1
|
Mukherjee A, Jodder J, Chowdhury S, Das H, Kundu P. A novel stress-inducible dCas9 system for solanaceous plants. Int J Biol Macromol 2025; 308:142462. [PMID: 40157661 DOI: 10.1016/j.ijbiomac.2025.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Conditional manipulation of gene expression is essential in plant biology, yet a simple stimuli-based inducible system for regulating any plant gene is lacking. Here, we present an innovative stress-inducible CRISPR/dCas9-based gene-regulatory toolkit tailored for intentional gene regulation in solanaceous plants. We have translationally fused the transmembrane domain of a tomato membrane-bound NAC transcription factor with dCas9 to utilize the reversible-tethering-based activation mechanism. This system sequesters dCas9 to the plasma membrane under normal conditions and allows membrane detachment in response to heat induction and NLS-mediated nuclear transfer, enabling stress-inducible gene regulation. Transient assays with tomato codon-optimized dCas9-assisted inducible CRISPR activation and interference systems confirmed their superior ability on transcriptional control, rapid induction, and reversibility after stimulus withdrawal in solanaceous plants. The transformative potential of the toolkit was exemplified by enhancing tomato immunity against bacterial speck disease under elevated temperatures by precisely regulating crucial salicylic acid signalling components, SlCBP60g and SlSARD1. Additionally, it was instrumental in engineering heat-stress tolerance in tomato plants through multiplex activation of heat-responsive transcription factors, SlNAC2 and SlHSFA6b. These findings demonstrate the unprecedented temporal control offered by this novel stress-inducible toolkit over gene-expression dynamics, paving the way for favourable manipulation of complex traits in environmentally-challenged crops.
Collapse
Affiliation(s)
- Ananya Mukherjee
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Jayanti Jodder
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| | - Shreya Chowdhury
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Himadri Das
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Pallob Kundu
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| |
Collapse
|
2
|
Galaud JP, Genin S, Aldon D. Pathogen effectors hijack calcium signaling to promote virulence. TRENDS IN PLANT SCIENCE 2025; 30:356-363. [PMID: 39523142 DOI: 10.1016/j.tplants.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Calcium signaling is a cornerstone of plant defense responses. In this opinion article we explore how pathogens exploit this pathway by targeting calcium sensors such as calmodulin (CaM) and calmodulin-like proteins (CMLs) with their secreted effectors. We illustrate different mechanisms by which effectors manipulate calcium homeostasis, cytoskeletal dynamics, metabolism, hormone biosynthesis, gene regulation, and chloroplast function to suppress plant immunity and enhance virulence. Targeting calcium signaling to thwart or weaken host defenses appears to be a common strategy among pathogens infecting animal cells, and we present here selected examples of this convergence. Understanding these strategies provides valuable insights into the interactions between plants and pathogens, and should pave the way for the development of new disease control strategies.
Collapse
Affiliation(s)
- Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, Université de Toulouse, CNRS-UPS-INP, 31320, Auzeville-Tolosane, France.
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Didier Aldon
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, Université de Toulouse, CNRS-UPS-INP, 31320, Auzeville-Tolosane, France
| |
Collapse
|
3
|
Prasad BD, Ramakant, Sahni S, Kumari D, Kumar P, Jambhulkar SJ, Alamri S, Adil MF. Gene expression analyses of the calmodulin binding protein 60 family under water stress conditions in rice. Sci Rep 2025; 15:6203. [PMID: 39979515 PMCID: PMC11842629 DOI: 10.1038/s41598-025-90693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Plants have developed elaborate mechanisms for perceiving extracellular stimuli and subsequently activating defense reactions through a multifaceted interaction of signaling cascades. Calcium ion (Ca²⁺), an essential and ubiquitous intracellular second messenger molecules, whose concentration ([Ca2+]cyt) has been observed to rise in response to numerous environmental stresses. The calcium/calmodulin (Ca²⁺/CaM) complex triggers apposite cellular responses through modifying the activities of a varied array of CaM-binding proteins (CBPs). Among CBPs, the CBP60 gene family has been identified as key regulators of stress responses in several crop species. Recently, we have demonstrated the expanded and diversified role of OsCBP60 in rice against devastating pathogens. Here, we analyzed the diversified roles of OsCBP60s in two major abiotic stresses, namely reproductive drought and submergence stress. OsCBP60bcd-2 and OsCBP60g-1/OsSARD1 were consistently upregulated during reproductive drought stress in rice. However, OsCBP60g-5 and OsCBP60g-6 were steadily up-regulated under submergence stress in rice. Interestingly, OsCBP60g-4 was consistently upregulated in both abiotic stresses, except on the third day of reproductive drought. The differential expression of OsCBP60s under water stress highlights the importance of further studying these genes as potential targets for enhancing stress resilience in rice.
Collapse
Affiliation(s)
- Bishun Deo Prasad
- Department of MBGE, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India.
- Department of AB&MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur-848125, Bihar, India.
| | - Ramakant
- Department of MBGE, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Sangita Sahni
- Department of Plant Pathology, TCA, Dr. Rajendra Prasad Central Agricultural University, Pusa, , Samastipur-848125, Bihar, India.
| | - Diksha Kumari
- Department of MBGE, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Pankaj Kumar
- Department of MBGE, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Sanjay J Jambhulkar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Wang Y, Huang W, Li X, Zhang Y. The Deubiquitinating Enzyme AMSH1 Contributes to Plant Immunity Through Regulating the Stability of BDA1. PLANTS (BASEL, SWITZERLAND) 2025; 14:429. [PMID: 39942991 PMCID: PMC11819993 DOI: 10.3390/plants14030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
Plants utilize plasma membrane localized receptors like kinases (RLKs) or receptor-like proteins (RLPs) to recognize pathogens and activate pattern-triggered immunity (PTI) responses. A gain-of-function mutation in the Arabidopsis RLP SNC2 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE 2) leads to constitutive activation of defense responses in snc2-1D mutant plants. Transcription factors, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g), define two parallel pathways downstream of SNC2. The autoimmunity of snc2-1D was partially affected by single mutations in SARD1 or CBP60g but completely suppressed by the sard1 cbp60g double mutant. From a suppressor screen using sard1-1 snc2-1D, we identified a deubiquitinating enzyme ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF STAM 1 (AMSH1) as a key component in SNC2-mediated plant immunity. A loss-of-function mutation in AMSH1 can suppress the autoimmune responses of sard1-1 snc2-1D. In eukaryotes, selective protein degradation often occurs through the ubiquitination/deubiquitination system. The deubiquitinating enzymes that remove ubiquitin from target proteins play essential roles in controlling the level of target protein ubiquitination and degradation. As loss of AMSH1 results in decreased BDA1 abundance and BDA1 is a transmembrane protein required for SNC2-mediated immunity, AMSH1 likely contributes to immunity regulation through controlling BDA1 stability.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.W.); (W.H.)
| | - Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.W.); (W.H.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.W.); (W.H.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.W.); (W.H.)
| |
Collapse
|
5
|
Rossi CAM, Patel DN, Castroverde CDM. Distinct profiles of plant immune resilience revealed by natural variation in warm temperature-modulated disease resistance among Arabidopsis accessions. PLANT, CELL & ENVIRONMENT 2024; 47:5115-5125. [PMID: 39165012 DOI: 10.1111/pce.15098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
Elevated temperature suppresses the plant defence hormone salicylic acid (SA) by downregulating the expression of master immune regulatory genes CALMODULIN BINDING PROTEIN 60-LIKE G (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1 (SARD1). However, previous studies in Arabidopsis thaliana plants have primarily focused on the accession Columbia-0 (Col-0), while the genetic determinants of intraspecific variation in Arabidopsis immunity under elevated temperature remain unknown. Here we show that BASIC HELIX LOOP HELIX 059 (bHLH059), a thermosensitive SA regulator at nonstress temperatures, does not regulate immune suppression under warmer temperatures. In agreement, temperature-resilient and -sensitive Arabidopsis accessions based on disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 did not correlate with bHLH059 polymorphisms. Instead, we found that temperature-resilient accessions exhibit varying CBP60g and SARD1 expression profiles, potentially revealing CBP60g/SARD1-dependent and independent mechanisms of immune resilience to warming temperature. We identified thermoresilient accessions that exhibited either temperature-sensitive or -insensitive induction of the SA biosynthetic gene ICS1 (direct target gene of CBP60g and SARD1) and SA hormone levels. Collectively, this study has unveiled the intraspecific diversity of Arabidopsis immune responses under warm temperatures, which could aid in predicting plant responses to climate change and provide foundational knowledge for climate-resilient crop engineering.
Collapse
Affiliation(s)
- Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Dhrashti N Patel
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | | |
Collapse
|
6
|
Chen Y, Han Y, Huang W, Zhang Y, Chen X, Li D, Hong Y, Gao H, Zhang K, Zhang Y, Sun T. LAZARUS 1 functions as a positive regulator of plant immunity and systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1490466. [PMID: 39634069 PMCID: PMC11614604 DOI: 10.3389/fpls.2024.1490466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Systemic acquired resistance (SAR) is activated by local infection and confers enhanced resistance against subsequent pathogen invasion. Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two key signaling molecules in SAR and their levels accumulate during SAR activation. Two members of plant-specific Calmodulin-Binding Protein 60 (CBP60) transcription factor family, CBP60g and SARD1, regulate the expression of biosynthetic genes of SA and NHP. CBP60g and SARD1 function as master regulators of plant immunity and their expression levels are tightly controlled. Although there are numerous reports on regulation of their expression, the specific mechanisms by which SARD1 and CBP60g respond to pathogen infection are not yet fully understood. This study identifies and characterizes the role of the LAZARUS 1 (LAZ1) and its homolog LAZ1H1 in plant immunity. A forward genetic screen was conducted in the sard1-1 mutant background to identify mutants with enhanced SAR-deficient phenotypes (sard mutants), leading to the discovery of sard6-1, which maps to the LAZ1 gene. LAZ1 and its homolog LAZ1H1 were found to be positive regulators of SAR through regulating the expression of CBP60g and SARD1 as well as biosynthetic genes of SA and NHP. Furthermore, Overexpression of LAZ1, LAZ1H1 and its homologs from Nicotiana benthamiana and potato enhanced resistance in N. benthamiana against Phytophthora pathogens. These findings indicate that LAZ1 and LAZ1H1 are evolutionarily conserved proteins that play critical roles in plant immunity.
Collapse
Affiliation(s)
- Yue Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yue Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xiaoli Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dongyue Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Hong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huhu Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
7
|
Sato Y, Weng Y, Shimazaki T, Yoshida K, Nihei KI, Okamoto M. Temporal dynamics of N-hydroxypipecolic acid and salicylic acid pathways in the disease response to powdery mildew in wheat. Biochem Biophys Res Commun 2024; 734:150624. [PMID: 39226738 DOI: 10.1016/j.bbrc.2024.150624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Wheat (Triticum aestivum) is a major staple crop worldwide, and its yields are significantly threatened by wheat powdery mildew (Blumeria graminis f. sp. tritici). Enhancing disease resistance in wheat is crucial for meeting global food demand. This study investigated the disease response in wheat, focusing on the bioactive small molecules salicylic acid (SA), pipecolic acid (Pip), and N-hydroxypipecolic acid (NHP), to provide new insights for molecular breeding. We found that endogenous levels of SA, Pip, and NHP significantly increased in infected plants, with Pip and NHP levels rising earlier than those of SA. Notably, the rate of increase of NHP was substantially higher than that of SA. The gene expression levels of SARD1 and CBP60g, which are transcription factors for SA, Pip, and NHP biosynthesis, increased significantly during the early stages of infection. We also found that during the later stages of infection, the expression of ALD1, SARD4, and FMO1, which encode enzymes for Pip and NHP biosynthesis, dramatically increased. Additionally, ICS1, which encodes a key enzyme involved in SA biosynthesis, also showed increased expression during the later stages of infection. The temporal changes in ICS1 transcription closely mirrored the behavior of endogenous SA levels, suggesting that the ICS pathway is the primary route for SA biosynthesis in wheat. In conclusion, our results suggest that the early accumulation of Pip and NHP cooperates with SA in the disease response against wheat powdery mildew infection.
