1
|
Biswas A, Narayan A, Sinha S, Mandal K. Chemically Engineered Peptide Efficiently Blocks Malaria Parasite Entry into Red Blood Cells. Biochemistry 2025; 64:1501-1508. [PMID: 40062812 DOI: 10.1021/acs.biochem.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chemical peptide engineering, enabled by residue insertion, backbone cyclization, and incorporation of an additional disulfide bond, led to a unique cyclic peptide that efficiently inhibits the invasion of red blood cells by malaria parasites. The engineered peptide exhibits a 20-fold enhanced affinity toward its receptor (PfAMA1) compared to the native peptide ligand (PfRON2), as determined by surface plasmon resonance. In-vitro parasite growth inhibition assay revealed augmented potency of the engineered peptide. The structure of the PfAMA1-cyclic peptide complex, predicted by the deep learning-based structure prediction tool ColabFold-AlphaFold2 with protein-cyclic peptide complex offset, provided valuable insights into the observed activity of the peptide analogs. Rational editing of the peptide backbone and side chain described here proved to be an effective strategy for designing peptide-based inhibitors to interfere with disease-related protein-protein interactions.
Collapse
Affiliation(s)
- Anamika Biswas
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Akash Narayan
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Suman Sinha
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| |
Collapse
|
2
|
Adeleke MA. Computational Development of Transmission-Blocking Vaccine Candidates Based on Fused Antigens of Pre- and Post-fertilization Gametocytes Against Plasmodium falciparum. Bioinform Biol Insights 2025; 19:11779322241306215. [PMID: 40034580 PMCID: PMC11873872 DOI: 10.1177/11779322241306215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/21/2024] [Indexed: 03/05/2025] Open
Abstract
Plasmodium falciparum is the most fatal species of malaria parasites in humans. Attempts at developing vaccines against the malaria parasites have not been very successful even after the approval of the RTS, S/AS01 vaccine. There is a continuous need for more effective vaccines including sexual-stage antigens that could block the transmission of malaria parasites between mosquitoes and humans. Low immunogenicity, expression, and stability are some of the challenges of transmission-blocking vaccine (TBV). This study was designed to computationally identify TBV candidates based on fused antigens by combining highly antigenic peptides from prefertilization (Pfs230, Pfs48/45) and postfertilization (Pfs25, Pfs28) gametocytes. The peptides were selected based on their antigenicity, nonallergenicity, and lack of similarity with the human proteome. Two fused antigens vaccine candidates (FAVCs) were constructed using Flagellin Salmonella enterica (FAVC-FSE) and Cholera toxin B (FAVC-CTB) as adjuvants. The constructs were evaluated for their physicochemical properties, structural stability, immunogenicity, and potential to elicit cross-protection across multiple Plasmodium species. The results yielded antigenic peptides, with antigenicity scores between 0.7589 and 1.1821. The structural analysis of FAVC-FSE and FAVC-CTB showed a Z-score of -6.70 and -4.79, a Ramachandran plot of 96.94% and 94.86% with overall quality of 94.20% and 89.85%, respectively. The FAVCs contained CD8+, CD4+, and linear B-cell epitopes with antigenicity scores between 1.2089 and 2.8623, 0.5663 and 2.4132, and 1.5196 and 2.2212, respectively. Each FAVC generated 6 conformational B-cells. High population coverage values were recorded for the FAVCs. The ability of the FAVCs to trigger immune response was evaluated through an in silico immune stimulation. The low-binding interaction energy that resulted from molecular docking and dynamics simulations showed a strong affinity of FAVCs to Toll-like receptor 5 (TLR5). The results indicate that the FAVC-FSE vaccine candidate is more promising to interrupt P falciparum transmission and provides a baseline for experimental validation.
Collapse
Affiliation(s)
- Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Watzlowik MT, Silberhorn E, Das S, Singhal R, Venugopal K, Holzinger S, Stokes B, Schadt E, Sollelis L, Bonnell VA, Gow M, Klingl A, Marti M, Llinás M, Meissner M, Längst G. Plasmodium blood stage development requires the chromatin remodeller Snf2L. Nature 2025; 639:1069-1075. [PMID: 39972139 PMCID: PMC11946908 DOI: 10.1038/s41586-025-08595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/03/2025] [Indexed: 02/21/2025]
Abstract
The complex life cycle of the malaria parasite Plasmodium falciparum involves several major differentiation stages, each requiring strict control of gene expression. Fundamental changes in chromatin structure and epigenetic modifications during life cycle progression suggest a central role for these mechanisms in regulating the transcriptional program of malaria parasite development1-6. P. falciparum chromatin is distinct from other eukaryotes, with an extraordinarily high AT content (>80%)7 and highly divergent histones resulting in atypical DNA packaging properties8. Moreover, the chromatin remodellers that are critical for shaping chromatin structure are not conserved and are unexplored in P. falciparum. Here we identify P. falciparum Snf2L (PfSnf2L, encoded by PF3D7_1104200) as an ISWI-related ATPase that actively repositions P. falciparum nucleosomes in vitro. Our results demonstrate that PfSnf2L is essential, regulating both asexual development and sexual differentiation. PfSnf2L globally controls just-in-time transcription by spatiotemporally determining nucleosome positioning at the promoters of stage-specific genes. The unique sequence and functional properties of PfSnf2L led to the identification of an inhibitor that specifically kills P. falciparum and phenocopies the loss of correct gene expression timing. The inhibitor represents a new class of antimalarial transmission-blocking drugs, inhibiting gametocyte formation.
Collapse
Affiliation(s)
| | - Elisabeth Silberhorn
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Sujaan Das
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Ritwik Singhal
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
| | - Kannan Venugopal
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon Holzinger
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Barbara Stokes
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ella Schadt
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Lauriane Sollelis
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Victoria A Bonnell
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
| | - Matthew Gow
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matthias Marti
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
- Department of Chemistry, Pennsylvania State University, State College, PA, USA
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany.
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany.
| |
Collapse
|
4
|
Angage D, Chmielewski J, Maddumage JC, Hesping E, Caiazzo S, Lai KH, Yeoh LM, Menassa J, Opi DH, Cairns C, Puthalakath H, Beeson JG, Kvansakul M, Boddey JA, Wilson DW, Anders RF, Foley M. A broadly cross-reactive i-body to AMA1 potently inhibits blood and liver stages of Plasmodium parasites. Nat Commun 2024; 15:7206. [PMID: 39174515 PMCID: PMC11341838 DOI: 10.1038/s41467-024-50770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Apical membrane antigen-1 (AMA1) is a conserved malarial vaccine candidate essential for the formation of tight junctions with the rhoptry neck protein (RON) complex, enabling Plasmodium parasites to invade human erythrocytes, hepatocytes, and mosquito salivary glands. Despite its critical role, extensive surface polymorphisms in AMA1 have led to strain-specific protection, limiting the success of AMA1-based interventions beyond initial clinical trials. Here, we identify an i-body, a humanised single-domain antibody-like molecule that recognises a conserved pan-species conformational epitope in AMA1 with low nanomolar affinity and inhibits the binding of the RON2 ligand to AMA1. Structural characterisation indicates that the WD34 i-body epitope spans the centre of the conserved hydrophobic cleft in AMA1, where interacting residues are highly conserved among all Plasmodium species. Furthermore, we show that WD34 inhibits merozoite invasion of erythrocytes by multiple Plasmodium species and hepatocyte invasion by P. falciparum sporozoites. Despite a short half-life in mouse serum, we demonstrate that WD34 transiently suppressed P. berghei infections in female BALB/c mice. Our work describes the first pan-species AMA1 biologic with inhibitory activity against multiple life-cycle stages of Plasmodium. With improved pharmacokinetic characteristics, WD34 could be a potential immunotherapy against multiple species of Plasmodium.
Collapse
Affiliation(s)
- Dimuthu Angage
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Jill Chmielewski
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Janesha C Maddumage
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Eva Hesping
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Sabrina Caiazzo
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Keng Heng Lai
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lee Ming Yeoh
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph Menassa
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - D Herbert Opi
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Callum Cairns
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Justin A Boddey
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Robin F Anders
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Michael Foley
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia.
- AdAlta, Science Drive, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
5
|
Ciubotariu II, Broyles BK, Xie S, Thimmapuram J, Mwenda MC, Mambwe B, Mulube C, Matoba J, Schue JL, Moss WJ, Bridges DJ, He Q, Carpi G. Diversity and selection analyses identify transmission-blocking antigens as the optimal vaccine candidates in Plasmodium falciparum. EBioMedicine 2024; 106:105227. [PMID: 39018754 PMCID: PMC11663769 DOI: 10.1016/j.ebiom.2024.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND A highly effective vaccine for malaria remains an elusive target, at least in part due to the under-appreciated natural parasite variation. This study aimed to investigate genetic and structural variation, and immune selection of leading malaria vaccine candidates across the Plasmodium falciparum's life cycle. METHODS We analysed 325 P. falciparum whole genome sequences from Zambia, in addition to 791 genomes from five other African countries available in the MalariaGEN Pf3k Database. Ten vaccine antigens spanning three life-history stages were examined for genetic and structural variations, using population genetics measures, haplotype network analysis, and 3D structure selection analysis. FINDINGS Among the ten antigens analysed, only three in the transmission-blocking vaccine category display P. falciparum 3D7 as the dominant haplotype. The antigens AMA1, CSP, MSP119 and CelTOS, are much more diverse than the other antigens, and their epitope regions are under moderate to strong balancing selection. In contrast, Rh5, a blood stage antigen, displays low diversity yet slightly stronger immune selection in the merozoite-blocking epitope region. Except for CelTOS, the transmission-blocking antigens Pfs25, Pfs48/45, Pfs230, Pfs47, and Pfs28 exhibit minimal diversity and no immune selection in epitopes that induce strain-transcending antibodies, suggesting potential effectiveness of 3D7-based vaccines in blocking transmission. INTERPRETATION These findings offer valuable insights into the selection of optimal vaccine candidates against P. falciparum. Based on our results, we recommend prioritising conserved merozoite antigens and transmission-blocking antigens. Combining these antigens in multi-stage approaches may be particularly promising for malaria vaccine development initiatives. FUNDING Purdue Department of Biological Sciences; Puskas Memorial Fellowship; National Institute of Allergy and Infectious Diseases (U19AI089680).
Collapse
Affiliation(s)
- Ilinca I Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Bradley K Broyles
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | | | - Mulenga C Mwenda
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | - Brenda Mambwe
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | - Conceptor Mulube
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | | | - Jessica L Schue
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - William J Moss
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Ciubotariu II, Broyles BK, Xie S, Thimmapuram J, Mwenda MC, Mambwe B, Mulube C, Matoba J, Schue JL, Moss WJ, Bridges DJ, He Q, Carpi G. Diversity and selection analyses identify transmission-blocking antigens as the optimal vaccine candidates in Plasmodium falciparum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.11.24307175. [PMID: 38766239 PMCID: PMC11100930 DOI: 10.1101/2024.05.11.24307175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background A highly effective vaccine for malaria remains an elusive target, at least in part due to the under-appreciated natural parasite variation. This study aimed to investigate genetic and structural variation, and immune selection of leading malaria vaccine candidates across the Plasmodium falciparum's life cycle. Methods We analyzed 325 P. falciparum whole genome sequences from Zambia, in addition to 791 genomes from five other African countries available in the MalariaGEN Pf3k Rdatabase. Ten vaccine antigens spanning three life-history stages were examined for genetic and structural variations, using population genetics measures, haplotype network analysis, and 3D structure selection analysis. Findings Among the ten antigens analyzed, only three in the transmission-blocking vaccine category display P. falciparum 3D7 as the dominant haplotype. The antigens AMA1, CSP, MSP119 and CelTOS, are much more diverse than the other antigens, and their epitope regions are under moderate to strong balancing selection. In contrast, Rh5, a blood stage antigen, displays low diversity yet slightly stronger immune selection in the merozoite-blocking epitope region. Except for CelTOS, the transmission-blocking antigens Pfs25, Pfs48/45, Pfs230, Pfs47, and Pfs28 exhibit minimal diversity and no immune selection in epitopes that induce strain-transcending antibodies, suggesting potential effectiveness of 3D7-based vaccines in blocking transmission. Interpretations These findings offer valuable insights into the selection of optimal vaccine candidates against P. falciparum. Based on our results, we recommend prioritizing conserved merozoite antigens and transmission-blocking antigens. Combining these antigens in multi-stage approaches may be particularly promising for malaria vaccine development initiatives. Funding Purdue Department of Biological Sciences; Puskas Memorial Fellowship; National Institute of Allergy and Infectious Diseases (U19AI089680).
