cells. We find that the most delayed escape occurs in one of the highly variable epitopes, and that this is associated with a delay in the epitope-specific CD8(+) T cells responding to this epitope. When we analyzed the kinetics of immune escape, we found that multiple escape mutants emerge simultaneously during the escape, implying that a diverse population of potential escape mutants is present during immune selection. Our results suggest that the conservation or variability of an epitope does not appear to affect the timing of immune escape in SIV. Instead, timing of escape is largely determined by the kinetics of epitope-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Alexey P Martyushev
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Andrew J Grimm
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Hamid Alinejad-Rokny
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Shayarana L Gooneratne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jeanette C Reece
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Deborah Cromer
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Miles P Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| |
Collapse
|
10
|
Linking pig-tailed macaque major histocompatibility complex class I haplotypes and cytotoxic T lymphocyte escape mutations in simian immunodeficiency virus infection. J Virol 2014; 88:14310-25. [PMID: 25275134 DOI: 10.1128/jvi.02428-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The influence of major histocompatibility complex class I (MHC-I) alleles on human immunodeficiency virus (HIV) diversity in humans has been well characterized at the population level. MHC-I alleles likely affect viral diversity in the simian immunodeficiency virus (SIV)-infected pig-tailed macaque (Macaca nemestrina) model, but this is poorly characterized. We studied the evolution of SIV in pig-tailed macaques with a range of MHC-I haplotypes. SIV(mac251) genomes were amplified from the plasma of 44 pig-tailed macaques infected with SIV(mac251) at 4 to 10 months after infection and characterized by Illumina deep sequencing. MHC-I typing was performed on cellular RNA using Roche/454 pyrosequencing. MHC-I haplotypes and viral sequence polymorphisms at both individual mutations and groups of mutations spanning 10-amino-acid segments were linked using in-house bioinformatics pipelines, since cytotoxic T lymphocyte (CTL) escape can occur at different amino acids within the same epitope in different animals. The approach successfully identified 6 known CTL escape mutations within 3 Mane-A1*084-restricted epitopes. The approach also identified over 70 new SIV polymorphisms linked to a variety of MHC-I haplotypes. Using functional CD8 T cell assays, we confirmed that one of these associations, a Mane-B028 haplotype-linked mutation in Nef, corresponded to a CTL epitope. We also identified mutations associated with the Mane-B017 haplotype that were previously described to be CTL epitopes restricted by Mamu-B*017:01 in rhesus macaques. This detailed study of pig-tailed macaque MHC-I genetics and SIV polymorphisms will enable a refined level of analysis for future vaccine design and strategies for treatment of HIV infection. IMPORTANCE Cytotoxic T lymphocytes select for virus escape mutants of HIV and SIV, and this limits the effectiveness of vaccines and immunotherapies against these viruses. Patterns of immune escape variants are similar in HIV type 1-infected human subjects that share the same MHC-I genes, but this has not been studied for SIV infection of macaques. By studying SIV sequence diversity in 44 MHC-typed SIV-infected pigtail macaques, we defined over 70 sites within SIV where mutations were common in macaques sharing particular MHC-I genes. Further, pigtail macaques sharing nearly identical MHC-I genes with rhesus macaques responded to the same CTL epitope and forced immune escape. This allows many reagents developed to study rhesus macaques to also be used to study pigtail macaques. Overall, our study defines sites of immune escape in SIV in pigtailed macaques, and this enables a more refined level of analysis of future vaccine design and strategies for treatment of HIV infection.
Collapse
|
11
|
Multimodality vaccination against clade C SHIV: partial protection against mucosal challenges with a heterologous tier 2 virus. Vaccine 2014; 32:6527-36. [PMID: 25245933 DOI: 10.1016/j.vaccine.2014.08.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/14/2014] [Accepted: 08/27/2014] [Indexed: 12/17/2022]
Abstract
We sought to test whether vaccine-induced immune responses could protect rhesus macaques (RMs) against upfront heterologous challenges with an R5 simian-human immunodeficiency virus, SHIV-2873Nip. This SHIV strain exhibits many properties of transmitted HIV-1, such as tier 2 phenotype (relatively difficult to neutralize), exclusive CCR5 tropism, and gradual disease progression in infected RMs. Since no human AIDS vaccine recipient is likely to encounter an HIV-1 strain that exactly matches the immunogens, we immunized the RMs with recombinant Env proteins heterologous to the challenge virus. For induction of immune responses against Gag, Tat, and Nef, we explored a strategy of immunization with overlapping synthetic peptides (OSP). The immune responses against Gag and Tat were finally boosted with recombinant proteins. The vaccinees and a group of ten control animals were given five low-dose intrarectal (i.r.) challenges with SHIV-2873Nip. All controls and seven out of eight vaccinees became systemically infected; there was no significant difference in viremia levels of vaccinees vs. controls. Prevention of viremia was observed in one vaccinee which showed strong boosting of virus-specific cellular immunity during virus exposures. The protected animal showed no challenge virus-specific neutralizing antibodies in the TZM-bl or A3R5 cell-based assays and had low-level ADCC activity after the virus exposures. Microarray data strongly supported a role for cellular immunity in the protected animal. Our study represents a case of protection against heterologous tier 2 SHIV-C by vaccine-induced, virus-specific cellular immune responses.
Collapse
|
12
|
Reece JC, Martyushev A, Petravic J, Grimm A, Gooneratne S, Amaresena T, De Rose R, Loh L, Davenport MP, Kent SJ. Measuring turnover of SIV DNA in resting CD4+ T cells using pyrosequencing: implications for the timing of HIV eradication therapies. PLoS One 2014; 9:e93330. [PMID: 24710023 PMCID: PMC3977820 DOI: 10.1371/journal.pone.0093330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 01/28/2023] Open
Abstract
Resting CD4+ T cells are a reservoir of latent HIV-1. Understanding the turnover of HIV DNA in these cells has implications for the development of eradication strategies. Most studies of viral latency focus on viral persistence under antiretroviral therapy (ART). We studied the turnover of SIV DNA resting CD4+ T cells during active infection in a cohort of 20 SIV-infected pigtail macaques. We compared SIV sequences at two Mane-A1*084:01-restricted CTL epitopes using serial plasma RNA and resting CD4+ T cell DNA samples by pyrosequencing, and used a mathematical modeling approach to estimate SIV DNA turnover. We found SIV DNA turnover in resting CD4+ T cells was slow in animals with low chronic viral loads, consistent with the long persistence of latency seen under ART. However, in animals with high levels of chronic viral replication, turnover was high. SIV DNA half-life within resting CD4 cells correleated with viral load (p = 0.0052) at the Gag KP9 CTL epitope. At a second CTL epitope in Tat (KVA10) there was a trend towards an association of SIV DNA half-life in resting CD4 cells and viral load (p = 0.0971). Further, we found that the turnover of resting CD4+ T cell SIV DNA was higher for escape during early infection than for escape later in infection (p = 0.0084). Our results suggest viral DNA within resting CD4 T cells is more labile and may be more susceptible to reactivation/eradication treatments when there are higher levels of virus replication and during early/acute infection.
