1
|
Smith EP, Valdivia RH. Chlamydia trachomatis: a model for intracellular bacterial parasitism. J Bacteriol 2025; 207:e0036124. [PMID: 39976429 PMCID: PMC11925236 DOI: 10.1128/jb.00361-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Chlamydia comprises a diverse group of obligate intracellular bacteria that cause infections in animals, including humans. These organisms share fascinating biology, including distinct developmental stages, non-canonical cell surface structures, and adaptations to intracellular parasitism. Chlamydia trachomatis is of particular interest due to its significant clinical importance, causing both ocular and sexually transmitted infections. The strain L2/434/Bu, responsible for lymphogranuloma venereum, is the most common strain used to study chlamydial molecular and cell biology because it grows readily in cell culture and is amenable to genetic manipulation. Indeed, this strain has enabled researchers to tackle fundamental questions about the molecular mechanisms underlying Chlamydia's developmental transitions and biphasic lifecycle and cellular adaptations to obligate intracellular parasitism, including characterizing numerous conserved virulence genes and defining immune responses. However, L2/434/Bu is not representative of C. trachomatis strains that cause urogenital infections in humans, limiting its utility in addressing questions of host tropism and immune evasion in reproductive organs. Recent research efforts are shifting toward understanding the unique attributes of more clinically relevant C. trachomatis genovars.
Collapse
Affiliation(s)
- Erin P. Smith
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Host-Microbe Interactions, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Hu Y, Schnabl B, Stärkel P. Origin, Function, and Implications of Intestinal and Hepatic Macrophages in the Pathogenesis of Alcohol-Associated Liver Disease. Cells 2025; 14:207. [PMID: 39936998 PMCID: PMC11816606 DOI: 10.3390/cells14030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Macrophages are members of the human innate immune system, and the majority reside in the liver. In recent years, they have been recognized as essential players in the maintenance of liver and intestinal homeostasis as well as key guardians of their respective immune systems, and they are increasingly being recognized as such. Paradoxically, they are also likely involved in chronic pathologies of the gastrointestinal tract and potentially in the alteration of the gut-liver axis in alcohol use disorder (AUD) and alcohol-associated liver disease (ALD). To date, the causal relationship between macrophages, the pathogenesis of ALD, and the immune dysregulation of the gut remains unclear. In this review, we will discuss our current understanding of the heterogeneity of intestinal and hepatic macrophages, their ontogeny, the potential factors that regulate their origin, and the evidence of how they are associated with the manifestation of chronic inflammation. We will also illustrate how the micro-environment of the intestine shapes the phenotypes and functionality of the macrophage compartment in both the intestines and liver and how they change during chronic alcohol abuse. Finally, we highlight the obstacles to current research and the prospects for this field.
Collapse
Affiliation(s)
- Yifan Hu
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Dolat L, Carpenter VK, Chen YS, Suzuki M, Smith EP, Kuddar O, Valdivia RH. Chlamydia repurposes the actin-binding protein EPS8 to disassemble epithelial tight junctions and promote infection. Cell Host Microbe 2022; 30:1685-1700.e10. [PMID: 36395759 PMCID: PMC9793342 DOI: 10.1016/j.chom.2022.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/08/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Invasive microbial pathogens often disrupt epithelial barriers, yet the mechanisms used to dismantle tight junctions are poorly understood. Here, we show that the obligate pathogen Chlamydia trachomatis uses the effector protein TepP to transiently disassemble tight junctions early during infection. TepP alters the tyrosine phosphorylation status of host proteins involved in cytoskeletal regulation, including the filamentous actin-binding protein EPS8. We determined that TepP and EPS8 are necessary and sufficient to remodel tight junctions and that the ensuing disruption of epithelial barrier function promotes secondary invasion events. The genetic deletion of EPS8 renders epithelial cells and endometrial organoids resistant to TepP-mediated tight junction remodeling. Finally, TepP and EPS8 promote infection in murine models of infections, with TepP mutants displaying defects in ascension to the upper genital tract. These findings reveal a non-canonical function of EPS8 in the disassembly of epithelial junctions and an important role for Chlamydia pathogenesis.
Collapse
Affiliation(s)
- Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Victoria K Carpenter
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yi-Shan Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michitaka Suzuki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin P Smith
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ozge Kuddar
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Martin KE, García AJ. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater 2021; 133:4-16. [PMID: 33775905 PMCID: PMC8464623 DOI: 10.1016/j.actbio.2021.03.038] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are a highly heterogeneous and plastic population of cells that are crucial for tissue repair and regeneration. This has made macrophages a particularly attractive target for biomaterial-directed regenerative medicine strategies. However, macrophages also contribute to adverse inflammatory and fibrotic responses to implanted biomaterials, typically related to the foreign body response (FBR). The traditional model in the field asserts that the M2 macrophage phenotype is pro-regenerative and associated with positive wound healing outcomes, whereas the M1 phenotype is pro-inflammatory and associated with pathogenesis. However, recent studies indicate that both M1 and M2 macrophages play different, but equally vital, roles in promoting tissue repair. Furthermore, recent technological developments such as single-cell RNA sequencing have allowed for unprecedented insights into the heterogeneity within the myeloid compartment, related to activation state, niche, and ontogenetic origin. A better understanding of the phenotypic and functional characteristics of macrophages critical to tissue repair and FBR processes will allow for rational design of biomaterials to promote biomaterial-tissue integration and regeneration. In this review, we discuss the role of temporal and ontogenetic macrophage heterogeneity on tissue repair processes and the FBR and the potential implications for biomaterial-directed regenerative medicine applications. STATEMENT OF SIGNIFICANCE: This review outlines the contributions of different macrophage phenotypes to different phases of wound healing and angiogenesis. Pathological outcomes, such as chronic inflammation, fibrosis, and the foreign body response, related to disruption of the macrophage inflammation-resolution process are also discussed. We summarize recent insights into the vast heterogeneity of myeloid cells related to their niche, especially the biomaterial microenvironment, and ontogenetic origin. Additionally, we present a discussion on novel tools that allow for resolution of cellular heterogeneity at the single-cell level and how these can be used to build a better understanding of macrophage heterogeneity in the biomaterial immune microenvironment to better inform immunomodulatory biomaterial design.