Collapse
Affiliation(s)
- Ilinca I. Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Bradley K. Broyles
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, USA
| | | | - Mulenga C. Mwenda
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | - Brenda Mambwe
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | - Conceptor Mulube
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | | | - Jessica L. Schue
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - William J. Moss
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Pietsch E, Ramaprasad A, Bielfeld S, Wohlfarter Y, Maco B, Niedermüller K, Wilcke L, Kloehn J, Keller MA, Soldati-Favre D, Blackman MJ, Gilberger TW, Burda PC. A patatin-like phospholipase is important for mitochondrial function in malaria parasites. mBio 2023; 14:e0171823. [PMID: 37882543 PMCID: PMC10746288 DOI: 10.1128/mbio.01718-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE For their proliferation within red blood cells, malaria parasites depend on a functional electron transport chain (ETC) within their mitochondrion, which is the target of several antimalarial drugs. Here, we have used gene disruption to identify a patatin-like phospholipase, PfPNPLA2, as important for parasite replication and mitochondrial function in Plasmodium falciparum. Parasites lacking PfPNPLA2 show defects in their ETC and become hypersensitive to mitochondrion-targeting drugs. Furthermore, PfPNPLA2-deficient parasites show differences in the composition of their cardiolipins, a unique class of phospholipids with key roles in mitochondrial functions. Finally, we demonstrate that parasites devoid of PfPNPLA2 have a defect in gametocyte maturation, underlining the importance of a functional ETC for parasite transmission to the mosquito vector.
Collapse
Affiliation(s)
- Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Abhinay Ramaprasad
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sabrina Bielfeld
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Korbinian Niedermüller
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Markus A. Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Pulido-Quevedo FA, Arévalo-Pinzón G, Castañeda-Ramírez JJ, Barreto-Santamaría A, Patarroyo ME, Patarroyo MA. Plasmodium falciparum rhoptry neck protein 4 has conserved regions mediating interactions with receptors on human erythrocytes and hepatocyte membrane. Int J Med Microbiol 2023; 313:151579. [PMID: 37030083 DOI: 10.1016/j.ijmm.2023.151579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Plasmodium falciparum-related malaria represents a serious worldwide public health problem due to its high mortality rates. P. falciparum expresses rhoptry neck protein 4 (PfRON4) in merozoite and sporozoite rhoptries, it participates in tight junction-TJ formation via the AMA-1/RON complex and is refractory to complete genetic deletion. Despite this, which PfRON4 key regions interact with host cells remain unknown; such information would be useful for combating falciparum malaria. Thirty-two RON4 conserved region-derived peptides were chemically synthesised for determining and characterising PfRON4 regions having high host cell binding affinity (high activity binding peptides or HABPs). Receptor-ligand interaction/binding assays determined their specific binding capability, the nature of their receptors and their ability to inhibit in vitro parasite invasion. Peptides 42477, 42479, 42480, 42505 and 42513 had greater than 2% erythrocyte binding activity, whilst peptides 42477 and 42480 specifically bound to HepG2 membrane, both of them having micromolar and submicromolar range dissociation constants (Kd). Cell-peptide interaction was sensitive to treating erythrocytes with trypsin and/or chymotrypsin and HepG2 with heparinase I and chondroitinase ABC, suggesting protein-type (erythrocyte) and heparin and/or chondroitin sulphate proteoglycan receptors (HepG2) for PfRON4. Erythrocyte invasion inhibition assays confirmed HABPs' importance during merozoite invasion. PfRON4 800-819 (42477) and 860-879 (42480) regions specifically interacted with host cells, thereby supporting their inclusion in a subunit-based, multi-antigen, multistage anti-malarial vaccine.
Collapse
Affiliation(s)
- Fredy A Pulido-Quevedo
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; MSc programme in Biochemistry, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogotá, Colombia
| | - Gabriela Arévalo-Pinzón
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - Jeimmy J Castañeda-Ramírez
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia
| | - Adriana Barreto-Santamaría
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; Faculty of Sciences, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá, Colombia
| | - Manuel E Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9 # 51-11, Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9 # 51-11, Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogotá, Colombia.
| |
Collapse
|
9
|
Defining species-specific and conserved interactions of apical membrane protein 1 during erythrocyte invasion in malaria to inform multi-species vaccines. Cell Mol Life Sci 2023; 80:74. [PMID: 36847896 PMCID: PMC9969379 DOI: 10.1007/s00018-023-04712-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 03/01/2023]
Abstract
Plasmodium falciparum and P. vivax are the major causes of human malaria, and P. knowlesi is an important additional cause in SE Asia. Binding of apical membrane antigen 1 (AMA1) to rhoptry neck protein 2 (RON2) was thought to be essential for merozoite invasion of erythrocytes by Plasmodium spp. Our findings reveal that P. falciparum and P. vivax have diverged and show species-specific binding of AMA1 to RON2, determined by a β-hairpin loop in RON2 and specific residues in AMA1 Loop1E. In contrast, cross-species binding of AMA1 to RON2 is retained between P. vivax and P. knowlesi. Mutation of specific amino acids in AMA1 Loop1E in P. falciparum or P. vivax ablated RON2 binding without impacting erythrocyte invasion. This indicates that the AMA1-RON2-loop interaction is not essential for invasion and additional AMA1 interactions are involved. Mutations in AMA1 that disrupt RON2 binding also enable escape of invasion inhibitory antibodies. Therefore, vaccines and therapeutics will need to be broader than targeting only the AMA1-RON2 interaction. Antibodies targeting AMA1 domain 3 had greater invasion-inhibitory activity when RON2-loop binding was ablated, suggesting this domain is a promising additional target for vaccine development. Targeting multiple AMA1 interactions involved in invasion may enable vaccines that generate more potent inhibitory antibodies and address the capacity for immune evasion. Findings on specific residues for invasion function and species divergence and conservation can inform novel vaccines and therapeutics against malaria caused by three species, including the potential for cross-species vaccines.
Collapse
|
10
|
Molecular Assessment of Domain I of Apical Membrane Antigen I Gene in Plasmodium falciparum: Implications in Plasmodium Invasion, Taxonomy, Vaccine Development, and Drug Discovery. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:1419998. [PMID: 36249587 PMCID: PMC9568357 DOI: 10.1155/2022/1419998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022]
Abstract
Given its global morbidity and mortality rates, malaria continues to be a major public health concern. Despite significant progress in the fight against malaria, efforts to control and eradicate the disease globally are in jeopardy due to lack of a universal vaccine. The conserved short peptide sequences found in Domain I of Plasmodium falciparum apical membrane antigen 1 (PfAMA1), which are exposed on the parasite cell surface and in charge of Plasmodium falciparum invasion of host cells, make PfAMA1 a promising vaccine candidate antigen. The precise amino acids that make up these conserved short peptides are still unknown, and it is still difficult to pinpoint the molecular processes by which PfAMA1 interacts with the human host cell during invasion. The creation of a universal malaria vaccine based on the AMA1 antigen is challenging due to these knowledge limitations. This study used genome mining techniques to look for these particular short peptides in PfAMA1. Thirty individuals with Plasmodium falciparum malaria had blood samples taken using Whatman's filter papers. DNA from the parasite was taken out using the Chelex technique. Domain I of the Plasmodium falciparum AMA1 gene was amplified using nested polymerase chain reactions, and the amplified products were removed, purified, and sequenced. The DNA sequence generated was converted into the matching amino acid sequence using bioinformatic techniques. These amino acid sequences were utilized to search for antigenic epitopes, therapeutic targets, and conserved short peptides in Domain I of PfAMA1. The results of this investigation shed important light on the molecular mechanisms behind Plasmodium invasion of host cells, a potential PfAMA1 vaccine antigen sequence, and prospective malaria treatment options in the future. Our work offers fresh information on malaria medication and vaccine research that has not been previously discussed.
Collapse
|
11
|
Oulton T, Obiero J, Rodriguez I, Ssewanyana I, Dabbs RA, Bachman CM, Greenhouse B, Drakeley C, Felgner PL, Stone W, Tetteh KKA. Plasmodium falciparum serology: A comparison of two protein production methods for analysis of antibody responses by protein microarray. PLoS One 2022; 17:e0273106. [PMID: 36037183 PMCID: PMC9423672 DOI: 10.1371/journal.pone.0273106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
The evaluation of protein antigens as putative serologic biomarkers of infection has increasingly shifted to high-throughput, multiplex approaches such as the protein microarray. In vitro transcription/translation (IVTT) systems-a similarly high-throughput protein expression method-are already widely utilised in the production of protein microarrays, though purified recombinant proteins derived from more traditional whole cell based expression systems also play an important role in biomarker characterisation. Here we have performed a side-by-side comparison of antigen-matched protein targets from an IVTT and purified recombinant system, on the same protein microarray. The magnitude and range of antibody responses to purified recombinants was found to be greater than that of IVTT proteins, and responses between targets from different expression systems did not clearly correlate. However, responses between amino acid sequence-matched targets from each expression system were more closely correlated. Despite the lack of a clear correlation between antigen-matched targets produced in each expression system, our data indicate that protein microarrays produced using either method can be used confidently, in a context dependent manner, though care should be taken when comparing data derived from contrasting approaches.
Collapse
Affiliation(s)
- Tate Oulton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joshua Obiero
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Isabel Rodriguez
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Rebecca A. Dabbs
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phil L. Felgner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Will Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
12
|
Roling L, Flammersfeld A, Pradel G, Bennink S. The WD40-Protein PfWLP1 Ensures Stability of the PfCCp-Based Adhesion Protein Complex in Plasmodium falciparum Gametocytes. Front Cell Infect Microbiol 2022; 12:942364. [PMID: 35923798 PMCID: PMC9339629 DOI: 10.3389/fcimb.2022.942364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the WD40-repeat protein family can be found in all eukaryotic proteomes where they usually serve as interaction platforms for the assembly of large protein complexes and are therefore essential for the integrity of these complexes. In the malaria parasite Plasmodium falciparum, the WD40-repeat protein PfWLP1 has been shown to interact with members of distinct adhesion protein complexes in the asexual blood stages and gametocyte stages. In this study, we demonstrate that the presence of PfWLP1 is crucial for both the stability of these gametocyte-specific adhesion complexes as well as for gametocyte maturation and gametogenesis. Using reverse genetics, we generated a PfWLP1-knockdown parasite line for functional characterization of the protein. Knockdown of PfWLP1 resulted in a slight reduction of gametocyte numbers and significantly the impaired ability of the gametocytes to exflagellate. PfWLP1-knockdown further led to reduced protein levels of the Limulus coagulation factor C-like (LCCL)-domain proteins PfCCp1 and PfCCp2, which are key components of the adhesion complexes. These findings suggest that the interaction of PfWLP1 with members of the PfCCp-based adhesion complex ensures complex stability and thereby contributes to gametocyte viability and exflagellation.
Collapse
|
13
|
Molina-Franky J, Patarroyo ME, Kalkum M, Patarroyo MA. The Cellular and Molecular Interaction Between Erythrocytes and Plasmodium falciparum Merozoites. Front Cell Infect Microbiol 2022; 12:816574. [PMID: 35433504 PMCID: PMC9008539 DOI: 10.3389/fcimb.2022.816574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is the most lethal human malaria parasite, partly due to its genetic variability and ability to use multiple invasion routes via its binding to host cell surface receptors. The parasite extensively modifies infected red blood cell architecture to promote its survival which leads to increased cell membrane rigidity, adhesiveness and permeability. Merozoites are initially released from infected hepatocytes and efficiently enter red blood cells in a well-orchestrated process that involves specific interactions between parasite ligands and erythrocyte receptors; symptoms of the disease occur during the life-cycle’s blood stage due to capillary blockage and massive erythrocyte lysis. Several studies have focused on elucidating molecular merozoite/erythrocyte interactions and host cell modifications; however, further in-depth analysis is required for understanding the parasite’s biology and thus provide the fundamental tools for developing prophylactic or therapeutic alternatives to mitigate or eliminate Plasmodium falciparum-related malaria. This review focuses on the cellular and molecular events during Plasmodium falciparum merozoite invasion of red blood cells and the alterations that occur in an erythrocyte once it has become infected.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- PhD Programme in Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| |
Collapse
|
14
|
Retrospective study of toxoplasmosis prevalence in pregnant women in Benin and its relation with malaria. PLoS One 2022; 17:e0262018. [PMID: 34995295 PMCID: PMC8741053 DOI: 10.1371/journal.pone.0262018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Background
Globally distributed with variable prevalence depending on geography, toxoplasmosis is a zoonosis caused by an obligate intracellular protozoan parasite, Toxoplasma gondii. This disease is usually benign but poses a risk for immunocompromised people and for newborns of mothers with a primary infection during pregnancy because of the risk of congenital toxoplasmosis (CT). CT can cause severe damage to fetuses-newborns. To our knowledge, no study has been conducted in sub-Saharan Africa on toxoplasmosis seroprevalence, seroconversion and CT in a large longitudinal cohort and furthermore, no observation has been made of potential relationships with malaria.