Collapse
Affiliation(s)
- Jeanette C. Reece
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Alexey Martyushev
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Andrew Grimm
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Shayarana Gooneratne
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Thakshila Amaresena
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
13
|
Fernandez CS, Jegaskanda S, Godfrey DI, Kent SJ. In-vivo stimulation of macaque natural killer T cells with α-galactosylceramide. Clin Exp Immunol 2013; 173:480-92. [PMID: 23656283 DOI: 10.1111/cei.12132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 12/14/2022] Open
Abstract
Natural killer T cells are a potent mediator of anti-viral immunity in mice, but little is known about the effects of manipulating NKT cells in non-human primates. We evaluated the delivery of the NKT cell ligand, α-galactosylceramide (α-GalCer), in 27 macaques by studying the effects of different dosing (1-100 μg), and delivery modes [directly intravenously (i.v.) or pulsed onto blood or peripheral blood mononuclear cells]. We found that peripheral NKT cells were depleted transiently from the periphery following α-GalCer administration across all delivery modes, particularly in doses of ≥10 μg. Furthermore, NKT cell numbers frequently remained depressed at i.v. α-GalCer doses of >10 μg. Levels of cytokine expression were also not enhanced after α-GalCer delivery to macaques. To evaluate the effects of α-GalCer administration on anti-viral immunity, we administered α-GalCer either together with live attenuated influenza virus infection or prior to simian immunodeficiency virus (SIV) infection of two macaques. There was no clear enhancement of influenza-specific T or B cell immunity following α-GalCer delivery. Further, there was no modulation of pathogenic SIVmac251 infection following α-GalCer delivery to a further two macaques in a pilot study. Accordingly, although macaque peripheral NKT cells are modulated by α-GalCer in vivo, at least for the dosing regimens tested in this study, this does not appear to have a significant impact on anti-viral immunity in macaque models.
Collapse
Affiliation(s)
- C S Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
14
|
Kløverpris HN, Jackson A, Handley A, Hayes P, Gilmour J, Riddell L, Chen F, Atkins M, Boffito M, Walker BD, Ackland J, Sullivan M, Goulder P. Non-immunogenicity of overlapping gag peptides pulsed on autologous cells after vaccination of HIV infected individuals. PLoS One 2013; 8:e74389. [PMID: 24124451 PMCID: PMC3790804 DOI: 10.1371/journal.pone.0074389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/17/2013] [Indexed: 12/30/2022] Open
Abstract
Background HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping Gag peptides on autologous lymphocytes (OPAL) has proven immunogenic and effective in reducing viral loads in multiple pigtail macaque studies, warranting clinical evaluation. Methodology We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach ‘OPAL-HIV-Gag(c)’. This vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous reinfusion. Patients with undetectable HIV viral loads (<50 copies/ml plasma) on HAART received four administrations at week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups: 12 mg (n = 6), 24 mg (n = 7), 48 mg (n = 2) or matching placebo (n = 8) with 18 immunologically evaluable. T-cell immunogenicity was assessed by IFNγ ELIspot and intracellular cytokine staining (ICS). Results The OPAL-HIV-Gag(c) peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c), 1/6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked, transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours) in OPAL-HIV-Gag(c) but not in placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P<0.001), compared to post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16). Conclusion/Significance Despite strong immunogenicity observed in several Macaca nemestrina studies using this approach, OPAL-HIV-Gag(c) was not significantly immunogenic in humans and improved methods of generating high-frequency Gag-specific T-cell responses are required. Name of Registry ClinicalTrials.gov, Registry number: NCT01123915, URL trial registry database: http://www.clinicaltrials.gov/ct2/results?term=OPAL-HIV-1001&Search=Search
Collapse
Affiliation(s)
- Henrik N. Kløverpris
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R Mandela School of Medicine, University of Kwazulu-Natal, Durban, KwaZulu-Natal, South Africa
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: ,
| | - Akil Jackson
- St Stephen's AIDS Trust St Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | | | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northhamptonshire Healthcare National Health Service Trust, Northhampton General Hospital, Cliftonville, Northhampton, United Kingdom
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Mark Atkins
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Marta Boffito
- St Stephen's AIDS Trust St Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Maryland, Chevy Chase, Maryland, United States of America
| | - Jim Ackland
- Global Biosolutions, Craigeburn, Victoria, Australia
| | - Mark Sullivan
- Medicines Development, Melbourne, Victoria, Australia
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Jackson A, Kløverpris HN, Boffito M, Handley A, Atkins M, Hayes P, Gilmour J, Riddel L, Chen F, Bailey-Tippets M, Walker B, Ackland J, Sullivan M, Goulder P. A randomised, placebo-controlled, first-in-human study of a novel clade C therapeutic peptide vaccine administered ex vivo to autologous white blood cells in HIV infected individuals. PLoS One 2013; 8:e73765. [PMID: 24069230 PMCID: PMC3775760 DOI: 10.1371/journal.pone.0073765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/17/2013] [Indexed: 11/21/2022] Open
Abstract