Collapse
Affiliation(s)
- Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
5
|
Guinan J, Lopez BS. Generating Bovine Monocyte-Derived Dendritic Cells for Experimental and Clinical Applications Using Commercially Available Serum-Free Medium. Front Immunol 2020; 11:591185. [PMID: 33178224 PMCID: PMC7596353 DOI: 10.3389/fimmu.2020.591185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Advances in fundamental and applied immunology research often originate from pilot studies utilizing animal models. While cattle represent an ideal model for disease pathogenesis and vaccinology research for a number of human disease, optimized bovine culture models have yet to be fully established. Monocyte-derived dendritic cells (MoDC) are critical in activating adaptive immunity and are an attractive subset for experimental and clinical applications. The use of serum-supplemented culture medium in this ex vivo approach is undesirable as serum contains unknown quantities of immune-modulating components and may induce unwanted immune responses if not autologous. Here, we describe a standardized protocol for generating bovine MoDC in serum-free medium (AIM-V) and detail the MoDC phenotype, cytokine profile, and metabolic signature achieved using this culture methodology. MoDC generated from adult, barren cattle were used for a series of experiments that evaluated the following culture conditions: medium type, method of monocyte enrichment, culture duration, and concentration of differentiation additives. Viability and yield were assessed using flow cytometric propidium iodide staining and manual hemocytometer counting, respectively. MoDC phenotype and T cell activation and proliferation were assessed by flow cytometric analysis of surface markers (MHC class II, CD86, CD14, and CD205), and CD25 and CFSE respectively. Cytokine secretion was quantified using a multiplex bovine cytokine panel (IL-1α, IL-1β, IL-8, IL-10, IL-17A, IFN-γ, MIP-1α, TNF-α, and IL-4). Changes in cell metabolism following stimulation were analyzed using an Extracellular Flux (XFe96) Seahorse Analyzer. Data were analyzed using paired t-tests and repeated measures ANOVA. Immature MoDC generated in serum-free medium using magnetic-activated cell sorting with plate adhesion to enrich monocytes and cultured for 4 days have the following phenotypic profile: MHC class II+++, CD86+, CD205++, and CD14-. These MoDC can be matured with PMA and ionomycin as noted by increased CD86 and CD40 expression, increased cytokine secretion (IL-1α, IL-10, MIP-1α, and IL-17A), a metabolic switch to aerobic glycolysis, and induction of T cell activation and proliferation following maturation. Cultivation of bovine MoDC utilizing our well-defined culture protocol offers a serum-free approach to mechanistically investigate mechanisms of diseases and the safety and efficacy of novel therapeutics for both humans and cattle alike.
Collapse
Affiliation(s)
- Jack Guinan
- Department of Pathology and Population Medicine, Midwestern University College of Veterinary Medicine, Glendale, AZ, United States
| | - Brina S Lopez
- Department of Pathology and Population Medicine, Midwestern University College of Veterinary Medicine, Glendale, AZ, United States
| |
Collapse
|
6
|
Giebel AM, Hu S, Rajaram K, Finethy R, Toh E, Brothwell JA, Morrison SG, Suchland RJ, Stein BD, Coers J, Morrison RP, Nelson DE. Genetic Screen in Chlamydia muridarum Reveals Role for an Interferon-Induced Host Cell Death Program in Antimicrobial Inclusion Rupture. mBio 2019; 10:e00385-19. [PMID: 30967464 PMCID: PMC6456753 DOI: 10.1128/mbio.00385-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Interferon-regulated immune defenses protect mammals from pathogenically diverse obligate intracellular bacterial pathogens of the genus Chlamydia Interferon gamma (IFN-γ) is especially important in controlling the virulence of Chlamydia species and thus impacts the modeling of human chlamydial infection and disease in mice. How IFN-γ contributes to cell-autonomous defenses against Chlamydia species and how these pathogens evade IFN-γ-mediated immunity in their natural hosts are not well understood. We conducted a genetic screen which identified 31 IFN-γ-sensitive (Igs) mutants of the mouse model pathogen Chlamydia muridarum Genetic suppressor analysis and lateral gene transfer were used to map the phenotype of one of these mutants, Igs4, to a missense mutation in a putative chlamydial inclusion membrane protein, TC0574. We observed the lytic destruction of Igs4-occupied inclusions and accompanying host cell death in response to IFN-γ priming or various proapoptotic stimuli. However, Igs4 was insensitive to IFN-γ-regulated cell-autonomous defenses previously implicated in anti-Chlamydia trachomatis host defense in mice. Igs4 inclusion integrity was restored by caspase inhibitors, indicating that the IFN-γ-mediated destruction of Igs4 inclusions is dependent upon the function of caspases or related prodeath cysteine proteases. We further demonstrated that the Igs4 mutant is immune restricted in an IFN-γ-dependent manner in a mouse infection model, thereby implicating IFN-γ-mediated inclusion destruction and host cell death as potent in vivo host defense mechanisms to which wild-type C. muridarum is resistant. Overall, our results suggest that C. muridarum evolved resistance mechanisms to counter IFN-γ-elicited programmed cell death and the associated destruction of intravacuolar pathogens.IMPORTANCE Multiple obligatory intracellular bacteria in the genus Chlamydia are important pathogens. In humans, strains of C. trachomatis cause trachoma, chlamydia, and lymphogranuloma venereum. These diseases are all associated with extended courses of infection and reinfection that likely reflect the ability of chlamydiae to evade various aspects of host immune responses. Interferon-stimulated genes, driven in part by the cytokine interferon gamma, restrict the host range of various Chlamydia species, but how these pathogens evade interferon-stimulated genes in their definitive host is poorly understood. Various Chlamydia species can inhibit death of their host cells and may have evolved this strategy to evade prodeath signals elicited by host immune responses. We present evidence that chlamydia-induced programmed cell death resistance evolved to counter interferon- and immune-mediated killing of Chlamydia-infected cells.