Methods
We performed a retrospective toxoplasmosis serological study using available samples from a large cohort of 1,037 pregnant women who were enrolled in a malaria follow-up during the 2008–2010 period in a rural area in Benin. We also used some existing data to investigate potential relationships between the maternal toxoplasmosis serological status and recorded malaria infections.
Results
Toxoplasmosis seroprevalence, seroconversion and CT rates were 52.6%, 3.4% and 0.2%, respectively, reflecting the population situation of toxoplasmosis, without targeted medical intervention. The education level influences the toxoplasmosis serological status of women, with women with little or no formal education have greater immunity than others. Surprisingly, toxoplasmosis seropositive pregnant women tended to present lower malaria infection during pregnancy (number) or at delivery (presence) and to have lower IgG levels to Plasmodium falciparum Apical Membrane Antigen 1, compared to toxoplasmosis seronegative women.
Conclusions
The high toxoplasmosis seroprevalence indicates that prevention against this parasite remains important to deploy and must be accessible and understandable to and for all individuals (educated and non-educated). A potential protective role against malaria conferred by a preexisting toxoplasmosis infection needs to be explored more precisely to examine the environmental, parasitic and/or immune aspects.
Collapse
|
15
|
Tan MSY, Koussis K, Withers‐Martinez C, Howell SA, Thomas JA, Hackett F, Knuepfer E, Shen M, Hall MD, Snijders AP, Blackman MJ. Autocatalytic activation of a malarial egress protease is druggable and requires a protein cofactor. EMBO J 2021; 40:e107226. [PMID: 33932049 PMCID: PMC8167364 DOI: 10.15252/embj.2020107226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Malaria parasite egress from host erythrocytes (RBCs) is regulated by discharge of a parasite serine protease called SUB1 into the parasitophorous vacuole (PV). There, SUB1 activates a PV-resident cysteine protease called SERA6, enabling host RBC rupture through SERA6-mediated degradation of the RBC cytoskeleton protein β-spectrin. Here, we show that the activation of Plasmodium falciparum SERA6 involves a second, autocatalytic step that is triggered by SUB1 cleavage. Unexpectedly, autoproteolytic maturation of SERA6 requires interaction in multimolecular complexes with a distinct PV-located protein cofactor, MSA180, that is itself a SUB1 substrate. Genetic ablation of MSA180 mimics SERA6 disruption, producing a fatal block in β-spectrin cleavage and RBC rupture. Drug-like inhibitors of SERA6 autoprocessing similarly prevent β-spectrin cleavage and egress in both P. falciparum and the emerging zoonotic pathogen P. knowlesi. Our results elucidate the egress pathway and identify SERA6 as a target for a new class of antimalarial drugs designed to prevent disease progression.
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
| | | | | | - Steven A Howell
- Protein Analysis and Proteomics PlatformThe Francis Crick InstituteLondonUK
| | - James A Thomas
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK
| | - Fiona Hackett
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
| | - Ellen Knuepfer
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHertfordshireUK
| | - Min Shen
- National Center for Advancing Translational Sciences (NCATS)National Institutes of HealthRockvilleMDUSA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences (NCATS)National Institutes of HealthRockvilleMDUSA
| | | | - Michael J Blackman
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK
| |
Collapse
|
16
|
Aquilini E, Cova MM, Mageswaran SK, Dos Santos Pacheco N, Sparvoli D, Penarete-Vargas DM, Najm R, Graindorge A, Suarez C, Maynadier M, Berry-Sterkers L, Urbach S, Fahy PR, Guérin AN, Striepen B, Dubremetz JF, Chang YW, Turkewitz AP, Lebrun M. An Alveolata secretory machinery adapted to parasite host cell invasion. Nat Microbiol 2021; 6:425-434. [PMID: 33495622 PMCID: PMC8886610 DOI: 10.1038/s41564-020-00854-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
Apicomplexa are unicellular eukaryotes and obligate intracellular parasites, including Plasmodium (the causative agent of malaria) and Toxoplasma (one of the most widespread zoonotic pathogens). Rhoptries, one of their specialized secretory organelles, undergo regulated exocytosis during invasion1. Rhoptry proteins are injected directly into the host cell to support invasion and subversion of host immune function2. The mechanism by which they are discharged is unclear and appears distinct from those in bacteria, yeast, animals and plants. Here, we show that rhoptry secretion in Apicomplexa shares structural and genetic elements with the exocytic machinery of ciliates, their free-living relatives. Rhoptry exocytosis depends on intramembranous particles in the shape of a rosette embedded into the plasma membrane of the parasite apex. Formation of this rosette requires multiple non-discharge (Nd) proteins conserved and restricted to Ciliata, Dinoflagellata and Apicomplexa that together constitute the superphylum Alveolata. We identified Nd6 at the site of exocytosis in association with an apical vesicle. Sandwiched between the rosette and the tip of the rhoptry, this vesicle appears as a central element of the rhoptry secretion machine. Our results describe a conserved secretion system that was adapted to provide defence for free-living unicellular eukaryotes and host cell injection in intracellular parasites.
Collapse
Affiliation(s)
- Eleonora Aquilini
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Dos Santos Pacheco
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Daniela Sparvoli
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | | | - Rania Najm
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Arnault Graindorge
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Catherine Suarez
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Marjorie Maynadier
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Laurence Berry-Sterkers
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS and INSERM, Montpellier, France
| | - Pilar Ruga Fahy
- Pôle Facultaire de Microscopie Ultrastructurale, Geneva, Switzerland
| | - Amandine N Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-François Dubremetz
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France.
| |
Collapse
|
17
|
Perrin AJ, Bisson C, Faull PA, Renshaw MJ, Lees RA, Fleck RA, Saibil HR, Snijders AP, Baker DA, Blackman MJ. Malaria Parasite Schizont Egress Antigen-1 Plays an Essential Role in Nuclear Segregation during Schizogony. mBio 2021; 12:e03377-20. [PMID: 33688001 PMCID: PMC8092294 DOI: 10.1128/mbio.03377-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Malaria parasites cause disease through repeated cycles of intraerythrocytic proliferation. Within each cycle, several rounds of DNA replication produce multinucleated forms, called schizonts, that undergo segmentation to form daughter merozoites. Upon rupture of the infected cell, the merozoites egress to invade new erythrocytes and repeat the cycle. In human malarial infections, an antibody response specific for the Plasmodium falciparum protein PF3D7_1021800 was previously associated with protection against malaria, leading to an interest in PF3D7_1021800 as a candidate vaccine antigen. Antibodies to the protein were reported to inhibit egress, resulting in it being named schizont egress antigen-1 (SEA1). A separate study found that SEA1 undergoes phosphorylation in a manner dependent upon the parasite cGMP-dependent protein kinase PKG, which triggers egress. While these findings imply a role for SEA1 in merozoite egress, this protein has also been implicated in kinetochore function during schizont development. Therefore, the function of SEA1 remains unclear. Here, we show that P. falciparum SEA1 localizes in proximity to centromeres within dividing nuclei and that conditional disruption of SEA1 expression severely impacts the distribution of DNA and formation of merozoites during schizont development, with a proportion of SEA1-null merozoites completely lacking nuclei. SEA1-null schizonts rupture, albeit with low efficiency, suggesting that neither SEA1 function nor normal segmentation is a prerequisite for egress. We conclude that SEA1 does not play a direct mechanistic role in egress but instead acts upstream of egress as an essential regulator required to ensure the correct packaging of nuclei within merozoites.IMPORTANCE Malaria is a deadly infectious disease. Rationally designed novel therapeutics will be essential for its control and eradication. The Plasmodium falciparum protein PF3D7_1021800, annotated as SEA1, is under investigation as a prospective component of a malaria vaccine, based on previous indications that antibodies to SEA1 interfere with parasite egress from infected erythrocytes. However, a consensus on the function of SEA1 is lacking. Here, we demonstrate that SEA1 localizes to dividing parasite nuclei and is necessary for the correct segregation of replicated DNA into individual daughter merozoites. In the absence of SEA1, merozoites develop defectively, often completely lacking a nucleus, and, consequently, egress is impaired and/or aberrant. Our findings provide insights into the divergent mechanisms by which intraerythrocytic malaria parasites develop and divide. Our conclusions regarding the localization and function of SEA1 are not consistent with the hypothesis that antibodies against it confer protective immunity to malaria by blocking merozoite egress.
Collapse
Affiliation(s)
- Abigail J Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Claudine Bisson
- Department of Biological Sciences, Institute of Structural & Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, United Kingdom
| | - Peter A Faull
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Matthew J Renshaw
- Advanced Light Microscopy, The Francis Crick Institute, London, United Kingdom
| | - Rebecca A Lees
- Department of Biological Sciences, Institute of Structural & Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, United Kingdom
| | - Helen R Saibil
- Department of Biological Sciences, Institute of Structural & Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Chen W, Ma C, Li G, Jia Z, Yang X, Pan X, Ma D. Specific EtMIC3-binding peptides inhibit Eimeria tenella sporozoites entry into host cells. Vet Res 2021; 52:24. [PMID: 33596990 PMCID: PMC7888181 DOI: 10.1186/s13567-020-00873-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
Avian coccidiosis caused by Eimeria leads to huge economic losses on the global poultry industry. In this study, microneme adhesive repeat regions (MARR) bc1 of E. tenella microneme protein 3 (EtMIC3-bc1) was used as ligand, and peptides binding to EtMIC3 were screened from a phage display peptide library. The positive phage clones were checked by enzyme-linked immunosorbent assay (ELISA). Competitive ELISA was applied to further verify the binding capability between the positive phages and recombinant EtMIC3-bc1 protein or sporozoites protein. The inhibitory effects of target peptides on sporozoites invasion of MDBK cells were measured in vitro. Chickens were orally administrated with target positive phages and the protective effects against homologous challenge were evaluated. The model of three-dimensional (3D) structure for EtMIC3-bc1 was conducted, and molecular docking between target peptides and EtMIC3-bc1 model was analyzed. The results demonstrated that three selected positive phages specifically bind to EtMIC3-bc1 protein. The three peptides A, D and W effectively inhibited invasion of MDBK cells by sporozoites, showing inhibited ratio of 71.8%, 54.6% and 20.8%, respectively. Chickens in the group orally inoculated with phages A displayed more protective efficacies against homologous challenge than other groups. Molecular docking showed that amino acids in three peptides, especially in peptide A, insert into the hydrophobic groove of EtMIC3-bc1 protein, and bind to EtMIC3-bc1 through intermolecular hydrogen bonds. Taken together, the results suggest EtMIC3-binding peptides inhibit sporozoites entry into host cells. This study provides new idea for exploring novel strategies against coccidiosis.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, China.,Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin, Heilongjiang, 150030, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Guanghao Li
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, China
| | - Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, China
| | - Xuelian Yang
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, China
| | - Xinghui Pan
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, China. .,Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
19
|
Ssewanyana I, Rek J, Rodriguez I, Wu L, Arinaitwe E, Nankabirwa JI, Beeson JG, Mayanja-Kizza H, Rosenthal PJ, Dorsey G, Kamya MR, Drakeley C, Greenhouse B, Tetteh KKA. Impact of a Rapid Decline in Malaria Transmission on Antimalarial IgG Subclasses and Avidity. Front Immunol 2021; 11:576663. [PMID: 33584643 PMCID: PMC7873448 DOI: 10.3389/fimmu.2020.576663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022] Open
Abstract
Understanding how immunity to malaria is affected by declining transmission is important to aid vaccine design and understand disease resurgence. Both IgG subclasses and avidity of antigen-specific responses are important components of an effective immune response. Using a multiplex bead array assay, we measured the total IgG, IgG subclasses, and avidity profiles of responses to 18 P. falciparum blood stage antigens in samples from 160 Ugandans collected at two time points during high malaria transmission and two time points following a dramatic reduction in transmission. Results demonstrated that, for the antigens tested, (i) the rate of decay of total IgG following infection declined with age and was driven consistently by the decrease in IgG3 and occasionally the decrease in IgG1; (ii) the proportion of IgG3 relative to IgG1 in the absence of infection increased with age; (iii) the increase in avidity index (the strength of association between the antibody and antigen) following infection was largely due to a rapid loss of non-avid compared to avid total IgG; and (iv) both avid and non-avid total IgG in the absence of infection increased with age. Further studies are required to understand the functional differences between IgG1 and IgG3 in order to determine their contribution to the longevity of protective immunity to malaria. Measuring changes in antibody avidity may be a better approach of detecting affinity maturation compared to avidity index due to the differential expansion and contraction of high and low avidity total IgG.