Background Preclinical studies of overlapping 15mer peptides, spanning SIV, SHIV or HIV, pulsed on autologous PBMC ex vivo have demonstrated high level, virus-specific T cell responses and viral suppression in non-human primates (NHP). Opal-HIV-Gag(c) consists of 120 synthetic 15mer peptides spanning Clade C, consensus Gag, manufactured to current good manufacturing practice; having been evaluated in a good laboratory practice toxicology study in Macaca mulatta. We evaluated the safety and preliminary immunogenicity of such peptides administered intravenously after short-duration ex vivo incubation, to HIV-positive adults on suppressive antiretroviral therapy. Methods and Findings A first-in-human, placebo-controlled, double-blind, dose escalation study was conducted. Twenty-three patients with virus suppressed by antiretroviral therapy were enrolled in four groups 12 mg (n = 6), 24 mg (n = 6), 48 mg (n = 2) or matching placebo (n = 8). Treatment was administered intravenously after bedside enrichment of 120 mL whole blood for white cells using a closed system (Sepax S-100 device), with ex vivo peptide admixture (or diluent alone) and 37°C incubation for one hour prior to reinfusion. Patients received 4 administrations at monthly intervals followed by a 12-week observation post-treatment. Opal-HIV-Gag(c) was reasonably tolerated at doses of 12 and 24 mg. There was an increased incidence of temporally associated pyrexia, chills, and transient/self-limiting lymphopenia in Opal-HIV-Gag(c) recipients compared to placebo. The study was terminated early, after two patients were recruited to the 48 mg cohort; a serious adverse event of hypotension, tachycardia secondary to diarrhoea occurred following a single product administration. An infectious cause for the event could not be identified, leaving the possibility of immunologically mediated product reaction. Conclusions A serious, potentially life-threatening event of hypotension led to early, precautionary termination of the study. In the absence of a clearly defined mechanism or ability to predict such occurrence, further development of Opal-HIV-Gag(c) will not be undertaken in the current form. Registration ClinicalTrials.gov NCT01123915; EudraCT: 2008-005142-23
Collapse
Affiliation(s)
- Akil Jackson
- St Stephen’s AIDS Trust, Chelsea and Westminster Hospital, London, United Kingdom
- * E-mail:
| | - Henrik N. Kløverpris
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, K-RITH, University of Kwazulu-Natal, Durban, South Africa
| | - Marta Boffito
- St Stephen’s AIDS Trust, Chelsea and Westminster Hospital, London, United Kingdom
| | | | | | | | | | - Lynn Riddel
- Department of Genitourinary Medicine, Northampton General Hospital, Northampton, United Kingdom
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | | | - Bruce Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
| | - Jim Ackland
- Global Biosolutions, Craigieburn, Victoria, Australia
| | - Mark Sullivan
- Medicines Development, Melbourne, Victoria, Australia
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
| |
Collapse
|
16
|
Korsholm KS, Karlsson I, Tang ST, Brandt L, Agger EM, Aagaard C, Andersen P, Fomsgaard A. Broadening of the T-cell repertoire to HIV-1 Gag p24 by vaccination of HLA-A2/DR transgenic mice with overlapping peptides in the CAF05 adjuvant. PLoS One 2013; 8:e63575. [PMID: 23691069 PMCID: PMC3656914 DOI: 10.1371/journal.pone.0063575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/04/2013] [Indexed: 12/15/2022] Open
Abstract
Induction of broad T-cell immune responses is regarded as critical for vaccines against the human immunodeficiency virus type 1 (HIV-1) which exhibit high diversity and, therefore, focus has been on inducing cytotoxic CD8 T-cell responses against the more conserved parts of the virus, such as the Gag protein. Herein, we have used the p24 protein which contains a range of conserved T-cell epitopes. We demonstrate that a vaccine of HIV-1 subtype B consensus group-specific antigen (Gag) p24 protein with the CD8-inducing liposomal cationic adjuvant formulation (CAF) 05, induces both CD4 and CD8 T-cell responses in CB6F1 mice. The adjuvanted vaccine also induced functional antigen-specific cytotoxicity in vivo. Furthermore, we found that when fragmenting the Gag p24 protein into overlapping Gag p24 peptides, a broader T-cell epitope specificity was induced in the humanized human leukocyte antigen (HLA)-A2/DR-transgenic mouse model. Thus, combining overlapping Gag p24 peptides with CAF05 appears to be a promising and simple strategy for inducing broader T-cell responses to multiple conserved epitopes which will be relevant for both prophylactic and therapeutic HIV-1 vaccines.
Collapse
Affiliation(s)
- Karen S. Korsholm
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ingrid Karlsson
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Sheila T. Tang
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Lea Brandt
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Fomsgaard
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
17
|
Abstract
Vaccines are arguably the most powerful medical intervention in the fight against infectious diseases. The enormity of the global human immunodeficiency virus type 1 (HIV)/acquired immunodeficiency syndrome (AIDS) pandemic makes the development of an AIDS vaccine a scientific and humanitarian priority. Research on vaccines that induce T-cell immunity has dominated much of the recent development effort, mostly because of disappointing efforts to induce neutralizing antibodies through vaccination. Whereas T cells are known to limit HIV and other virus infections after infection, their role in protection against initial infection is much less clear. In this article, we will review the rationale behind a T-cell-based vaccine approach, provide an overview of the methods and platforms that are being applied, and discuss the impact of recent vaccine trial results on the future direction of T-cell vaccine research.
Collapse
Affiliation(s)
- Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
18
|
Kent SJ, Reece JC, Petravic J, Martyushev A, Kramski M, De Rose R, Cooper DA, Kelleher AD, Emery S, Cameron PU, Lewin SR, Davenport MP. The search for an HIV cure: tackling latent infection. THE LANCET. INFECTIOUS DISEASES 2013; 13:614-21. [PMID: 23481675 DOI: 10.1016/s1473-3099(13)70043-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Strategies to eliminate infectious HIV that persists despite present treatments and with the potential to cure HIV infection are of great interest. One patient seems to have been cured of HIV infection after receiving a bone marrow transplant with cells resistant to the virus, although this strategy is not viable for large numbers of infected people. Several clinical trials are underway in which drugs are being used to activate cells that harbour latent HIV. In a recent study, investigators showed that activation of latent HIV infection in patients on antiretroviral therapy could be achieved with a single dose of vorinostat, a licensed anticancer drug that inhibits histone deacetylase. Although far from a cure, such studies provide some guidance towards the logical next steps for research. Clinical studies that use a longer duration of drug dosing, alternative agents, combination approaches, gene therapy, and immune-modulation approaches are all underway.