Collapse
Affiliation(s)
- Amanda M Giebel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shuai Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Krithika Rajaram
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Julie A Brothwell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sandra G Morrison
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert J Suchland
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Barry D Stein
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard P Morrison
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Shapshak P, Balaji S, Kangueane P, Chiappelli F, Somboonwit C, Menezes LJ, Sinnott JT. Innovative Technologies for Advancement of WHO Risk Group 4 Pathogens Research. GLOBAL VIROLOGY III: VIROLOGY IN THE 21ST CENTURY 2019. [PMCID: PMC7122670 DOI: 10.1007/978-3-030-29022-1_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Paul Shapshak
- Department of Internal Medicine, University of South Florida, Tampa, FL USA
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka India
| | | | - Francesco Chiappelli
- Oral Biology and Medicine, CHS 63-090, UCLA School of Dentistry Oral Biology and Medicine, CHS 63-090, Los Angeles, CA USA
| | | | - Lynette J. Menezes
- Department of Internal Medicine, University of South Florida, Tampa, FL USA
| | - John T. Sinnott
- Department of Internal Medicine, University of South Florida, Tampa, FL USA
| |
Collapse
|
8
|
Manickam C, Shah SV, Lucar O, Ram DR, Reeves RK. Cytokine-Mediated Tissue Injury in Non-human Primate Models of Viral Infections. Front Immunol 2018; 9:2862. [PMID: 30568659 PMCID: PMC6290327 DOI: 10.3389/fimmu.2018.02862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Viral infections trigger robust secretion of interferons and other antiviral cytokines by infected and bystander cells, which in turn can tune the immune response and may lead to viral clearance or immune suppression. However, aberrant or unrestricted cytokine responses can damage host tissues, leading to organ dysfunction, and even death. To understand the cytokine milieu and immune responses in infected host tissues, non-human primate (NHP) models have emerged as important tools. NHP have been used for decades to study human infections and have played significant roles in the development of vaccines, drug therapies and other immune treatment modalities, aided by an ability to control disease parameters, and unrestricted tissue access. In addition to the genetic and physiological similarities with humans, NHP have conserved immunologic properties with over 90% amino acid similarity for most cytokines. For example, human-like symptomology and acute respiratory syndrome is found in cynomolgus macaques infected with highly pathogenic avian influenza virus, antibody enhanced dengue disease is common in neotropical primates, and in NHP models of viral hepatitis cytokine-induced inflammation induces severe liver damage, fibrosis, and hepatocellular carcinoma recapitulates human disease. To regulate inflammation, anti-cytokine therapy studies in NHP are underway and will provide important insights for future human interventions. This review will provide a comprehensive outline of the cytokine-mediated exacerbation of disease and tissue damage in NHP models of viral infections and therapeutic strategies that can aid in prevention/treatment of the disease syndromes.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Daniel R. Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
9
|
Coers J, Brown HM, Hwang S, Taylor GA. Partners in anti-crime: how interferon-inducible GTPases and autophagy proteins team up in cell-intrinsic host defense. Curr Opin Immunol 2018; 54:93-101. [PMID: 29986303 PMCID: PMC6196122 DOI: 10.1016/j.coi.2018.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023]
Abstract
Once pathogens have breached the mechanical barriers to infection, survived extracellular immunity and successfully invaded host cells, cell-intrinsic immunity becomes the last line of defense to protect the mammalian host against viruses, bacteria, fungi and protozoa. Many cell-intrinsic defense programs act as high-precision weapons that specifically target intracellular microbes or cytoplasmic sites of microbial replication while leaving endogenous organelles unharmed. Critical executioners of cell-autonomous immunity include interferon-inducible dynamin-like GTPases and autophagy proteins, which often act cooperatively in locating and antagonizing intracellular pathogens. Here, we discuss possible mechanistic models to account for the functional interactions that occur between these two distinct classes of host defense proteins.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Hailey M Brown
- Committee on Immunology, The University of Chicago, IL 60637, USA
| | - Seungmin Hwang
- Committee on Immunology, The University of Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, IL 60637, USA; Department of Pathology, The University of Chicago, IL 60637, USA
| | - Gregory A Taylor
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Geriatrics, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC 27710, USA; Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, NC 27705, USA
| |
Collapse
|
10
|
Piro AS, Hernandez D, Luoma S, Feeley EM, Finethy R, Yirga A, Frickel EM, Lesser CF, Coers J. Detection of Cytosolic Shigella flexneri via a C-Terminal Triple-Arginine Motif of GBP1 Inhibits Actin-Based Motility. mBio 2017; 8:e01979-17. [PMID: 29233899 PMCID: PMC5727416 DOI: 10.1128/mbio.01979-17] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023] Open
Abstract
Dynamin-like guanylate binding proteins (GBPs) are gamma interferon (IFN-γ)-inducible host defense proteins that can associate with cytosol-invading bacterial pathogens. Mouse GBPs promote the lytic destruction of targeted bacteria in the host cell cytosol, but the antimicrobial function of human GBPs and the mechanism by which these proteins associate with cytosolic bacteria are poorly understood. Here, we demonstrate that human GBP1 is unique among the seven human GBP paralogs in its ability to associate with at least two cytosolic Gram-negative bacteria, Burkholderia thailandensis and Shigella flexneri Rough lipopolysaccharide (LPS) mutants of S. flexneri colocalize with GBP1 less frequently than wild-type S. flexneri does, suggesting that host recognition of O antigen promotes GBP1 targeting to Gram-negative bacteria. The targeting of GBP1 to cytosolic bacteria, via a unique triple-arginine motif present in its C terminus, promotes the corecruitment of four additional GBP paralogs (GBP2, GBP3, GBP4, and GBP6). GBP1-decorated Shigella organisms replicate but fail to form actin tails, leading to their intracellular aggregation. Consequentially, the wild type but not the triple-arginine GBP1 mutant restricts S. flexneri cell-to-cell spread. Furthermore, human-adapted S. flexneri, through the action of one its secreted effectors, IpaH9.8, is more resistant to GBP1 targeting than the non-human-adapted bacillus B. thailandensis These studies reveal that human GBP1 uniquely functions as an intracellular "glue trap," inhibiting the cytosolic movement of normally actin-propelled Gram-negative bacteria. In response to this powerful human defense program, S. flexneri has evolved an effective counterdefense to restrict GBP1 recruitment.IMPORTANCE Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host's actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic "glue trap," capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future.
Collapse
Affiliation(s)
- Anthony S Piro
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Dulcemaria Hernandez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sarah Luoma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Eric M Feeley
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Azeb Yirga
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Cammie F Lesser
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
11
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
12
|
Haldar AK, Piro AS, Finethy R, Espenschied ST, Brown HE, Giebel AM, Frickel EM, Nelson DE, Coers J. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells. mBio 2016; 7:e01417-16. [PMID: 27965446 PMCID: PMC5156299 DOI: 10.1128/mbio.01417-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/10/2016] [Indexed: 12/02/2022] Open
Abstract
The cytokine gamma interferon (IFN-γ) induces cell-autonomous immunity to combat infections with intracellular pathogens, such as the bacterium Chlamydia trachomatis The present study demonstrates that IFN-γ-primed human cells ubiquitinate and eliminate intracellular Chlamydia-containing vacuoles, so-called inclusions. We previously described how IFN-γ-inducible immunity-related GTPases (IRGs) employ ubiquitin systems to mark inclusions for destruction in mouse cells and, furthermore, showed that the rodent pathogen Chlamydia muridarum blocks ubiquitination of its inclusions by interfering with mouse IRG function. Here, we report that ubiquitination of inclusions in human cells is independent of IRG and thus distinct from the murine pathway. We show that C. muridarum is susceptible to inclusion ubiquitination in human cells, while the closely related human pathogen C. trachomatis is resistant. C. muridarum, but not C. trachomatis, inclusions attract several markers of cell-autonomous immunity, including the ubiquitin-binding protein p62, the ubiquitin-like protein LC3, and guanylate-binding protein 1. Consequently, we find that IFN-γ priming of human epithelial cells triggers the elimination of C. muridarum, but not C. trachomatis, inclusions. This newly described defense pathway is independent of indole-2,3-dioxygenase, a known IFN-γ-inducible anti-Chlamydia resistance factor. Collectively, our observations indicate that C. trachomatis evolved mechanisms to avoid a human-specific, ubiquitin-mediated response as part of its unique adaptation to its human host. IMPORTANCE Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections and responsible for significant morbidity, including pelvic inflammatory disease, infertility, and ectopic pregnancies in women. As an obligate intracellular pathogen, C. trachomatis is in perpetual conflict with cell-intrinsic defense programs executed by its human host. Our study defines a novel anti-Chlamydia host resistance pathway active in human epithelial cells. This defense program promotes the deposition of the small antimicrobial protein ubiquitin on vacuoles containing Chlamydia We show that this ubiquitin-based resistance pathway of human cells is highly effective against a Chlamydia species adapted to rodents but ineffective against human-adapted C. trachomatis This observation indicates that C. trachomatis evolved strategies to avoid entrapment within ubiquitin-labeled vacuoles as part of its adaptation to the human innate immune system.