Collapse
Affiliation(s)
- Yuki Sato
- Center for Sustainable Resource Science (CSRS), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi. 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Yuanjie Weng
- Center for Sustainable Resource Science (CSRS), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Taichi Shimazaki
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi. 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Kentaro Yoshida
- Graduate School of Agriculture, Kyoto University (Yoshida North Campus), Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ken-Ichi Nihei
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi. 321-8505, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Masanori Okamoto
- Center for Sustainable Resource Science (CSRS), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.
| |
Collapse
|
8
|
Huang J, Qi G, Li M, Yu Y, Zhang E, Liu Y. Transcription-Aided Selection (TAS) for Crop Disease Resistance: Strategy and Evidence. Int J Mol Sci 2024; 25:11879. [PMID: 39595949 PMCID: PMC11593552 DOI: 10.3390/ijms252211879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
A transcription-aided selection (TAS) strategy is proposed in this paper, which utilizes the positive regulatory roles of genes involved in the plant immunity pathways to screen crops with high disease resistance. Increased evidence has demonstrated that upon pathogen attack, the expression of diverse genes involved in salicylic acid (SA)-mediated SAR are differentially expressed and transcriptionally regulated. The paper discusses the molecular mechanisms of the SA signaling pathway, which plays a central role in plant immunity, and identifies differentially expressed genes (DEGs) that could be targeted for transcriptional detection. We have conducted a series of experiments to test the TAS strategy and found that the level of GmSAGT1 expression is highly correlated with soybean downy mildew (SDM) resistance with a correlation coefficient R2 = 0.7981. Using RT-PCR, we screened 2501 soybean germplasms and selected 26 collections with higher levels of both GmSAGT1 and GmPR1 (Pathogenesis-related proteins1) gene expression. Twenty-three out of the twenty-six lines were inoculated with Peronospora manshurica (Pm) in a greenhouse. Eight showed HR (highly resistant), four were R (resistant), five were MR (moderately resistant), three were S (susceptible), and three were HS (highly susceptible). The correlation coefficient R2 between the TAS result and Pm inoculation results was 0.7035, indicating a satisfactory consistency. The authors anticipate that TAS provides an effective strategy for screening crops with broad-spectrum and long-lasting resistance.
Collapse
Affiliation(s)
- Jiu Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Guangxun Qi
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Mei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Yue Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Erte Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Yuhui Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| |
Collapse
|
9
|
Mamun MA, Lee BR, Park SH, Muchlas M, Bae DW, Kim TH. Interactive regulation of immune-related resistance genes with salicylic acid and jasmonic acid signaling in systemic acquired resistance in the Xanthomonas-Brassica pathosystem. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154323. [PMID: 39106735 DOI: 10.1016/j.jplph.2024.154323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Pathogen-responsive immune-related genes (resistance genes [R-genes]) and hormones are crucial mediators of systemic acquired resistance (SAR). However, their integrated functions in regulating SAR signaling components in local and distal leaves remain largely unknown. To characterize SAR in the Xanthomonas campestris pv. campestris (Xcc)-Brassica napus pathosystem, the responses of R-genes, (leaf and phloem) hormone levels, H2O2 levels, and Ca2+ signaling-related genes were assessed in local and distal leaves of plants exposed to four Xcc-treatments: Non-inoculation (control), only secondary Xcc-inoculation in distal leaves (C-Xcc), only primary Xcc-inoculation in local leaves (Xcc), and both primary and secondary Xcc-inoculation (X-Xcc). The primary Xcc-inoculation provoked disease symptoms as evidenced by enlarged destructive necrosis in the local leaves of Xcc and X-Xcc plants 7 days post-inoculation. Comparing visual symptoms in distal leaves 5 days post-secondary inoculation, yellowish necrotic lesions were clearly observed in non Xcc-primed plants (C-Xcc), whereas no visual symptom was developed in Xcc-primed plants (X-Xcc), demonstrating SAR. Pathogen resistance in X-Xcc plants was characterized by distinct upregulations in expression of the PAMP-triggered immunity (PTI)-related kinase-encoding gene, BIK1, the (CC-NB-LRR-type) R-gene, ZAR1, and its signaling-related gene, NDR1, with a concurrent enhancement of the kinase-encoding gene, MAPK6, and a depression of the (TIR-NB-LRR-type) R-gene, TAO1, and its signaling-related gene, SGT1, in distal leaves. Further, in X-Xcc plants, higher salicylic acid (SA) and jasmonic acid (JA) levels, both in phloem and distal leaves, were accompanied by enhanced expressions of the SA-signaling gene, NPR3, the JA-signaling genes, LOX2 and PDF1.2, and the Ca2+-signaling genes, CAS and CBP60g. However, in distal leaves of C-Xcc plants, an increase in SA level resulted in an antagonistic depression of JA, which enhanced only SA-dependent signaling, EDS1 and NPR1. These results demonstrate that primary Xcc-inoculation in local leaves induces resistance to subsequent pathogen attack by upregulating BIK1-ZAR1-mediated synergistic interactions with SA and JA signaling as a crucial component of SAR.
Collapse
Affiliation(s)
- Md Al Mamun
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Hyun Park
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Muchamad Muchlas
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Won Bae
- Core-Facility Center for High-Tech Materials Analysis, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
10
|
Kumari D, Prasad BD, Dwivedi P. Genome-wide analysis of calmodulin binding Protein60 candidates in the important crop plants. Mol Biol Rep 2024; 51:1105. [PMID: 39476040 DOI: 10.1007/s11033-024-10032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND Efficient management of environmental stresses is essential for sustainable crop production. Calcium (Ca²⁺) signaling plays a crucial role in regulating responses to both biotic and abiotic stresses, particularly during host-pathogen interactions. In Arabidopsis thaliana, calmodulin-binding protein 60 (CBP60) family members, such as AtCBP60g, AtCBP60a, and AtSARD1, have been well characterized for their involvement in immune regulation. However, a comprehensive understanding of CBP60 genes in major crops remains limited. METHODS In this study, we utilized the Phytozome v12.1 database to identify and analyze CBP60 genes in agriculturally important crops. Expression patterns of a Oryza sativa (rice) CBP60 gene, OsCBP60bcd-1, were assessed in resistant and susceptible rice genotypes in response to infection by the bacterial pathogen Xanthomonas oryzae. Localization of CBP60 proteins was analyzed to predict their functional roles, and computational promoter analysis was performed to identify stress-responsive cis-regulatory elements. RESULTS Phylogenetic analysis revealed that most CBP60 genes in crops belong to the immune-related clade. Expression analysis showed that OsCBP60bcd-1 was significantly upregulated in the resistant rice genotype upon pathogen infection. Subcellular localization studies suggested that the majority of CBP60 proteins are nuclear-localized, indicating a potential role as transcription factors. Promoter analysis identified diverse stress-responsive cis-regulatory elements in the promoters of CBP60 genes, highlighting their regulatory potential under stress conditions. CONCLUSION The upregulation of OsCBP60bcd-1 in response to Xanthomonas oryzae and the presence of stress-responsive elements in its promoter underscore the importance of CBP60 genes in pathogen defense. These findings provide a basis for further investigation into the functional roles of CBP60 genes in crop disease resistance, with implications for enhancing stress resilience in agricultural species.
Collapse
Affiliation(s)
- Diksha Kumari
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Bishun Deo Prasad
- Department of Agricultural Biotechnology & Molecular Biology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India.
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
11
|
Atem JEC, Gan L, Yu W, Huang F, Wang Y, Baloch A, Nwafor CC, Barrie AU, Chen P, Zhang C. Bioinformatics and functional analysis of EDS1 genes in Brassica napus in response to Plasmodiophora brassicae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112175. [PMID: 38986913 DOI: 10.1016/j.plantsci.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Enhanced Disease Susceptibility 1 (EDS1) is a key regulator of plant-pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. In the Brassica napus genome, we identified six novel EDS1 genes, among which four were responsive to clubroot infection, a major rapeseed disease resistant to chemical control. Developing resistant cultivars is a potent and economically viable strategy to control clubroot infection. Bioinformatics analysis revealed conserved domains and structural uniformity in Bna-EDS1 homologs. Bna-EDS1 promoters harbored elements associated with diverse phytohormones and stress responses, highlighting their crucial roles in plant defense. A functional analysis was performed with Bna-EDS1 overexpression and RNAi transgenic lines. Bna-EDS1 overexpression boosted resistance to clubroot and upregulated defense-associated genes (PR1, PR2, ICS1, and CBP60), while Bna-EDS1 RNAi increased plant susceptibility, indicating suppression of the defense signaling pathway downstream of NBS-LRRs. RNA-Seq analysis identified key transcripts associated with clubroot resistance, including phenylpropanoid biosynthesis. Activation of SA regulator NPR1, defense signaling markers PR1 and PR2, and upregulation of MYC-TFs suggested that EDS1-mediated clubroot resistance potentially involves the SA pathway. Our findings underscore the pivotal role of Bna-EDS1-dependent mechanisms in resistance of B. napus to clubroot disease, and provide valuable insights for fortifying resistance against Plasmodiophora brassicae infection in rapeseed.
Collapse
Affiliation(s)
- Jalal Eldeen Chol Atem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Longcai Gan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Fan Huang
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE68588, USA; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Yanyan Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Amanullah Baloch
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chinedu Charles Nwafor
- Guangdong Ocean University, Zhanjiang 524088, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Alpha Umaru Barrie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria.
| |
Collapse
|
12
|
Li LS, Yang YY, Chen YX, Yu F, Hao GJ, Yin GM, Dou Y, Zhi JY, Ma L, Wang JF, Feng QN, Zhang Y, Li S. CBP60b clade proteins are prototypical transcription factors mediating immunity. PLANT PHYSIOLOGY 2024; 196:1489-1501. [PMID: 38889048 DOI: 10.1093/plphys/kiae349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Transcriptional reprogramming is critical for plant immunity. Several calmodulin (CaM)-binding protein 60 (CBP60) family transcription factors (TFs) in Arabidopsis (Arabidopsis thaliana), including CBP60g, systemic acquired resistance deficient 1 (SARD1), CBP60a, and CBP60b, are critical for and show distinct roles in immunity. However, there are additional CBP60 members whose function is unclear. We report here that Arabidopsis CBP60c-f, 4 uncharacterized CBP60 members, play redundant roles with CBP60b in the transcriptional regulation of immunity responses, whose pCBP60b-driven expression compensates the loss of CBP60b. By contrast, neither CBP60g nor SARD1 is interchangeable with CBP60b, suggesting clade-specific functionalization. We further show that the function of CBP60b clade TFs relies on DNA-binding domains (DBDs) and CaM-binding domains, suggesting that they are downstream components of calcium signaling. Importantly, we demonstrate that CBP60s encoded in earliest land plant lineage Physcomitrium patens and Selaginella moellendorffii are functionally homologous to Arabidopsis CBP60b, suggesting that the CBP60b clade contains the prototype TFs of the CBP60 family. Furthermore, tomato and cucumber CBP60b-like genes rescue the defects of Arabidopsis cbp60b and activate the expression of tomato and cucumber SALICYLIC ACID INDUCTION DEFICIIENT2 (SID2) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes, suggesting that immune response pathways centered on CBP60b are also evolutionarily conserved. Together, these findings suggest that CBP60b clade TFs are functionally conserved in evolution and positively mediate immunity.