Collapse
Affiliation(s)
- Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nitayaphan S, Ngauy V, O'Connell R, Excler JL. HIV epidemic in Asia: optimizing and expanding vaccine development. Expert Rev Vaccines 2012; 11:805-19. [PMID: 22913258 DOI: 10.1586/erv.12.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent evidence in Thailand for protection from acquisition of HIV through vaccination in a mostly heterosexual population has generated considerable hope. Building upon these results and the analysis of the correlates of risk remains among the highest priorities. Improved vaccine concepts including heterologous prime-boost regimens, improved proteins with potent adjuvants and new vectors expressing mosaic antigens may soon enter clinical development to assess vaccine efficacy in men who have sex with men. Identifying heterosexual populations with sufficient HIV incidence for the conduct of efficacy trials represents perhaps the main challenge in Asia. Fostering translational research efforts in Asian countries may benefit from the development of master strategic plans and program management processes.
Collapse
Affiliation(s)
- Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
20
|
Vanham G, Van Gulck E. Can immunotherapy be useful as a "functional cure" for infection with Human Immunodeficiency Virus-1? Retrovirology 2012; 9:72. [PMID: 22958464 PMCID: PMC3472319 DOI: 10.1186/1742-4690-9-72] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022] Open
Abstract
Immunotherapy aims to assist the natural immune system in achieving control over viral infection. Various immunotherapy formats have been evaluated in either therapy-naive or therapy-experienced HIV-infected patients over the last 20 years. These formats included non-antigen specific strategies such as cytokines that stimulate immunity or suppress the viral replication, as well as antibodies that block negative regulatory pathways. A number of HIV-specific therapeutic vaccinations have also been proposed, using in vivo injection of inactivated virus, plasmid DNA encoding HIV antigens, or recombinant viral vectors containing HIV genes. A specific format of therapeutic vaccines consists of ex vivo loading of autologous dendritic cells with one of the above mentioned antigenic formats or mRNA encoding HIV antigens.This review provides an extensive overview of the background and rationale of these different therapeutic attempts and discusses the results of trials in the SIV macaque model and in patients. To date success has been limited, which could be explained by insufficient quality or strength of the induced immune responses, incomplete coverage of HIV variability and/or inappropriate immune activation, with ensuing increased susceptibility of target cells.Future attempts at therapeutic vaccination should ideally be performed under the protection of highly active antiretroviral drugs in patients with a recovered immune system. Risks for immune escape should be limited by a better coverage of the HIV variability, using either conserved or mosaic sequences. Appropriate molecular adjuvants should be included to enhance the quality and strength of the responses, without inducing inappropriate immune activation. Finally, to achieve a long-lasting effect on viral control (i.e. a "functional cure") it is likely that these immune interventions should be combined with anti-latency drugs and/or gene therapy.
Collapse
Affiliation(s)
- Guido Vanham
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat 155, B-2000, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerpen, Antwerpen, Belgium
| | - Ellen Van Gulck
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat 155, B-2000, Antwerpen, Belgium
- Present address: Community of Research Excellence and Advanced Technology (C.R.E.A.Te), Division of Janssen, Beerse, Belgium
| |
Collapse
|
21
|
Circumventing antivector immunity by using adenovirus-infected blood cells for repeated application of adenovirus-vectored vaccines: proof of concept in rhesus macaques. J Virol 2012; 86:11031-42. [PMID: 22855499 DOI: 10.1128/jvi.00783-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus has been extensively exploited as a vector platform for delivering vaccines. However, preexisting antiadenovirus immunity is the major stumbling block for application of adenovirus-vectored vaccines. In this study, we found that freshly isolated peripheral blood mononuclear cells (PBMCs), mostly CD14(+) cells, from adenovirus serotype 5 (Ad5)-seropositive primates (humans and rhesus macaques) can be efficiently infected with Ad5 in vitro. On the basis of this observation, a novel strategy based on adenoviral vector-infected PBMC (AVIP) immunization was explored to circumvent antivector immunity. Autologous infusion of Ad5-SIVgag-infected PBMCs elicited a strong Gag-specific cellular immune response but induced weaker Ad5-neutralizing antibody (NAb) in Ad5-seronegative macaques than in macaques intramuscularly injected with Ad5-SIVgag. Moreover, Ad5-seropositive macaques receiving multiple AVIP immunizations with Ad5-SIVenv, Ad5-SIVgag, and Ad5-SIVpol vaccines elicited escalated Env-, Gag-, and Pol-specific immune responses after each immunization that were significantly greater than those in macaques intramuscularly injected with these Ad5-SIV vaccines. After challenged intravenously with a highly pathogenic SIVmac239 virus, macaques receiving AVIP immunization demonstrated a significant reduction in viral load at both the peak time and set-point period compared with macaques without Ad5-SIV vaccines. Our study warranted further research and development of the AVIP immunization as a platform for repeated applications of adenovirus-vectored vaccines.
Collapse
|
22
|
An "escape clock" for estimating the turnover of SIV DNA in resting CD4⁺ T cells. PLoS Pathog 2012; 8:e1002615. [PMID: 22496643 PMCID: PMC3320584 DOI: 10.1371/journal.ppat.1002615] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/17/2012] [Indexed: 01/28/2023] Open
Abstract
Persistence of HIV DNA presents a major barrier to the complete control of HIV infection under current therapies. Most studies suggest that cells with latently integrated HIV decay very slowly under therapy. However, it is much more difficult to study the turnover and persistence of HIV DNA during active infection. We have developed an “escape clock” approach for measuring the turnover of HIV DNA in resting CD4+ T cells. This approach studies the replacement of wild-type (WT) SIV DNA present in early infection by CTL escape mutant (EM) strains during later infection. Using a strain-specific real time PCR assay, we quantified the relative amounts of WT and EM strains in plasma SIV RNA and cellular SIV DNA. Thus we can track the formation and turnover of SIV DNA in sorted resting CD4+ T cells. We studied serial plasma and PBMC samples from 20 SIV-infected Mane-A*10 positive pigtail macaques that have a signature Gag CTL escape mutation. In animals with low viral load, WT virus laid down early in infection is extremely stable, and the decay of this WT species is very slow, consistent with findings in subjects on anti-retroviral medications. However, during active, high level infection, most SIV DNA in resting cells was turning over rapidly, suggesting a large pool of short-lived DNA produced by recent infection events. Our results suggest that, in order to reduce the formation of a stable population of SIV DNA, it will be important either to intervene very early or intervene during active replication. New treatments for HIV have proved very successful at controlling viral replication and preventing the onset of AIDS. However, these treatments must be continued for life, because if they are stopped the virus rapidly ‘rebounds’ to its original levels. The reason for this rebound is the existence of a population of viruses that lie dormant inside cells during treatment, and reactivate as soon as treatment is stopped. This ‘latent virus’ is extremely long-lived under drug therapy conditions, and therefore presents a major barrier to viral eradication. However, very little is known about the survival and reactivation of latently infected cells during ongoing infection, because virus is being formed and destroyed all the time. We have developed a novel ‘escape clock’ approach to measure how long viral DNA lasts in monkeys. We find that, in the setting of low viral load, the lifespan of infected cells is very long, whereas during active infection there is a surprisingly high turnover of viral DNA within resting CD4 T cells. We believe this is due to high level of immune activation when there is a high level of replicating virus. This result may have important implications for the optimal timing of drug treatment.
