1
|
Qi B, Zhang J, Ma W, Wu Y, Lv X, Liu L, Li J, Du G, Liu Y. Biosensor-Assisted Multitarget Gene Fine-Tuning for N-Acetylneuraminic Acid Production in Escherichia coli with Sole Carbon Source Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9793-9806. [PMID: 40207619 DOI: 10.1021/acs.jafc.5c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
N-Acetylneuraminic acid (NeuAc) is widely used in the food and medical industries. Microbial fermentation has become one of the most important approaches for NeuAc production. However, current research on NeuAc is confronted with challenges, including high production costs, interference from competitive pathways, and low conversion efficiency, all of which impede its efficient production. In this study, an engineered Escherichia coli capable of utilizing glucose as the sole carbon source for NeuAc production was constructed by optimizing the glucose utilization pathway, competitive pathways, and redox balance of NADH/NAD+. Subsequently, pathway genes were systematically upregulated to identify key target genes for improving NeuAc biosynthesis. The gene cluster glmSA*-glmM-SeglmU was identified as the key engineering target. To achieve multitarget coordinated optimization of this gene cluster in vivo, a highly responsive biosensor for NeuAc was developed, exhibiting a maximum response ratio of 10.62-fold. By the construction of random mutation libraries and integration of the NeuAc-responsive biosensor with high-throughput screening using flow cytometry, the expression levels of three key genes were synergistically optimized. As a result, highly efficient NeuAc-producing strain A39 was successfully obtained. In a 3-L bioreactor, the strain achieved a NeuAc titer of 58.26 g·L-1 with a productivity of 0.83 g·L-1·h-1, representing the highest reported production of NeuAc using glucose as the sole carbon source.
Collapse
Affiliation(s)
- Bin Qi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Jianing Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Wenlong Ma
- Jiangsu Provincial Key Laboratory for Probiotics and Dairy Deep Processing, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| |
Collapse
|
2
|
Wilson HJ, Dong J, van Tonder AJ, Ruis C, Lefrancq N, McGlennon A, Bustos C, Frosth S, Léon A, Blanchard AM, Holden M, Waller AS, Parkhill J. Progressive evolution of Streptococcus equi from Streptococcus equi subsp. zooepidemicus and adaption to equine hosts. Microb Genom 2025; 11. [PMID: 40152912 DOI: 10.1099/mgen.0.001366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Streptococcus equi subsp. equi causes the equine respiratory disease 'strangles', which is highly contagious, debilitating and costly to the equine industry. S. equi emerged from the ancestral Streptococcus equi subsp. zooepidemicus and continues to evolve and disseminate globally. Previous work has shown that there was a global population replacement around the beginning of the twentieth century, obscuring the early genetic events in this emergence. Here, we have used large-scale genomic analysis of S. equi and its ancestor S. zooepidemicus to identify evolutionary events, leading to the successful expansion of S. equi. One thousand two hundred one whole-genome sequences of S. equi were recovered from clinical samples or from data available in public databases. Seventy-four whole-genome sequences representative of the diversity of S. zooepidemicus were used to compare the gene content and examine the evolutionary emergence of S. equi. A dated Bayesian phylogeny was constructed, and ancestral state reconstruction was used to determine the order and timing of gene gain and loss events between the different species and between different S. equi lineages. Additionally, a newly developed framework was used to investigate the fitness of different S. equi lineages. We identified a novel S. equi lineage, comprising isolates from donkeys in Chinese farms, which diverged nearly 300 years ago, after the emergence of S. equi from S. zooepidemicus, but before the global sweep. Ancestral state reconstruction demonstrated that phage-encoded virulence factors slaA, seeL and seeM were acquired by the global S. equi after the divergence of the basal donkey lineage. We identified the equibactin locus in both S. equi populations, but not S. zooepidemicus, reinforcing its role as a key S. equi virulence mechanism involved in its initial emergence. Evidence of a further population sweep beginning in the early 2000s was detected in the UK. This clade now accounts for more than 80% of identified UK cases since 2016. Several sub-lineages demonstrated increased fitness, within which we identified the acquisition of a new, fifth prophage containing additional toxin genes. We definitively show that acquisition of the equibactin locus was a major determinant in S. equi becoming an equid-exclusive pathogen, but that other virulence factors were fixed by the population sweep at the beginning of the twentieth century. Evidence of a secondary population sweep in the UK and acquisition of further advantageous genes implies that S. equi is continuing to adapt, and therefore, continued investigations are required to determine further risks to the equine industry.
Collapse
Affiliation(s)
- Hayley J Wilson
- PHG Foundation, linked exempt charity of University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jiangbao Dong
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, PR China
| | | | - Christopher Ruis
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Abigail McGlennon
- Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK
- EIDS, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Carla Bustos
- Facultad de Ciencias Veterinarias, Cátedra de Enfermedades Infecciosas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sara Frosth
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, 750 07 Uppsala, Sweden
| | - Albertine Léon
- LABÉO, Research Department, St Contest, Caen, France
- Normandie Univ, UNICAEN, INSERM, DYNAMICURE UMR 1311, Caen, France
| | - Adam M Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Matthew Holden
- Infection Group, School of Medicine, University of St Andrews, North Haugh, St Andrews, UK
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Abdul-Latif SAK, Yousif AA. Molecular study of Streptococcus equi isolated from horses with strangles in Iraq. Open Vet J 2025; 15:731-737. [PMID: 40201849 PMCID: PMC11974311 DOI: 10.5455/ovj.2025.v15.i2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/27/2025] [Indexed: 04/10/2025] Open
Abstract
Background Strangles is a highly contagious equine respiratory disease caused by Streptococcus equi subsp. equi. It is a globally significant pathogen and one of the most common infectious agents in horses. In Iraq, no sequencing data on this pathogen are available, and only two molecular studies have been published to date. This study provides preliminary insights into strain diversity and provides a foundation for future large-scale investigations. Aim This study aimed to investigate the molecular characteristics, identify SeM gene alleles, and perform a phylogenetic analysis of S. equi isolates from horses in Baghdad, Iraq. Methods We analyzed 59 Streptococcus spp. isolates previously obtained from horses clinical samples. Conventional PCR (Polymerase Chain Reaction) targeting the SeM gene was used to identify S. equi. Additionally, nine PCR- positive SeM gene products were sequenced, followed by phylogenetic analysis and allele identification. Results We confirmed 49 isolates as S. equi from the 59 isolates according to the molecular assay. Additionally, nine PCR products were used for sequencing and allele typing of the SeM gene, which provided the initial report of SeM-97 allele identification in Iraq. Phylogenetic analysis along with SeM gene typing revealed a close relationship between the Iraqi strains and one Iranian strain with 100% sequence identity, revealing important epidemiological relationships that may indicate regional ties to the strain detected in Iran. Conclusion The present study represents the first investigation of SeM allele typing in Iraq, identifying the SeM-97 allele of S. equi along with its unique amino acid variations. The findings highlight genetic similarities between Iraqi isolates and a strain from Iran, suggesting the potential regional dissemination of S. equi.
Collapse
Affiliation(s)
- Saif Aldeen Kamal Abdul-Latif
- Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Afaf Abdulrahman Yousif
- Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
4
|
NAKAJIMA K, KASUYA K, SENBA H, TAGAMI K, KINOSHITA Y, NIWA H. Genetic analysis based on next generation sequencing of Streptococcus equi subsp. equi isolated from horses imported into Japan. J Vet Med Sci 2024; 86:828-832. [PMID: 38897953 PMCID: PMC11300130 DOI: 10.1292/jvms.23-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Strangles is a globally widespread, commonly diagnosed and important infectious disease of equids caused by Streptococcus equi subsp. equi. We performed whole genome sequencing of 19 S. equi isolates collected from imported horses at the Japanese border. Of these isolates, 15 isolates were obtained from clinical cases and 4 were from subclinical cases. The 19 isolates were grouped into 3 Bayesian analysis of population structure (BAPS) groups by the core genome single nucleotide polymorphism analysis corresponding to exporting country, SeM typing, or exporter of the horses. The 19 isolates possessed same pathogenic genes regardless of clinical status in imported horses and no antimicrobial resistance genes. The disease status of the horses may rather reflect the prior exposure of animals with sub-clinical infection to S. equi.