Collapse
Affiliation(s)
- Lu-Shen Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Yan-Yan Yang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yun-Xia Chen
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Fei Yu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Guang-Jiu Hao
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Gui-Min Yin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Yan Dou
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jing-Yu Zhi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Lin Ma
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jing-Fan Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qiang-Nang Feng
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
13
|
Safaeizadeh M, Boller T, Becker C. Comparative RNA-seq analysis of Arabidopsis thaliana response to AtPep1 and flg22, reveals the identification of PP2-B13 and ACLP1 as new members in pattern-triggered immunity. PLoS One 2024; 19:e0297124. [PMID: 38833485 PMCID: PMC11149889 DOI: 10.1371/journal.pone.0297124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/28/2023] [Indexed: 06/06/2024] Open
Abstract
In this research, a high-throughput RNA sequencing-based transcriptome analysis technique (RNA-Seq) was used to evaluate differentially expressed genes (DEGs) in the wild type Arabidopsis seedlings in response to AtPep1, a well-known peptide representing an endogenous damage-associated molecular pattern (DAMP), and flg22, a well-known microbe-associated molecular pattern (MAMP). We compared and dissected the global transcriptional landscape of Arabidopsis thaliana in response to AtPep1 and flg22 and could identify shared and unique DEGs in response to these elicitors. We found that while a remarkable number of flg22 up-regulated genes were also induced by AtPep1, 256 genes were exclusively up-regulated in response to flg22, and 328 were exclusively up-regulated in response to AtPep1. Furthermore, among down-regulated DEGs upon flg22 treatment, 107 genes were exclusively down-regulated by flg22 treatment, while 411 genes were exclusively down-regulated by AtPep1. We found a number of hitherto overlooked genes to be induced upon treatment with either flg22 or with AtPep1, indicating their possible involvement general pathways in innate immunity. Here, we characterized two of them, namely PP2-B13 and ACLP1. pp2-b13 and aclp1 mutants showed increased susceptibility to infection by the virulent pathogen Pseudomonas syringae DC3000 and its mutant Pst DC3000 hrcC (lacking the type III secretion system), as evidenced by increased proliferation of the two pathogens in planta. Further, we present evidence that the aclp1 mutant is deficient in ethylene production upon flg22 treatment, while the pp2-b13 mutant is deficient in the production of reactive oxygen species (ROS). The results from this research provide new information for a better understanding of the immune system in Arabidopsis.
Collapse
Affiliation(s)
- Mehdi Safaeizadeh
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Thomas Boller
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Claude Becker
- LMU Biocentre, Faculty of Biology, Ludwig-Maximilian-University Munich, Martinsried, Germany
| |
Collapse
|
14
|
Yi F, Li Y, Song A, Shi X, Hu S, Wu S, Shao L, Chu Z, Xu K, Li L, Tran LP, Li W, Cai Y. Positive roles of the Ca 2+ sensors GbCML45 and GbCML50 in improving cotton Verticillium wilt resistance. MOLECULAR PLANT PATHOLOGY 2024; 25:e13483. [PMID: 38829344 PMCID: PMC11146148 DOI: 10.1111/mpp.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.
Collapse
Affiliation(s)
- Feifei Yi
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Yuzhe Li
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Aosong Song
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Xinying Shi
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Shanci Hu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Shuang Wu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Lili Shao
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Zongyan Chu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Kun Xu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Liangliang Li
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Lam‐Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress ResistanceTexas Tech UniversityLubbockTexasUSA
| | - Weiqiang Li
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Yingfan Cai
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| |
Collapse
|
15
|
Wang Y, Liu C, Qin Y, Du Y, Song C, Kang Z, Guo J, Guo J. Stripe rust effector Pst03724 modulates host immunity by inhibiting NAD kinase activation by a calmodulin. PLANT PHYSIOLOGY 2024; 195:1624-1641. [PMID: 38441329 DOI: 10.1093/plphys/kiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/19/2024] [Indexed: 06/02/2024]
Abstract
Puccinia striiformis f. sp. tritici (Pst) secretes effector proteins that enter plant cells to manipulate host immune processes. In this report, we present an important Pst effector, Pst03724, whose mRNA expression level increases during Pst infection of wheat (Triticum aestivum). Silencing of Pst03724 reduced the growth and development of Pst. Pst03724 targeted the wheat calmodulin TaCaM3-2B, a positive regulator of wheat immunity. Subsequent investigations revealed that Pst03724 interferes with the TaCaM3-2B-NAD kinase (NADK) TaNADK2 association and thus inhibits the enzyme activity of TaNADK2 activated by TaCaM3-2B. Knocking down TaNADK2 expression by virus-mediated gene silencing significantly increased fungal growth and development, suggesting a decrease in resistance against Pst infection. In conclusion, our findings indicate that Pst effector Pst03724 inhibits the activity of NADK by interfering with the TaCaM3-2B-TaNADK2 association, thereby facilitating Pst infection.
Collapse
Affiliation(s)
- Yanfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Yuanyang Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Yuanyuan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Chao Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| |
Collapse
|
16
|
Spoel SH, Dong X. Salicylic acid in plant immunity and beyond. THE PLANT CELL 2024; 36:1451-1464. [PMID: 38163634 PMCID: PMC11062473 DOI: 10.1093/plcell/koad329] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used herbal medicine in human history and a major defence hormone in plants against a broad spectrum of pathogens and abiotic stresses, salicylic acid (SA) has attracted major research interest. With applications of modern technologies over the past 30 years, studies of the effects of SA on plant growth, development, and defence have revealed many new research frontiers and continue to deliver surprises. In this review, we provide an update on recent advances in our understanding of SA metabolism, perception, and signal transduction mechanisms in plant immunity. An overarching theme emerges that SA executes its many functions through intricate regulation at multiple steps: SA biosynthesis is regulated both locally and systemically, while its perception occurs through multiple cellular targets, including metabolic enzymes, redox regulators, transcription cofactors, and, most recently, an RNA-binding protein. Moreover, SA orchestrates a complex series of post-translational modifications of downstream signaling components and promotes the formation of biomolecular condensates that function as cellular signalling hubs. SA also impacts wider cellular functions through crosstalk with other plant hormones. Looking into the future, we propose new areas for exploration of SA functions, which will undoubtedly uncover more surprises for many years to come.
Collapse
Affiliation(s)
- Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Xinnian Dong
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
17
|
Dai XY, Lan HJ, Chen Y, Liu TY, Zhao YT, Liu JZ. Knocking out NtSARD1a/1b/1c/1d by CRISPR/CAS9 technology reduces the biosynthesis of salicylic acid (SA) and compromises immunity in tetraploid Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112051. [PMID: 38417717 DOI: 10.1016/j.plantsci.2024.112051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Salicylic acid (SA) is a key phyto-hormone that is essential for plant immunity. SARD1 (SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1), a member of the CBP60 (CALMODULIN-BINDING PROTEIN60) gene family, is one of the major transcription factors regulating the expression of the genes in SA biosynthesis. SARD1 has been extensively studied in model plant Arabidopsis. However, the function of SARD1 homologues in SA biosynthesis and immune responses have rarely been investigated in other plant species. In this study, the CRISPR/CAS9 (Clustered Regularly Interspersed Short Palindromic Repeats/CAS9) technology was used in creating transgenic tobacco mutant lines with 6-8 alleles of four NtSARD1 homologous genes (NtSARD1a/1b/1c/1d) knocked out. No significant difference in morphological phenotype was observed between the transgenic knockout lines and the wild type tobacco plants, indicating that knocking out NtSARD1s does not affect the growth and development in tobacco. However, knocking out or partially knocking out of NtSARD1a/b/c/d resulted in a significantly reduced expression of NtICS1, the key gene in SA biosynthesis pathway, and thus the subsequently decreased SA/SAG accumulations in response to Pst DC3000 (Pseudomonas syrangae pv.tomato DC3000) infection, indicating a key role of NtSARD1 genes in SA biosynthesis in tobacco. As a consequence of reduced SA/SAG accumulation, the Pst DC3000-induced expression of NtPR genes as well as the resistance to Pst DC3000 were both significantly reduced in these knockout lines compared with the wild type tobacco plants. Interestingly, the reductions in the SA/SAG level, NtPR gene induction and Pst DC3000 resistance were positively correlated with the number of alleles being knocked out. Furthermore, LUC reporter gene driven by the promoter of NtICS1 containing two G(A/T)AATT(T/G) motifs could be activated by NtSARD1a, suggesting that NtSARD1a could bind to the core G(A/T)AATT(T/G) motifs and thus activate the expression of LUC reporter. Taken together, our results demonstrated that the NtSARD1 proteins play essential roles in SA biosynthesis and immune responses in tobacco. Our results also demonstrated that the CRISPR/CAS9 technology can overcome gene redundancy and is a powerful tool to study gene functions in polyploid plant species.
Collapse
Affiliation(s)
- Xian-Yong Dai
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hu-Jiao Lan
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yu Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Tian-Yao Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ya-Ting Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jian-Zhong Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; Institute of Genetics and Developmental Biology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| |
Collapse
|
18
|
Zhao YW, Li WK, Wang CK, Sun Q, Wang WY, Huang XY, Xiang Y, Hu DG. MdPRX34L, a class III peroxidase gene, activates the immune response in apple to the fungal pathogen Botryosphaeria dothidea. PLANTA 2024; 259:86. [PMID: 38453695 DOI: 10.1007/s00425-024-04355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/27/2024] [Indexed: 03/09/2024]
Abstract
MAIN CONCLUSION MdPRX34L enhanced resistance to Botryosphaeria dothidea by increasing salicylic acid (SA) and abscisic acid (ABA) content as well as the expression of related defense genes. The class III peroxidase (PRX) multigene family is involved in complex biological processes. However, the molecular mechanism of PRXs in the pathogen defense of plants against Botryosphaeria dothidea (B. dothidea) remains unclear. Here, we cloned the PRX gene MdPRX34L, which was identified as a positive regulator of the defense response to B. dothidea, from the apple cultivar 'Royal Gala.' Overexpression of MdPRX34L in apple calli decreased sensitivity to salicylic acid (SA) and abscisic acid(ABA). Subsequently, overexpression of MdPRX34L in apple calli increased resistance to B. dothidea infection. In addition, SA contents and the expression levels of genes related to SA synthesis and signaling in apple calli overexpressing MdPRX34L were higher than those in the control after inoculation, suggesting that MdPRX34L enhances resistance to B. dothidea via the SA pathway. Interestingly, infections in apple calli by B. dothidea caused an increase in endogenous levels of ABA followed by induction of ABA-related genes expression. These findings suggest a potential mechanism by which MdPRX34L enhances plant-pathogen defense against B. dothidea by regulating the SA and ABA pathways.