Collapse
|
23
|
Fuller DH, Rajakumar P, Che JW, Narendran A, Nyaundi J, Michael H, Yager EJ, Stagnar C, Wahlberg B, Taber R, Haynes JR, Cook FC, Ertl P, Tite J, Amedee AM, Murphey-Corb M. Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques. PLoS One 2012; 7:e33715. [PMID: 22442716 PMCID: PMC3307760 DOI: 10.1371/journal.pone.0033715] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/15/2012] [Indexed: 11/18/2022] Open
Abstract
Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans.
Collapse
Affiliation(s)
- Deborah Heydenburg Fuller
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Albany Medical College, Albany, New York, United States of America
- PowderJect Vaccines, Inc., Madison, Wisconsin, United States of America
| | - Premeela Rajakumar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jenny W. Che
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- PowderJect Vaccines, Inc., Madison, Wisconsin, United States of America
| | - Amithi Narendran
- Albany Medical College, Albany, New York, United States of America
| | - Julia Nyaundi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Heather Michael
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Eric J. Yager
- Albany Medical College, Albany, New York, United States of America
| | - Cristy Stagnar
- Albany Medical College, Albany, New York, United States of America
| | - Brendon Wahlberg
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rachel Taber
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joel R. Haynes
- PowderJect Vaccines, Inc., Madison, Wisconsin, United States of America
| | | | - Peter Ertl
- GlaxoSmithKline, Stevenage, United Kingdom
| | - John Tite
- GlaxoSmithKline, Stevenage, United Kingdom
| | - Angela M. Amedee
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Michael Murphey-Corb
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
24
|
Keane NM, Roberts SG, Almeida CAM, Krishnan T, Chopra A, Demaine E, Laird R, Tschochner M, Carlson JM, Mallal S, Heckerman D, James I, John M. High-avidity, high-IFNγ-producing CD8 T-cell responses following immune selection during HIV-1 infection. Immunol Cell Biol 2012; 90:224-34. [PMID: 21577229 PMCID: PMC3173576 DOI: 10.1038/icb.2011.34] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HIV-1 mutations, which reduce or abolish CTL responses against virus-infected cells, are frequently selected in acute and chronic HIV infection. Among population HIV-1 sequences, immune selection is evident as human leukocyte antigen (HLA) allele-associated substitutions of amino acids within or near CD8 T-cell epitopes. In these cases, the non-adapted epitope is susceptible to immune recognition until an escape mutation renders the epitope less immunogenic. However, several population-based studies have independently identified HLA-associated viral changes, which lead to the formation of a new T-cell epitope, suggesting that the immune responses that these variants or 'neo-epitopes' elicit provide an evolutionary advantage to the virus rather than the host. Here, we examined the functional characteristics of eight CD8 T-cell responses that result from viral adaptation in 125 HLA-genotyped individuals with chronic HIV-1 infection. Neo-epitopes included well-characterized immunodominant epitopes restricted by common HLA alleles, and in most cases the T-cell responses against the neo-epitope showed significantly greater functional avidity and higher IFNγ production than T cells for non-adapted epitopes, but were not more cytotoxic. Neo-epitope formation and emergence of cognate T-cell response coincident with a rise in viral load was then observed in vivo in an acutely infected individual. These findings show that HIV-1 adaptation not only abrogates the immune recognition of early targeted epitopes, but may also increase immune recognition to other epitopes, which elicit immunodominant but non-protective T-cell responses. These data have implications for immunodominance associated with polyvalent vaccines based on the diversity of chronic HIV-1 sequences.
Collapse
Affiliation(s)
- Niamh M Keane
- Centre for Clinical Immunology and Biomedical Statistics, Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fomsgaard A, Karlsson I, Gram G, Schou C, Tang S, Bang P, Kromann I, Andersen P, Andreasen LV. Development and preclinical safety evaluation of a new therapeutic HIV-1 vaccine based on 18 T-cell minimal epitope peptides applying a novel cationic adjuvant CAF01. Vaccine 2011; 29:7067-74. [PMID: 21767590 DOI: 10.1016/j.vaccine.2011.07.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/30/2011] [Accepted: 07/08/2011] [Indexed: 01/28/2023]
Abstract
Therapeutic immunization of HIV-1-infected individuals with or without anti-retroviral therapy is a new promising disease prevention. To induce a new cytotoxic T(CD8) lymphocyte (CTL) immunity during chronic HIV-1 infection 15 infrequently targeted but conserved HLA-supertype binding CTL epitopes from Gag, Pol, Nef, Env, Vpu and Vif were identified. The 15 T(CD8) and three T(CD4) helper peptides were GMP synthesised and formulated with a new adjuvant CAF01 which is a synthetic two-component liposomic adjuvant comprising the quaternary ammonium dimethyl-dioctadecyl-ammonium (DDA) and the immune modulator trehalose 6,6'-dibehenate (TDB). Using IFN-γ ELISPOT assay, T-cell immune induction by the vaccine was found to both CD4 and CD8 T-cell restricted peptides in HLA-A2 transgenic mice. Comprehensive toxicity studies of the CAF01 adjuvant-alone and together with different vaccines showed that CAF01 when tested at human dose levels was safe and well tolerated with only local inflammation at the site of injection and no systemic reactions. No pharmacological safety issues were observed in Beagle dogs. The HIV-1 vaccine toxicity study in the Göttingen Minipig(®) showed no systemic toxicity from five repetitive i.m. injections, each with a 2-week interval, of either the 18 HIV-1 peptide antigen solution (AFO18) or the AFO18-CAF01, in which the 18 HIV-1 peptides were formulated with the CAF01 adjuvant. Distinct inflammatory responses were observed in the injected muscles of the AFO18-CAF01 vaccine treated animals as a result of the immune stimulating effect of the adjuvant on the vaccine. The results of the toxicity studies provide optimism for phase I clinical trials evaluating the therapeutic HIV-1 T-cell vaccination approach using multiple subdominant minimal epitope peptides applying the novel cationic adjuvant CAF01.