Collapse
Affiliation(s)
- Kei NAKAJIMA
- Moji Branch Shinmoji Quarantine Facility, Animal Quarantine
Service, MAFF, Fukuoka, Japan
| | - Kazufumi KASUYA
- Microbiological Examination Division, Laboratory Department,
Animal Quarantine Service, MAFF, Kanagawa, Japan
| | - Hironobu SENBA
- Pathological and Physiochemical Examination Division,
Laboratory Department, Animal Quarantine Service, MAFF, Kanagawa, Japan
| | - Katsunori TAGAMI
- Moji Branch Shinmoji Quarantine Facility, Animal Quarantine
Service, MAFF, Fukuoka, Japan
| | - Yuta KINOSHITA
- Microbiology Division, Equine Research Institute, Japan
Racing Association, Tochigi, Japan
| | - Hidekazu NIWA
- Microbiology Division, Equine Research Institute, Japan
Racing Association, Tochigi, Japan
| |
Collapse
|
5
|
Albert E, Kis IE, Kiss K, K-Jánosi K, de Oliveira Costa M, Tolnai G, Biksi I. Abortion and Lethal Septicaemia in Sows Caused by a Non-ST194 Streptococcus equi subsp. zooepidemicus. Transbound Emerg Dis 2024; 2024:4008946. [PMID: 40303154 PMCID: PMC12016921 DOI: 10.1155/2024/4008946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 05/02/2025]
Abstract
Outbreaks of zoonotic Streptococcus equi subsp. zooepidemicus (SEZ) have caused severe epidemics in the pig sector since the 1970s in Southeastern Asia, China, and more recently North America. Cases of high mortality caused by peracute septicaemia were all attributed to strains of a highly virulent clonal lineage belonging to the sequence type (ST) 194. In Europe, only two outbreaks have been reported with similar features, caused by other sequence types. In August 2023, a febrile disease followed by abortion and subsequent death was observed among sows kept in a small-scale organic pig farm in West Hungary. Symptoms, pathological lesions, and microbiological findings were suggestive of septicaemia from bacterial origin caused by SEZ. According to the results of the routine laboratory testing, no other relevant infectious agents were involved. Whole-genome sequence analysis assigned the examined strains to ST138, unrelated to any of the European isolates. It also revealed a few common SEZ virulence genes, compared to the highly virulent ST194 strains. A sudden weather change and subsequent extremely high average daily temperature before the outbreak could be identified as the only predisposing factor. The immediate antibiotic treatment and applied biosecurity measures might have helped to restrict and terminate the outbreak. To our knowledge, this is the first report on abortion and lethal septicaemia in sows from Central and Eastern Europe. The results call attention to the potential of non-ST194 SEZ strains to cause outbreaks in pig farms.
Collapse
Affiliation(s)
- Ervin Albert
- Department of PathologyUniversity of Veterinary Medicine Budapest, Üllő, Hungary
- Institute of MetagenomicsUniversity of Debrecen, Debrecen, Hungary
| | - István Emil Kis
- Department of PathologyUniversity of Veterinary Medicine Budapest, Üllő, Hungary
| | | | - Katalin K-Jánosi
- Department of PathologyUniversity of Veterinary Medicine Budapest, Üllő, Hungary
| | - Matheus de Oliveira Costa
- Department of Large Animal Clinical SciencesWestern College of Veterinary MedicineUniversity of Saskatchewan, Saskatoon, Canada
- Department of Population HealthFaculty of Veterinary MedicineUtrecht University, Utrecht, Netherlands
| | | | - Imre Biksi
- Department of PathologyUniversity of Veterinary Medicine Budapest, Üllő, Hungary
| |
Collapse
|
6
|
Soliman R, Yousef M, Gelil SA, Aboul-Ella H. Development of novel Streptococcus equi vaccines with an assessment of their immunizing potentials and protective efficacies. BMC Vet Res 2024; 20:173. [PMID: 38702665 PMCID: PMC11067117 DOI: 10.1186/s12917-024-04012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
Strangles is a highly contagious disease of the equine upper respiratory tract caused by Streptococcus equi subspecies. Streptococcus equi subsp. equi (S. equi) and Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) was isolated, as local, hot, and field strains, from horses clinically suffering from respiratory distress. The isolated Streptococci were identified using bacteriological and molecular techniques. Four formulations of inactivated S. equi vaccines were developed and evaluated. The first formulation was prepared using the S. equi isolates, adjuvanted with MONTANIDE GEL adjuvant, while the second formulation was adjuvanted with MONTANIDE ISA-70 adjuvant. The other 2 formulations were inactivated combined vaccines prepared from both S. equi and S. zooepidemicus isolates. The 3rd formulation was the combined isolates adjuvanted with MONTANIDE GEL while the 4th formulation was the combined isolates adjuvanted with MONTANIDE ISA-70. The developed vaccines' physical properties, purity, sterility, safety, and potency were ensured. The immunizing efficacy was determined in isogenic BALB/c mice and white New Zealand rabbits using the passive hemagglutination test. Also, the antibodies' titer of the combined S. equi and S. zooepidemicus vaccine adjuvanted with MONTANIDE ISA-70 in foals was tracked using an indirect enzyme-linked immunosorbent assay. The protective efficacy of the developed vaccines was determined using a challenge test in both laboratory and field animal models, where a 75% protection rate was achieved. The combined vaccine proved to be more efficacious than the monovalent vaccine. Also, the MONTANIDE ISA-70 adjuvant provided significant protective efficacy than the MONTANIDE GEL. The current work is introducing a very promising mitigative and strategic controlling solution for strangles.
Collapse
Affiliation(s)
- Rafik Soliman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Yousef
- Department of Veterinary Hygiene, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sara Abdel Gelil
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
7
|
Mangano ER, Jones GMC, Suarez-Bonnet A, Waller AS, Priestnall SL. Streptococcus zooepidemicus in dogs: Exploring a canine pathogen through multilocus sequence typing. Vet Microbiol 2024; 292:110059. [PMID: 38554599 DOI: 10.1016/j.vetmic.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
Streptococcus equi. subsp. zooepidemicus (S. zooepidemicus) associated diseases in dogs have emerged as a significant concern over recent decades. S. zooepidemicus occurs sporadically in dog populations globally, with increased prevalence in shelters/kennels. This study used multilocus sequence typing (MLST) of 149 independent canine S. zooepidemicus isolates to assess associations between sequence type and breed, country of origin, disease severity, sampling type, year, and behaviour within an outbreak. No clear associations for breed, country, sampling type and year were determined in this study. ST-10 and 123 strains were present within all disease categories, from no clinical signs to severe disease. Assessment of S. zooepidemicus infection in 3 UK outbreaks at the same location found ST-10, 18, 123 strains, and a ST-173 strain in a US outbreak, were associated with haemorrhagic pneumonia and persisted in kennelled populations over time. The ST-173 clonal complex has been noted to have severe virulence capabilities in dogs and other species. S. zooepidemicus seems to thrive in environments with a high risk of transmissibility, overcrowding, stress and naïve populations, particularly for those in shelters/kennels. MLST alone cannot determine the virulence phenotype of S. zooepidemicus in dogs. However, a level of conservancy and diversity within ST allelic loci aids the opportunity to cause severe disease in dogs. Thus, further research into whole genome sequencing and characterising the virulence factors of S. zooepidemicus is warranted in dogs.
Collapse
Affiliation(s)
- Elli R Mangano
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom.
| | - Gareth M C Jones
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Alejandro Suarez-Bonnet
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | | | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
8
|
Su Y, Zhang Z, Wang L, Zhang B, Su L. Whole-Genome Sequencing and Phenotypic Analysis of Streptococcus equi subsp. zooepidemicus Sequence Type 147 Isolated from China. Microorganisms 2024; 12:824. [PMID: 38674768 PMCID: PMC11051846 DOI: 10.3390/microorganisms12040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is one of the important zoonotic and opportunistic pathogens. In recent years, there has been growing evidence that supports the potential role of S. zooepidemicus in severe diseases in horses and other animals, including humans. Furthermore, the clinical isolation and drug resistance rates of S. zooepidemicus have been increasing yearly, leading to interest in its in-depth genomic analysis. In order to deepen the understanding of the S. zooepidemicus characteristics and genomic features, we investigated the genomic islands, mobile genetic elements, virulence and resistance genes, and phenotype of S. zooepidemicus strain ZHZ 211 (ST147), isolated from an equine farm in China. We obtained a 2.18 Mb, high-quality chromosome and found eight genomic islands. According to a comparative genomic investigation with other reference strains, ZHZ 211 has more virulence factors, like an iron uptake system, adherence, exoenzymes, and antiphagocytosis. More interestingly, ZHZ 211 has acquired a mobile genetic element (MGE), prophage Ph01, which was found to be in the chromosome of this strain and included two hyaluronidase (hyl) genes, important virulence factors of the strain. Moreover, two transposons and two virulence (virD4) genes were found to be located in the same genome island of ZHZ 211. In vitro phenotypic results showed that ZHZ 211 grows faster and is resistant to clarithromycin, enrofloxacin, and sulfonamides. The higher biofilm-forming capabilities of ZHZ 211 may provide a competitive advantage for survival in its niche. The results expand our understanding of the genomic, pathogenicity, and resistance characterization of Streptococcus zooepidemicus and facilitate further exploration of its molecular pathogenic mechanism.