Collapse
Affiliation(s)
- Arun K Haldar
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anthony S Piro
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ryan Finethy
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Scott T Espenschied
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hannah E Brown
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Amanda M Giebel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eva-Maria Frickel
- The Francis Crick Institute, Host-Toxoplasma Interaction Laboratory, London, United Kingdom
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
Finethy R, Coers J. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis. FEMS Microbiol Rev 2016; 40:875-893. [PMID: 28201690 PMCID: PMC5975928 DOI: 10.1093/femsre/fuw027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023] Open
Abstract
The bacterium Chlamydia trachomatis is the etiological agent of the most common sexually transmitted infection in North America and Europe. Medical complications resulting from genital C. trachomatis infections arise predominantly in women where the initial infections often remain asymptomatic and thus unrecognized. Untreated asymptomatic infections in women can ascend into the upper genital tract and establish persistence, ultimately resulting in extensive scarring of the reproductive organs, pelvic inflammatory disease, infertility and ectopic pregnancies. Previously resolved C. trachomatis infections fail to provide protective immune memory, and no effective vaccine against C. trachomatis is currently available. Critical determinants of the pathogenesis and immunogenicity of genital C. trachomatis infections are cell-autonomous immune responses. Cell-autonomous immunity describes the ability of an individual host cell to launch intrinsic immune circuits that execute the detection, containment and elimination of cell-invading pathogens. As an obligate intracellular pathogen C. trachomatis is constantly under attack by cell-intrinsic host defenses. Accordingly, C. trachomatis evolved to subvert and co-opt cell-autonomous immune pathways. This review will provide a critical summary of our current understanding of cell-autonomous immunity to C. trachomatis and its role in shaping host resistance, inflammation and adaptive immunity to genital C. trachomatis infections.
Collapse
Affiliation(s)
- Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
14
|
Tosh KW, Mittereder L, Bonne-Annee S, Hieny S, Nutman TB, Singer SM, Sher A, Jankovic D. The IL-12 Response of Primary Human Dendritic Cells and Monocytes to Toxoplasma gondii Is Stimulated by Phagocytosis of Live Parasites Rather Than Host Cell Invasion. THE JOURNAL OF IMMUNOLOGY 2015; 196:345-56. [PMID: 26597011 DOI: 10.4049/jimmunol.1501558] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Abstract
As a major natural host for Toxoplasma gondii, the mouse is widely used for the study of the immune response to this medically important protozoan parasite. However, murine innate recognition of toxoplasma depends on the interaction of parasite profilin with TLR11 and TLR12, two receptors that are functionally absent in humans. This raises the question of how human cells detect and respond to T. gondii. In this study, we show that primary monocytes and dendritic cells from peripheral blood of healthy donors produce IL-12 and other proinflammatory cytokines when exposed to toxoplasma tachyzoites. Cell fractionation studies determined that IL-12 and TNF-α secretion is limited to CD16(+) monocytes and the CD1c(+) subset of dendritic cells. In direct contrast to their murine counterparts, human myeloid cells fail to respond to soluble tachyzoite extracts and instead require contact with live parasites. Importantly, we found that tachyzoite phagocytosis, but not host cell invasion, is required for cytokine induction. Together these findings identify CD16(+) monocytes and CD1c(+) dendritic cells as the major myeloid subsets in human blood-producing innate cytokines in response to T. gondii and demonstrate an unappreciated requirement for phagocytosis of live parasites in that process. This form of pathogen sensing is distinct from that used by mice, possibly reflecting a direct involvement of rodents and not humans in the parasite life cycle.
Collapse
Affiliation(s)
- Kevin W Tosh
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; Department of Biology, Georgetown University, Washington, DC 20057; and
| | - Lara Mittereder
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sandra Bonne-Annee
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sara Hieny
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas B Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC 20057; and
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
15
|
Coers J, Haldar AK. Ubiquitination of pathogen-containing vacuoles promotes host defense to Chlamydia trachomatis and Toxoplasma gondii. Commun Integr Biol 2015; 8:e1115163. [PMID: 27066178 PMCID: PMC4802790 DOI: 10.1080/19420889.2015.1115163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/24/2022] Open
Abstract
Many intracellular bacterial and protozoan pathogens reside within host cell vacuoles customized by the microbial invaders to fit their needs. Within such pathogen-containing vacuoles (PVs) microbes procure nutrients and simultaneously hide from cytosolic host defense systems. Among the many PV-resident human pathogens are the bacterium Chlamydia trachomatis and the protozoan Toxoplasma gondii. Immune responses directed against their PVs are poorly characterized. We reported that activation of host cells with IFNγ triggers the attachment of polyubiquitin chains to Toxoplasma- and Chlamydia-containing vacuoles and thereby marks PVs for destruction. In murine cells PV ubiquitination is dependent on IFNγ-inducible Immunity Related GTPases (IRGs). Human cells also decorate PVs with ubiquitin upon IFNγ priming; however, the molecular machinery promoting PV ubiquitination in human cells remains unknown and is likely to be distinct from the IRG-dependent pathway we described in murine cells. Thus, IFNγ-inducible PV ubiquitination constitutes a critical event in cell-autonomous immunity to C. trachomatis and T. gondii in mice and humans, but the molecular machinery underlying PV ubiquitination is expected to be multifaceted and possibly host species-specific.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Molecular Genetics and Microbiology; Durham, NC USA
- Department of Immunology; Duke University Medical Center; Durham, NC USA
| | - Arun K Haldar
- Department of Molecular Genetics and Microbiology; Durham, NC USA
| |
Collapse
|
16
|
Haldar AK, Foltz C, Finethy R, Piro AS, Feeley EM, Pilla-Moffett DM, Komatsu M, Frickel EM, Coers J. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proc Natl Acad Sci U S A 2015; 112:E5628-37. [PMID: 26417105 PMCID: PMC4611635 DOI: 10.1073/pnas.1515966112] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GBPs cooperatively detect and destroy PVs is unclear. We find that host cell priming with IFNγ prompts IRG-dependent association of Toxoplasma- and Chlamydia-containing vacuoles with ubiquitin through regulated translocation of the E3 ubiquitin ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). This initial ubiquitin labeling elicits p62-mediated escort and deposition of GBPs to PVs, thereby conferring cell-autonomous immunity. Hypervirulent strains of Toxoplasma gondii evade this process via specific rhoptry protein kinases that inhibit IRG function, resulting in blockage of downstream PV ubiquitination and GBP delivery. Our results define a ubiquitin-centered mechanism by which host cells deliver GBPs to PVs and explain how hypervirulent parasites evade GBP-mediated immunity.