Collapse
Affiliation(s)
- Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wan-Kun Li
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wen-Yan Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ying Xiang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
19
|
Sun J, Nie J, Xiao T, Guo C, Lv D, Zhang K, He HL, Pan J, Cai R, Wang G. CsPM5.2, a phosphate transporter protein-like gene, promotes powdery mildew resistance in cucumber. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1487-1502. [PMID: 38048475 DOI: 10.1111/tpj.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
Powdery mildew (PM) is one of the most serious fungal diseases affecting cucumbers (Cucumis sativus L.). The mechanism of PM resistance in cucumber is intricate and remains fragmentary as it is controlled by several genes. In this study, we detected the major-effect Quantitative Trait Locus (QTL), PM5.2, involved in PM resistance by QTL mapping. Through fine mapping, the dominant PM resistance gene, CsPM5.2, was cloned and its function was confirmed by transgenic complementation and natural variation identification. In cultivar 9930, a dysfunctional CsPM5.2 mutant resulted from a single nucleotide polymorphism in the coding region and endowed susceptibility to PM. CsPM5.2 encodes a phosphate transporter-like protein PHO1; H3. The expression of CsPM5.2 is ubiquitous and induced by the PM pathogen. In cucumber, both CsPM5.2 and Cspm5.1 (Csmlo1) are required for PM resistance. Transcriptome analysis suggested that the salicylic acid (SA) pathway may play an important role in CsPM5.2-mediated PM resistance. Our findings help parse the mechanisms of PM resistance and provide strategies for breeding PM-resistant cucumber cultivars.
Collapse
Affiliation(s)
- Jingxian Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Jingtao Nie
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Tingting Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Chunli Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Duo Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Keyan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Huan-Le He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| |
Collapse
|
20
|
Kiselev KV, Suprun AR, Aleynova OA, Ogneva ZV, Dubrovina AS. Simultaneous Application of Several Exogenous dsRNAs for the Regulation of Anthocyanin Biosynthesis in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:541. [PMID: 38498529 PMCID: PMC10893326 DOI: 10.3390/plants13040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Plant surface treatment with double-stranded RNAs (dsRNAs) has gained recognition as a promising method for inducing gene silencing and combating plant pathogens. However, the regulation of endogenous plant genes by external dsRNAs has not been sufficiently investigated. Also, the effect of the simultaneous application of multiple gene-specific dsRNAs has not been analyzed. The aim of this study was to exogenously target five genes in Arabidopsis thaliana, namely, three transcription factor genes (AtCPC, AtMybL2, AtANAC032), a calmodulin-binding protein gene (AtCBP60g), and an anthocyanidin reductase gene (AtBAN), which are known as negative regulators of anthocyanin accumulation. Exogenous dsRNAs encoding these genes were applied to the leaf surface of A. thaliana either individually or in mixtures. The mRNA levels of the five targets were analyzed using qRT-PCR, and anthocyanin content was evaluated through HPLC-MS. The results demonstrated significant downregulation of all five target genes by the exogenous dsRNAs, resulting in enhanced expression of chalcone synthase (AtCHS) gene and increased anthocyanin content. The simultaneous foliar application of the five dsRNAs proved to be more efficient in activating anthocyanin accumulation compared to the application of individual dsRNAs. These findings hold considerable importance in plant biotechnology and gene function studies.
Collapse
Affiliation(s)
- Konstantin V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Andrey R Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Olga A Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Zlata V Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexandra S Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
21
|
Wu K, Wang L, Wu Z, Liu Z, Li Z, Shen J, Shi S, Liu H, Rensing C, Feng R. Selenite reduced cadmium uptake, interfered signal transduction of endogenous phytohormones, and stimulated secretion of tartaric acid based on a combined analysis of non-invasive micro-test technique, transcriptome and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108107. [PMID: 38029613 DOI: 10.1016/j.plaphy.2023.108107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Selenium (Se) can reduce uptake and translocation of cadmium (Cd) in plants via plenty of ways, including regulation of root morphology. However, the underlying mechanisms on how Se will regulate root morphology under metal(loid) stresses are not fully illustrated. To fill up this knowledge gap, we investigated the effects of 0.5 mg L-1 selenite (Se(IV)) on root exudates, root morphology, root endogenous hormones, and Cd uptake efficiency of rice under the 1 mg L-1 Cd stress condition. The results showed that Se(IV) significantly reduced shoot and root Cd concentrations, and decreased Cd uptake efficiency via root hairs determined by a non-invasive micro-test (NMT) technology. When compared to the 1 mg L-1 Cd (Cd1) treatment, addition of 0.5 mg L-1 Se(IV) (1) significantly reduced root surface area and tip numbers, and non-significantly reduced root length, but significantly enhanced root diameter and root volume; (2) significantly enhanced concentrations of tartaric acid in the root exudate solution, root auxin (IAA) and root jasmonic acid (JA) via a UHPLC or a HPLC analysis; (3) significantly up-regulated metabolites correlated with synthesis of IAA, JA, gibberellin (GA), and salicylic acid, such as GA53, M-SA, (+/-)7-epi-JA, and derivatives of tryptophan and indole in the metabolome analysis. However, results of transcriptome analysis showed that (1) no upregulated differentially expressed genes (DEGs) were enriched in IAA synthesis; (2) some upregulated DEGs were found to be enriched in JA and GA53 synthesis pathways. In summary, although Se(IV) stimulated the synthesis of IAA, JA, and GA53, it significantly inhibited root growth mainly by 1) affecting signal transduction of IAA and GA; 2) altering IAA polar transport and homeostasis; and 3) regulating DEGs including SAUR32, SAUR36, SAUR76, OsSub33, OsEXPA8, OsEXPA18, and Os6bglu24.
Collapse
Affiliation(s)
- KongYuan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZiHan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZiQing Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZengFei Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Jun Shen
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ShengJie Shi
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China.
| |
Collapse
|
22
|
Ye MY, Lan HJ, Liu JZ. GmCBP60b Plays Both Positive and Negative Roles in Plant Immunity. Int J Mol Sci 2023; 25:378. [PMID: 38203547 PMCID: PMC10778643 DOI: 10.3390/ijms25010378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
CBP60b (CALMODULIN-BINDING PROTEIN 60b) is a member of the CBP60 transcription factor family. In Arabidopsis, AtCBP60b not only regulates growth and development but also activates the transcriptions in immune responses. So far, CBP60b has only been studied extensively in the model plant Arabidopsis and rarely in crops. In this study, Bean pod mottle virus (BPMV)-mediated gene silencing (BPMV-VIGS) was used to silence GmCBP60b.1/2 in soybean plants. The silencing of GmCBP60b.1/2 resulted in typical autoimmunity, such as dwarfism and enhanced resistance to both Soybean mosaic virus (SMV) and Pseudomonas syringae pv. glycinea (Psg). To further understand the roles of GmCBP60b in immunity and circumvent the recalcitrance of soybean transformation, we generated transgenic tobacco lines that overexpress GmCBP60b.1. The overexpression of GmCBP60b.1 also resulted in autoimmunity, including spontaneous cell death on the leaves, highly induced expression of PATHOGENESIS-RELATED (PR) genes, significantly elevated accumulation of defense hormone salicylic acid (SA), and significantly enhanced resistance to Pst DC3000 (Pseudomonas syrangae pv. tomato DC3000). The transient coexpression of a luciferase reporter gene driven by the promoter of soybean SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (GmSARD1) (ProGmSARD1::LUC), together with GmCBP60b.1 driven by the 35S promoter, led to the activation of the LUC reporter gene, suggesting that GmCBP60b.1 could bind to the core (A/T)AATT motifs within the promoter region of GmSARD1 and, thus, activate the expression of the LUC reporter. Taken together, our results indicate that GmCBP60b.1/2 play both positive and negative regulatory roles in immune responses. These results also suggest that the function of CBP60b is conserved across plant species.
Collapse
Affiliation(s)
- Mei-Yan Ye
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (M.-Y.Y.); (H.-J.L.)
| | - Hu-Jiao Lan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (M.-Y.Y.); (H.-J.L.)
| | - Jian-Zhong Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (M.-Y.Y.); (H.-J.L.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
23
|
Zeng H, Zhu Q, Yuan P, Yan Y, Yi K, Du L. Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:3680-3703. [PMID: 37575022 DOI: 10.1111/pce.14686] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Plants have evolved a set of finely regulated mechanisms to respond to various biotic stresses. Transient changes in intracellular calcium (Ca2+ ) concentration have been well documented to act as cellular signals in coupling environmental stimuli to appropriate physiological responses with astonishing accuracy and specificity in plants. Calmodulins (CaMs) and calmodulin-like proteins (CMLs) are extensively characterized as important classes of Ca2+ sensors. The spatial-temporal coordination between Ca2+ transients, CaMs/CMLs and their target proteins is critical for plant responses to environmental stresses. Ca2+ -loaded CaMs/CMLs interact with and regulate a broad spectrum of target proteins, such as ion transporters (including channels, pumps, and antiporters), transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biological functions. This review focuses on mechanisms underlying how CaMs/CMLs are involved in the regulation of plant responses to diverse biotic stresses including pathogen infections and herbivore attacks. Recent discoveries of crucial functions of CaMs/CMLs and their target proteins in biotic stress resistance revealed through physiological, molecular, biochemical, and genetic analyses have been described, and intriguing insights into the CaM/CML-mediated regulatory network are proposed. Perspectives for future directions in understanding CaM/CML-mediated signalling pathways in plant responses to biotic stresses are discussed. The application of accumulated knowledge of CaM/CML-mediated signalling in biotic stress responses into crop cultivation would improve crop resistance to various biotic stresses and safeguard our food production in the future.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
24
|
Zhang C, Atanasov KE, Murillo E, Vives-Peris V, Zhao J, Deng C, Gómez-Cadenas A, Alcázar R. Spermine deficiency shifts the balance between jasmonic acid and salicylic acid-mediated defence responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2023; 46:3949-3970. [PMID: 37651604 DOI: 10.1111/pce.14706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Polyamines are small aliphatic polycations present in all living organisms. In plants, the most abundant polyamines are putrescine (Put), spermidine (Spd) and spermine (Spm). Polyamine levels change in response to different pathogens, including Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the regulation of polyamine metabolism and their specific contributions to defence are not fully understood. Here we report that stimulation of Put biosynthesis by Pst DC3000 is dependent on coronatine (COR) perception and jasmonic acid (JA) signalling, independently of salicylic acid (SA). Conversely, lack of Spm in spermine synthase (spms) mutant stimulated galactolipids and JA biosynthesis, and JA signalling under basal conditions and during Pst DC3000 infection, whereas compromised SA-pathway activation and defence outputs through SA-JA antagonism. The dampening of SA responses correlated with COR and Pst DC3000-inducible deregulation of ANAC019 expression and its key SA-metabolism gene targets. Spm deficiency also led to enhanced disease resistance to the necrotrophic fungal pathogen Botrytis cinerea and stimulated endoplasmic reticulum (ER) stress signalling in response to Pst DC3000. Overall, our findings provide evidence for the integration of polyamine metabolism in JA- and SA-mediated defence responses, as well as the participation of Spm in buffering ER stress during defence.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Kostadin E Atanasov
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Ester Murillo
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Vicente Vives-Peris
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castelló de la Plana, Spain
| | - Jiaqi Zhao
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Cuiyun Deng
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castelló de la Plana, Spain
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Sougrakpam Y, Babuta P, Deswal R. Nitric oxide (NO) modulates low temperature-stress signaling via S-nitrosation, a NO PTM, inducing ethylene biosynthesis inhibition leading to enhanced post-harvest shelf-life of agricultural produce. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2051-2065. [PMID: 38222283 PMCID: PMC10784255 DOI: 10.1007/s12298-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/16/2024]
Abstract
Low temperature (cold) stress is one of the major abiotic stress conditions affecting crop productivity worldwide. Nitric oxide (NO) is a dynamic signaling molecule that interacts with various stress regulators and provides abiotic stress tolerance. Stress enhanced NO contributes to S-nitrosothiol accumulation which causes oxidation of the -SH group in proteins leading to S-nitrosation, a post-translational modification. Cold stress induced in vivo S-nitrosation of > 240 proteins majorly belonging to stress/signaling/redox (myrosinase, SOD, GST, CS, DHAR), photosynthesis (RuBisCO, PRK), metabolism (FBA, GAPDH, TPI, SBPase), and cell wall modification (Beta-xylosidases, alpha-l-arabinogalactan) in different crop plants indicated role of NO in these important cellular and metabolic pathways. NO mediated regulation of a transcription factor CBF (C-repeat Binding Factor, a transcription factor) at transcriptional and post-translational level was shown in Solanum lycopersicum seedlings. NO donor priming enhances seed germination, breaks dormancy and provides tolerance to stress in crops. Its role in averting stress, promoting seed germination, and delaying senescence paved the way for use of NO and NO releasing compounds to prevent crop loss and increase the shelf-life of fruits and vegetables. An alternative to energy consuming and expensive cold storage led to development of a storage device called "shelf-life enhancer" that delays senescence and increases shelf-life at ambient temperature (25-27 °C) using NO donor. The present review summarizes NO research in plants and exploration of NO for its translational potential to improve agricultural yield and post-harvest crop loss. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01371-z.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Priyanka Babuta
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
26
|
Lei G, Zhou KH, Chen XJ, Huang YQ, Yuan XJ, Li GG, Xie YY, Fang R. Transcriptome and metabolome analyses revealed the response mechanism of pepper roots to Phytophthora capsici infection. BMC Genomics 2023; 24:626. [PMID: 37864214 PMCID: PMC10589972 DOI: 10.1186/s12864-023-09713-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited. METHODS A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). RESULTS More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici. CONCLUSION The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper-P. capsici.