Collapse
Affiliation(s)
- Yan Su
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zehua Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Li Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Baojiang Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Lingling Su
- Xinjiang Academy of Animal Science, Urumqi 830000, China
| |
Collapse
|
9
|
Zhang Y, Lv F, Su Y, Zhang H, Zhang B. Complete genome sequencing and comparative genomic analysis of three donkey Streptococcus equi subsp. equi isolates. Front Microbiol 2023; 14:1285027. [PMID: 38029076 PMCID: PMC10646407 DOI: 10.3389/fmicb.2023.1285027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Streptococcus equi subspecies equi (S. equi) is the causative agent of strangles, which is one of the most common and highly contagious respiratory infectious illnesses in horses. Streptococcus equi (S. equi) is a horse-specific pathogen that originated from the closely related zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). Despite decades of research, the movement of genetic material across host-restricted diseases remains a mystery. Methods Three S. equi donkey isolates (HTP133, HTP232, and HT1112) were recently isolated from a strangles epidemic on donkey farms in China's Xinjiang Province. In this study, we performed a comprehensive comparative analysis of these isolates using whole genome sequencing and compared them to the published genomic sequences of equine strain S. equi 4047 to uncover evidence of genetic events that shaped the evolution of these donkey S. equi isolates' genomes. Results Whole genome sequencing indicated that both strains were closely related, with comparable gene compositions and a high rate of shared core genomes (1788-2004). Our comparative genomic study indicated that the genome structure is substantially conserved across three donkey strains; however, there are several rearrangements and inversions when compared to the horse isolate S. equi 4047. The virulence factors conveyed by genomic islands and prophages, in particular, played a key role in shaping the pathogenic capacity and genetic diversity of these S. equi strains. Furthermore, we discovered that the HT133 isolate had a strong colonization ability and increased motility; the HT1112 isolates had a significantly higher ability for antimicrobial resistance and biofilm formation, and the HT232 isolate gained pathogenic specialization by acquiring a bacteriophage encoding hyaluronate lyase. Discussion In summary, our findings show that genetic exchange across S. equi strains influences the development of the donkey S. equi genome, offering important genetic insights for future epidemiological studies of S. equi infection.
Collapse
Affiliation(s)
| | | | - Yan Su
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, Xinjiang, China
| | | | | |
Collapse
|
10
|
Morris ERA, Schroeder ME, Ferro PJ, Waller AS, McGlennon AA, Bustos CP, Gressler LT, Wu J, Lawhon SD, Boyle AG, Lingsweiler S, Paul N, Dimitrov K, Swinford AK, Bordin AI, Cohen ND. Development of a novel real-time PCR multiplex assay for detection of Streptococcus equi subspecies equi and Streptococcus equi subspecies zooepidemicus. Vet Microbiol 2023; 284:109797. [PMID: 37290208 DOI: 10.1016/j.vetmic.2023.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Strangles is a contagious bacterial disease of horses caused by Streptococcus equi subspecies equi (SEE) that occurs globally. Rapid and accurate identification of infected horses is essential for controlling strangles. Because of limitations of existing PCR assays for SEE, we sought to identify novel primers and probes that enable simultaneous detection and differentiation of infection with SEE and S. equi subsp. zooepidemicus (SEZ). Comparative genomics of U.S. strains of SEE and SEZ (n = 50 each) identified SE00768 from SEE and comB from SEZ as target genes. Primers and probes for real-time PCR (rtPCR) were designed for these genes and then aligned in silico with the genomes of strains of SEE (n = 725) and SEZ (n = 343). Additionally, the sensitivity and specificity relative to microbiologic culture were compared between 85 samples submitted to an accredited veterinary medical diagnostic laboratory. The respective primer and probe sets aligned with 99.7 % (723/725) isolates of SEE and 97.1 % (333/343) of SEZ. Of 85 diagnostic samples, 20 of 21 (95.2 %) SEE and 22 of 23 SEZ (95.6 %) culture-positive samples were positive by rtPCR for SEE and SEZ, respectively. Both SEE (n = 2) and SEZ (n = 3) were identified by rtPCR among 32 culture-negative samples. Results were rtPCR-positive for both SEE and SEZ in 21 of 44 (47.7 %) samples that were culture-positive for SEE or SEZ. The primers and probe sets reported here reliably detect SEE and SEZ from Europe and the U.S., and permit detection of concurrent infection with both subspecies.
Collapse
Affiliation(s)
- Ellen Ruth A Morris
- Department of Large Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Megan E Schroeder
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Pamela J Ferro
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA.
| | - Andrew S Waller
- Intervacc AB, Hägersten, Sweden; Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Abigail A McGlennon
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Carla P Bustos
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Enfermedades Infecciosas, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Leticia T Gressler
- Laboratório de Microbiologia e Imunologia Veterinária, Medicina Veterinária, Instituto Federal Farroupilha (IFFar), Frederico Westphalen, Rio Grande do Sul, Brazil
| | - Jing Wu
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ashley G Boyle
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, USA
| | - Sonia Lingsweiler
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Narayan Paul
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Kiril Dimitrov
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Amy K Swinford
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Angela I Bordin
- Department of Large Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
11
|
Bohlman T, Waddell H, Schumaker B. A case of bacteremia and pneumonia caused by Streptococcus equi subspecies equi infection in a 70-year-old female following horse exposure in rural Wyoming. Ann Clin Microbiol Antimicrob 2023; 22:65. [PMID: 37533031 PMCID: PMC10399059 DOI: 10.1186/s12941-023-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The occurrence of zoonotic infections following an animal exposure continues to be an important consideration for all patients, especially those within agricultural communities. Streptococcus equi subspecies equi (S. equi subsp. equi) is a bacteria known to cause a common infection called 'Strangles' in horses. This article highlights a new case of pneumonia and bacteremia in a patient caused by S. equi subsp. equi following strangles exposure in a horse. Rarely has there been reported horse to human transmission of subsp. equi. CASE PRESENTATION A 70-year-old woman attended a rural emergency department with complaints of dry heaving, fever, chills, shakes, and nausea and presented with a cough. She had undergone a screening colonoscopy two days prior with no other significant medical history. The patient had computed tomography (CT) evidence of a pneumonia and positive blood cultures growing S. equi subsp. equi consistent with bacteremia. The patient later disclosed the recent passing of her horse following its sudden illness six days prior to her emergency department presentation. She had cuddled and kissed the horse prior to its death. The patient was treated with IV lactated ringers during the initial evaluation and admission and also received IV piperacillin-tazobactam 4.5 g every eight hours intravenously during her hospital stay. She was transitioned to an oral antibiotic on discharge. Subsequent blood cultures drawn the day after discharge were negative for S. equi subsp. equi, indicating successful treatment of her bacteremia. CONCLUSIONS This report discusses an atypical presentation of S. equi subsp. equi infection in an otherwise healthy individual, manifesting as early sepsis, pneumonia, and bacteremia. The patient likely developed this infection following direct contact exposure to her horse who had died from presumed strangles a few days prior to her symptom onset. This case highlights the importance of investigating potential exposures to S. equi subsp. equi in rural areas, areas where farming and ranching are prevalent, particularly among individuals working with horses. It is especially important to acknowledge high risk populations such as immunocompromised individuals with signs and symptoms of meningitis or bacteremia.