Collapse
Affiliation(s)
- Arun K Haldar
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Clémence Foltz
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Ryan Finethy
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Anthony S Piro
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Eric M Feeley
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Danielle M Pilla-Moffett
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Masaki Komatsu
- Department of Biochemistry, School of Medicine Niigata University, Niigata-shi, 951-8510, Japan
| | - Eva-Maria Frickel
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
17
|
Mutational Analysis of the Chlamydia muridarum Plasticity Zone. Infect Immun 2015; 83:2870-81. [PMID: 25939505 DOI: 10.1128/iai.00106-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/22/2015] [Indexed: 01/23/2023] Open
Abstract
Pathogenically diverse Chlamydia spp. can have surprisingly similar genomes. Chlamydia trachomatis isolates that cause trachoma, sexually transmitted genital tract infections (chlamydia), and invasive lymphogranuloma venereum (LGV) and the murine strain Chlamydia muridarum share 99% of their gene content. A region of high genomic diversity between Chlamydia spp. termed the plasticity zone (PZ) may encode niche-specific virulence determinants that dictate pathogenic diversity. We hypothesized that PZ genes might mediate the greater virulence and gamma interferon (IFN-γ) resistance of C. muridarum compared to C. trachomatis in the murine genital tract. To test this hypothesis, we isolated and characterized a series of C. muridarum PZ nonsense mutants. Strains with nonsense mutations in chlamydial cytotoxins, guaBA-add, and a phospholipase D homolog developed normally in cell culture. Two of the cytotoxin mutants were less cytotoxic than the wild type, suggesting that the cytotoxins may be functional. However, none of the PZ nonsense mutants exhibited increased IFN-γ sensitivity in cell culture or were profoundly attenuated in a murine genital tract infection model. Our results suggest that C. muridarum PZ genes are transcribed--and some may produce functional proteins--but are dispensable for infection of the murine genital tract.
Collapse
|
18
|
Jolles AE, Beechler BR, Dolan BP. Beyond mice and men: environmental change, immunity and infections in wild ungulates. Parasite Immunol 2015; 37:255-66. [PMID: 25354672 PMCID: PMC4414670 DOI: 10.1111/pim.12153] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023]
Abstract
In the face of rapid environmental change, anticipating shifts in microparasite and macroparasite dynamics, including emergence events, is an enormous challenge. We argue that immunological studies in natural populations are pivotal to meeting this challenge: many components of environmental change--shifts in biotic assemblages, altered climate patterns and reduced environmental predictability--may affect host immunity. We suggest that wild ungulates can serve as model systems aiding the discovery of immunological mechanisms that link environmental change with parasite transmission dynamics. Our review of eco-immunological studies in wild ungulates reveals progress in understanding how co-infections affect immunity and parasite transmission and how environmental and genetic factors interact to shape immunity. Changes in bioavailability of micronutrients have been linked to immunity and health in wild ungulates. Although physiological stress in response to environmental change has been assessed, downstream effects on immunity have not been studied. Moreover, the taxonomic range of ungulates studied is limited to bovids (bighorn sheep, Soay sheep, chamois, musk oxen, bison, African buffalo) and a few cervids (red deer, black-tailed deer). We discuss areas where future studies in ungulates could lead to significant contributions in understanding the patterns of immunity and infection in natural populations and across species.
Collapse
Affiliation(s)
- Anna E. Jolles
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Brianna R. Beechler
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| | - Brian P. Dolan
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
19
|
Jolles AE, Ezenwa VO. Ungulates as model systems for the study of disease processes in natural populations. J Mammal 2015; 96:4-15. [PMID: 32287382 PMCID: PMC7107476 DOI: 10.1093/jmammal/gyu007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parasites and pathogens are a fundamental driving force in the ecology and evolution of mammalian populations, and understanding disease processes in natural populations is an urgent priority in the face of increased rates of infectious disease emergence. In this review, we argue that mammalogists are uniquely placed to contribute to addressing these challenges because in-depth knowledge of mammal species is fundamental to the development of wild model systems that could accelerate discovery in disease ecology. The use of animal models-species for which a broad range of diagnostic, molecular, and genetic tools have been developed-in tightly controlled laboratory environments has been instrumental in driving progress in the biomedical sciences. However, in natural populations, disease processes operate in the context of enormous genetic, phenotypic, and environmental variability. Understanding diseases in animal populations (including humans) thus requires investment in "wild animal models" that explicitly include individual variation and relevant environmental gradients. Wild mammal groups such as primates and rodents have already been identified as potentially useful models of infectious diseases in the wild. Here, we discuss the enormous potential that ungulates hold as candidates for wild model systems. The diversity, broad geographic distribution, and often high abundance of species in this group make them a highly accessible target for disease research. Moreover, a depth of background knowledge, close relationships to domesticated animals, and ongoing management of many wild ungulate species provide context, tools, and opportunity for cutting-edge research at the interface of ecological and biomedical sciences. Studies of wild ungulates are already helping to unravel some key challenges in infectious disease research, including the role of parasites in trophic cascades, the consequences of climate change for disease dynamics, and the systems biology of host-parasite interactions. Other areas where ungulate studies may provide new insight include research on the sources and drivers of emerging infectious diseases.
Collapse
|
20
|
Entrican G, Wattegedera SR, Griffiths DJ. Exploiting ovine immunology to improve the relevance of biomedical models. Mol Immunol 2014; 66:68-77. [PMID: 25263932 PMCID: PMC4368439 DOI: 10.1016/j.molimm.2014.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 12/29/2022]
Abstract
Sheep make a valuable contribution to immunology research. Lessons to be learned from studying infections in the natural host. Factors to consider when selecting biomedical models.