Collapse
Affiliation(s)
- Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Isabel Rodriguez
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Lindsey Wu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,School of Medicine, Makerere University, Kampala, Uganda
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | | | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,School of Medicine, Makerere University, Kampala, Uganda
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
20
|
Nofal SD, Patel A, Blackman MJ, Flueck C, Baker DA. Plasmodium falciparum Guanylyl Cyclase-Alpha and the Activity of Its Appended P4-ATPase Domain Are Essential for cGMP Synthesis and Blood-Stage Egress. mBio 2021; 12:e02694-20. [PMID: 33500341 PMCID: PMC7858053 DOI: 10.1128/mbio.02694-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Guanylyl cyclases (GCs) synthesize cyclic GMP (cGMP) and, together with cyclic nucleotide phosphodiesterases, are responsible for regulating levels of this intracellular messenger which mediates myriad functions across eukaryotes. In malaria parasites (Plasmodium spp), as well as their apicomplexan and ciliate relatives, GCs are associated with a P4-ATPase-like domain in a unique bifunctional configuration. P4-ATPases generate membrane bilayer lipid asymmetry by translocating phospholipids from the outer to the inner leaflet. Here, we investigate the role of Plasmodium falciparum guanylyl cyclase alpha (GCα) and its associated P4-ATPase module, showing that asexual blood-stage parasites lacking both the cyclase and P4-ATPase domains are unable to egress from host erythrocytes. GCα-null parasites cannot synthesize cGMP or mobilize calcium, a cGMP-dependent protein kinase (PKG)-driven requirement for egress. Using chemical complementation with a cGMP analogue and point mutagenesis of a crucial conserved residue within the P4-ATPase domain, we show that P4-ATPase activity is upstream of and linked to cGMP synthesis. Collectively, our results demonstrate that GCα is a critical regulator of PKG and that its associated P4-ATPase domain plays a primary role in generating cGMP for merozoite egress.IMPORTANCE The clinical manifestations of malaria arise due to successive rounds of replication of Plasmodium parasites within red blood cells. Once mature, daughter merozoites are released from infected erythrocytes to invade new cells in a tightly regulated process termed egress. Previous studies have shown that the activation of cyclic GMP (cGMP) signaling is critical for initiating egress. Here, we demonstrate that GCα, a unique bifunctional enzyme, is the sole enzyme responsible for cGMP production during the asexual blood stages of Plasmodium falciparum and is required for the cellular events leading up to merozoite egress. We further demonstrate that in addition to the GC domain, the appended ATPase-like domain of GCα is also involved in cGMP production. Our results highlight the critical role of GCα in cGMP signaling required for orchestrating malaria parasite egress.
Collapse
Affiliation(s)
- Stephanie D Nofal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
21
|
Ito D, Chen JH, Takashima E, Hasegawa T, Otsuki H, Takeo S, Thongkukiatkul A, Han ET, Tsuboi T. Identification of a Novel RAMA/RON3 Rhoptry Protein Complex in Plasmodium falciparum Merozoites. Front Cell Infect Microbiol 2021; 10:605367. [PMID: 33537242 PMCID: PMC7848174 DOI: 10.3389/fcimb.2020.605367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023] Open
Abstract
Malaria causes a half a million deaths annually. The parasite intraerythrocytic lifecycle in the human bloodstream is the major cause of morbidity and mortality. Apical organelles of merozoite stage parasites are involved in the invasion of erythrocytes. A limited number of apical organellar proteins have been identified and characterized for their roles during erythrocyte invasion or subsequent intraerythrocytic parasite development. To expand the repertoire of identified apical organellar proteins we generated a panel of monoclonal antibodies against Plasmodium falciparum schizont-rich parasites and screened the antibodies using immunofluorescence assays. Out of 164 hybridoma lines, 12 clones produced monoclonal antibodies yielding punctate immunofluorescence staining patterns in individual merozoites in late schizonts, suggesting recognition of merozoite apical organelles. Five of the monoclonal antibodies were used to immuno-affinity purify their target antigens and these antigens were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two known apical organelle protein complexes were identified, the high-molecular mass rhoptry protein complex (PfRhopH1/Clags, PfRhopH2, and PfRhopH3) and the low-molecular mass rhoptry protein complex (rhoptry-associated proteins complex, PfRAP1, and PfRAP2). A novel complex was additionally identified by immunoprecipitation, composed of rhoptry-associated membrane antigen (PfRAMA) and rhoptry neck protein 3 (PfRON3) of P. falciparum. We further identified a region spanning amino acids Q221-E481 within the PfRAMA that may associate with PfRON3 in immature schizonts. Further investigation will be required as to whether PfRAMA and PfRON3 interact directly or indirectly.
Collapse
Affiliation(s)
- Daisuke Ito
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan.,Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Tomoyuki Hasegawa
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Satoru Takeo
- Division of Tropical Diseases and Parasitology, Department of Infectious Diseases, Faculty of Medicine, Kyorin University, Mitaka, Japan
| | | | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
22
|
Seidel-Greven M, Addai-Mensah O, Spiegel H, Chiegoua Dipah GN, Schmitz S, Breuer G, Frempong M, Reimann A, Klockenbring T, Fischer R, Barth S, Fendel R. Isolation and light chain shuffling of a Plasmodium falciparum AMA1-specific human monoclonal antibody with growth inhibitory activity. Malar J 2021; 20:37. [PMID: 33430886 PMCID: PMC7798374 DOI: 10.1186/s12936-020-03548-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/12/2020] [Indexed: 11/25/2022] Open
Abstract
Background Plasmodium falciparum, the parasite causing malaria, affects populations in many endemic countries threatening mainly individuals with low malaria immunity, especially children. Despite the approval of the first malaria vaccine Mosquirix™ and very promising data using cryopreserved P. falciparum sporozoites (PfSPZ), further research is needed to elucidate the mechanisms of humoral immunity for the development of next-generation vaccines and alternative malaria therapies including antibody therapy. A high prevalence of antibodies against AMA1 in immune individuals has made this antigen one of the major blood-stage vaccine candidates. Material and methods Using antibody phage display, an AMA1-specific growth inhibitory human monoclonal antibody from a malaria-immune Fab library using a set of three AMA1 diversity covering variants (DiCo 1–3), which represents a wide range of AMA1 antigen sequences, was selected. The functionality of the selected clone was tested in vitro using a growth inhibition assay with P. falciparum strain 3D7. To potentially improve affinity and functional activity of the isolated antibody, a phage display mediated light chain shuffling was employed. The parental light chain was replaced with a light chain repertoire derived from the same population of human V genes, these selected antibodies were tested in binding tests and in functionality assays. Results The selected parental antibody achieved a 50% effective concentration (EC50) of 1.25 mg/mL. The subsequent light chain shuffling led to the generation of four derivatives of the parental clone with higher expression levels, similar or increased affinity and improved EC50 against 3D7 of 0.29 mg/mL. Pairwise epitope mapping gave evidence for binding to AMA1 domain II without competing with RON2. Conclusion We have thus shown that a compact immune human phage display library is sufficient for the isolation of potent inhibitory monoclonal antibodies and that minor sequence mutations dramatically increase expression levels in Nicotiana benthamiana. Interestingly, the antibody blocks parasite inhibition independently of binding to RON2, thus having a yet undescribed mode of action.
Collapse
Affiliation(s)
- Melanie Seidel-Greven
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Otchere Addai-Mensah
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany.,Department of Medical Diagnostics, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Gwladys Nina Chiegoua Dipah
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Stefan Schmitz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Gudrun Breuer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Margaret Frempong
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany.,Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.,Purdue University, West Lafayette, IN, 47907, USA
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany.,Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Pauwelsstraße 20, 52074, Aachen, Germany.,South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, and Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany. .,Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| |
Collapse
|
23
|
Collins CR, Hackett F, Howell SA, Snijders AP, Russell MRG, Collinson LM, Blackman MJ. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife 2020; 9:e61121. [PMID: 33287958 PMCID: PMC7723409 DOI: 10.7554/elife.61121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Red blood cell (RBC) invasion by malaria merozoites involves formation of a parasitophorous vacuole into which the parasite moves. The vacuole membrane seals and pinches off behind the parasite through an unknown mechanism, enclosing the parasite within the RBC. During invasion, several parasite surface proteins are shed by a membrane-bound protease called SUB2. Here we show that genetic depletion of SUB2 abolishes shedding of a range of parasite proteins, identifying previously unrecognized SUB2 substrates. Interaction of SUB2-null merozoites with RBCs leads to either abortive invasion with rapid RBC lysis, or successful entry but developmental arrest. Selective failure to shed the most abundant SUB2 substrate, MSP1, reduces intracellular replication, whilst conditional ablation of the substrate AMA1 produces host RBC lysis. We conclude that SUB2 activity is critical for host RBC membrane sealing following parasite internalisation and for correct functioning of merozoite surface proteins.
Collapse
Affiliation(s)
- Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Steven A Howell
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Matthew RG Russell
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Faculty of Infectious Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
24
|
Li C, Zhao Q, Zhu S, Wang Q, Wang H, Yu S, Yu Y, Liang S, Zhao H, Huang B, Dong H, Han H. Eimeria tenella Eimeria-specific protein that interacts with apical membrane antigen 1 (EtAMA1) is involved in host cell invasion. Parasit Vectors 2020; 13:373. [PMID: 32711572 PMCID: PMC7382093 DOI: 10.1186/s13071-020-04229-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Avian coccidiosis is a widespread, economically significant disease of poultry, caused by several Eimeria species. These parasites have complex and diverse life-cycles that require invasion of their host cells. This is mediated by various proteins secreted from apical secretory organelles. Apical membrane antigen 1 (AMA1), which is released from micronemes and is conserved across all apicomplexans, plays a central role in the host cell invasion. In a previous study, some putative EtAMA1-interacting proteins of E. tenella were screened. In this study, we characterized one putative EtAMA1-interacting protein, E. tenella Eimeria -specific protein (EtEsp). Methods Bimolecular fluorescence complementation (BiFC) and glutathione S-transferase (GST) fusion protein pull-down (GST pull-down) were used to confirm the interaction between EtAMA1 and EtEsp in vivo and in vitro. The expression of EtEsp was analyzed in different developmental stages of E. tenella with quantitative PCR and western blotting. The secretion of EtEsp protein was tested with staurosporine when sporozoites were incubated in complete medium at 41 °C. The localization of EtEsp was analyzed with an immunofluorescence assay (IFA). An in vitro invasion inhibition assay was conducted to assess the ability of antibodies against EtEsp to inhibit cell invasion by E. tenella sporozoites. Results The interaction between EtAMA1 and EtEsp was confirmed with BiFC and by GST pull-down. Our results show that EtEsp is differentially expressed during distinct phases of the parasite life-cycle. IFA showed that the EtEsp protein is mainly distributed on the parasite surface, and that the expression of this protein increases during the development of the parasite in the host cells. Using staurosporine, we showed that EtEsp is a secreted protein, but not from micronemes. In inhibition tests, a polyclonal anti-rEtEsp antibody attenuated the capacity of E. tenella to invade host cells. Conclusion In this study, we show that EtEsp interacts with EtAMA1 and that the protein is secreted protein, but not from micronemes. The protein participates in sporozoite invasion of host cells and is maybe involved in the growth of the parasite. These data have implications for the use of EtAMA1 or EtAMA1-interacting proteins as targets in intervention strategies against avian coccidiosis.![]()
Collapse
Affiliation(s)
- Cong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Qingjie Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Shuilan Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Yu Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China.,College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shashan Liang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China.,College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Huanzhi Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Bing Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China.