Collapse
Affiliation(s)
- Tristan Bohlman
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Heith Waddell
- University of Washington School of Medicine, Seattle, United States.
| | - Brant Schumaker
- Wyoming WWAMI University of Washington School of Medicine, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
12
|
Pan F, Zhu M, Liang Y, Yuan C, Zhang Y, Wang Y, Fan H, Waldor MK, Ma Z. Membrane vesicle delivery of a streptococcal M protein disrupts the blood-brain barrier by inducing autophagic endothelial cell death. Proc Natl Acad Sci U S A 2023; 120:e2219435120. [PMID: 37276410 PMCID: PMC10268326 DOI: 10.1073/pnas.2219435120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
M family proteins are critical virulence determinants of Streptococci. Streptococcus equi subsp. zooepidemicus (SEZ) are Group C streptococci that cause meningitis in animals and humans. SzM, the M protein of SEZ, has been linked to SEZ brain invasion. Here, we demonstrate that SzM is important in SEZ disruption of the blood-brain barrier (BBB). SEZ release SzM-bound membrane vesicles (MVs), and endocytosis of these vesicles by human brain endothelial microvascular cells (hBMECs) results in SzM-dependent cytotoxicity. Furthermore, administration of SzM-bound MVs disrupted the murine BBB. A CRISPR screen revealed that SzM cytotoxicity in hBMECs depends on PTEN-related activation of autophagic cell death. Pharmacologic inhibition of PTEN activity prevented SEZ disruption of the murine BBB and delayed mortality. Our data show that MV delivery of SzM to host cells plays a key role in SEZ pathogenicity and suggests that MV delivery of streptococcal M family proteins is likely a common streptococcal virulence mechanism.
Collapse
Affiliation(s)
- Fei Pan
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Mingli Zhu
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Ying Liang
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Chen Yuan
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Yu Zhang
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Yuchang Wang
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Hongjie Fan
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou225009, China
| | - Matthew K. Waldor
- HHMI, Boston, MA02115
- Brigham and Women’s HospitalDivision of Infectious Diseases, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Zhe Ma
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou225009, China
| |
Collapse
|
13
|
Boksha IS, Lunin VG, Danilova TA, Poponova MS, Polyakov NB, Lyashchuk AM, Konstantinova SV, Galushkina ZM, Ustenko EV. Recombinant Endopeptidases IdeS and IdeZ and Their Potential Application. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:731-740. [PMID: 37748870 DOI: 10.1134/s0006297923060020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 09/27/2023]
Abstract
Endopeptidases IdeS and IdeZ (streptococcal virulence factors that specifically cleave IgG heavy chains) are of particular interest because of their potential use in biotechnology, medicine, and veterinary. Genes encoding these enzymes were cloned and expressed in Escherichia coli heterologous expression system (ideS was cloned from a Streptococcus pyogenes collection strain; ideZ from Streptococcus zooepidemicus was synthesized). The 6His-tag was introduced into the amino acid sequence of each endopeptidase, and IdeS and IdeZ were purified by metal affinity chromatography to an apparent homogeneity (according to polyacrylamide gel electrophoresis). Purified enzymes were active against human and animal IgGs; their specificity toward human IgGs was confirmed by polyacrylamide gel electrophoresis. Recombinant IdeZ was used for immunological analysis of equine strangles infection (diagnostics and determination of the titer of specific antibodies in blood). Hence, IdeZ can be used in veterinary and sanitary microbiology to diagnose infections caused by Streptococcus equi and S. zooepidemicus in addition to its application in medicine and biotechnology.
Collapse
Affiliation(s)
- Irina S Boksha
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.
- Mental Health Research Centre, Moscow, 115522, Russia
| | - Vladimir G Lunin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Tatyana A Danilova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Poponova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Nikita B Polyakov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Alexander M Lyashchuk
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Svetlana V Konstantinova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Zoya M Galushkina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Ekaterina V Ustenko
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| |
Collapse
|
14
|
Rotinsulu DA, Ewers C, Kerner K, Amrozi A, Soejoedono RD, Semmler T, Bauerfeind R. Molecular Features and Antimicrobial Susceptibilities of Streptococcus equi ssp. equi Isolates from Strangles Cases in Indonesia. Vet Sci 2023; 10:vetsci10010049. [PMID: 36669050 PMCID: PMC9867300 DOI: 10.3390/vetsci10010049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Strangles, caused by Streptococcus equi ssp. equi (S. equi equi), is a highly infectious and frequent disease of equines worldwide. No data are available regarding the molecular epidemiology of strangles in Indonesia. This study aimed to characterize S. equi equi isolates obtained from suspected strangles cases in Indonesia in 2018. Isolates originated from seven diseased horses on four different farms located in three provinces of Indonesia. Whole genome sequences of these isolates were determined and used for seM typing, multilocus sequence typing (MLST), and core genome MLS typing (cgMLST). Genomes were also screened for known antimicrobial resistance genes and genes encoding for the recombinant antigens used in the commercial Strangvac® subunit vaccine. All seven S. equi equi isolates from Indonesia belonged to ST179 and carried seM allele 166. Isolates differed from each other by only 2 to 14 cgSNPs and built an exclusive sub-cluster within the Bayesian Analysis of Population Structure (BAPS) cluster 2 (BAPS-2) of the S. equi equi cgMLST scheme. All isolates revealed predicted amino acid sequence identity to seven and high similarity to one of the eight antigen fragments contained in Strangvac®. Furthermore, all isolates were susceptible to beta-lactam antibiotics penicillin G, ampicillin, and ceftiofur. Our data suggest that the horses from this study were affected by strains of the same novel sublineage within globally distributed BAPS-2 of S. equi equi. Nevertheless, penicillin G can be used as a first-choice antibiotic against these strains and Strangvac® may also be protective against Indonesian strains.
Collapse
Affiliation(s)
- Dordia Anindita Rotinsulu
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35392 Giessen, Germany
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
- Correspondence: or
| | - Christa Ewers
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Amrozi Amrozi
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | | | - Torsten Semmler
- NG-1 Microbial Genomics, Robert Koch Institute, 13353 Berlin, Germany
| | - Rolf Bauerfeind
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
15
|
Azpiroz MF, Burger N, Mazza M, Rodríguez G, Camou T, García Gabarrot G. Characterization of Streptococcus equi subsp. zooepidemicus isolates containing lnuB gene responsible for the L phenotype. PLoS One 2023; 18:e0284869. [PMID: 37115801 PMCID: PMC10146458 DOI: 10.1371/journal.pone.0284869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Within the framework of the β-hemolytic streptococci surveillance carried out by the National Reference Laboratory from Uruguay, three putative Streptococcus equi subsp. zooepidemicus (SEZ) were received from different health centers. Being these the first reports associated with human infections in Uruguay, the objective of this work was to confirm their identification, to determine their genetic relationship and to study their antibiotic susceptibility. Using four different methods, they were identified as SEZ, a subspecies which has been described as the etiologic agent of rare and severe zoonosis in a few cases in other countries. The three isolates presented different pulsotypes by PFGE; however, two of them appeared to be related and were confirmed as ST431 by MLST, while the remaining isolate displayed ST72. Their resistance profile exhibited an unexpected feature: despite all of them were susceptible to macrolides, they showed different levels of resistance to clindamycin, i.e. they had the so-called "L phenotype". This rare trait is known to be due to a nucleotidyl-transferase, encoded by genes of the lnu family. Although this phenotype was previously described in a few SEZ isolates, its genetic basis has not been studied yet. This was now analyzed by PCR in the three isolates and they were found to contain a lnuB gene. The lnuB sequence was identical among the three isolates and with many lnuB sequences deposited in data banks. In conclusion, for the first time in Uruguay, three SEZ isolates recovered from non-epidemiologically related cases of human invasive infection were identified. Moreover, this is the first report about the presence of a lnu gene in the S. equi species, revealing the active lateral spread of the lnuB in a new streptococcal host.
Collapse
Affiliation(s)
- María F Azpiroz
- Facultad de Ciencias, Fisiología y Genética Bacterianas, UdelaR, Montevideo, Uruguay
| | | | | | | | - Teresa Camou
- Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Montevideo, Uruguay
| | | |
Collapse
|
16
|
Sengupta S, Azad RK. Leveraging comparative genomics to uncover alien genes in bacterial genomes. Microb Genom 2023; 9:mgen000939. [PMID: 36748570 PMCID: PMC9973850 DOI: 10.1099/mgen.0.000939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A significant challenge in bacterial genomics is to catalogue genes acquired through the evolutionary process of horizontal gene transfer (HGT). Both comparative genomics and sequence composition-based methods have often been invoked to quantify horizontally acquired genes in bacterial genomes. Comparative genomics methods rely on completely sequenced genomes and therefore the confidence in their predictions increases as the databases become more enriched in completely sequenced genomes. Recent developments including in microbial genome sequencing call for reassessment of alien genes based on information-rich resources currently available. We revisited the comparative genomics approach and developed a new algorithm for alien gene detection. Our algorithm compared favourably with the existing comparative genomics-based methods and is capable of detecting both recent and ancient transfers. It can be used as a standalone tool or in concert with other complementary algorithms for comprehensively cataloguing alien genes in bacterial genomes.