Animal models of human disease are important tools in many areas of biomedicine; for example, in infectious disease research and in the development of novel drugs and medical devices. Most studies involving animals use rodents, in particular congenic mice, due to the availability of a wide number of strains and the ease with which they can be genetically manipulated. The use of mouse models has led to major advances in many fields of research, in particular in immunology but despite these advances, no animal model can exactly reproduce all the features of human disease. It is increasingly becoming recognised that in many circumstances mice do not provide the best model and that alternative species may be more appropriate. Here, we describe the relative merits of sheep as biomedical models for human physiology and disease in comparison to mice, with a particular focus on reproductive and respiratory pathogens.
Collapse
Affiliation(s)
- Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK.
| | - Sean R Wattegedera
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK
| | - David J Griffiths
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK
| |
Collapse
|
21
|
Fankhauser SC, Starnbach MN. PD-L1 limits the mucosal CD8+ T cell response to Chlamydia trachomatis. THE JOURNAL OF IMMUNOLOGY 2013; 192:1079-90. [PMID: 24353266 DOI: 10.4049/jimmunol.1301657] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlamydia trachomatis infection is the most common bacterial sexually transmitted disease in the United States. Repeated infections with C. trachomatis lead to serious sequelae, such as infertility. It is unclear why the adaptive immune system, specifically the CD8(+) T cell response, is unable to protect against subsequent C. trachomatis infections. In this article, we characterize the mucosal CD8(+) T cell response to C. trachomatis in the murine genital tract. We demonstrate that the immunoinhibitory ligand, PD-L1, contributes to the defective CD8(+) T cell response. Deletion or inhibition of PD-L1 restores the CD8(+) T cell response and enhances C. trachomatis clearance.
Collapse
Affiliation(s)
- Sarah C Fankhauser
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
22
|
Gracey E, Lin A, Akram A, Chiu B, Inman RD. Intracellular survival and persistence of Chlamydia muridarum is determined by macrophage polarization. PLoS One 2013; 8:e69421. [PMID: 23967058 PMCID: PMC3743904 DOI: 10.1371/journal.pone.0069421] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/10/2013] [Indexed: 11/18/2022] Open
Abstract
Macrophages can display a number of distinct phenotypes, known collectively as polarized macrophages. The best defined of these phenotypes are the classically-activated, interferon gamma (IFNγ)/LPS induced (M1) and alternatively-activated, IL-4 induced (M2) macrophages. The goal of this study is to characterize macrophage-Chlamydia interactions in the context of macrophage polarization. Here we use Chlamydia muridarum and murine bone-marrow derived macrophages to show Chlamydia does not induce M2 polarization in macrophages as a survival strategy. Unexpectedly, the infection of macrophages was silent with no upregulation of M1 macrophage-associated genes. We further demonstrate that macrophages polarized prior to infection have a differential capacity to control Chlamydia. M1 macrophages harbor up to 40-fold lower inclusion forming units (IFU) than non-polarized or M2 polarized macrophages. Gene expression analysis showed an increase in 16sRNA in M2 macrophages with no change in M1 macrophages. Suppressed Chlamydia growth in M1 macrophages correlated with the induction of a bacterial gene expression profile typical of persistence as evident by increased Euo expression and decreased Omp1 and Tal expression. Observations of permissive Chlamydia growth in non-polarized and M2 macrophages and persistence in M1 macrophages were supported through electron microscopy. This work supports the importance of IFNγ in the innate immune response to Chlamydia. However, demonstration that the M1 macrophages, despite an antimicrobial signature, fail to eliminate intracellular Chlamydia supports the notion that host–pathogen co-evolution has yielded a pathogen that can evade cellular defenses against this pathogen, and persist for prolonged periods of time in the host.
Collapse
Affiliation(s)
- Eric Gracey
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
23
|
Animal models for studying female genital tract infection with Chlamydia trachomatis. Infect Immun 2013; 81:3060-7. [PMID: 23836817 DOI: 10.1128/iai.00357-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chlamydia trachomatis is a Gram-negative obligate intracellular bacterial pathogen. It is the leading cause of bacterial sexually transmitted disease in the world, with more than 100 million new cases of genital tract infections with C. trachomatis occurring each year. Animal models are indispensable for the study of C. trachomatis infections and the development and evaluation of candidate vaccines. In this paper, the most commonly used animal models to study female genital tract infections with C. trachomatis will be reviewed, namely, the mouse, guinea pig, and nonhuman primate models. Additionally, we will focus on the more recently developed pig model.
Collapse
|
24
|
Gondek DC, Olive AJ, Stary G, Starnbach MN. CD4+ T cells are necessary and sufficient to confer protection against Chlamydia trachomatis infection in the murine upper genital tract. THE JOURNAL OF IMMUNOLOGY 2012; 189:2441-9. [PMID: 22855710 DOI: 10.4049/jimmunol.1103032] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlamydia trachomatis infection is the most common bacterial sexually transmitted disease in the United States. Chlamydia infections that ascend to the upper genital tract can persist, trigger inflammation, and result in serious sequelae such as infertility. However, mouse models in which the vaginal vault is inoculated with C. trachomatis do not recapitulate the course of human disease. These intravaginal infections of the mouse do not ascend efficiently to the upper genital tract, do not cause persistent infection, do not induce significant inflammation, and do not induce significant CD4⁺ T cell infiltration. In this article, we describe a noninvasive transcervical infection model in which we bypass the cervix and directly inoculate C. trachomatis into the uterus. We show that direct C. trachomatis infection of the murine upper genital tract stimulates a robust Chlamydia-specific CD4⁺ T cell response that is both necessary and sufficient to clear infection and provide protection against reinfection.
Collapse
Affiliation(s)
- David C Gondek
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
25
|
Distinct intensity of host-pathogen interactions in Chlamydia psittaci- and Chlamydia abortus-infected chicken embryos. Infect Immun 2012; 80:2976-88. [PMID: 22689815 DOI: 10.1128/iai.00437-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Factors and mechanisms determining the differences in virulence and host specificity between the zoonotic agents Chlamydia psittaci and Chlamydia abortus are still largely unknown. In the present study, two strains were compared for their invasiveness, virulence, and capability of eliciting an immune response in chicken embryos. On breeding day 10, embryonated chicken eggs were inoculated with 5 × 10(4) inclusion-forming units. As shown by immunohistochemistry and quantitative real-time PCR, C. psittaci displayed a significantly better capability of disseminating in the chorioallantoic membrane (CAM) and internal organs than C. abortus. The higher infectious potential of C. psittaci in birds was underlined by significantly higher mRNA expression rates of essential chlamydial genes, such as incA, groEL (in CAM, liver, and spleen), cpaf, and ftsW (in CAM). Although the immune responses to both pathogens were similar, C. psittaci elicited higher macrophage numbers and a stronger expression of a subset of immune-related proteins. The data imply that invasiveness of Chlamydia spp. and propagation in the host are not solely dependent on the level of host immune response but, even to a greater extent, on the expression of bacterial factors related to virulence. The fact that C. psittaci has coped far better than C. abortus with the avian embryo's response by upregulating essential genes may be a key to understanding the mechanisms underlying host adaptation and etiopathology.