Collapse
Affiliation(s)
- Anders Fomsgaard
- Virus Research & Development Laboratory, Department of Virology, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hu H, Gama L, Aye PP, Clements JE, Barry PA, Lackner AA, Weissman D. SIV antigen immunization induces transient antigen-specific T cell responses and selectively activates viral replication in draining lymph nodes in retroviral suppressed rhesus macaques. Retrovirology 2011; 8:57. [PMID: 21752277 PMCID: PMC3148979 DOI: 10.1186/1742-4690-8-57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/13/2011] [Indexed: 12/13/2022] Open
Abstract
Background HIV infection causes a qualitative and quantitative loss of CD4+ T cell immunity. The institution of anti-retroviral therapy (ART) restores CD4+ T cell responses to many pathogens, but HIV-specific responses remain deficient. Similarly, therapeutic immunization with HIV antigens of chronically infected, ART treated subjects results in poor induction of HIV-specific CD4 responses. In this study, we used a macaque model of ART treatment during chronic infection to study the virologic consequences of SIV antigen stimulation in lymph nodes early after immunization. Rhesus CMV (RhCMV) seropositive, Mamu A*01 positive rhesus macaques were chronically infected with SIVmac251 and treated with ART. The immune and viral responses to SIV gag and RhCMV pp65 antigen immunization in draining lymph nodes and peripheral blood were analyzed. Animals were immunized on contralateral sides with SIV gag and RhCMV pp65 encoding plasmids, which allowed lymph nodes draining each antigen to be obtained at the same time from the same animal for direct comparison. Results We observed that both SIV and RhCMV immunizations stimulated transient antigen-specific T cell responses in draining lymph nodes. The RhCMV-specific responses were potent and sustained (50 days post-immunization) in the periphery, while the SIV-specific responses were transient and extinguished quickly. The SIV antigen stimulation selectively induced transient SIV replication in draining lymph nodes. Conclusions The data are consistent with a model whereby viral replication in response to SIV antigen stimulation limits the generation of SIV antigen-specific responses and suggests a potential mechanism for the early loss and poor HIV-specific CD4+ T cell response observed in HIV-infected individuals.
Collapse
Affiliation(s)
- Haitao Hu
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Kent SJ, Cooper DA, Chhi Vun M, Shao Y, Zhang L, Ganguly N, Bela B, Tamashiro H, Ditangco R, Rerks-Ngarm S, Pitisuttithum P, Van Kinh N, Bernstein A, Osmanov S, for the AIDS Vaccine for Asia Network investigators and supporters. AIDS vaccine for Asia Network (AVAN): expanding the regional role in developing HIV vaccines. PLoS Med 2010; 7:e1000331. [PMID: 20877474 PMCID: PMC2943436 DOI: 10.1371/journal.pmed.1000331] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The HIV/AIDS pandemic continues to spread and an AIDS vaccine is urgently needed. Regional alliances and international collaborations can foster the development and evaluation of the next generation of AIDS vaccine candidates. The importance of coordinating and harmonizing efforts across regional alliances has become abundantly clear. We recently formed the AIDS Vaccine for Asia Network (AVAN) to help facilitate the development of a regional AIDS vaccine strategy that accelerates research and development of an AIDS vaccine through government advocacy, improved coordination, and harmonization of research; develops clinical trial and manufacturing capacity; supports ethical and regulatory frameworks; and ensures community participation.
Collapse
Affiliation(s)
| | - David A. Cooper
- University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Mean Chhi Vun
- National Center for HIV/AIDS, Dermatology and STIs (NCHADS), Phnom Penh, Cambodia
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Beijing, China
| | - Linqi Zhang
- Tsinghua University, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | - Nguyen Van Kinh
- National Institute of Infectious and Tropical Diseases (NIITD), Hanoi, Viet Nam
| | - Alan Bernstein
- Global HIV Vaccine Enterprise, New York, New York, United States of America
| | - Saladin Osmanov
- World Health Organization/Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland
| | | |
Collapse
|
28
|
Reece JC, Loh L, Alcantara S, Fernandez CS, Stambas J, Sexton A, De Rose R, Petravic J, Davenport MP, Kent SJ. Timing of immune escape linked to success or failure of vaccination. PLoS One 2010; 5. [PMID: 20862289 PMCID: PMC2940906 DOI: 10.1371/journal.pone.0012774] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/24/2010] [Indexed: 11/23/2022] Open
Abstract
Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIVmac251 challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIVmac251 stock had high levels of viral replication and rapid CTL escape. Unvaccinated naïve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of naïve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.
Collapse
Affiliation(s)
- Jeanette C. Reece
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Caroline S. Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Amy Sexton
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
29
|
Rerks-Ngarm S, Pitisuttithum P, Ganguly N, Zhang L, Tamashiro H, Cooper DA, Vun MC, Bela B, Ditangco R, Van Kinh N, Bernstein A, Osmanov S, Mathieson B, Kent SJ, Shao Y. Defining the objectives of the AIDS vaccine for Asia network: report of the WHO-UNAIDS/Global HIV vaccine enterprise regional consultation on expanding AIDS vaccine research and development capacity in Asia. Curr Opin HIV AIDS 2010; 5:435-52. [PMID: 20978386 PMCID: PMC3125721 DOI: 10.1097/coh.0b013e32833c95c1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Linqi Zhang
- Tsinghua University, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | | | | | - Mean Chhi Vun
- National Center for HIV/AIDS, Dermatology and STIs (NCHADS), Phnom Penh, Cambodia
| | | | | | - Nguyen Van Kinh
- National Institute of Infectious and Tropical Diseases (NIITD), Viet Nam
| | | | - Saladin Osmanov
- World Health Organization/Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland
| | | | | | - Yiming Shao
- National Center for AIDS/STD Control and Prevention, China
| |
Collapse
|
30
|
Valentin A, von Gegerfelt A, Rosati M, Miteloudis G, Alicea C, Bergamaschi C, Jalah R, Patel V, Khan AS, Draghia-Akli R, Pavlakis GN, Felber BK. Repeated DNA therapeutic vaccination of chronically SIV-infected macaques provides additional virological benefit. Vaccine 2010; 28:1962-74. [PMID: 20188252 PMCID: PMC2830913 DOI: 10.1016/j.vaccine.2009.10.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that therapeutic immunization by intramuscular injection of optimized plasmid DNAs encoding SIV antigens effectively induces immune responses able to reduce viremia in antiretroviral therapy (ART)-treated SIVmac251-infected Indian rhesus macaques. We subjected such therapeutically immunized macaques to a second round of therapeutic vaccination using a combination of plasmids expressing SIV genes and the IL-15/IL-15 receptor alpha as molecular adjuvant, which were delivered by the more efficacious in vivo constant-current electroporation. A very strong induction of antigen-specific responses to Gag, Env, Nef, and Pol, during ART (1.2-1.6% of SIV-specific T cells in the circulating T lymphocytes) was obtained with the improved vaccination method. Immunological responses were characterized by the production of IFN-gamma, IL-2, and TNF-alpha either alone, or in combination as double or triple cytokine positive multifunctional T cells. A significant induction of CD4(+) T cell responses, mainly targeting Gag, Nef, and Pol, as well as of CD8(+) T cells, mainly targeting Env, was found in both T cells with central memory and effector memory markers. After release from ART, the animals showed a virological benefit with a further approximately 1 log reduction in viremia. Vaccination with plasmid DNAs has several advantages over other vaccine modalities, including the possibility for repeated administration, and was shown to induce potent, efficacious, and long-lasting recall immune responses. Therefore, these data support the concept of adding DNA vaccination to the HAART regimen to boost the HIV-specific immune responses.