Collapse
Affiliation(s)
- Gang Lei
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Kun-Hua Zhou
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xue-Jun Chen
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yue-Qin Huang
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xin-Jie Yuan
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Ge-Ge Li
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yuan-Yuan Xie
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Rong Fang
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
27
|
Chen X, Fang D, Xu Y, Duan K, Yoshida S, Yang S, Sahu SK, Fu H, Guang X, Liu M, Wu C, Liu Y, Mu W, Chen Y, Fan Y, Wang F, Peng S, Shi D, Wang Y, Yu R, Zhang W, Bai Y, Liu ZJ, Yan Q, Liu X, Xu X, Yang H, Wu J, Graham SW, Liu H. Balanophora genomes display massively convergent evolution with other extreme holoparasites and provide novel insights into parasite-host interactions. NATURE PLANTS 2023; 9:1627-1642. [PMID: 37735254 DOI: 10.1038/s41477-023-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 08/18/2023] [Indexed: 09/23/2023]
Abstract
Parasitic plants have evolved to be subtly or severely dependent on host plants to complete their life cycle. To provide new insights into the biology of parasitic plants in general, we assembled genomes for members of the sandalwood order Santalales, including a stem hemiparasite (Scurrula) and two highly modified root holoparasites (Balanophora) that possess chimaeric host-parasite tubers. Comprehensive genome comparisons reveal that hemiparasitic Scurrula has experienced a relatively minor degree of gene loss compared with autotrophic plants, consistent with its moderate degree of parasitism. Nonetheless, patterns of gene loss appear to be substantially divergent across distantly related lineages of hemiparasites. In contrast, Balanophora has experienced substantial gene loss for the same sets of genes as an independently evolved holoparasite lineage, the endoparasitic Sapria (Malpighiales), and the two holoparasite lineages experienced convergent contraction of large gene families through loss of paralogues. This unprecedented convergence supports the idea that despite their extreme and strikingly divergent life histories and morphology, the evolution of these and other holoparasitic lineages can be shaped by highly predictable modes of genome reduction. We observe substantial evidence of relaxed selection in retained genes for both hemi- and holoparasitic species. Transcriptome data also document unusual and novel interactions between Balanophora and host plants at the host-parasite tuber interface tissues, with evidence of mRNA exchange, substantial and active hormone exchange and immune responses in parasite and host.
Collapse
Affiliation(s)
- Xiaoli Chen
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kunyu Duan
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Satoko Yoshida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shuai Yang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Hui Fu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanmin Guang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Chenyu Wu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Fang Wang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shufeng Peng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Dishen Shi
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Runxian Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yuqing Bai
- Administrative Office of Wutong Mountain National Park, Shenzhen, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiaoshun Yan
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Chang PE, Wu YH, Tai CY, Lin IH, Wang WD, Tseng TS, Chuang HW. Examining the Transcriptomic and Biochemical Signatures of Bacillus subtilis Strains: Impacts on Plant Growth and Abiotic Stress Tolerance. Int J Mol Sci 2023; 24:13720. [PMID: 37762026 PMCID: PMC10531026 DOI: 10.3390/ijms241813720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Rhizobacteria from various ecological niches display variations in physiological characteristics. This study investigates the transcriptome profiling of two Bacillus subtilis strains, BsCP1 and BsPG1, each isolated from distinct environments. Gene expression linked to the synthesis of seven types of antibiotic compounds was detected in both BsCP1 and BsPG1 cultures. Among these, the genes associated with plipastatin synthesis were predominantly expressed in both bacterial strains. However, genes responsible for the synthesis of polyketide, subtilosin, and surfactin showed distinct transcriptional patterns. Additionally, genes involved in producing exopolysaccharides (EPS) showed higher expression levels in BsPG1 than in BsCP1. Consistently with this, a greater quantity of EPS was found in the BsPG1 culture compared to BsCP1. Both bacterial strains exhibited similar effects on Arabidopsis seedlings, promoting root branching and increasing seedling fresh weight. However, BsPG1 was a more potent enhancer of drought, heat, and copper stress tolerance than BsCP1. Treatment with BsPG1 had a greater impact on improving survival rates, increasing starch accumulation, and stabilizing chlorophyll content during the post-stress stage. qPCR analysis was used to measure transcriptional changes in Arabidopsis seedlings in response to BsCP1 and BsPG1 treatment. The results show that both bacterial strains had a similar impact on the expression of genes involved in the salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Likewise, genes associated with stress response, root development, and disease resistance showed comparable responses to both bacterial strains. However, treatment with BsCP1 and BsPG1 induced distinct activation of genes associated with the ABA signaling pathway. The results of this study demonstrate that bacterial strains from different ecological environments have varying abilities to produce beneficial metabolites for plant growth. Apart from the SA and JA signaling pathways, ABA signaling triggered by PGPR bacterial strains could play a crucial role in building an effective resistance to various abiotic stresses in the plants they colonize.
Collapse
Affiliation(s)
| | | | | | | | | | - Tong-Seung Tseng
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan (C.-Y.T.); (I.-H.L.)
| | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan (C.-Y.T.); (I.-H.L.)
| |
Collapse
|
29
|
Rossi CAM, Marchetta EJR, Kim JH, Castroverde CDM. Molecular regulation of the salicylic acid hormone pathway in plants under changing environmental conditions. Trends Biochem Sci 2023; 48:699-712. [PMID: 37258325 DOI: 10.1016/j.tibs.2023.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Salicylic acid (SA) is a central plant hormone mediating immunity, growth, and development. Recently, studies have highlighted the sensitivity of the SA pathway to changing climatic factors and the plant microbiome. Here we summarize organizing principles and themes in the regulation of SA biosynthesis, signaling, and metabolism by changing abiotic/biotic environments, focusing on molecular nodes governing SA pathway vulnerability or resilience. We especially highlight advances in the thermosensitive mechanisms underpinning SA-mediated immunity, including differential regulation of key transcription factors (e.g., CAMTAs, CBP60g, SARD1, bHLH059), selective protein-protein interactions of the SA receptor NPR1, and dynamic phase separation of the recently identified GBPL3 biomolecular condensates. Together, these nodes form a biochemical paradigm for how the external environment impinges on the SA pathway.
Collapse
Affiliation(s)
- Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Eric J R Marchetta
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Jong Hum Kim
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
30
|
Shivnauth V, Pretheepkumar S, Marchetta EJR, Rossi CAM, Amani K, Castroverde CDM. Structural diversity and stress regulation of the plant immunity-associated CALMODULIN-BINDING PROTEIN 60 (CBP60) family of transcription factors in Solanum lycopersicum (tomato). Funct Integr Genomics 2023; 23:236. [PMID: 37439880 DOI: 10.1007/s10142-023-01172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Cellular signaling generates calcium (Ca2+) ions, which are ubiquitous secondary messengers decoded by calcium-dependent protein kinases, calcineurins, calreticulin, calmodulins (CAMs), and CAM-binding proteins. Previous studies in the model plant Arabidopsis thaliana have shown the critical roles of the CAM-BINDING PROTEIN 60 (CBP60) protein family in plant growth, stress responses, and immunity. Certain CBP60 factors can regulate plant immune responses, like pattern-triggered immunity, effector-triggered immunity, and synthesis of major plant immune-activating metabolites salicylic acid (SA) and N-hydroxypipecolic acid (NHP). Although homologous CBP60 sequences have been identified in the plant kingdom, their function and regulation in most species remain unclear. In this paper, we specifically characterized 11 members of the CBP60 family in the agriculturally important crop tomato (Solanum lycopersicum). Protein sequence analyses revealed that three CBP60 homologs have the closest amino acid identity to Arabidopsis CBP60g and SARD1, master transcription factors involved in plant immunity. Strikingly, AlphaFold deep learning-assisted prediction of protein structures highlighted close structural similarity between these tomato and Arabidopsis CBP60 homologs. Conserved domain analyses revealed that they possess CAM-binding domains and DNA-binding domains, reflecting their potential involvement in linking Ca2+ signaling and transcriptional regulation in tomato plants. In terms of their gene expression profiles under biotic (Pseudomonas syringae pv. tomato DC3000 pathogen infection) and/or abiotic stress (warming temperatures), five tomato CBP60 genes were pathogen-responsive and temperature-sensitive, reminiscent of Arabidopsis CBP60g and SARD1. Overall, we present a genome-wide identification of the CBP60 gene/protein family in tomato plants, and we provide evidence on their regulation and potential function as Ca2+-sensing transcriptional regulators.