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China.
| |
Collapse
|
25
|
Bittencourt NC, da Silva ABIE, Virgili NS, Schappo AP, Gervásio JHDB, Pimenta TS, Kujbida Junior MA, Ventura AMRS, Libonati RMF, Silva-Filho JL, dos Santos HG, Lopes SCP, Lacerda MVG, Machado RLD, Costa FTM, Albrecht L. Plasmodium vivax AMA1: Implications of distinct haplotypes for immune response. PLoS Negl Trop Dis 2020; 14:e0008471. [PMID: 32639964 PMCID: PMC7371208 DOI: 10.1371/journal.pntd.0008471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 07/20/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
In Brazil, Plasmodium vivax infection accounts for around 80% of malaria cases. This infection has a substantial impact on the productivity of the local population as the course of the disease is usually prolonged and the development of acquired immunity in endemic areas takes several years. The recent emergence of drug-resistant strains has intensified research on alternative control methods such as vaccines. There is currently no effective available vaccine against malaria; however, numerous candidates have been studied in the past several years. One of the leading candidates is apical membrane antigen 1 (AMA1). This protein is involved in the invasion of Apicomplexa parasites into host cells, participating in the formation of a moving junction. Understanding how the genetic diversity of an antigen influences the immune response is highly important for vaccine development. In this study, we analyzed the diversity of AMA1 from Brazilian P. vivax isolates and 19 haplotypes of P. vivax were found. Among those sequences, 33 nonsynonymous PvAMA1 amino acid sites were identified, whereas 20 of these sites were determined to be located in predicted B-cell epitopes. Nonsynonymous mutations were evaluated for their influence on the immune recognition of these antigens. Two distinct haplotypes, 5 and 16, were expressed and evaluated for reactivity in individuals from northern Brazil. Both PvAMA1 variants were reactive. Moreover, the IgG antibody response to these two PvAMA1 variants was analyzed in an exposed but noninfected population from a P. vivax endemic area. Interestingly, over 40% of this population had antibodies recognizing both variants. These results have implications for the design of a vaccine based on a polymorphic antigen. Plasmodium vivax is the most abundant Plasmodium species in Brazil. While this species has been neglected for many years, the recent emergence of drug-resistant strains and the absence of a vaccine intensified the efforts for a better control method. Naturally acquired immune response analysis is a useful tool for understanding the antigenicity of Plasmodium proteins and evaluating the potential of a vaccine candidate. In this study, the genetic variability of one of the leading P. vivax vaccine candidates (PvAMA1) was analyzed. Two distinct variants were expressed and the antibody response was evaluated in infected and noninfected individuals in the Brazilian Amazon. This improved understanding of the magnitude and dynamics of the antibody response will contribute to the knowledge of a vaccine candidate and open new perspectives in vivax malaria vaccine development.
Collapse
Affiliation(s)
- Najara Carneiro Bittencourt
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Natália Silveira Virgili
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana Paula Schappo
- Instituto Carlos Chagas, Fundação Oswaldo Cruz–FIOCRUZ. Curitiba, PR, Brazil
| | | | - Tamirys S. Pimenta
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brazil
| | | | | | | | - João Luiz Silva-Filho
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Stefanie C. P. Lopes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Gerência de Malária, Manaus, AM, Brazil
- Instituto Leônidas & Maria Deane, FIOCRUZ-AMAZONAS, Manaus, AM, Brazil
| | - Marcus V. G. Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Gerência de Malária, Manaus, AM, Brazil
- Instituto Leônidas & Maria Deane, FIOCRUZ-AMAZONAS, Manaus, AM, Brazil
| | - Ricardo L. D. Machado
- Centro de Investigação de Microrganismos, Universidade Federal Fluminense, RJ, Brazil
| | - Fabio T. M. Costa
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Letusa Albrecht
- Instituto Carlos Chagas, Fundação Oswaldo Cruz–FIOCRUZ. Curitiba, PR, Brazil
- * E-mail: ,
| |
Collapse
|
26
|
Aniweh Y, Nyarko PB, Charles-Chess E, Ansah F, Osier FHA, Quansah E, Thiam LG, Kamuyu G, Marsh K, Conway DJ, Tetteh KKA, Awandare GA. Plasmodium falciparum Merozoite Associated Armadillo Protein (PfMAAP) Is Apically Localized in Free Merozoites and Antibodies Are Associated With Reduced Risk of Malaria. Front Immunol 2020; 11:505. [PMID: 32318061 PMCID: PMC7155890 DOI: 10.3389/fimmu.2020.00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/05/2020] [Indexed: 11/19/2022] Open
Abstract
Understanding the functional role of proteins expressed by Plasmodium falciparum is an important step toward unlocking potential targets for the development of therapeutic or diagnostic interventions. The armadillo (ARM) repeat protein superfamily is associated with varied functions across the eukaryotes. Therefore, it is important to understand the role of members of this protein family in Plasmodium biology. The Plasmodium falciparum armadillo repeats only (PfARO; Pf3D7_0414900) and P. falciparum merozoite organizing proteins (PfMOP; Pf3D7_0917000) are armadillo-repeat containing proteins previously characterized in P. falciparum. Here, we describe the characterization of another ARM repeat-containing protein in P. falciparum, which we have named the P. falciparum Merozoites-Associated Armadillo repeats protein (PfMAAP). Antibodies raised to three different synthetic peptides of PfMAAP show apical staining of free merozoites and those within the mature infected schizont. We also demonstrate that the antibodies raised to the PfMAAP peptides inhibited invasion of erythrocytes by merozoites from different parasite isolates. In addition, naturally acquired human antibodies to the N- and C- termini of PfMAAP are associated with a reduced risk of malaria in a prospective cohort analysis.
Collapse
Affiliation(s)
- Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Prince B. Nyarko
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Essel Charles-Chess
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Faith H. A. Osier
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Biochemistry, Pwani University, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Evelyn Quansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Laty Gaye Thiam
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gathoni Kamuyu
- Division of Medicine, Department of Respiratory Medicine, UCL, London, United Kingdom
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - David J. Conway
- Department of Infection Biology, London School of Tropical Medicine and Hygiene, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department of Infection Biology, London School of Tropical Medicine and Hygiene, London, United Kingdom
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
27
|
Ma D, Huang Y, Ma C, Zhang L, Wang J, Wang D, Li J, Dalloul RA. Eimeria tenella: specific EtAMA1-binding peptides inhibit sporozoite entry into host cells. Poult Sci 2019; 98:4480-4491. [PMID: 31149727 DOI: 10.3382/ps/pez298] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/05/2019] [Indexed: 01/01/2023] Open
Abstract
Avian coccidiosis caused by Eimeria inflicts high economic losses to the poultry industry. Application of drugs and live vaccines presents particular challenges in pathogen resistance and cost, hence alternative anti-coccidial strategies are needed. In this study, peptides that specifically bind E. tenella AMA1 (EtAMA1) were screened from a phage display peptide library. The positive clones of target phages were characterized by ELISA after four rounds of biopanning. The binding capabilities with EtAMA1 and sporozoite proteins for the two selected peptides were detected by ELISA. The role of the two target peptides in inhibiting sporozoite invasion of MDBK cells was evaluated in vitro and the anti-coccidial effects of the two phages were assessed by an animal experiment. The three-dimensional (3D) structural model of EtAMA1 extracellular domain (EctoAMA1) protein was constructed based on the crystal template of TgAMA1 (PDB ID: 2 × 2Z), and the molecular docking between target peptides and EctoAMA1 model was analyzed. The results showed that two selected phages strongly interacted with EctoAMA1 and sporozoites protein. Two corresponding specific EtAMA1-binding peptide (named L and C) showed significant effects on inhibiting sporozoite invasion of MDBK cells. Chickens orally fed the two target phages showed partial protection against homologous challenge. Homology modeling analysis showed an apical hydrophobic groove was shaped on the top of the EctoAMA1 model. Molecular docking indicated the interaction between the EctoAMA1 protein and the two peptides, which was mainly reflected by the hydrophobic interaction and formation of intermolecular hydrogen bond. The above results suggest that the peptides L and C, especially L peptide, competed with E. tenella rhotry neck protein 2 (EtRON2) for binding to EtAMA1 located on the surface of sporozoites, and therefore inhibited the parasite invasion into cells.
Collapse
Affiliation(s)
- Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.,Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Yuchen Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.,Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Lili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.,Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Jingfei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Dian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.,Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Jian Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.,Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
28
|
Suarez C, Lentini G, Ramaswamy R, Maynadier M, Aquilini E, Berry-Sterkers L, Cipriano M, Chen AL, Bradley P, Striepen B, Boulanger MJ, Lebrun M. A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites. Nat Commun 2019; 10:4041. [PMID: 31492901 PMCID: PMC6731292 DOI: 10.1038/s41467-019-11979-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
Members of the Apicomplexa phylum, including Plasmodium and Toxoplasma, have two types of secretory organelles (micronemes and rhoptries) whose sequential release is essential for invasion and the intracellular lifestyle of these eukaryotes. During invasion, rhoptries inject an array of invasion and virulence factors into the cytoplasm of the host cell, but the molecular mechanism mediating rhoptry exocytosis is unknown. Here we identify a set of parasite specific proteins, termed rhoptry apical surface proteins (RASP) that cap the extremity of the rhoptry. Depletion of RASP2 results in loss of rhoptry secretion and completely blocks parasite invasion and therefore parasite proliferation in both Toxoplasma and Plasmodium. Recombinant RASP2 binds charged lipids and likely contributes to assembling the machinery that docks/primes the rhoptry to the plasma membrane prior to fusion. This study provides important mechanistic insight into a parasite specific exocytic pathway, essential for the establishment of infection. Plasmodium and Toxoplasma parasites rely on rhoptry exocytosis for invasion, but the underlying mechanism is not known. Here, Suarez et al. characterize rhoptry apical surface proteins (RASP) that localize to the rhoptry cap and bind charged lipids, and are essential for rhoptry secretion and invasion.
Collapse
Affiliation(s)
- Catherine Suarez
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Gaëlle Lentini
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Raghavendran Ramaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | | | - Eleonora Aquilini
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | | | - Michael Cipriano
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Allan L Chen
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Bradley
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin J Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France.
| |
Collapse
|
29
|
Sherling ES, Perrin AJ, Knuepfer E, Russell MRG, Collinson LM, Miller LH, Blackman MJ. The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion. PLoS Pathog 2019; 15:e1008049. [PMID: 31491036 PMCID: PMC6750612 DOI: 10.1371/journal.ppat.1008049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/18/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023] Open
Abstract
The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite. Despite improved control measures over recent decades, malaria is still a considerable health burden across much of the globe. The disease is caused by a single-celled parasite that invades and replicates within host cells. During invasion, the parasite discharges a set of flask-shaped secretory organelles called rhoptries, the contents of which are crucial for invasion as well as for modifications to the host cell that are important for parasite survival. Rhoptry discharge occurs through fusion of the relatively elongated rhoptry neck to the apical surface of the parasite. Different proteins reside within the bulbous rhoptry body and the neck regions, but how these proteins are selectively sent to their correct sub-compartments within the rhoptries and how the rhoptries are formed, is poorly understood. Here we show that a malaria parasite rhoptry bulb protein called rhoptry-associated membrane antigen (RAMA) plays an essential role in rhoptry neck formation and correct trafficking of certain rhoptry neck and bulb proteins. Parasites deficient in RAMA produce malformed rhoptries and–probably as a result—cannot invade host red blood cells. Our work sheds new light on how rhoptries are formed and reveals insights into the mechanism by which the correct sorting of proteins to distinct regions of the rhoptry is regulated.
Collapse
Affiliation(s)
- Emma S. Sherling
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Abigail J. Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Matthew R. G. Russell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, Boyle MJ, Wilson DW. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiol Rev 2019; 43:223-238. [PMID: 30753425 PMCID: PMC6524681 DOI: 10.1093/femsre/fuz005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium spp. parasites that cause malaria disease remain a significant global-health burden. With the spread of parasites resistant to artemisinin combination therapies in Southeast Asia, there is a growing need to develop new antimalarials with novel targets. Invasion of the red blood cell by Plasmodium merozoites is essential for parasite survival and proliferation, thus representing an attractive target for therapeutic development. Red blood cell invasion requires a co-ordinated series of protein/protein interactions, protease cleavage events, intracellular signals, organelle release and engagement of an actin-myosin motor, which provide many potential targets for drug development. As these steps occur in the bloodstream, they are directly susceptible and exposed to drugs. A number of invasion inhibitors against a diverse range of parasite proteins involved in these different processes of invasion have been identified, with several showing potential to be optimised for improved drug-like properties. In this review, we discuss red blood cell invasion as a drug target and highlight a number of approaches for developing antimalarials with invasion inhibitory activity to use in future combination therapies.