Collapse
Affiliation(s)
- Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Agneta von Gegerfelt
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Georgios Miteloudis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Cristina Bergamaschi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Vainav Patel
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Amir S. Khan
- VGX Pharmaceuticals, Inc., The Woodlands, Texas 77381
| | | | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| |
Collapse
|
31
|
Dimethyl sulfoxide (DMSO) exposure to human peripheral blood mononuclear cells (PBMCs) abolish T cell responses only in high concentrations and following coincubation for more than two hours. J Immunol Methods 2010; 356:70-8. [PMID: 20156444 DOI: 10.1016/j.jim.2010.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/14/2010] [Accepted: 01/29/2010] [Indexed: 11/20/2022]
Abstract
Immunotherapies based on reinfusion of autologous cells incubated ex vivo with peptides reconstituted in toxic solvents, such as DMSO, are now performed on a routine basis. However, the toxic effects of the most common solvent used, DMSO, on T cell responses from human PBMCs, have not previously been evaluated in detail. Here, in preparation for a first-in-man human phase I vaccine trial comprising reinfusion of autologous HIV peptide-pulsed PBMCs, human PBMCs from healthy and HIV-infected donors were exposed in vitro to a range of DMSO concentrations, and for a range of time periods. Polychromatic flow cytometry was used to evaluate the influence of DMSO on functional T cell responses. We report that high concentrations of up to 10% of DMSO for 1 hour do not affect the cell viability, the magnitude or the functional profile of CD4(+) and CD8(+) T cell responses, regardless of antigen specificity and HLA class I restriction. In contrast, >2% for >2 hours compromises these responses. These data are relevant in the design of immunotherapies based on pulsing a large number of peptides onto antigen presenting cells prior to reinfusion.
Collapse
|
32
|
Sexton A, Whitney PG, Chong SF, Zelikin AN, Johnston APR, De Rose R, Brooks AG, Caruso F, Kent SJ. A protective vaccine delivery system for in vivo T cell stimulation using nanoengineered polymer hydrogel capsules. ACS NANO 2009; 3:3391-400. [PMID: 19824668 DOI: 10.1021/nn900715g] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Successful delivery of labile vaccine antigens, such as peptides and proteins, to stimulate CD4 and CD8 T cell immunity could improve vaccine strategies against chronic infections such as HIV and Hepatitis C. Layer-by-layer (LbL)-assembled nanoengineered hydrogel capsules represent a novel and promising technology for the protection and delivery of labile vaccine candidates to antigen-presenting cells (APCs). Here we report on the in vitro and in vivo immunostimulatory capabilities of LbL-assembled disulfide cross-linked poly(methacrylic acid) (PMA(SH)) hydrogel capsules as a delivery strategy for protein and peptide vaccines using robust transgenic mice models and ovalbumin (OVA) as a model vaccine. We demonstrate that OVA protein as well as multiple OVA peptides can be successfully encapsulated within nanoengineered PMA(SH) hydrogel capsules. OVA-containing PMA(SH) capsules are internalized by mouse APCs, resulting in presentation of OVA epitopes and subsequent activation of OVA-specific CD4 and CD8 T cells in vitro. OVA-specific CD4 and CD8 T cells are also activated to proliferate in vivo following intravenous vaccination of mice with OVA protein- and OVA peptide-loaded PMA(SH) hydrogel capsules. Furthermore, we show that OVA encapsulated within the PMA(SH) capsules resulted in at least 6-fold greater proliferation of OVA-specific CD8 T cells and 70-fold greater proliferation of OVA-specific CD4 T cells in vivo compared to the equivalent amount of OVA protein administered alone. These results highlight the potential of nanoengineered hydrogel capsules for vaccine delivery.
Collapse
Affiliation(s)
- Amy Sexton
- Department of Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Induction of HIV-1 subtype B and AE-specific neutralizing antibodies in mice and macaques with DNA prime and recombinant gp140 protein boost regimens. Vaccine 2009; 27:6605-12. [DOI: 10.1016/j.vaccine.2009.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/30/2009] [Accepted: 08/06/2009] [Indexed: 11/20/2022]
|
34
|
Thrombocytopenia is strongly associated with simian AIDS in pigtail macaques. J Acquir Immune Defic Syndr 2009; 51:374-9. [PMID: 19461525 DOI: 10.1097/qai.0b013e3181a9cbcf] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Simian AIDS has a variable time course and presentation making it difficult to define disease effects of progressive simian immunodeficiency virus (SIV) infection. We commonly observed thrombocytopenia (TCP) associated with progressive SIV infection of pigtail macaques (Macaca nemestrina). We therefore analyzed the relationship between platelet counts, viral load (VL), and CD4 T-cell levels in 44 unselected macaques with chronic SIV infection. Persistent TCP was observed in 70% of pigtail macaques infected with SIVmac251 for up to 77 weeks in the absence of clinically significant bleeding. The presence of TCP correlated with higher SIV plasma VLs and depressed total and memory CD4 T cells. TCP was more common in macaques requiring euthanasia for incipient AIDS than macaques that survived to the end of the studies, although VL and CD4 T-cell decline were stronger independent predictors of AIDS-free survival. There was however no clear correlation between the development of TCP and immune activation as measured by plasma soluble CD14. We conclude that TCP is a useful end point to analyze SIV studies in pigtail macaques.