Collapse
|
26
|
Reinhold P, Ostermann C, Liebler-Tenorio E, Berndt A, Vogel A, Lambertz J, Rothe M, Rüttger A, Schubert E, Sachse K. A bovine model of respiratory Chlamydia psittaci infection: challenge dose titration. PLoS One 2012; 7:e30125. [PMID: 22299031 PMCID: PMC3267716 DOI: 10.1371/journal.pone.0030125] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/09/2011] [Indexed: 12/26/2022] Open
Abstract
This study aimed to establish and evaluate a bovine respiratory model of experimentally induced acute C. psittaci infection. Calves are natural hosts and pathogenesis may resemble the situation in humans. Intrabronchial inoculation of C. psittaci strain DC15 was performed in calves aged 2–3 months via bronchoscope at four different challenge doses from 106 to 109 inclusion-forming units (ifu) per animal. Control groups received either UV-inactivated C. psittaci or cell culture medium. While 106 ifu/calf resulted in a mild respiratory infection only, the doses of 107 and 108 induced fever, tachypnea, dry cough, and tachycardia that became apparent 2–3 days post inoculation (dpi) and lasted for about one week. In calves exposed to 109 ifu C. psittaci, the respiratory disease was accompanied by severe systemic illness (apathy, tremor, markedly reduced appetite). At the time point of most pronounced clinical signs (3 dpi) the extent of lung lesions was below 10% of pulmonary tissue in calves inoculated with 106 and 107 ifu, about 15% in calves inoculated with 108 and more than 30% in calves inoculated with 109 ifu C. psittaci. Beside clinical signs and pathologic lesions, the bacterial load of lung tissue and markers of pulmonary inflammation (i.e., cell counts, concentration of proteins and eicosanoids in broncho-alveolar lavage fluid) were positively associated with ifu of viable C. psittaci. While any effect of endotoxin has been ruled out, all effects could be attributed to infection by the replicating bacteria. In conclusion, the calf represents a suitable model of respiratory chlamydial infection. Dose titration revealed that both clinically latent and clinically manifest infection can be reproduced experimentally by either 106 or 108 ifu/calf of C. psittaci DC15 while doses above 108 ifu C. psittaci cannot be recommended for further studies for ethical reasons. This defined model of different clinical expressions of chlamydial infection allows studying host-pathogen interactions.
Collapse
Affiliation(s)
- Petra Reinhold
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Advances in sequencing technology and genome-wide association studies are now revealing the complex interactions between hosts and pathogen through genomic variation signatures, which arise from evolutionary co-existence.
Collapse
Affiliation(s)
- Chiea-Chuen Khor
- Infectious Diseases, Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672
| | | |
Collapse
|
28
|
Coers J, Gondek DC, Olive AJ, Rohlfing A, Taylor GA, Starnbach MN. Compensatory T cell responses in IRG-deficient mice prevent sustained Chlamydia trachomatis infections. PLoS Pathog 2011; 7:e1001346. [PMID: 21731484 PMCID: PMC3121881 DOI: 10.1371/journal.ppat.1001346] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 05/22/2011] [Indexed: 10/26/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis is the most common cause of bacterial sexually transmitted diseases in the United States. In women C. trachomatis can establish persistent genital infections that lead to pelvic inflammatory disease and sterility. In contrast to natural infections in humans, experimentally induced infections with C. trachomatis in mice are rapidly cleared. The cytokine interferon-γ (IFNγ) plays a critical role in the clearance of C. trachomatis infections in mice. Because IFNγ induces an antimicrobial defense system in mice but not in humans that is composed of a large family of Immunity Related GTPases (IRGs), we questioned whether mice deficient in IRG immunity would develop persistent infections with C. trachomatis as observed in human patients. We found that IRG-deficient Irgm1/m3((-/-)) mice transiently develop high bacterial burden post intrauterine infection, but subsequently clear the infection more efficiently than wildtype mice. We show that the delayed but highly effective clearance of intrauterine C. trachomatis infections in Irgm1/m3((-/-)) mice is dependent on an exacerbated CD4(+) T cell response. These findings indicate that the absence of the predominant murine innate effector mechanism restricting C. trachomatis growth inside epithelial cells results in a compensatory adaptive immune response, which is at least in part driven by CD4(+) T cells and prevents the establishment of a persistent infection in mice.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Dave C. Gondek
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Rohlfing
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory A. Taylor
- Departments of Medicine, Molecular Genetics and Microbiology, and Immunology and Center for the Study of Aging, Duke University, Durham, North Carolina, United States of America
- Geriatric Research and Education and Clinical Center, Veteran Affairs Medical Center, Durham, North Carolina, United States of America
| | - Michael N. Starnbach
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
The IFN-γ-inducible GTPase, Irga6, protects mice against Toxoplasma gondii but not against Plasmodium berghei and some other intracellular pathogens. PLoS One 2011; 6:e20568. [PMID: 21698150 PMCID: PMC3117789 DOI: 10.1371/journal.pone.0020568] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/03/2011] [Indexed: 11/24/2022] Open
Abstract
Clearance of infection with intracellular pathogens in mice involves interferon-regulated GTPases of the IRG protein family. Experiments with mice genetically deficient in members of this family such as Irgm1(LRG-47), Irgm3(IGTP), and Irgd(IRG-47) has revealed a critical role in microbial clearance, especially for Toxoplasma gondii. The in vivo role of another member of this family, Irga6 (IIGP, IIGP1) has been studied in less detail. We investigated the susceptibility of two independently generated mouse strains deficient in Irga6 to in vivo infection with T. gondii, Mycobacterium tuberculosis, Leishmania mexicana, L. major, Listeria monocytogenes, Anaplasma phagocytophilum and Plasmodium berghei. Compared with wild-type mice, mice deficient in Irga6 showed increased susceptibility to oral and intraperitoneal infection with T. gondii but not to infection with the other organisms. Surprisingly, infection of Irga6-deficient mice with the related apicomplexan parasite, P. berghei, did not result in increased replication in the liver stage and no Irga6 (or any other IRG protein) was detected at the parasitophorous vacuole membrane in IFN-γ-induced wild-type cells infected with P. berghei in vitro. Susceptibility to infection with T. gondii was associated with increased mortality and reduced time to death, increased numbers of inflammatory foci in the brains and elevated parasite loads in brains of infected Irga6-deficient mice. In vitro, Irga6-deficient macrophages and fibroblasts stimulated with IFN-γ were defective in controlling parasite replication. Taken together, our results implicate Irga6 in the control of infection with T. gondii and further highlight the importance of the IRG system for resistance to this pathogen.