Collapse
Affiliation(s)
- Soham Sengupta
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas, 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas, 76203, USA.,Department of Mathematics, University of North Texas, Denton, Texas, 76203, USA
| |
Collapse
|
17
|
Frosth S, Morris ERA, Wilson H, Frykberg L, Jacobsson K, Parkhill J, Flock JI, Wood T, Guss B, Aanensen DM, Boyle AG, Riihimäki M, Cohen ND, Waller AS. Conservation of vaccine antigen sequences encoded by sequenced strains of Streptococcus equi subsp. equi. Equine Vet J 2023; 55:92-101. [PMID: 35000217 PMCID: PMC10078666 DOI: 10.1111/evj.13552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Streptococcus equi subspecies equi (S equi) is the cause of Strangles, one of the most prevalent diseases of horses worldwide. Variation within the immunodominant SeM protein has been documented, but a new eight-component fusion protein vaccine, Strangvac, does not contain live S equi or SeM and conservation of the antigens it contains have not been reported. OBJECTIVE To define the diversity of the eight Strangvac antigens across a diverse S equi population. STUDY DESIGN Genomic description. METHODS Antigen sequences from the genomes of 759 S equi isolates from 19 countries, recovered between 1955 and 2018, were analysed. Predicted amino acid sequences in the antigen fragments of SEQ0256(Eq5), SEQ0402(Eq8), SEQ0721(EAG), SEQ0855(SclF), SEQ0935(CNE), SEQ0999(IdeE), SEQ1817(SclI) and SEQ2101(SclC) in Strangvac and SeM were extracted from the 759 assembled genomes and compared. RESULTS The predicted amino acid sequences of SclC, SclI and IdeE were identical across all 759 genomes. CNE was truncated in the genome of five (0.7%) isolates. SclF was absent from one genome and another encoded a single amino acid substitution. EAG was truncated in two genomes. Eq5 was truncated in four genomes and 123 genomes encoded a single amino acid substitution. Eq8 was truncated in three genomes, one genome encoded four amino acid substitutions and 398 genomes encoded a single amino acid substitution at the final amino acid of the Eq8 antigen fragment. Therefore, at least 1579 (99.9%) of 1580 amino acids in Strangvac were identical in 743 (97.9%) genomes, and all genomes encoded identical amino acid sequences for at least six of the eight Strangvac antigens. MAIN LIMITATIONS Three hundred and seven (40.4%) isolates in this study were recovered from horses in the UK. CONCLUSIONS The predicted amino acid sequences of antigens in Strangvac were highly conserved across this collection of S equi.
Collapse
Affiliation(s)
- Sara Frosth
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ellen Ruth A Morris
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, Texas, USA
| | | | - Lars Frykberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Jacobsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Jan-Ingmar Flock
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Intervacc AB, Stockholm, Sweden
| | | | - Bengt Guss
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David M Aanensen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ashley G Boyle
- Department of Clinical Studies New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miia Riihimäki
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, Texas, USA
| | - Andrew S Waller
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Intervacc AB, Stockholm, Sweden
| |
Collapse
|
18
|
Garner C, Stephen C, Pant SD, Ghorashi SA. Comparison of PCR-HRM, colorimetric LAMP and culture based diagnostic assays in the detection of endometritis caused by Streptococcus equi subsp. zooepidemicus in mares. Vet Res Commun 2022; 47:495-509. [PMID: 36538151 PMCID: PMC9765344 DOI: 10.1007/s11259-022-10047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is one of the causative agents of equine endometritis. In this study, a panel of different bacterial species, and colonies derived from bacteriological cultures of 38 clinical samples, were subjected to Loop-Mediated Isothermal Amplification (LAMP) assay and PCR, followed by high-resolution melt (HRM) curve analysis. All clinical samples were genotyped into three distinct groups based on HRM curve analysis. Differences in melting curve profiles were a reflection of DNA variation in sorD gene which was confirmed by DNA sequencing. A mathematical model based on Genetic Confidence Percentage (GCP) was used in HRM curve analysis and a cut-off point value was established which differentiated S. zooepidemicus isolates without requiring visual interpretation of curve profiles. The accuracy of PCR-HRM and bacterial culture in detection of S. zooepidemicus were identical with 100% sensitivity and specificity, while LAMP assay had similar specificity but a lower sensitivity (89.5%). PCR-HRM and LAMP assay provided an effective detection method with a turn-around time of six hours for PCR-HRM and 120 min for LAMP assay, compared to a minimum three days that was required when routine bacteriological culture method was used. In summary, results indicate that LAMP had the quickest turnaround, and HRM curve analysis could potentially be used for genotyping without DNA sequencing. Any mare suspected of endometritis will benefit from developed rapid diagnostic tests for detection of S. zooepidemicus and proper treatment prior to being bred and will mitigate unnecessary treatment and antibiotic resistance.
Collapse
Affiliation(s)
- Charlotte Garner
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678 Australia
| | - Cyril Stephen
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678 Australia ,Graham Centre for Agricultural Innovation, Wagga Wagga, Australia
| | - Sameer Dinkar Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678 Australia ,Graham Centre for Agricultural Innovation, Wagga Wagga, Australia
| | - Seyed Ali Ghorashi
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678 Australia ,Graham Centre for Agricultural Innovation, Wagga Wagga, Australia
| |
Collapse
|
19
|
Lin Z, Xia Y, Guo J, Xu G, Liu Y, Yang Y, Xie H, Huang Y, Fu Q. Caspase-1 deficiency impairs neutrophils recruitment and bacterial clearance in Streptococcus equi ssp. zooepidemicus infected mice. Vet Microbiol 2022; 268:109411. [DOI: 10.1016/j.vetmic.2022.109411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
|
20
|
Differences in the Accessory Genomes and Methylomes of Strains of Streptococcus equi subsp. equi and of Streptococcus equi subsp. zooepidemicus Obtained from the Respiratory Tract of Horses from Texas. Microbiol Spectr 2022; 10:e0076421. [PMID: 35019696 PMCID: PMC8754150 DOI: 10.1128/spectrum.00764-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus equi subsp. equi (SEE) is a host-restricted equine pathogen considered to have evolved from Streptococcus equi subsp. zooepidemicus (SEZ). SEZ is promiscuous in host range and is commonly recovered from horses as a commensal. Comparison of a single strain each of SEE and SEZ using whole-genome sequencing, supplemented by PCR of selected genes in additional SEE and SEZ strains, was used to characterize the evolution of SEE. But the known genetic variability of SEZ warrants comparison of the whole genomes of multiple SEE and SEZ strains. To fill this knowledge gap, we utilized whole-genome sequencing to characterize the accessory genome elements (AGEs; i.e., elements present in some SEE strains but absent in SEZ or vice versa) and methylomes of 50 SEE and 50 SEZ isolates from Texas. Consistent with previous findings, AGEs consistently found in all SEE isolates were primarily from mobile genetic elements that might contribute to host restriction or pathogenesis of SEE. Fewer AGEs were identified in SEZ because of the greater genomic variability among these isolates. The global methylation patterns of SEE isolates were more consistent than those of the SEZ isolates. Among homologous genes of SEE and SEZ, differential methylation was identified only in genes of SEE encoding proteins with functions of quorum sensing, exopeptidase activity, and transitional metal ion binding. Our results indicate that effects of genetic mobile elements in SEE and differential methylation of genes shared by SEE and SEZ might contribute to the host specificity of SEE. IMPORTANCE Strangles, caused by the host-specific bacterium Streptococcus equi subsp. equi (SEE), is the most commonly diagnosed infectious disease of horses worldwide. Its ancestor, Streptococcus equi subsp. zooepidemicus (SEZ), is frequently isolated from a wide array of hosts, including horses and humans. A comparison of the genomes of a single strain of SEE and SEZ has been reported, but sequencing of further isolates has revealed variability among SEZ strains. Thus, the importance of this study is that it characterizes genomic and methylomic differences of multiple SEE and SEZ isolates from a common geographic region (viz., Texas). Our results affirm many of the previously described differences between the genomes of SEE and SEZ, including the role of mobile genetic elements in contributing to host restriction. We also provide the first characterization of the global methylome of Streptococcus equi and evidence that differential methylation might contribute to the host restriction of SEE.