Collapse
|
35
|
Soloff AC, Liu X, Gao W, Day RD, Gambotto A, Barratt-Boyes SM. Adenovirus 5- and 35-based immunotherapy enhances the strength but not breadth or quality of immunity during chronic SIV infection. Eur J Immunol 2009; 39:2437-49. [DOI: 10.1002/eji.200839130] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques. J Virol 2009; 83:7619-28. [PMID: 19439474 DOI: 10.1128/jvi.00470-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.
Collapse
|
37
|
Mason RD, De Rose R, Kent SJ. Differential patterns of immune escape at Tat-specific cytotoxic T cell epitopes in pigtail macaques. Virology 2009; 388:315-23. [PMID: 19394064 DOI: 10.1016/j.virol.2009.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/24/2009] [Accepted: 03/24/2009] [Indexed: 11/17/2022]
Abstract
Cytotoxic T lymphocyte responses to conserved proteins such as Gag within HIV- or SIV-infected hosts can facilitate partial control of viremia. However, the utility of targeting variable viral proteins by CTL responses is unclear. We studied CTL responses to regulatory and accessory proteins of SIV in pigtail macaques. The regulatory and accessory proteins were the most commonly targeted proteins by CTL responses from pigtail macaques. We identified 2 novel Tat-specific CTL responses that were both restricted by the Mane-A10 allele. Viral escape at one of the Tat epitopes, KSA10, was slower in comparison to another Tat epitope KVA10. The kinetics of escape of the KSA10 Tat epitope were more similar to an immunodominant KP9 Gag epitope also restricted by Mane-A10. Our results suggest that some regulatory or accessory CTL epitopes may be useful targets for vaccination against HIV.
Collapse
Affiliation(s)
- Rosemarie D Mason
- Department of Microbiology and Immunology, University of Melbourne 3010, Australia
| | | | | |
Collapse
|
38
|
Mason RD, Alcantara S, Peut V, Loh L, Lifson JD, De Rose R, Kent SJ. Inactivated simian immunodeficiency virus-pulsed autologous fresh blood cells as an immunotherapy strategy. J Virol 2009; 83:1501-10. [PMID: 19019966 PMCID: PMC2620900 DOI: 10.1128/jvi.02119-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/09/2008] [Indexed: 01/04/2023] Open
Abstract
Practical immunotherapies for human immunodeficiency virus infection are needed. We evaluated inactivated simian immunodeficiency virus (SIV) pulsed onto fresh peripheral blood mononuclear cells in 12 pigtail macaques with chronic SIV(mac251) infection for T-cell immunogenicity in a randomized cross-over design study. The immunotherapy was safe and convincingly induced high levels of SIV-specific CD4(+) T-cell responses (mean, 5.9% +/- 1.3% of all CD4(+) T cells) and to a lesser extent SIV-specific CD8(+) T-cell responses (mean, 0.7% +/- 0.4%). Responses were primarily directed toward Gag and less frequently toward Env but not Pol or regulatory/accessory SIV proteins. T-cell responses against Gag were generally broad and polyfunctional, with a mean of 2.7 CD4(+) T-cell epitopes mapped per animal and more than half of the SIV Gag-specific CD4(+) T cells expressing three or more effector molecules. The immunogenicity was comparable to that found in previous studies of peptide-pulsed blood cells. Despite the high-level immunogenicity, no reduction in viral load was observed in the chronically viremic macaques. This contrasts with our studies of immunization with peptide-pulsed blood cells during early SIV infection in macaques. Future studies of inactivated virus-pulsed blood cell immunotherapy during early infection of patients receiving antiretroviral therapy are warranted.
Collapse
Affiliation(s)
- Rosemarie D Mason
- Department of Microbiology and Immunology, University of Melbourne, Melbourne 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
De Rose R, Mason RD, Loh L, Peut V, Smith MZ, Fernandez CS, Alcantara S, Amarasena T, Reece J, Seddiki N, Kelleher AD, Zaunders J, Kent SJ. Safety, immunogenicity and efficacy of peptide-pulsed cellular immunotherapy in macaques. J Med Primatol 2008; 37 Suppl 2:69-78. [PMID: 19187433 DOI: 10.1111/j.1600-0684.2008.00329.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Goulder PJR, Watkins DI. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat Rev Immunol 2008; 8:619-30. [PMID: 18617886 PMCID: PMC2963026 DOI: 10.1038/nri2357] [Citation(s) in RCA: 372] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The recent failure of the T-cell-based HIV vaccine trial led by Merck & Co., Inc. prompts the urgent need to refocus on the question of which T-cell responses are required to control HIV replication. The well-described association between the expression of particular MHC class I molecules and successful containment of HIV or, in the macaque model, SIV replication provide a valuable starting point from which to evaluate more precisely what might constitute effective CD8(+) T-cell responses. Here, we review recent studies of T-cell-mediated control of HIV and SIV infection, and offer insight for the design of a successful T-cell-based HIV vaccine in the future.
Collapse
Affiliation(s)
- Philip J R Goulder
- Department of Paediatrics, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK.
| | | |
Collapse
|
41
|
De Rose R, Fernandez CS, Loh L, Peut V, Mason RD, Alcantara S, Reece J, Kent SJ. Delivery of immunotherapy with peptide-pulsed blood in macaques. Virology 2008; 378:201-4. [PMID: 18620724 DOI: 10.1016/j.virol.2008.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/02/2008] [Accepted: 06/05/2008] [Indexed: 11/18/2022]
Abstract
Simple and effective delivery methods for cellular immunotherapies are needed. We assessed ex vivo pulsing of overlapping SIV Gag 15mer peptides onto either whole blood or PBMC in 15 randomly assigned SIV-infected macaques. Both delivery methods were safe and immunogenic, stimulating high levels of broad and polyfunctional Gag-specific CD4 and CD8 T cells. Delivery of overlapping Gag peptides via either whole blood or PBMC is suitable for clinical evaluation.
Collapse
Affiliation(s)
- Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
News Updates. Lab Anim (NY) 2008. [DOI: 10.1038/laban0608-237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|