Collapse
Affiliation(s)
- Vanessa Shivnauth
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Sonya Pretheepkumar
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Eric J R Marchetta
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Keaun Amani
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | | |
Collapse
|
31
|
Amani K, Shivnauth V, Castroverde CDM. CBP60-DB: An AlphaFold-predicted plant kingdom-wide database of the CALMODULIN-BINDING PROTEIN 60 protein family with a novel structural clustering algorithm. PLANT DIRECT 2023; 7:e509. [PMID: 37435612 PMCID: PMC10331130 DOI: 10.1002/pld3.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023]
Abstract
Molecular genetic analyses in the model species Arabidopsis thaliana have demonstrated the major roles of different CALMODULIN-BINDING PROTEIN 60 (CBP60) proteins in growth, stress signaling, and immune responses. Prominently, CBP60g and SARD1 are paralogous CBP60 transcription factors that regulate numerous components of the immune system, such as cell surface and intracellular immune receptors, MAP kinases, WRKY transcription factors, and biosynthetic enzymes for immunity-activating metabolites salicylic acid (SA) and N-hydroxypipecolic acid (NHP). However, their function, regulation, and diversification in most species remain unclear. Here, we have created CBP60-DB (https://cbp60db.wlu.ca/), a structural and bioinformatic database that comprehensively characterized 1052 CBP60 gene homologs (encoding 2376 unique transcripts and 1996 unique proteins) across 62 phylogenetically diverse genomes in the plant kingdom. We have employed deep learning-predicted structural analyses using AlphaFold2 and then generated dedicated web pages for all plant CBP60 proteins. Importantly, we have generated a novel clustering visualization algorithm to interrogate kingdom-wide structural similarities for more efficient inference of conserved functions across various plant taxa. Because well-characterized CBP60 proteins in Arabidopsis are known to be transcription factors with putative calmodulin-binding domains, we have integrated external bioinformatic resources to analyze protein domains and motifs. Collectively, we present a plant kingdom-wide identification of this important protein family in a user-friendly AlphaFold-anchored database, representing a novel and significant resource for the broader plant biology community.
Collapse
Affiliation(s)
- Keaun Amani
- Department of BiologyWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Vanessa Shivnauth
- Department of BiologyWilfrid Laurier UniversityWaterlooOntarioCanada
| | | |
Collapse
|
32
|
Waldo BD, Branham SE, Levi A, Wechter WP, Rutter WB. Distinct Genomic Loci Underlie Quantitative Resistance to Meloidogyne enterolobii Galling and Reproduction in Citrullus amarus. PLANT DISEASE 2023; 107:2126-2132. [PMID: 36548923 DOI: 10.1094/pdis-09-22-2228-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Meloidogyne enterolobii is a virulent species of root-knot nematode that threatens watermelon (Citrullus lanatus) production in the southeastern United States. There are no known sources of root-knot nematode resistance in cultivated C. lanatus. Specific genotypes of a wild watermelon relative, C. amarus, are resistant against M. incognita but the genetics that underly this resistance are still unknown and it is not clear that this same resistance will be effective against M. enterolobii. To identify and characterize new sources of resistance to M. enterolobii, we screened 108 diverse C. amarus lines alongside a susceptible C. lanatus cultivar (Charleston Gray) for resistance against M. enterolobii. Different C. amarus genotypes ranged from resistant to susceptible for the three resistance phenotypes measured; mean percent root system galled ranged from 10 to 73%, mean egg mass counts ranged from 0.3 to 64.5, and mean eggs per gram of root ranged from 326 to 146,160. We used each of these three resistance phenotypes combined with whole-genome resequencing data to conduct a genome-wide association scan that identified significant associations between M. enterolobii resistance and 11 single-nucleotide polymorphisms (SNPs) within the C. amarus genome. Interestingly, SNPs associated with reduced galling and egg masses were located within a single quantitative trait locus (QTL) on chromosome Ca03, while reductions in nematode eggs per gram of root were associated with separate QTL on chromosomes Ca04 and Ca08. The results of this study suggest that multiple genes are involved with M. enterolobii resistance in C. amarus and the SNPs identified will assist with efforts to breed for M. enterolobii resistance in watermelon.
Collapse
Affiliation(s)
- Benjamin D Waldo
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD 20705
| | - Sandra E Branham
- Coastal Research and Education Center, Clemson University, Charleston, SC 29414
| | - Amnon Levi
- USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414
| | | | | |
Collapse
|
33
|
Fabian M, Gao M, Zhang XN, Shi J, Vrydagh L, Kim SH, Patel P, Hu AR, Lu H. The flowering time regulator FLK controls pathogen defense in Arabidopsis thaliana. PLANT PHYSIOLOGY 2023; 191:2461-2474. [PMID: 36662556 PMCID: PMC10069895 DOI: 10.1093/plphys/kiad021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 05/22/2023]
Abstract
Plant disease resistance is a complex process that is maintained in an intricate balance with development. Increasing evidence indicates the importance of posttranscriptional regulation of plant defense by RNA binding proteins. In a genetic screen for suppressors of Arabidopsis (Arabidopsis thaliana) accelerated cell death 6-1 (acd6-1), a small constitutive defense mutant whose defense level is grossly in a reverse proportion to plant size, we identified an allele of the canonical flowering regulatory gene FLOWERING LOCUS K HOMOLOGY DOMAIN (FLK) encoding a putative protein with triple K homology (KH) repeats. The KH repeat is an ancient RNA binding motif found in proteins from diverse organisms. The relevance of KH-domain proteins in pathogen resistance is largely unexplored. In addition to late flowering, the flk mutants exhibited decreased resistance to the bacterial pathogen Pseudomonas syringae and increased resistance to the necrotrophic fungal pathogen Botrytis cinerea. We further found that the flk mutations compromised basal defense and defense signaling mediated by salicylic acid (SA). Mutant analysis revealed complex genetic interactions between FLK and several major SA pathway genes. RNA-seq data showed that FLK regulates expression abundance of some major defense- and development-related genes as well as alternative splicing of a number of genes. Among the genes affected by FLK is ACD6, whose transcripts had increased intron retentions influenced by the flk mutations. Thus, this study provides mechanistic support for flk suppression of acd6-1 and establishes that FLK is a multifunctional gene involved in regulating pathogen defense and development of plants.
Collapse
Affiliation(s)
- Matthew Fabian
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Min Gao
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Xiao-Ning Zhang
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Jiangli Shi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
- Department of Biology Education, Korea National University of Education, Chungbuk 28644, Korea
| | - Leah Vrydagh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Sung-Ha Kim
- Department of Biology Education, Korea National University of Education, Chungbuk 28644, Korea
| | - Priyank Patel
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Anna R Hu
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| |
Collapse
|
34
|
Tran S, Ison M, Ferreira Dias NC, Ortega MA, Chen YFS, Peper A, Hu L, Xu D, Mozaffari K, Severns PM, Yao Y, Tsai CJ, Teixeira PJPL, Yang L. Endogenous salicylic acid suppresses de novo root regeneration from leaf explants. PLoS Genet 2023; 19:e1010636. [PMID: 36857386 PMCID: PMC10010561 DOI: 10.1371/journal.pgen.1010636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/13/2023] [Accepted: 01/25/2023] [Indexed: 03/02/2023] Open
Abstract
Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.
Collapse
Affiliation(s)
- Sorrel Tran
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Madalene Ison
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | | | - Maria Andrea Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Yun-Fan Stephanie Chen
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Alan Peper
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Lanxi Hu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Dawei Xu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Khadijeh Mozaffari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Paul M. Severns
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Yao Yao
- Department of Animal and Diary Sciences, College of Agricultural & Environmental Sciences, University of Georgia, Georgia, United States of America
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Paulo José Pereira Lima Teixeira
- Department of Biology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Sao Paulo, Brazil
- * E-mail: (PJPLT); (LY)
| | - Li Yang
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (PJPLT); (LY)
| |
Collapse
|
35
|
Zheng X, Liu F, Yang X, Li W, Chen S, Yue X, Jia Q, Sun X. The MAX2-KAI2 module promotes salicylic acid-mediated immune responses in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36738234 DOI: 10.1111/jipb.13463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Arabidopsis MORE AXILLARY GROWTH2 (MAX2) is a key component in the strigolactone (SL) and karrikin (KAR) signaling pathways and regulates the degradation of SUPPRESSOR OF MAX2 1/SMAX1-like (SMAX1/SMXL) proteins, which are transcriptional co-repressors that regulate plant architecture, as well as abiotic and biotic stress responses. The max2 mutation reduces resistance against Pseudomonas syringae pv. tomato (Pst). To uncover the mechanism of MAX2-mediated resistance, we evaluated the resistance of various SL and KAR signaling pathway mutants. The resistance of SL-deficient mutants and of dwarf 14 (d14) was similar to that of the wild-type, whereas the resistance of the karrikin insensitive 2 (kai2) mutant was compromised, demonstrating that the KAR signaling pathway, not the SL signaling pathway, positively regulates the immune response. We measured the resistance of smax1 and smxl mutants, as well as the double, triple, and quadruple mutants with max2, which revealed that both the smax1 mutant and smxl6/7/8 triple mutant rescue the low resistance phenotype of max2 and that SMAX1 accumulation diminishes resistance. The susceptibility of smax1D, containing a degradation-insensitive form of SMAX1, further confirmed the SMAX1 function in the resistance. The relationship between the accumulation of SMAX1/SMXLs and disease resistance suggested that the inhibitory activity of SMAX1 to resistance requires SMXL6/7/8. Moreover, the exogenous application of KAR2 enhanced resistance against Pst, but KAR-induced resistance depended on salicylic acid (SA) signaling. Inhibition of karrikin signaling delayed SA-mediated defense responses and inhibited pathogen-induced protein biosynthesis. Together, we propose that the MAX2-KAI2-SMAX1 complex regulates resistance with the assistance of SMXL6/7/8 and SA signaling and that SMAX1/SMXLs possibly form a multimeric complex with their target transcription factors to fine tune immune responses.
Collapse
Affiliation(s)
- Xiujuan Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Fangqian Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xianfeng Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Sique Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xinwu Yue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Qi Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xinli Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| |
Collapse
|
36
|
Takehara Y, Fijikawa I, Watanabe A, Yonemura A, Kosaka T, Sakane K, Imada K, Sasaki K, Kajihara H, Sakai S, Mizukami Y, Haider MS, Jogaiah S, Ito SI. Molecular Analysis of MgO Nanoparticle-Induced Immunity against Fusarium Wilt in Tomato. Int J Mol Sci 2023; 24:2941. [PMID: 36769262 PMCID: PMC9918173 DOI: 10.3390/ijms24032941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (FOL), is a devastating soilborne disease in tomatoes. Magnesium oxide nanoparticles (MgO NPs) induce strong immunity against Fusarium wilt in tomatoes. However, the mechanisms underlying this immunity remain poorly understood. Comparative transcriptome analysis and microscopy of tomato roots were performed to determine the mechanism of MgO NP-induced immunity against FOL. Eight transcriptomes were prepared from tomato roots treated under eight different conditions. Differentially expressed genes were compared among the transcriptomes. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that in tomato roots pretreated with MgO NPs, Rcr3 encoding apoplastic protease and RbohD encoding NADPH oxidase were upregulated when challenge-inoculated with FOL. The gene encoding glycine-rich protein 4 (SlGRP4) was chosen for further analysis. SlGRP4 was rapidly transcribed in roots pretreated with MgO NPs and inoculated with FOL. Immunomicroscopy analysis showed that SlGRP4 accumulated in the cell walls of epidermal and vascular vessel cells of roots pretreated with MgO NPs, but upon FOL inoculation, SlGRP4 further accumulated in the cell walls of cortical tissues within 48 h. The results provide new insights into the probable mechanisms of MgO NP-induced tomato immunity against Fusarium wilt.