Collapse
Affiliation(s)
- Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | - Madeline G Dans
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Deakin University, School of Medicine, Waurn Ponds, Victoria, Australia 3216
| | - Juan M Balbin
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia 3004
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Central Clinical School and Department of Microbiology, Monash University 3004.,Department of Medicine, University of Melbourne, Australia 3052
| | - Michelle J Boyle
- Burnet Institute, Melbourne, Victoria, Australia 3004.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia 4006
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005.,Burnet Institute, Melbourne, Victoria, Australia 3004
| |
Collapse
|
31
|
Humphries MB, Stacy MT, Ricklefs RE. Population structure of avian malaria parasites. Ecol Evol 2019; 9:7741-7751. [PMID: 31346436 PMCID: PMC6635940 DOI: 10.1002/ece3.5356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
The geographic distribution of genetic diversity in malaria parasite populations (Apicomplexa: Haemosporida) presumably influences local patterns of virulence and the evolution of host-resistance, but little is known about population genetic structure in these parasites. We assess the distribution of genetic diversity in the partial Domain I of apical membrane antigen 1 (AMA1) in three mtDNA-defined lineages of avian Plasmodium to determine spatial population structure and host-parasite genetic relationships. We find that one parasite lineage is genetically differentiated in association with a single host genus and among some locations, but not with respect to other hosts. Two other parasite lineages are undifferentiated with respect to host species but exhibit geographic differentiation that is inconsistent with shared geographic barriers or with isolation-by-distance. Additional differentiation within two other lineages is unassociated with host species or location; in one case, we tentatively interpret this differentiation as the result of mitochondrial introgression from one of the lineages into a second lineage. More sampling of nuclear genetic diversity within populations of avian Plasmodium is needed to rule out coinfection as a possible confounding factor. If coinfections are not responsible for these findings, further assessment is needed to determine the frequency of mitonuclear discordance and its implications for defining parasite lineages based on mitochondrial genetic variation. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at Genbank https://www.ncbi.nlm.nih.gov/genbank/, accession numbers MK965548-MK965653 and MK929797-MK930264.
Collapse
Affiliation(s)
| | - Matthew T. Stacy
- Department of BiologyUniversity of Missouri–Saint LouisSt. LouisMissouri
| | - Robert E. Ricklefs
- Department of BiologyUniversity of Missouri–Saint LouisSt. LouisMissouri
| |
Collapse
|
32
|
Ebrahimzadeh Z, Mukherjee A, Crochetière MÈ, Sergerie A, Amiar S, Thompson LA, Gagnon D, Gaumond D, Stahelin RV, Dacks JB, Richard D. A pan-apicomplexan phosphoinositide-binding protein acts in malarial microneme exocytosis. EMBO Rep 2019; 20:e47102. [PMID: 31097469 PMCID: PMC6549027 DOI: 10.15252/embr.201847102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
Invasion of human red blood cells by the malaria parasite Plasmodium falciparum is an essential step in the development of the disease. Consequently, the molecular players involved in host cell invasion represent important targets for inhibitor design and vaccine development. The process of merozoite invasion is a succession of steps underlined by the sequential secretion of the organelles of the apical complex. However, little is known with regard to how their contents are exocytosed. Here, we identify a phosphoinositide-binding protein conserved in apicomplexan parasites and show that it is important for the attachment and subsequent invasion of the erythrocyte by the merozoite. Critically, removing the protein from its site of action by knock sideways preferentially prevents the secretion of certain types of micronemes. Our results therefore provide evidence for a role of phosphoinositide lipids in the malaria invasion process and provide further insight into the secretion of microneme organelle populations, which is potentially applicable to diverse apicomplexan parasites.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Angana Mukherjee
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Marie-Ève Crochetière
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Audrey Sergerie
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Souad Amiar
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - L Alexa Thompson
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dominic Gagnon
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - David Gaumond
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dave Richard
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| |
Collapse
|
33
|
Patel A, Perrin AJ, Flynn HR, Bisson C, Withers-Martinez C, Treeck M, Flueck C, Nicastro G, Martin SR, Ramos A, Gilberger TW, Snijders AP, Blackman MJ, Baker DA. Cyclic AMP signalling controls key components of malaria parasite host cell invasion machinery. PLoS Biol 2019; 17:e3000264. [PMID: 31075098 PMCID: PMC6530879 DOI: 10.1371/journal.pbio.3000264] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in malaria parasites is poorly understood. We have investigated the role of cAMP in asexual blood stage development of Plasmodium falciparum through conditional disruption of adenylyl cyclase beta (ACβ) and its downstream effector, cAMP-dependent protein kinase (PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte invasion, whilst key developmental steps that precede invasion still take place in the absence of cAMP-dependent signalling. We also show that another parasite protein with putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not play an essential role in blood stages. We identify and quantify numerous sites, phosphorylation of which is dependent on cAMP signalling, and we provide mechanistic insight as to how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.
Collapse
Affiliation(s)
- Avnish Patel
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Abigail J. Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Helen R. Flynn
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Claudine Bisson
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | | | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stephen R. Martin
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Tim W. Gilberger
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ambrosius P. Snijders
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
34
|
Moderately Neutralizing Epitopes in Nonfunctional Regions Dominate the Antibody Response to Plasmodium falciparum EBA-140. Infect Immun 2019; 87:IAI.00716-18. [PMID: 30642904 DOI: 10.1128/iai.00716-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023] Open
Abstract
Plasmodium falciparum erythrocyte-binding antigen 140 (EBA-140) plays a role in tight junction formation during parasite invasion of red blood cells and is a potential vaccine candidate for malaria. Individuals in areas where malaria is endemic possess EBA-140-specific antibodies, and individuals with high antibody titers to this protein have a lower rate of reinfection by parasites. The red blood cell binding segment of EBA-140 is comprised of two Duffy-binding-like domains, called F1 and F2, that together create region II. The sialic acid-binding pocket of F1 is essential for binding, whereas the sialic acid-binding pocket in F2 appears dispensable. Here, we show that immunization of mice with the complete region II results in poorly neutralizing antibodies. In contrast, immunization of mice with the functionally relevant F1 domain of region II results in antibodies that confer a 2-fold increase in parasite neutralization compared to that of the F2 domain. Epitope mapping of diverse F1 and F2 monoclonal antibodies revealed that the functionally relevant F1 sialic acid-binding pocket is a privileged site inaccessible to antibodies, that the F2 sialic acid-binding pocket contains a nonneutralizing epitope, and that two additional epitopes reside in F1 on the opposite face from the sialic acid-binding pocket. These studies indicate that focusing the immune response to the functionally important F1 sialic acid binding pocket improves the protective immune response of EBA-140. These results have implications for improving future vaccine designs and emphasize the importance of structural vaccinology for malaria.
Collapse
|
35
|
Akter M, Drinkwater N, Devine SM, Drew SC, Krishnarjuna B, Debono CO, Wang G, Scanlon MJ, Scammells PJ, McGowan S, MacRaild CA, Norton RS. Identification of the Binding Site of Apical Membrane Antigen 1 (AMA1) Inhibitors Using a Paramagnetic Probe. ChemMedChem 2019; 14:603-612. [PMID: 30653832 DOI: 10.1002/cmdc.201800802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 11/08/2022]
Abstract
Apical membrane antigen 1 (AMA1) is essential for the invasion of host cells by malaria parasites. Several small-molecule ligands have been shown to bind to a conserved hydrophobic cleft in Plasmodium falciparum AMA1. However, a lack of detailed structural information on the binding pose of these molecules has hindered their further optimisation as inhibitors. We have developed a spin-labelled peptide based on RON2, the native binding partner of AMA1, to probe the binding sites of compounds on PfAMA1. The crystal structure of this peptide bound to PfAMA1 shows that it binds at one end of the hydrophobic groove, leaving much of the binding site unoccupied and allowing fragment hits to bind without interference. In paramagnetic relaxation enhancement (PRE)-based NMR screening, the 1 H relaxation rates of compounds binding close to the probe were enhanced. Compounds experienced different degrees of PRE as a result of their different orientations relative to the spin label while bound to AMA1. Thus, PRE-derived distance constraints can be used to identify binding sites and guide further hit optimisation.
Collapse
Affiliation(s)
- Mansura Akter
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Nyssa Drinkwater
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Shane M Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Simon C Drew
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Cael O Debono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Geqing Wang
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| |
Collapse
|
36
|
Flueck C, Drought LG, Jones A, Patel A, Perrin AJ, Walker EM, Nofal SD, Snijders AP, Blackman MJ, Baker DA. Phosphodiesterase beta is the master regulator of cAMP signalling during malaria parasite invasion. PLoS Biol 2019; 17:e3000154. [PMID: 30794532 PMCID: PMC6402698 DOI: 10.1371/journal.pbio.3000154] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/06/2019] [Accepted: 02/05/2019] [Indexed: 12/29/2022] Open
Abstract
Cyclic nucleotide signalling is a major regulator of malaria parasite differentiation. Phosphodiesterase (PDE) enzymes are known to control cyclic GMP (cGMP) levels in the parasite, but the mechanisms by which cyclic AMP (cAMP) is regulated remain enigmatic. Here, we demonstrate that Plasmodium falciparum phosphodiesterase β (PDEβ) hydrolyses both cAMP and cGMP and is essential for blood stage viability. Conditional gene disruption causes a profound reduction in invasion of erythrocytes and rapid death of those merozoites that invade. We show that this dual phenotype results from elevated cAMP levels and hyperactivation of the cAMP-dependent protein kinase (PKA). Phosphoproteomic analysis of PDEβ-null parasites reveals a >2-fold increase in phosphorylation at over 200 phosphosites, more than half of which conform to a PKA substrate consensus sequence. We conclude that PDEβ plays a critical role in governing correct temporal activation of PKA required for erythrocyte invasion, whilst suppressing untimely PKA activation during early intra-erythrocytic development.
Collapse
Affiliation(s)
- Christian Flueck
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Laura G. Drought
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Andrew Jones
- Protein Analysis and Proteomics Laboratory, the Francis Crick Institute, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Abigail J. Perrin
- Malaria Biochemistry Laboratory, the Francis Crick Institute, London, United Kingdom
| | - Eloise M. Walker
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Stephanie D. Nofal
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ambrosius P. Snijders
- Protein Analysis and Proteomics Laboratory, the Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, the Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
37
|
Bittencourt NC, Leite JA, Silva ABIE, Pimenta TS, Silva-Filho JL, Cassiano GC, Lopes SCP, Dos-Santos JCK, Bourgard C, Nakaya HI, da Silva Ventura AMR, Lacerda MVG, Ferreira MU, Machado RLD, Albrecht L, Costa FTM. Genetic sequence characterization and naturally acquired immune response to Plasmodium vivax Rhoptry Neck Protein 2 (PvRON2). Malar J 2018; 17:401. [PMID: 30382855 PMCID: PMC6208078 DOI: 10.1186/s12936-018-2543-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022] Open
Abstract
Background The genetic diversity of malaria antigens often results in allele variant-specific immunity, imposing a great challenge to vaccine development. Rhoptry Neck Protein 2 (PvRON2) is a blood-stage antigen that plays a key role during the erythrocyte invasion of Plasmodium vivax. This study investigates the genetic diversity of PvRON2 and the naturally acquired immune response to P. vivax isolates. Results Here, the genetic diversity of PvRON21828–2080 and the naturally acquired humoral immune response against PvRON21828–2080 in infected and non-infected individuals from a vivax malaria endemic area in Brazil was reported. The diversity analysis of PvRON21828–2080 revealed that the protein is conserved in isolates in Brazil and worldwide. A total of 18 (19%) patients had IgG antibodies to PvRON21828–2080. Additionally, the analysis of the antibody response in individuals who were not acutely infected with malaria, but had been infected with malaria in the past indicated that 32 patients (33%) exhibited an IgG immune response against PvRON2. Conclusions PvRON2 was conserved among the studied isolates. The presence of naturally acquired antibodies to this protein in the absence of the disease suggests that PvRON2 induces a long-term antibody response. These results indicate that PvRON2 is a potential malaria vaccine candidate. Electronic supplementary material The online version of this article (10.1186/s12936-018-2543-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Najara C Bittencourt
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Juliana A Leite
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | - Tamirys S Pimenta
- Laboratório de Ensaios Clínicos e Imunogenética em Malária, Instituto Evandro Chagas/SVS/MS, Ananindeua, PA, Brazil
| | - João Luiz Silva-Filho
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Gustavo C Cassiano
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Stefanie C P Lopes
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz - FIOCRUZ, Manaus, AM, Brazil.,Fundação de Medicina Tropical-Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Joao C K Dos-Santos
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Catarina Bourgard
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Marcus V G Lacerda
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz - FIOCRUZ, Manaus, AM, Brazil.,Fundação de Medicina Tropical-Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo-USP, São Paulo, Brazil
| | - Ricardo L D Machado
- Laboratório de Ensaios Clínicos e Imunogenética em Malária, Instituto Evandro Chagas/SVS/MS, Ananindeua, PA, Brazil
| | - Letusa Albrecht
- Instituto Carlos Chagas, Fundação Oswaldo Cruz - FIOCRUZ, Curitiba, PR, Brazil.