Collapse
|
30
|
Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol 2011; 89:557-63. [PMID: 21248152 PMCID: PMC3058818 DOI: 10.1189/jlb.0710409] [Citation(s) in RCA: 414] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 12/09/2010] [Accepted: 12/17/2010] [Indexed: 12/15/2022] Open
Abstract
Macrophages are now routinely categorized into phenotypic subtypes based on gene expression induced in response to cytokine and pathogen-derived stimulation. In the broadest division, macrophages are described as being CAMs (M1 macrophages) or AAMs (M2 macrophages) based on their exposure to TLR and IFN signals or Th2 cytokines, respectively. Despite the prolific use of this simple classification scheme, little is known about the precise functions of effector molecules produced by AAMs, especially how representative the CAM and AAM subtypes are of tissue macrophages in homeostasis, infection, or tissue repair and how plasticity in gene expression regulates macrophage function in vivo. Furthermore, correlations between mouse and human tissue macrophages and their representative subtypes are lacking and are a major barrier to understanding human immunity. Here, we briefly summarize current features of macrophage polarization and discuss the roles of various macrophage subpopulations and macrophage-associated genes in health and disease.
Collapse
Affiliation(s)
- Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, TN 38105, USA.
| | | |
Collapse
|
31
|
Cochrane M, Armitage CW, O’Meara CP, Beagley KW. Towards a Chlamydia trachomatis vaccine: how close are we? Future Microbiol 2010; 5:1833-56. [DOI: 10.2217/fmb.10.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections and preventable blindness worldwide. The incidence of chlamydial sexually transmitted infections has increased rapidly and current antibiotic therapy has failed as an intervention strategy. The most accepted strategy for protection and/or control of chlamydial infections is a vaccine that induces both local neutralizing antibodies to prevent infections by the extracellular elementary bodies and a cell-mediated immune response to target the intracellular infection. This article will discuss the challenges in vaccine design for the prevention of chlamydial urogenital infection and/or disease, including selection of target antigens, discussion of effective delivery systems, immunization routes and adjuvants for induction of protective immunity at the targeted mucosal surface whilst minimizing severe inflammatory disease sequelae.
Collapse
Affiliation(s)
- Melanie Cochrane
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Charles W Armitage
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Connor P O’Meara
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | | |
Collapse
|
32
|
Pathak AK, Creppage KE, Werner JR, Cattadori IM. Immune regulation of a chronic bacteria infection and consequences for pathogen transmission. BMC Microbiol 2010; 10:226. [PMID: 20738862 PMCID: PMC3224677 DOI: 10.1186/1471-2180-10-226] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 08/25/2010] [Indexed: 11/17/2022] Open
Abstract
Background The role of host immunity has been recognized as not only playing a fundamental role in the interaction between the host and pathogen but also in influencing host infectiousness and the ability to shed pathogens. Despite the interest in this area of study, and the development of theoretical work on the immuno-epidemiology of infections, little is known about the immunological processes that influence pathogen shedding patterns. Results We used the respiratory bacterium Bordetella bronchiseptica and its common natural host, the rabbit, to examine the intensity and duration of oro-nasal bacteria shedding in relation to changes in the level of serum antibodies, blood cells, cytokine expression and number of bacteria colonies in the respiratory tract. Findings show that infected rabbits shed B. bronchiseptica by contact up to 4.5 months post infection. Shedding was positively affected by number of bacteria in the nasal cavity (CFU/g) but negatively influenced by serum IgG, which also contributed to the initial reduction of bacteria in the nasal cavity. Three main patterns of shedding were identified: i- bacteria were shed intermittently (46% of individuals), ii- bacteria shedding fell with the progression of the infection (31%) and iii- individuals never shed bacteria despite being infected (23%). Differences in the initial number of bacteria shed between the first two groups were associated with differences in the level of serum antibodies and white blood cells. These results suggest that the immunological conditions at the early stage of the infection may play a role in modulating the long term dynamics of B. bronchiseptica shedding. Conclusions We propose that IgG influences the threshold of bacteria in the oro-nasal cavity which then affects the intensity and duration of individual shedding. In addition, we suggest that a threshold level of infection is required for shedding, below this value individuals never shed bacteria despite being infected. The mechanisms regulating these interactions are still obscure and more studies are needed to understand the persistence of bacteria in the upper respiratory tract and the processes controlling the intensity and duration of shedding.
Collapse
Affiliation(s)
- Ashutosh K Pathak
- Dept Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
33
|
Zhao YO, Khaminets A, Hunn JP, Howard JC. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog 2009; 5:e1000288. [PMID: 19197351 PMCID: PMC2629126 DOI: 10.1371/journal.ppat.1000288] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/08/2009] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is a natural intracellular protozoal pathogen of mice and other small mammals. After infection, the parasite replicates freely in many cell types (tachyzoite stage) before undergoing a phase transition and encysting in brain and muscle (bradyzoite stage). In the mouse, early immune resistance to the tachyzoite stage is mediated by the family of interferon-inducible immunity-related GTPases (IRG proteins), but little is known of the nature of this resistance. We reported earlier that IRG proteins accumulate on intracellular vacuoles containing the pathogen, and that the vacuolar membrane subsequently ruptures. In this report, live-cell imaging microscopy has been used to follow this process and its consequences in real time. We show that the rupture of the vacuole is inevitably followed by death of the intracellular parasite, shown by its permeability to cytosolic protein markers. Death of the parasite is followed by the death of the infected cell. The death of the cell has features of pyronecrosis, including membrane permeabilisation and release of the inflammatory protein, HMGB1, but caspase-1 cleavage is not detected. This sequence of events occurs on a large scale only following infection of IFNgamma-induced cells with an avirulent strain of T. gondii, and is reduced by expression of a dominant negative mutant IRG protein. Cells infected by virulent strains rarely undergo necrosis. We did not find autophagy to play any role in the key steps leading to the death of the parasite. We conclude that IRG proteins resist infection by avirulent T. gondii by a novel mechanism involving disruption of the vacuolar membrane, which in turn ultimately leads to the necrotic death of the infected cell.
Collapse
Affiliation(s)
- Yang O. Zhao
- Institute for Genetics, University of Cologne, Cologne, Germany
| | | | - Julia P. Hunn
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Jonathan C. Howard
- Institute for Genetics, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|