Collapse
Affiliation(s)
- Yushi Takehara
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Isamu Fijikawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Akihiro Watanabe
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Ayumi Yonemura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Tomoyuki Kosaka
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Kosei Sakane
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Tottori, Japan
| | - Kiyoshi Imada
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Tottori, Japan
| | - Kazunori Sasaki
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Hiroshi Kajihara
- Yamaguchi Prefectural Agriculture and Forestry General Engineering Center, 1-1-1 Ouchi-Hikami, Yamaguchi 753-0231, Yamaguchi, Japan
| | - Shoji Sakai
- Yamaguchi TLO, 2-16-1 Tokiwadai, Ube 755-8611, Yamaguchi, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Science Research Center, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube 755-8505, Yamaguchi, Japan
| | - Muhammad Salman Haider
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sudisha Jogaiah
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Kasaragod 671316, India
| | - Shin-ichi Ito
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| |
Collapse
|
37
|
Wang Y, Tang M, Zhang Y, Huang M, Wei L, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Li B, Yu X. Coordinated regulation of plant defense and autoimmunity by paired trihelix transcription factors ASR3/AITF1 in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:914-929. [PMID: 36266950 DOI: 10.1111/nph.18562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Plants perceive pathogens and induce robust transcriptional reprogramming to rapidly achieve immunity. The mechanisms of how immune-related genes are transcriptionally regulated remain largely unknown. Previously, the trihelix transcriptional factor ARABIDOPSIS SH4-RELATED 3 (ASR3) was shown to negatively regulate pattern-triggered immunity (PTI) in Arabidopsis thaliana. Here, we identified another trihelix family member ASR3-Interacting Transcriptional Factor 1 (AITF1) as an interacting protein of ASR3. ASR3-Interacting Transcriptional Factor 1 and ASR3 form heterogenous and homogenous dimers in planta. Both aitf1 and asr3 single mutants exhibited increased resistance against the bacterial pathogen Pseudomonas syringae, but the double mutant showed reduced resistance, suggesting AITF1 and ASR3 interdependently regulate immune gene expression and resistance. Overexpression of AITF1 triggered autoimmunity dependently on its DNA-binding ability and the presence of ASR3. Notably, autoimmunity caused by overexpression of AITF1 was dependent on a TIR-NBS-LRR (TNL) protein suppressor of AITF1-induced autoimmunity 1 (SAA1), as well as enhanced disease susceptibility 1 (EDS1), the central regulator of TNL signaling. ASR3-Interacting Transcriptional Factor 1 and ASR3 directly activated SAA1 expression through binding to the GT-boxes in SAA1 promoter. Collectively, our results revealed a mechanism of trihelix transcription factor complex in regulating immune gene expression, thereby modulating plant disease resistance and autoimmunity.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Meng Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Lan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| |
Collapse
|
38
|
Dhar S, Lee JY. How Does Global Warming Sabotage Plant Immunity? Mol Cells 2022; 45:883-885. [PMID: 36572558 PMCID: PMC9794557 DOI: 10.14348/molcells.2022.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- Souvik Dhar
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji-Young Lee
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
39
|
Yu X, Cui X, Wu C, Shi S, Yan S. Salicylic acid inhibits gibberellin signaling through receptor interactions. MOLECULAR PLANT 2022; 15:1759-1771. [PMID: 36199245 DOI: 10.1016/j.molp.2022.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
It is well known that plants activate defense responses at the cost of growth. However, the underlying molecular mechanisms are not well understood. The phytohormones salicylic acid (SA) and gibberellin (GA) promote defense response and growth, respectively. Here we show that SA inhibits GA signaling to repress plant growth. We found that the SA receptor NPR1 interacts with the GA receptor GID1. Further biochemical studies revealed that NPR1 functions as an adaptor of ubiquitin E3 ligase to promote the polyubiquitination and degradation of GID1, which enhances the stability of DELLA proteins, the negative regulators of GA signaling. Genetic analysis suggested that NPR1, GID1, and DELLA proteins are all required for the SA-mediated growth inhibition. Collectively, our study not only uncovers a novel regulatory mechanism of growth-defense trade-off but also reveals the interaction of hormone receptors as a new mode of hormonal crosstalk.
Collapse
Affiliation(s)
- Xiaodong Yu
- Hubei Hongshan Laboratory, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xiaoyu Cui
- Hubei Hongshan Laboratory, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Chong Wu
- Hubei Hongshan Laboratory, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shixi Shi
- Hubei Hongshan Laboratory, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shunping Yan
- Hubei Hongshan Laboratory, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
40
|
Yang F, Wu C, Zhu G, Yang Q, Wang K, Li Y. An integrated transcriptomic and metabolomic analysis for changes in rose plant induced by rose powdery mildew and exogenous salicylic acid. Genomics 2022; 114:110516. [PMID: 36306956 DOI: 10.1016/j.ygeno.2022.110516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 01/15/2023]
Abstract
We explored the transcriptomic and metabolomic changes in Rosa chinensis after the infection with Podosphaera pannosa and after the treatment with exogenous salicylic acid (SA), separately. The rose responses to the mildew-infection were clearly similar to the responses to the SA-treatment. Based on the combined omics analysis, after the induction by both P. pannosa and SA, R. chinensis responded consistently by MAPK cascades, plant-pathogen interaction pathway activation, and resistance (R) genes expression, and further, triterpenoid biosynthesis, glutathione metabolism, and linoleic acid metabolism were significantly enriched when compared with the control. The levels of the triterpenoids with the largest fold change values were significantly up-regulated such as dehydro (11,12) ursolic acid lactone and maslinic acid, suggesting that these pathways and metabolites were involved in the resistance to P. pannosa. The contents of salicylic acid beta-D-glucoside, methyl salicylate, and methyl jasmonate increased significantly resulting from both P. pannosa-infection and exogenous SA-treatment.
Collapse
Affiliation(s)
- Fazhong Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China; Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Chunhua Wu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Guolei Zhu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Qi Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Kejian Wang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Yunxian Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China.
| |
Collapse
|
41
|
Ramírez-Zavaleta CY, García-Barrera LJ, Rodríguez-Verástegui LL, Arrieta-Flores D, Gregorio-Jorge J. An Overview of PRR- and NLR-Mediated Immunities: Conserved Signaling Components across the Plant Kingdom That Communicate Both Pathways. Int J Mol Sci 2022; 23:12974. [PMID: 36361764 PMCID: PMC9654257 DOI: 10.3390/ijms232112974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cell-surface-localized pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain and leucine-rich repeat receptors (NLRs) are plant immune proteins that trigger an orchestrated downstream signaling in response to molecules of microbial origin or host plant origin. Historically, PRRs have been associated with pattern-triggered immunity (PTI), whereas NLRs have been involved with effector-triggered immunity (ETI). However, recent studies reveal that such binary distinction is far from being applicable to the real world. Although the perception of plant pathogens and the final mounting response are achieved by different means, central hubs involved in signaling are shared between PTI and ETI, blurring the zig-zag model of plant immunity. In this review, we not only summarize our current understanding of PRR- and NLR-mediated immunities in plants, but also highlight those signaling components that are evolutionarily conserved across the plant kingdom. Altogether, we attempt to offer an overview of how plants mediate and integrate the induction of the defense responses that comprise PTI and ETI, emphasizing the need for more evolutionary molecular plant-microbe interactions (EvoMPMI) studies that will pave the way to a better understanding of the emergence of the core molecular machinery involved in the so-called evolutionary arms race between plants and microbes.
Collapse
Affiliation(s)
- Candy Yuriria Ramírez-Zavaleta
- Programa Académico de Ingeniería en Biotecnología—Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, Tepeyanco 90180, Mexico
| | - Laura Jeannette García-Barrera
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. de las Culturas, Veracruzanas No. 101, Xalapa 91090, Mexico
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla Km.1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Mexico
| | | | - Daniela Arrieta-Flores
- Programa Académico de Ingeniería en Biotecnología—Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, Tepeyanco 90180, Mexico
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09310, Mexico
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología—Comisión Nacional del Agua, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico
| |
Collapse
|
42
|
Guo J, Cheng Y. Advances in Fungal Elicitor-Triggered Plant Immunity. Int J Mol Sci 2022; 23:12003. [PMID: 36233304 PMCID: PMC9569958 DOI: 10.3390/ijms231912003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
There is an array of pathogenic fungi in the natural environment of plants, which produce some molecules including pathogen-associated molecular patterns (PAMPs) and effectors during infection. These molecules, which can be recognized by plant specific receptors to activate plant immunity, including PTI (PAMP-triggered immunity) and ETI (effector-triggered immunity), are called elicitors. Undoubtedly, identification of novel fungal elicitors and their plant receptors and comprehensive understanding about fungal elicitor-triggered plant immunity will be of great significance to effectively control plant diseases. Great progress has occurred in fungal elicitor-triggered plant immunity, especially in the signaling pathways of PTI and ETI, in recent years. Here, recent advances in fungal elicitor-triggered plant immunity are summarized and their important contribution to the enlightenment of plant disease control is also discussed.
Collapse
Affiliation(s)
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
43
|
Wang Y, Shen C, Jiang Q, Wang Z, Gao C, Wang W. Seed priming with calcium chloride enhances stress tolerance in rice seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111381. [PMID: 35853520 DOI: 10.1016/j.plantsci.2022.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Calcium is a crucial second messenger in plant cells and contributes to plant resistance against biotic and abiotic stress. Plant defense priming with natural or synthetic compounds leads to quicker and stronger resistance responses. However, whether pretreatment of plant seeds with calcium could improve their resistance to stress remains poorly understood. In this study, we showed that rice seedlings grown from calcium chloride (CaCl2)-pretreated seeds displayed enhanced resistance to the rice blast fungus Magnaporthe oryzae and the rice bacterial pathogen Xanthomonas oryzae pv. Oryzae (Xoo). Seed priming with CaCl2 also led to enhanced rice tolerance to salt and cold. Furthermore, the reactive oxygen species (ROS) burst increased significantly upon immunity activation in the leaves of rice seedlings grown from CaCl2-pretreated seeds. Additionally, we analyzed the rice calmodulin-binding protein 60 (OsCBP60) family and found that there were 19 OsCBP60s in rice cultivar Zhonghua 11 (ZH11). The transcripts of several OsCBP60s were chitin- and M. oryzae-inducible, suggesting that they may contribute to rice resistance. Taken together, these data indicate that seed priming with CaCl2 can effectively enhance rice tolerance to multiple stresses, perhaps by boosting the burst of ROS, and OsCBP60 family members may also play an essential role in this process.