| | - Fabio T M Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
38
|
Oda-Yokouchi Y, Tachibana M, Iriko H, Torii M, Ishino T, Tsuboi T. Plasmodium RON12 localizes to the rhoptry body in sporozoites. Parasitol Int 2018; 68:17-23. [PMID: 30290224 DOI: 10.1016/j.parint.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 11/25/2022]
Abstract
Invasion of host cells by apicomplexan parasites is mediated by proteins released from microneme, rhoptry, and dense granule secretory organelles located at the apical end of parasite invasive forms. Microneme secreted proteins establish interactions with host cell receptors and induce exocytosis of the rhoptry organelle. Rhoptry proteins are involved in target cell invasion as well as the formation of the parasitophorous vacuole in which parasites reside during development within the host cell. In Plasmodium merozoites, the rhoptry neck protein (RON) complex consists of RON2, RON4, and RON5, and interacts with apical membrane antigen 1 (AMA1) as a critical structure of the invasion moving junction. PfRON12 is known to localize to the rhoptry neck of merozoites, but its function remains obscure. The roles of RON proteins are largely unknown in sporozoites, the second invasive form of Plasmodium which possesses a conserved apical end secretory structure. Here, we confirm that RON12 is expressed in the rhoptry neck of merozoites in rodent malaria parasites, whereas in contrast we show that RON12 is localized to the rhoptry body in sporozoites. Phenotypic analysis of Plasmodium berghei ron12-disrupted mutants revealed that RON12 is dispensable for sporogony, invasion of mosquito salivary glands and mouse hepatocytes, and development in hepatocytes.
Collapse
Affiliation(s)
- Yuki Oda-Yokouchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan; Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon Ehime 791-0295, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon Ehime 791-0295, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon Ehime 791-0295, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon Ehime 791-0295, Japan.
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
39
|
López C, Yepes-Pérez Y, Díaz-Arévalo D, Patarroyo ME, Patarroyo MA. The in Vitro Antigenicity of Plasmodium vivax Rhoptry Neck Protein 2 ( PvRON2) B- and T-Epitopes Selected by HLA-DRB1 Binding Profile. Front Cell Infect Microbiol 2018; 8:156. [PMID: 29868512 PMCID: PMC5962679 DOI: 10.3389/fcimb.2018.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria caused by Plasmodium vivax is a neglected disease which is responsible for the highest morbidity in both Americas and Asia. Despite continuous public health efforts to prevent malarial infection, an effective antimalarial vaccine is still urgently needed. P. vivax vaccine development involves analyzing naturally-infected patients' immune response to the specific proteins involved in red blood cell invasion. The P. vivax rhoptry neck protein 2 (PvRON2) is a highly conserved protein which is expressed in late schizont rhoptries; it interacts directly with AMA-1 and might be involved in moving-junction formation. Bioinformatics approaches were used here to select B- and T-cell epitopes. Eleven high-affinity binding peptides were selected using the NetMHCIIpan-3.0 in silico prediction tool; their in vitro binding to HLA-DRB1*0401, HLA-DRB1*0701, HLA-DRB1*1101 or HLA-DRB1*1302 was experimentally assessed. Four peptides (39152 (HLA-DRB1*04 and 11), 39047 (HLA-DRB1*07), 39154 (HLADRB1*13) and universal peptide 39153) evoked a naturally-acquired T-cell immune response in P. vivax-exposed individuals from two endemic areas in Colombia. All four peptides had an SI greater than 2 in proliferation assays; however, only peptides 39154 and 39153 had significant differences compared to the control group. Peptide 39047 was able to significantly stimulate TNF and IL-10 production while 39154 stimulated TNF production. Allele-specific peptides (but not the universal one) were able to stimulate IL-6 production; however, none induced IFN-γ production. The Bepipred 1.0 tool was used for selecting four B-cell epitopes in silico regarding humoral response. Peptide 39041 was the only one recognized by P. vivax-exposed individuals' sera and had significant differences concerning IgG subclasses; an IgG2 > IgG4 profile was observed for this peptide, agreeing with a protection-inducing role against P. falciparum and P. vivax as previously described for antigens such as RESA and MSP2. The bioinformatics results and in vitro evaluation reported here highlighted two T-cell epitopes (39047 and 39154) being recognized by memory cells and a B-cell epitope (39041) identified by P. vivax-exposed individuals' sera which could be used as potential candidates when designing a subunit-based vaccine.
Collapse
Affiliation(s)
- Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,MSc Program in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Faculty of Agricultural Sciences, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | - Manuel E Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
40
|
Hallée S, Counihan NA, Matthews K, Koning‐Ward TF, Richard D. The malaria parasite
Plasmodium falciparum
Sortilin is essential for merozoite formation and apical complex biogenesis. Cell Microbiol 2018; 20:e12844. [DOI: 10.1111/cmi.12844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/22/2018] [Accepted: 03/17/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Stéphanie Hallée
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| | | | - Kathryn Matthews
- School of MedicineDeakin University Waurn Ponds 3216 VIC Australia
| | | | - Dave Richard
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| |
Collapse
|
41
|
Thomas JA, Tan MSY, Bisson C, Borg A, Umrekar TR, Hackett F, Hale VL, Vizcay-Barrena G, Fleck RA, Snijders AP, Saibil HR, Blackman MJ. A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nat Microbiol 2018; 3:447-455. [PMID: 29459732 PMCID: PMC6089347 DOI: 10.1038/s41564-018-0111-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/11/2018] [Indexed: 01/03/2023]
Abstract
Malaria parasites replicate within a parasitophorous vacuole in red blood cells (RBCs). Progeny merozoites egress upon rupture of first the parasitophorous vacuole membrane (PVM), then poration and rupture of the RBC membrane (RBCM). Egress is protease-dependent 1 , but none of the effector molecules that mediate membrane rupture have been identified and it is unknown how sequential rupture of the two membranes is controlled. Minutes before egress, the parasite serine protease SUB1 is discharged into the parasitophorous vacuole2-6 where it cleaves multiple substrates2,5,7-9 including SERA6, a putative cysteine protease10-12. Here, we show that Plasmodium falciparum parasites lacking SUB1 undergo none of the morphological transformations that precede egress and fail to rupture the PVM. In contrast, PVM rupture and RBCM poration occur normally in SERA6-null parasites but RBCM rupture does not occur. Complementation studies show that SERA6 is an enzyme that requires processing by SUB1 to function. RBCM rupture is associated with SERA6-dependent proteolytic cleavage within the actin-binding domain of the major RBC cytoskeletal protein β-spectrin. We conclude that SUB1 and SERA6 play distinct, essential roles in a coordinated proteolytic cascade that enables sequential rupture of the two bounding membranes and culminates in RBCM disruption through rapid, precise, SERA6-mediated disassembly of the RBC cytoskeleton.
Collapse
Affiliation(s)
- James A Thomas
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, UK
| | - Michele S Y Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, UK
| | - Claudine Bisson
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Aaron Borg
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, UK
| | - Trishant R Umrekar
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, UK
| | - Victoria L Hale
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging, Kings College London, London, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, UK
| | - Helen R Saibil
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, UK.
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
42
|
Bermúdez M, Arévalo-Pinzón G, Rubio L, Chaloin O, Muller S, Curtidor H, Patarroyo MA. Receptor-ligand and parasite protein-protein interactions in Plasmodium vivax: Analysing rhoptry neck proteins 2 and 4. Cell Microbiol 2018; 20:e12835. [PMID: 29488316 DOI: 10.1111/cmi.12835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/21/2018] [Indexed: 11/28/2022]
Abstract
Elucidating receptor-ligand and protein-protein interactions represents an attractive alternative for designing effective Plasmodium vivax control methods. This article describes the ability of P. vivax rhoptry neck proteins 2 and 4 (RON2 and RON4) to bind to human reticulocytes. Biochemical and cellular studies have shown that two PvRON2- and PvRON4-derived conserved regions specifically interact with protein receptors on reticulocytes marked by the CD71 surface transferrin receptor. Mapping each protein fragment's binding region led to defining the specific participation of two 20 amino acid-long regions selectively competing for PvRON2 and PvRON4 binding to reticulocytes. Binary interactions between PvRON2 (ligand) and other parasite proteins, such as PvRON4, PvRON5, and apical membrane antigen 1 (AMA1), were evaluated and characterised by surface plasmon resonance. The results revealed that both PvRON2 cysteine-rich regions strongly interact with PvAMA1 Domains II and III (equilibrium constants in the nanomolar range) and at a lower extent with the complete PvAMA1 ectodomain and Domains I and II. These results strongly support that these proteins participate in P. vivax's complex invasion process, thus providing new pertinent targets for blocking P. vivax merozoites' specific entry to their target cells.
Collapse
Affiliation(s)
- Maritza Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Laura Rubio
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Olivier Chaloin
- CNRS, Immunopathology and therapeutic chemistry, Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France
| | - Sylviane Muller
- CNRS, Immunopathology and therapeutic chemistry, Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France.,CNRS, Biotechnology and cell signaling, University of Strasbourg, France / Laboratory of Excellence Medalis, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
43
|
Arévalo-Pinzón G, Bermúdez M, Hernández D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep 2017; 7:9616. [PMID: 28855657 PMCID: PMC5577344 DOI: 10.1038/s41598-017-10025-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022] Open
Abstract
The malarial parasite’s invasion is complex, active and coordinated, involving many low and high affinity interactions with receptors on target cell membrane. Proteomics analysis has described around 40 proteins in P. vivax which could be involved in reticulocyte invasion; few have been studied with the aim of elucidating how many of them establish specific interactions with their respective host cells. Given the importance of knowing which of the parasite’s protein regions are functionally important for invasion, minimum regions mediating specific interaction between Plasmodium vivax apical membrane antigen 1 (PvAMA-1) and its host cell were here elucidated. The region covering PvAMA-1 domains I and II (PvAMA-DI-II) specifically bound to the CD71+ red blood cell subpopulation. A 20 residue-long region (81EVENAKYRIPAGRCPVFGKG100) located in domain I was capable of inhibiting PvAMA-DI-II recombinant protein binding to young reticulocytes (CD71+CD45−) and rosette formation. This conserved peptide specifically interacted with high affinity with reticulocytes (CD71+) through a neuraminidase- and chymotrypsin-treatment sensitive receptor. Such results showed that, despite AMA-1 having universal functions during late Plasmodium invasion stages, PvAMA-1 had reticulocyte-preferring binding regions, suggesting that P. vivax target cell selection is not just restricted to initial interactions but maintained throughout the erythrocyte invasion cycle, having important implications for designing a specific anti-P. vivax vaccine.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 #, 63C-69, Bogotá, Colombia
| | - Maritza Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,MSc Program in Biological Sciences, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - Diana Hernández
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #, 63C-69, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #, 63C-69, Bogotá, Colombia.
| |
Collapse
|
44
|
Vulliez-Le Normand B, Saul FA, Hoos S, Faber BW, Bentley GA. Cross-reactivity between apical membrane antgen 1 and rhoptry neck protein 2 in P. vivax and P. falciparum: A structural and binding study. PLoS One 2017; 12:e0183198. [PMID: 28817634 PMCID: PMC5560645 DOI: 10.1371/journal.pone.0183198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/31/2017] [Indexed: 02/03/2023] Open
Abstract
Malaria, a disease endemic in many tropical and subtropical regions, is caused by infection of the erythrocyte by the apicomplexan parasite Plasmodium. Host-cell invasion is a complex process but two Plasmodium proteins, Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck protein complex (RON), play a key role. AMA1, present on the surface of the parasite, binds tightly to the RON2 component of the RON protein complex, which is inserted into the erythrocyte membrane during invasion. Blocking the AMA1-RON2 interaction with antibodies or peptides inhibits invasion, underlining its importance in the Plasmodium life cycle and as a target for therapeutic strategies. We describe the crystal structure of the complex formed between AMA1 from P. vivax (PvAMA1) and a peptide derived from the externally exposed region of P. vivax RON2 (PvRON2sp1), and of the heterocomplex formed between P. falciparum AMA1 (PfAMA1) and PvRON2sp1. Binding studies show that the affinity of PvRON2sp1 for PvAMA1 is weaker than that previously reported for the PfRON2sp1-PfAMA1 association. Moreover, while PvRON2sp1 shows strong cross-reactivity with PfAMA1, PfRON2sp1 displays no detectable interaction with PvAMA1. The structures show that the equivalent residues PvRON2-Thr2055 and PfRON2-Arg2041 largely account for this pattern of reactivity.