Collapse
|
21
|
Kerdsin A, Chopjitt P, Hatrongjit R, Boueroy P, Gottschalk M. Zoonotic infection and clonal dissemination of Streptococcus equi subspecies zooepidemicus sequence type 194 isolated from humans in Thailand. Transbound Emerg Dis 2021; 69:e554-e565. [PMID: 34558797 DOI: 10.1111/tbed.14331] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022]
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) is a zoonotic pathogen associated with diseases in a wide range of animals as well as in humans. SEZ sequence type (ST) 194 strains have been associated with outbreaks in China, the USA, and Canada and have caused high mortality in pigs. Nevertheless, human infection by this ST has never been reported. This study conducted a retrospective analysis of 18 SEZ strains from human patients in Thailand during 2005-2020. The study revealed clonal dissemination of ST194 with the identical pulsotype in human patients throughout Thailand. Clinical manifestation was mainly septicemia (61.1%), while 72.2% had a history of eating raw pork products. There were six fatal cases (33.3%). Antimicrobial susceptibility testing revealed that all strains were susceptible to penicillin, ampicillin, cefotaxime, erythromycin, levofloxacin, clindamycin, chloramphenicol, tetracycline and vancomycin. Virulence-associated genes, including bifA, szM, szP, sdzD, spaZ, and fszF, were present in all tested strains. Some representative genes in four pathogenicity islands found in the swine outbreak SEZ-ATCC35246 (ST194) strain were detected in these SEZ strains. Whole-genome sequencing analysis of three representative SEZs in this study revealed no acquired antimicrobial-resistant genes and they contained the same virulence factors. The single-nucleotide polymorphism phylogenetic tree demonstrated that the current strains were clustered with swine ST194 strains. The results should be highlighted as a public health concern, especially to those who may directly or indirectly have contact with livestock or companion animals or have consumed raw meat products as risk factors for infections with SEZ.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | | |
Collapse
|
22
|
Complete Genome Sequences of Eight Streptococcus equi subsp. zooepidemicus Strains Isolated from Mares in Estrus with Endometritis. Microbiol Resour Announc 2021; 10:e0132120. [PMID: 34197198 PMCID: PMC8248867 DOI: 10.1128/mra.01321-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eight isolates of Streptococcus equi subsp. zooepidemicus were isolated from mares with clinical cases of endometritis. S. equi subsp. zooepidemicus strains were chosen for sequencing based on differing levels of biofilm production in vitro. Using Illumina short-read sequencing in conjunction with MinION sequencing, we report the genomes of eight isolates.
Collapse
|
23
|
Differences in the genome, methylome, and transcriptome do not differentiate isolates of Streptococcus equi subsp. equi from horses with acute clinical signs from isolates of inapparent carriers. PLoS One 2021; 16:e0252804. [PMID: 34125848 PMCID: PMC8202921 DOI: 10.1371/journal.pone.0252804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus equi subsp. equi (SEE) is a host-restricted bacterium that causes the common infectious upper respiratory disease known as strangles in horses. Perpetuation of SEE infection appears attributable to inapparent carrier horses because it neither persists long-term in the environment nor infects other host mammals or vectors, and infection results in short-lived immunity. Whether pathogen factors enable SEE to remain in horses without causing clinical signs remains poorly understood. Thus, our objective was to use next-generation sequencing technologies to characterize the genome, methylome, and transcriptome of isolates of SEE from horses with acute clinical strangles and inapparent carrier horses—including isolates recovered from individual horses sampled repeatedly—to assess pathogen-associated changes that might reflect specific adaptions of SEE to the host that contribute to inapparent carriage. The accessory genome elements and methylome of SEE isolates from Sweden and Pennsylvania revealed no significant or consistent differences between acute clinical and inapparent carrier isolates of SEE. RNA sequencing of SEE isolates from Pennsylvania demonstrated no genes that were differentially expressed between acute clinical and inapparent carrier isolates of SEE. The absence of specific, consistent changes in the accessory genomes, methylomes, and transcriptomes of acute clinical and inapparent carrier isolates of SEE indicates that adaptations of SEE to the host are unlikely to explain the carrier state of SEE. Efforts to understand the carrier state of SEE should instead focus on host factors.
Collapse
|
24
|
Shi L, Qin J, Zheng H, Guo Y, Zhang H, Zhong Y, Yang C, Dong S, Yang F, Wu Y, Zhao G, Song Y, Yang R, Wang P, Cui Y. New Genotype of Yersinia pestis Found in Live Rodents in Yunnan Province, China. Front Microbiol 2021; 12:628335. [PMID: 33935990 PMCID: PMC8084289 DOI: 10.3389/fmicb.2021.628335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Yunnan Province, China is thought to be the original source of biovar Orientalis of Yersinia pestis, the causative agent of the third plague pandemic that has spread globally since the end of the 19th century. Although encompassing a large area of natural plague foci, Y. pestis strains have rarely been found in live rodents during surveillance in Yunnan, and most isolates are from rodent corpses and their fleas. In 2017, 10 Y. pestis strains were isolated from seven live rodents and three fleas in Heqing County of Yunnan. These strains were supposed to have low virulence to local rodents Eothenomys miletus and Apodemus chevrieri because the rodents were healthy and no dead animals were found in surrounding areas, as had occurred in previous epizootic disease. We performed microscopic and biochemical examinations of the isolates, and compared their whole-genome sequences and transcriptome with those of 10 high virulence Y. pestis strains that were isolated from nine rodents and one parasitic flea in adjacent city (Lijiang). We analyzed the phenotypic, genomic, and transcriptomic characteristics of live rodent isolates. The isolates formed a previously undefined monophyletic branch of Y. pestis that was named 1.IN5. Six SNPs, two indels, and one copy number variation were detected between live rodent isolates and the high virulence neighbors. No obvious functional consequence of these variations was found according to the known annotation information. Among genes which expression differential in the live rodent isolates compared to their high virulent neighbors, we found five iron transfer related ones that were significant up-regulated (| log2 (FC) | > 1, p.adjust < 0.05), indicating these genes may be related to the low-virulence phenotype. The novel genotype of Y. pestis reported here provides further insights into the evolution and spread of plague as well as clues that may help to decipher the virulence mechanism of this notorious pathogen.
Collapse
Affiliation(s)
- Liyuan Shi
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hongyuan Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ying Guo
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Haipeng Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Youhong Zhong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shanshan Dong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Fengyi Yang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Wang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Schwartz D, McCarville D, Wong A. Mycotic Abdominal Aortic Aneurysm Caused by Streptococcus equi. Cureus 2021; 13:e13899. [PMID: 33880255 PMCID: PMC8046685 DOI: 10.7759/cureus.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus equi is a bacterium common in equine species and an uncommon pathogen in humans. Reported human infections can be severe and include meningitis, septic arthritis, and endocarditis. We report the case of a 64-year-old male who S. equi with several months of constitutional symptoms, back pain, and abdominal pain. Imaging demonstrated a large abdominal aortic aneurysm with a contained retroperitoneal rupture, with cultures from the aneurysm and blood cultures both positive for S. equi. The patient was successfully treated with open repair and placement of a Dacron graft and intravenous antibiotics and will remain on lifelong antibiotic prophylaxis.