Collapse
Affiliation(s)
- Yameng Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengbin Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaochu Jiang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanchun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
44
|
Sun L, Qin J, Wu X, Zhang J, Zhang J. TOUCH 3 and CALMODULIN 1/4/6 cooperate with calcium-dependent protein kinases to trigger calcium-dependent activation of CAM-BINDING PROTEIN 60-LIKE G and regulate fungal resistance in plants. THE PLANT CELL 2022; 34:4088-4104. [PMID: 35863056 PMCID: PMC9516039 DOI: 10.1093/plcell/koac209] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/14/2022] [Indexed: 05/24/2023]
Abstract
Plants utilize localized cell-surface and intracellular receptors to sense microbes and activate the influx of calcium, which serves as an important second messenger in eukaryotes to regulate cellular responses. However, the mechanisms through which plants decipher calcium influx to activate immune responses remain largely unknown. Here, we show that pathogen-associated molecular patterns (PAMPs) trigger calcium-dependent phosphorylation of CAM-BINDING PROTEIN 60-LIKE G (CBP60g) in Arabidopsis (Arabidopsis thaliana). CALCIUM-DEPENDENT PROTEIN KINASE5 (CPK5) phosphorylates CBP60g directly, thereby enhancing its transcription factor activity. TOUCH 3 (TCH3) and its homologs CALMODULIN (CAM) 1/4/6 and CPK4/5/6/11 are required for PAMP-induced CBP60g phosphorylation. TCH3 interferes with the auto-inhibitory region of CPK5 and promotes CPK5-mediated CBP60g phosphorylation. Furthermore, CPKs-mediated CBP60g phosphorylation positively regulates plant resistance to soil-borne fungal pathogens. These lines of evidence uncover a novel calcium signal decoding mechanism during plant immunity through which TCH3 relieves auto-inhibition of CPK5 to phosphorylate and activate CBP60g. The findings reveal cooperative interconnections between different types of calcium sensors in eukaryotes.
Collapse
Affiliation(s)
- Lifan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyun Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding, Hebei 710023, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Yang L, Zhao C, Bai Z, Yang L, Schranz ME, Liu S, Bouwmeester K. Comparative transcriptome analysis of compatible and incompatible Brassica napus- Xanthomonas campestris interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:960874. [PMID: 36105711 PMCID: PMC9465390 DOI: 10.3389/fpls.2022.960874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Black rot caused by the vascular pathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) is widespread in Brassicaceae plants and an infectious disease that causes large yield losses in oil seed rape (Brassica napus L.). Improvement of resistance through breeding is a crucial strategy to prevent black rot disease in B. napus, but presently hampered by insufficient understanding of Xcc-Brassica interactions. This study compares two EMS-mutagenized B. napus lines that show contrasting resistance levels to their susceptible progenitor. Patterns of differential gene expression between these B. napus lines were evaluated at three time points post inoculation by comparative RNA-seq analysis. In line with the observed disease phenotypes, the susceptible line ZS9mXccS-1 displayed a steady amount of differentially expressed genes (DEGs) at different time points of infection, whereas the resistant line ZS9mXccR-1 displayed a gradual increase in DEGs throughout the course of infection. Weighted gene co-expression network analysis (WGCNA) pinpointed multiple defense-related hub genes with potential central roles in immunity, including the cell surface receptor genes CRK11 and BIR1, and the associated downstream regulatory genes WRKY11 and PBL30. KEGG analysis of DEGs belonging to two distinct co-expression modules revealed enriched pathways associated with defense, including Ca2+-signaling, receptor-mediated immunity, and phytohormone balance. Taken together, our comparative transcriptome analysis provides new avenues to unravel the mechanisms underlying black rot resistance in B. napus.
Collapse
Affiliation(s)
- Li Yang
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lingli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
46
|
Takagi K, Tasaki K, Komori H, Katou S. Hypersensitivity-Related Genes HSR201 and HSR203J Are Regulated by Calmodulin-Binding Protein 60-Type Transcription Factors and Required for Pathogen Signal-Induced Salicylic Acid Synthesis. PLANT & CELL PHYSIOLOGY 2022; 63:1008-1022. [PMID: 35671166 DOI: 10.1093/pcp/pcac074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Salicylic acid (SA) plays a key role in plant resistance to pathogens. In Arabidopsis, the isochorismate synthase pathway mainly contributes to pathogen-induced SA synthesis, and the expression of SA synthesis genes is activated by two calmodulin (CaM)-binding protein 60 (CBP60)-type transcription factors, CBP60g and SARD1. In tobacco, the mechanisms underlying SA synthesis remain largely unknown. SA production is induced by wounding in tobacco plants in which the expression of two stress-related mitogen-activated protein kinases is suppressed. Using this phenomenon, we identified genes whose expression is associated with SA synthesis. One of the genes, NtCBP60g, showed 23% amino acid sequence identity with CBP60g. Transient overexpression of NtCBP60g as well as NtSARD1, a tobacco homolog of SARD1, induced SA accumulation in Nicotiana benthamiana leaves. NtCBP60g and NtSARD1 bound CaM, and CaM enhanced SA accumulation induced by NtCBP60g and NtSARD1. Conversely, mutations in NtCBP60g and NtSARD1 that abolished CaM binding reduced their ability to induce SA. Expression profiling and promoter analysis identified two hypersensitivity-related genes, HSR201 and HSR203J as the targets of NtCBP60g and NtSARD1. Virus-induced gene silencing of both NtCBP60g and NtSARD1 homologs compromised SA accumulation and the expression of HSR201 and HSR203J homologs, which were induced by a pathogen-derived elicitor in N. benthamiana leaves. Moreover, elicitor-induced SA accumulation was compromised by silencing of the HSR201 homolog and the HSR203J homolog. These results suggested that HSR201 and HSR203J are regulated by NtCBP60g and NtSARD1 and are required for elicitor-induced SA synthesis.
Collapse
Affiliation(s)
- Kumiko Takagi
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| | - Kosuke Tasaki
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| | - Hirotomo Komori
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| | - Shinpei Katou
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| |
Collapse
|
47
|
Kim JH, Castroverde CDM, Huang S, Li C, Hilleary R, Seroka A, Sohrabi R, Medina-Yerena D, Huot B, Wang J, Nomura K, Marr SK, Wildermuth MC, Chen T, MacMicking JD, He SY. Increasing the resilience of plant immunity to a warming climate. Nature 2022; 607:339-344. [PMID: 35768511 PMCID: PMC9279160 DOI: 10.1038/s41586-022-04902-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/25/2022] [Indexed: 01/31/2023]
Abstract
Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone1-3, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism4-7. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B8,9 (phyB) and EARLY FLOWERING 310 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates11 (GDACs) was reduced at the higher growth temperature. The altered GDAC formation in vivo is linked to impaired recruitment of GBPL3 and SA-associated Mediator subunits to the promoters of CBP60g and SARD1, which encode master immune transcription factors. Unlike many other SA signalling components, including the SA receptor and biosynthetic genes, optimized CBP60g expression was sufficient to broadly restore SA production, basal immunity and effector-triggered immunity at the elevated growth temperature without significant growth trade-offs. CBP60g family transcription factors are widely conserved in plants12. These results have implications for safeguarding the plant immune system as well as understanding the concept of the plant-pathogen-environment disease triangle and the emergence of new disease epidemics in a warming climate.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Christian Danve M Castroverde
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| | - Shuai Huang
- Howard Hughes Medical Institute, Yale University, West Haven, CT, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT, USA
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Chao Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Richard Hilleary
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Adam Seroka
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Reza Sohrabi
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Diana Medina-Yerena
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Bethany Huot
- Department of Biology, Duke University, Durham, NC, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kinya Nomura
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Sharon K Marr
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Mary C Wildermuth
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - John D MacMicking
- Howard Hughes Medical Institute, Yale University, West Haven, CT, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT, USA
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
48
|
Khan MN, Li Y, Fu C, Hu J, Chen L, Yan J, Khan Z, Wu H, Li Z. CeO 2 Nanoparticles Seed Priming Increases Salicylic Acid Level and ROS Scavenging Ability to Improve Rapeseed Salt Tolerance. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2200025. [PMID: 35860396 PMCID: PMC9284644 DOI: 10.1002/gch2.202200025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Indexed: 05/05/2023]
Abstract
Soil salinity is a major issue limiting efficient crop production. Seed priming with nanomaterials (nanopriming) is a cost-effective technology to improve seed germination under salinity; however, the underlying mechanisms still need to be explored. Here, polyacrylic acid coated nanoceria (cerium oxide nanoparticles) (PNC, 9.2 nm, -38.7 mV) are synthesized and characterized. The results show that under salinity, PNC priming significantly increases rapeseed shoot length (41.5%), root length (93%), and seedling dry weight (78%) compared to the no-nanoparticle (NNP) priming group. Confocal imaging results show that compared with NNP group, PNC priming significantly reduces reactive oxygen species (ROS) level in leaf (94.3% of H2O2, 56.4% of •O2 -) and root (38.4% of H2O2, 41.3% of •O2 -) of salt stressed rapeseed seedlings. Further, the results show that compared with the NNP group, PNC priming not only increases salicylic acid (SA) content in shoot (51.3%) and root (78.4%), but also upregulates the expression of SA biosynthesis related genes in salt stressed rapeseed. Overall, PNC nanopriming improved rapeseed salt tolerance is associated with both the increase of ROS scavenging ability and the increase of salicylic acid. The results add more information to understand the complexity of mechanisms behind nanoceria priming improved plant salt tolerance.
Collapse
Affiliation(s)
- Mohammad Nauman Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Yanhui Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Chengcheng Fu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Jin Hu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Linlin Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Jiasen Yan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Zaid Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Hongshan LaboratoryWuhanHubei430070China
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100083China
| | - Zhaohu Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Hongshan LaboratoryWuhanHubei430070China
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100083China
| |
Collapse
|
49
|
Mostafa S, Wang Y, Zeng W, Jin B. Plant Responses to Herbivory, Wounding, and Infection. Int J Mol Sci 2022; 23:ijms23137031. [PMID: 35806046 PMCID: PMC9266417 DOI: 10.3390/ijms23137031] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Plants have various self-defense mechanisms against biotic attacks, involving both physical and chemical barriers. Physical barriers include spines, trichomes, and cuticle layers, whereas chemical barriers include secondary metabolites (SMs) and volatile organic compounds (VOCs). Complex interactions between plants and herbivores occur. Plant responses to insect herbivory begin with the perception of physical stimuli, chemical compounds (orally secreted by insects and herbivore-induced VOCs) during feeding. Plant cell membranes then generate ion fluxes that create differences in plasma membrane potential (Vm), which provokes the initiation of signal transduction, the activation of various hormones (e.g., jasmonic acid, salicylic acid, and ethylene), and the release of VOCs and SMs. This review of recent studies of plant–herbivore–infection interactions focuses on early and late plant responses, including physical barriers, signal transduction, SM production as well as epigenetic regulation, and phytohormone responses.
Collapse
|
50
|
Lapin D, Johanndrees O, Wu Z, Li X, Parker JE. Molecular innovations in plant TIR-based immunity signaling. THE PLANT CELL 2022; 34:1479-1496. [PMID: 35143666 PMCID: PMC9153377 DOI: 10.1093/plcell/koac035] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/27/2022] [Indexed: 05/19/2023]
Abstract
A protein domain (Toll and Interleukin-1 receptor [TIR]-like) with homology to animal TIRs mediates immune signaling in prokaryotes and eukaryotes. Here, we present an overview of TIR evolution and the molecular versatility of TIR domains in different protein architectures for host protection against microbial attack. Plant TIR-based signaling emerges as being central to the potentiation and effectiveness of host defenses triggered by intracellular and cell-surface immune receptors. Equally relevant for plant fitness are mechanisms that limit potent TIR signaling in healthy tissues but maintain preparedness for infection. We propose that seed plants evolved a specialized protein module to selectively translate TIR enzymatic activities to defense outputs, overlaying a more general function of TIRs.
Collapse
Affiliation(s)
- Dmitry Lapin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Oliver Johanndrees
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Zhongshou Wu
- Michael Smith Labs and Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Labs and Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Duesseldorf 40225, Germany
| |
Collapse
|