Collapse
Affiliation(s)
- Brigitte Vulliez-Le Normand
- Institut Pasteur, Unité de Microbiologie Structurale, Département de Biologie Structurale et Chimie, Centre National de la Recherche Scientifique, UMR 3528, Université Paris Diderot, Sorbonne Paris Cité, Microbiologie Structurale, Paris, France
| | - Frederick A. Saul
- Institut Pasteur, Plate-forme de Cristallographie, Département de Biologie Structurale et Chimie, Centre National de la Recherche Scientifique UMR 3528, Paris, France
| | - Sylviane Hoos
- Institut Pasteur, Plate-Forme de Biophysique Moléculaire, Département de Biologie Structurale et Chimie, Centre National de la Recherche Scientifique UMR 3528, Paris, France
| | - Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Graham A. Bentley
- Institut Pasteur, Unité d’Immunologie Structurale, Département de Biologie Structurale et Chimie, Centre National de la Recherche Scientifique, URA 2185, Paris, France
- * E-mail:
| |
Collapse
|
45
|
Molecular Cloning and Characterization of Babesia orientalis Rhoptry Neck 2 BoRON2 Protein. J Parasitol Res 2017; 2017:7259630. [PMID: 28775897 PMCID: PMC5523350 DOI: 10.1155/2017/7259630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/12/2017] [Accepted: 04/30/2017] [Indexed: 11/24/2022] Open
Abstract
Babesiosis caused by Babesia orientalis is one of the most prevalent infections of water buffalo transmitted by Rhipicephalus haemaphysaloides causing a parasitic and hemolytic disease. The organelles proteins localized in apical membrane especially rhoptries neck and microneme protein form a complex called moving junction important during invasion process of parasites belonging to apicomplexan group, including Babesia species. A truncated fragment coding a 936 bps fragment was cloned in pMD-19T and subcloned into pET32 (a)+ expression vector, expressed in E. coli BL21. Purified recombinant BoRON2 was used to produce polyclonal antibody against BoRON2. Here, we identified the full sequence of gene encoding the rhoptry neck 2 protein that we named BoRON2 which is 4035 bp in full-length open reading frame without introns, encoding a polypeptide of 1345 amino acids. Western blot of rBoRON2 probed with buffalo positive serum analysis revealed a band of around 150 kDa in parasite lysates, suggesting an active involvement during invasion process. These findings most likely are constructive in perspective of ongoing research focused particularly on water buffalo babesiosis prevention and therapeutics and globally provide new information for genes comparative analysis.
Collapse
|
46
|
Collins CR, Hackett F, Atid J, Tan MSY, Blackman MJ. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLoS Pathog 2017; 13:e1006453. [PMID: 28683142 PMCID: PMC5500368 DOI: 10.1371/journal.ppat.1006453] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023] Open
Abstract
Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture. Malaria, a disease that kills hundreds of thousands of people each year, is caused by a single-celled parasite that grows in red blood cells of infected individuals. Following each round of parasite multiplication, the infected red cells are actively ruptured in a process called egress, releasing a new generation of parasites. Egress is essential for progression to clinical disease, but little is known about how it is controlled. In this work we set out to address the function in egress of a Plasmodium falciparum protein called SERA5, an abundant component of the vacuole in which the parasite grows. We show that parasites lacking SERA5 (or lacking both SERA5 and a closely-related protein called SERA4) undergo accelerated but defective egress in which the bounding vacuole and red cell membranes do not rupture properly. This impedes the escape and subsequent replication of the newly-developed parasites. We also show that modification of SERA5 by parasites proteases just prior to egress is important for SERA5 function. Our results show that SERA5 is a ‘negative regulator’ of egress, controlling the speed of the pathway that leads to disruption of the membranes surrounding the intracellular parasite. Our findings increase our understanding of the molecular mechanisms underlying malarial egress and show that efficient egress requires tight control of the timing of membrane rupture.
Collapse
Affiliation(s)
- Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jonathan Atid
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michele Ser Ying Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Sherling ES, Knuepfer E, Brzostowski JA, Miller LH, Blackman MJ, van Ooij C. The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake. eLife 2017; 6. [PMID: 28252384 PMCID: PMC5365315 DOI: 10.7554/elife.23239] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/26/2017] [Indexed: 11/18/2022] Open
Abstract
Merozoites of the protozoan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invade erythrocytes. Invasion involves discharge of rhoptries, specialized secretory organelles. Once intracellular, parasites induce increased nutrient uptake by generating new permeability pathways (NPP) including a Plasmodium surface anion channel (PSAC). RhopH1/Clag3, one member of the three-protein RhopH complex, is important for PSAC/NPP activity. However, the roles of the other members of the RhopH complex in PSAC/NPP establishment are unknown and it is unclear whether any of the RhopH proteins play a role in invasion. Here we demonstrate that RhopH3, the smallest component of the complex, is essential for parasite survival. Conditional truncation of RhopH3 substantially reduces invasive capacity. Those mutant parasites that do invade are defective in nutrient import and die. Our results identify a dual role for RhopH3 that links erythrocyte invasion to formation of the PSAC/NPP essential for parasite survival within host erythrocytes. DOI:http://dx.doi.org/10.7554/eLife.23239.001 Malaria is a life-threatening disease that affects millions of people around the world. The parasites that cause malaria have a complex life cycle that involves infecting both mosquitoes and mammals, including humans. In humans, the parasites spend part of their life cycle inside red blood cells, which causes the symptoms of the disease. In order to survive and multiply, malaria parasites need to make the red blood cell more permeable so that it can absorb nutrients from the blood stream and get rid of the toxic waste products they generate. It remains unclear how the parasites do this, but previous research has shown that the parasites produce channel-like proteins that make red blood cells more permeable to nutrients. One of the proteins involved in this process forms part of a complex with two other proteins, called RhopH2 and RhopH3. It is not known what these other two proteins do, and whether they are necessary for creating the new nutrient channels. Sherling et al. studied the RhopH3 protein to see if it is required to make red blood cells more permeable. The experiments used a genetically modified version of the parasite, in which RhopH3 no longer interacted with the two other proteins. The findings show that RhopH3 has two important roles: first, parasites need it to invade the red blood cells, and second, parasites cannot get nutrients into the red blood cell without RhopH3. Most antimalarial drugs work by preventing parasite replication in red blood cells, but parasites are becoming increasingly resistant to these drugs. Understanding which proteins allow parasites to invade and grow within blood cells will further the development of new malaria medication. The next step will be to understand the molecular mechanisms by which RhopH3 promotes invasion and subsequently facilitates nutrient uptake, and will help researchers to explore its potential as a drug target. DOI:http://dx.doi.org/10.7554/eLife.23239.002
Collapse
Affiliation(s)
- Emma S Sherling
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Joseph A Brzostowski
- Laboratory of Immunogenetics Imaging Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christiaan van Ooij
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
48
|
Devine SM, MacRaild CA, Norton RS, Scammells PJ. Antimalarial drug discovery targeting apical membrane antigen 1. MEDCHEMCOMM 2017; 8:13-20. [PMID: 30108688 PMCID: PMC6072474 DOI: 10.1039/c6md00495d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
Malaria continues to frustrate humanity's attempts to eradicate this deadly disease. Although gains have been made over the last 15 years, drug resistance to malaria continues to be a major concern. The lack of new antimalarials with novel mechanisms of action continues to challenge the scientific community to find innovative targets to combat this persistent disease. One such target, apical membrane antigen 1 (AMA1), is an essential protein that helps the parasite invade host erythrocytes. Recently, a number of efforts have focused on the druggability of this target, aiming to block the interactions of AMA1 that mediate invasion of host cells. This review covers recent progress in drug discovery targeting this crucial protein-protein interaction in malaria.
Collapse
Affiliation(s)
- Shane M Devine
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - Christopher A MacRaild
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - Raymond S Norton
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - Peter J Scammells
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| |
Collapse
|
49
|
Maskus DJ, Królik M, Bethke S, Spiegel H, Kapelski S, Seidel M, Addai-Mensah O, Reimann A, Klockenbring T, Barth S, Fischer R, Fendel R. Characterization of a novel inhibitory human monoclonal antibody directed against Plasmodium falciparum Apical Membrane Antigen 1. Sci Rep 2016; 6:39462. [PMID: 28000709 PMCID: PMC5175200 DOI: 10.1038/srep39462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023] Open
Abstract
Malaria remains a major challenge to global health causing extensive morbidity and mortality. Yet, there is no efficient vaccine and the immune response remains incompletely understood. Apical Membrane Antigen 1 (AMA1), a leading vaccine candidate, plays a key role during merozoite invasion into erythrocytes by interacting with Rhoptry Neck Protein 2 (RON2). We generated a human anti-AMA1-antibody (humAbAMA1) by EBV-transformation of sorted B-lymphocytes from a Ghanaian donor and subsequent rescue of antibody variable regions. The antibody was expressed in Nicotiana benthamiana and in HEK239-6E, characterized for binding specificity and epitope, and analyzed for its inhibitory effect on Plasmodium falciparum. The generated humAbAMA1 shows an affinity of 106-135 pM. It inhibits the parasite strain 3D7A growth in vitro with an expression system-independent IC50-value of 35 μg/ml (95% confidence interval: 33 μg/ml-37 μg/ml), which is three to eight times lower than the IC50-values of inhibitory antibodies 4G2 and 1F9. The epitope was mapped to the close proximity of the RON2-peptide binding groove. Competition for binding between the RON2-peptide and humAbAMA1 was confirmed by surface plasmon resonance spectroscopy measurements. The particularly advantageous inhibitory activity of this fully human antibody might provide a basis for future therapeutic applications.
Collapse
Affiliation(s)
- Dominika J. Maskus
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Michał Królik
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Susanne Bethke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Melanie Seidel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Otchere Addai-Mensah
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Aachen, Germany
| |
Collapse
|
50
|
Torres MDT, Silva AF, Alves FL, Capurro ML, Miranda A, Cordeiro RM, Oliveira Junior VX. Evidences for the action mechanism of angiotensin II and its analogs on Plasmodium sporozoite membranes. J Pept Sci 2016; 22:132-42. [PMID: 26856687 DOI: 10.1002/psc.2849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/25/2015] [Accepted: 12/14/2015] [Indexed: 01/02/2023]
Abstract
Malaria is an infectious disease responsible for approximately one million deaths annually. Oligopeptides such as angiotensin II (AII) and its analogs are known to have antimalarial effects against Plasmodium gallinaceum and Plasmodium falciparum. However, their mechanism of action is still not fully understood at the molecular level. In the work reported here, we investigated this issue by comparing the antimalarial activity of AII with that of (i) its diastereomer formed by only d-amino acids; (ii) its isomer with reversed sequence; and (iii) its analogs restricted by lactam bridges, the so-called VC5 peptides. Data from fluorescence spectroscopy indicated that the antiplasmodial activities of both all-D-AII and all-D-VC5 were as high as those of the related peptides AII and VC5, respectively. In contrast, retro-AII had no significant effect against P. gallinaceum. Conformational analysis by circular dichroism suggested that AII and its active analogs usually adopted a β-turn conformation in different solutions. In the presence of membrane-mimetic micelles, AII had also a β-turn conformation, while retro-AII was random. Molecular dynamics simulations demonstrated that the AII chains were slightly more bent than retro-AII at the surface of a model membrane. At the hydrophobic membrane interior, however, the retro-AII chain was severely coiled and rigid. AII was much more flexible and able to experience both straight and coiled conformations. We took it as an indication of the stronger ability of AII to interact with membrane headgroups and promote pore formation.
Collapse
Affiliation(s)
| | - Adriana Farias Silva
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Santo André, SP, Brazil
| | - Flávio Lopes Alves
- Universidade Federal de São Paulo, Departamento de Biofísica, São Paulo, SP, Brazil
| | | | - Antonio Miranda
- Universidade Federal de São Paulo, Departamento de Biofísica, São Paulo, SP, Brazil
| | | | | |
Collapse
|