Collapse
Affiliation(s)
| | - Donald McCarville
- Department of Vascular Surgery, University of Saskatchewan, Regina, CAN
| | - Alexander Wong
- Department of Infectious Diseases, University of Saskatchewan, Regina, CAN
| |
Collapse
|
26
|
Mitchell C, Steward KF, Charbonneau ARL, Walsh S, Wilson H, Timoney JF, Wernery U, Joseph M, Craig D, van Maanen K, Hoogkamer-van Gennep A, Leon A, Witkowski L, Rzewuska M, Stefańska I, Żychska M, van Loon G, Cursons R, Patty O, Acke E, Gilkerson JR, El-Hage C, Allen J, Bannai H, Kinoshita Y, Niwa H, Becú T, Pringle J, Guss B, Böse R, Abbott Y, Katz L, Leggett B, Buckley TC, Blum SE, Cruz López F, Fernández Ros A, Marotti Campi MC, Preziuso S, Robinson C, Newton JR, Schofield E, Brooke B, Boursnell M, de Brauwere N, Kirton R, Barton CK, Abudahab K, Taylor B, Yeats CA, Goater R, Aanensen DM, Harris SR, Parkhill J, Holden MTG, Waller AS. Globetrotting strangles: the unbridled national and international transmission of Streptococcus equi between horses. Microb Genom 2021; 7:mgen000528. [PMID: 33684029 PMCID: PMC8190609 DOI: 10.1099/mgen.0.000528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/13/2021] [Indexed: 02/02/2023] Open
Abstract
The equine disease strangles, which is characterized by the formation of abscesses in the lymph nodes of the head and neck, is one of the most frequently diagnosed infectious diseases of horses around the world. The causal agent, Streptococcus equi subspecies equi, establishes a persistent infection in approximately 10 % of animals that recover from the acute disease. Such 'carrier' animals appear healthy and are rarely identified during routine veterinary examinations pre-purchase or transit, but can transmit S. equi to naïve animals initiating new episodes of disease. Here, we report the analysis and visualization of phylogenomic and epidemiological data for 670 isolates of S. equi recovered from 19 different countries using a new core-genome multilocus sequence typing (cgMLST) web bioresource. Genetic relationships among all 670 S. equi isolates were determined at high resolution, revealing national and international transmission events that drive this endemic disease in horse populations throughout the world. Our data argue for the recognition of the international importance of strangles by the Office International des Épizooties to highlight the health, welfare and economic cost of this disease. The Pathogenwatch cgMLST web bioresource described herein is available for tailored genomic analysis of populations of S. equi and its close relative S. equi subspecies zooepidemicus that are recovered from horses and other animals, including humans, throughout the world. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
| | - Karen F. Steward
- Animal Health Trust, Newmarket, UK
- Present address: Technology Networks, Sudbury, UK
| | | | - Saoirse Walsh
- Animal Health Trust, Newmarket, UK
- Present address: University of Berlin, Berlin, Germany
| | - Hayley Wilson
- Animal Health Trust, Newmarket, UK
- Present address: University of Cambridge, Cambridge, UK
| | | | - Ulli Wernery
- Central Veterinary Research Laboratory, Dubai, UAE
| | | | | | | | | | | | - Lucjan Witkowski
- Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Magdalena Rzewuska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Ilona Stefańska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Monika Żychska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | | | - Ray Cursons
- University of Waikato, Hamilton, New Zealand
| | | | - Els Acke
- Massey University, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | - John Pringle
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bengt Guss
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | - Lisa Katz
- University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | - Ellen Schofield
- Animal Health Trust, Newmarket, UK
- Present address: University of Cambridge, Cambridge, UK
| | | | | | | | - Roxane Kirton
- Redwings Horse Sanctuary, Norwich, UK
- Present address: Royal Society for the Prevention of Cruelty to Animals, Horsham, UK
| | | | - Khalil Abudahab
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Ben Taylor
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Corin A. Yeats
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Richard Goater
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Trust Sanger Institute, Cambridge, UK
| | - David M. Aanensen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Simon R. Harris
- Centre for Genomic Pathogen Surveillance, Wellcome Trust Sanger Institute, Cambridge, UK
- Present address: Microbiotica Limited, Cambridge, UK
| | | | - Matthew T. G. Holden
- Centre for Genomic Pathogen Surveillance, Wellcome Trust Sanger Institute, Cambridge, UK
- University of St Andrews, St Andrews, UK
| | - Andrew S. Waller
- Animal Health Trust, Newmarket, UK
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Intervacc AB, Stockholm, Sweden
| |
Collapse
|
27
|
Kuchipudi SV, Surendran Nair M, Yon M, Gontu A, Nissly RH, Barry R, Greenawalt D, Pierre T, Li L, Thirumalapura N, Tewari D, Jayarao B. A Novel Real-Time PCR Assay for the Rapid Detection of Virulent Streptococcus equi Subspecies zooepidemicus-An Emerging Pathogen of Swine. Front Vet Sci 2021; 8:604675. [PMID: 33644143 PMCID: PMC7907462 DOI: 10.3389/fvets.2021.604675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/20/2021] [Indexed: 12/03/2022] Open
Abstract
Streptococcus equi subspecies zooepidemicus, a zoonotic bacterial pathogen caused a series of outbreaks with high mortality affecting swine herds in multiple locations of the USA and Canada in 2019. Further genetic analysis revealed that this agent clustered with ATCC 35246, a S. zooepidemicus strain associated with high mortality outbreaks in swine herds of China originally reported in 1977. Rapid and accurate diagnosis is absolutely critical for controlling and limiting further spread of this emerging disease of swine. Currently available diagnostic methods including bacteriological examination and PCR assays do not distinguish between the virulent strains and avirulent commensal strains of S. zooepidemicus, which is critical given that this pathogen is a normal inhabitant of the swine respiratory tract. Based on comparative analyses of whole genome sequences of the virulent isolates and avirulent sequences, we identified a region in the SzM gene that is highly conserved and restricted to virulent S. zooepidemicus strains. We developed and validated a novel probe-based real-time PCR targeting the conserved region of SzM. The assay was highly sensitive and specific to the virulent swine isolates of Streptococcus equi subspecies zooepidemicus. No cross reactivity was observed with avirulent S. zooepidemicus isolates as well as other streptococcal species and a panel of porcine respiratory bacterial and viral pathogens. The PCR efficiency of the assay was 96.64 % and was able to detect as little as 20 fg of the bacterial DNA. We then validated the diagnostic sensitivity and specificity of the new PCR assay using a panel of clinical samples (n = 57) and found that the assay has 100% sensitivity and specificity as compared to bacteriological culture method. In summary, the PCR assay will be an extremely valuable tool for the rapid accurate detection of virulent swine S. zooepidemicus isolates and directly from clinical samples.
Collapse
Affiliation(s)
- Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Pennsylvania State University, Wiley Lane, University Park, PA, United States.,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Pennsylvania State University, Wiley Lane, University Park, PA, United States
| | - Michele Yon
- Animal Diagnostic Laboratory, Pennsylvania State University, Wiley Lane, University Park, PA, United States
| | - Abhinay Gontu
- Animal Diagnostic Laboratory, Pennsylvania State University, Wiley Lane, University Park, PA, United States
| | - Ruth H Nissly
- Animal Diagnostic Laboratory, Pennsylvania State University, Wiley Lane, University Park, PA, United States
| | - Rhiannon Barry
- Animal Diagnostic Laboratory, Pennsylvania State University, Wiley Lane, University Park, PA, United States
| | - Denver Greenawalt
- Animal Diagnostic Laboratory, Pennsylvania State University, Wiley Lane, University Park, PA, United States
| | - Traci Pierre
- Animal Diagnostic Laboratory, Pennsylvania State University, Wiley Lane, University Park, PA, United States
| | - Lingling Li
- Animal Diagnostic Laboratory, Pennsylvania State University, Wiley Lane, University Park, PA, United States
| | | | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Harrisburg, PA, United States
| | - Bhushan Jayarao
- Animal Diagnostic Laboratory, Pennsylvania State University, Wiley Lane, University Park, PA, United States
| |
Collapse
|
28
|
Zondervan NA, Martins Dos Santos VAP, Suarez-Diez M, Saccenti E. Phenotype and multi-omics comparison of Staphylococcus and Streptococcus uncovers pathogenic traits and predicts zoonotic potential. BMC Genomics 2021; 22:102. [PMID: 33541265 PMCID: PMC7860044 DOI: 10.1186/s12864-021-07388-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Staphylococcus and Streptococcus species can cause many different diseases, ranging from mild skin infections to life-threatening necrotizing fasciitis. Both genera consist of commensal species that colonize the skin and nose of humans and animals, and of which some can display a pathogenic phenotype. RESULTS We compared 235 Staphylococcus and 315 Streptococcus genomes based on their protein domain content. We show the relationships between protein persistence and essentiality by integrating essentiality predictions from two metabolic models and essentiality measurements from six large-scale transposon mutagenesis experiments. We identified clusters of strains within species based on proteins associated to similar biological processes. We built Random Forest classifiers that predicted the zoonotic potential. Furthermore, we identified shared attributes between of Staphylococcus aureus and Streptococcus pyogenes that allow them to cause necrotizing fasciitis. CONCLUSIONS Differences observed in clustering of strains based on functional groups of proteins correlate with phenotypes such as host tropism, capability to infect multiple hosts and drug resistance. Our method provides a solid basis towards large-scale prediction of phenotypes based on genomic information.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
- LifeGlimmer GmBH, Markelstraße 38, 12163, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands.
| |
Collapse
|
29
|
Garcia E, Zuluaga M. Infección diseminada por Streptococcus equi subespecie zooepidermicus en un paciente inmunocompetente. Med Clin (Barc) 2020; 155:368-369. [DOI: 10.1016/j.medcli.2019.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 11/28/2022]
|
30
|
Crestani C, Forde TL, Zadoks RN. Development and Application of a Prophage Integrase Typing Scheme for Group B Streptococcus. Front Microbiol 2020; 11:1993. [PMID: 32983017 PMCID: PMC7487436 DOI: 10.3389/fmicb.2020.01993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/28/2020] [Indexed: 01/18/2023] Open
Abstract
Group B Streptococcus (GBS) is a gram-positive pathogen mainly affecting humans, cattle, and fishes. Mobile genetic elements play an important role in the evolution of GBS, its adaptation to host species and niches, and its pathogenicity. In particular, lysogenic prophages have been associated with a high virulence of certain strains and with their ability to cause invasive infections in humans. It is therefore important to be able to accurately detect and classify prophages in GBS genomes. Several bioinformatic tools for the identification of prophages in bacterial genomes are available on-line. However, genome searches for most of these programs are affected by the composition of their reference database. Lack of databases specific to GBS results in failure to recognize all prophages in the species. Additionally, performance of these programs is affected by genome fragmentation in the case of draft genomes, leading to underestimation of the number of phages. They also prove impractical when dealing with large genome datasets and they do not offer a quick way of classifying bacteriophages. We developed a GBS-specific method to screen genome assemblies for the presence of prophages and to classify them based on a reproducible typing scheme. This was achieved through an extensive search of a vast number of high-quality GBS sequences (n = 572) originating from different host species and countries in order to build a database of phage integrase types, on which the scheme is based. The proposed typing scheme comprises 12 integration sites and sixteen prophage integrase types, including multiple subtypes per integration site and integrase genes that were not site-specific. Two putative phage-inducible chromosomal islands (PICI) and their insertion sites were also identified during the course of these analyses. Phages were common and diverse in all major clonal complexes associated with human disease and detected in isolates from every animal species and continent included in the study. This database will facilitate further work on the prevalence and role of prophages in GBS evolution, and identifies the roles of PICIs in GBS and of prophage in hypervirulent ST283 as areas for further research.
Collapse
Affiliation(s)
- Chiara Crestani
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Taya L Forde
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ruth N Zadoks
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom.,Sydney School of Veterinary Science, University of Sydney, Camden, NSW, Australia
| |
Collapse
|
31
|
Liu QS, Raney B, Harji F. Impending rupture of mycotic aortic aneurysm infected with Streptococcus equi subspecies zooepidemicus. BMJ Case Rep 2020; 13:13/8/e235002. [PMID: 32843405 DOI: 10.1136/bcr-2020-235002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus equi subspecies zooepidemicus is a beta-haemolytic, group C streptococcal bacterium. Although it is an opportunistic pathogen commonly found in horses, transmission to human can lead to severe infections. Here, we present a patient with S. equi subspecies zooepidemicus bacteraemia and consequent development of mycotic aneurysms.
Collapse
Affiliation(s)
- Qiuying Selina Liu
- Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Brannon Raney
- Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA.,Internal Medicine, New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Farzana Harji
- Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA.,Internal Medicine, New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| |
Collapse
|
32
|
Ivens PAS, Pirie S. Streptococcus equi subspecies equi diagnosis. Equine Vet J 2020; 53:15-17. [PMID: 32772398 DOI: 10.1111/evj.13319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Philip A S Ivens
- Buckingham Equine Vets Ltd, Sparrow Lodge Farm, Wicken, Buckingham, UK
| | - Scott Pirie
- University of Edinburgh, Royal (Dick) School of Veterinary Studies, Veterinary Clinical Sciences, Easter Bush Campus, Easter Bush, Roslin, Midlothian, UK
| |
Collapse
|
33
|
SpeS: A Novel Superantigen and Its Potential as a Vaccine Adjuvant against Strangles. Int J Mol Sci 2020; 21:ijms21124467. [PMID: 32586031 PMCID: PMC7352279 DOI: 10.3390/ijms21124467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
Bacterial superantigens (sAgs) are powerful activators of the immune response that trigger unspecific T cell responses accompanied by the release of proinflammatory cytokines. Streptococcus equi (S. equi) and Streptococcus zooepidemicus (S. zooepidemicus) produce sAgs that play an important role in their ability to cause disease. Strangles, caused by S. equi, is one of the most common infectious diseases of horses worldwide. Here, we report the identification of a new sAg of S. zooepidemicus, SpeS, and show that mutation of the putative T cell receptor (TCR)-binding motif (YAY to IAY) abrogated TCR-binding, whilst maintaining interaction with major histocompatibility complex (MHC) class II molecules. The fusion of SpeS and SpeSY39I to six S. equi surface proteins using two different peptide linkers was conducted to determine if MHC class II-binding properties were maintained. Proliferation assays, qPCR and flow cytometry analysis showed that SpeSY39I and its fusion proteins induced less mitogenic activity and interferon gamma expression when compared to SpeS, whilst retaining Antigen-Presenting Cell (APC)-binding properties. Our data suggest that SpeSY39I-surface protein fusions could be used to direct vaccine antigens towards antigen-presenting cells in vivo with the potential to enhance antigen presentation and improve immune responses.
Collapse
|
34
|
Robinson C, Waller AS, Frykberg L, Flock M, Zachrisson O, Guss B, Flock JI. Intramuscular vaccination with Strangvac is safe and induces protection against equine strangles caused by Streptococcus equi. Vaccine 2020; 38:4861-4868. [PMID: 32507408 DOI: 10.1016/j.vaccine.2020.05.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
The equine disease strangles, caused by Streptococcus equi, remains a major cause of welfare and economic cost to the global horse industry. Here we report the safety, immunogenicity and efficacy of a novel multi-component chimeric fusion protein vaccine, called Strangvac, when administered to ponies via the intramuscular route. Across the four studies, Strangvac was safe and induced robust antibody responses towards the vaccine components in blood serum and the nasopharynx, which were boosted by revaccination up to 12 months after a primary course of 2 vaccinations 4 weeks apart. The vaccine response did not cross-react with a commercial strangles iELISA, which identifies horses that have been exposed to S. equi, demonstrating that it was possible to differentiate infected from vaccinated animals (DIVA). Following challenge with S. equi strain 4047 (Se4047), all 36 control ponies that had received an adjuvant-only placebo vaccine developed clinical signs of strangles. In contrast, intramuscular vaccination with Strangvac protected ponies significantly from challenge with Se4047 at two weeks (5 of 16 ponies protected (31%), P = 0.04) and two months (7 of 12 ponies protected (58%), P = 0.0046 (including pooled control data) after second vaccination. Optimal protection (15 of 16 ponies protected (94%), P < 0.0001) was observed following challenge at two weeks post-third vaccination. Our data demonstrate that Strangvac is safe, has DIVA capability and provides a rapid onset of protective immunity against strangles. We conclude that Strangvac is a valuable tool with which to protect horses from strangles, particularly during high-risk periods, whilst maintaining the mobility of horse populations as required by the global equine industry.
Collapse
Affiliation(s)
- Carl Robinson
- Department of Bacteriology, Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU, United Kingdom
| | - Andrew S Waller
- Department of Bacteriology, Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU, United Kingdom
| | - Lars Frykberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7036, SE-750 07 Uppsala, Sweden
| | - Margareta Flock
- Department of Microbiology, Tumour and Cellbiology, Karolinska Institutet, P.O. Box 280, SE-171 77 Stockholm, Sweden
| | | | - Bengt Guss
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7036, SE-750 07 Uppsala, Sweden
| | - Jan-Ingmar Flock
- Department of Microbiology, Tumour and Cellbiology, Karolinska Institutet, P.O. Box 280, SE-171 77 Stockholm, Sweden; Intervacc AB, P.O. Box 112, SE-129 22 Hӓgersten, Sweden.
| |
Collapse
|
35
|
Tartor YH, El-Naenaeey ESY, Gharieb NM, Ali WS, Ammar AM. Novel Streptococcus equi strains causing strangles outbreaks in Arabian horses in Egypt. Transbound Emerg Dis 2020; 67:2455-2466. [PMID: 32304282 DOI: 10.1111/tbed.13584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/28/2022]
Abstract
Strangles displays a major challenge to veterinary medicine worldwide. However, no data on Streptococcus equi subsp. equi (S. equi) M protein alleles have been reported so far from Arabian horses. We report here for the first time the S. equi SeM alleles causing strangles in Arabian horses, and the associated risk factors for the disease. Duplicate samples from one hundred Arabian horses with acute strangles in confirmed outbreaks and sporadic cases were analysed by phenotypic methods and multiplex polymerase chain reaction (PCR) targeting streptokinase precursor, seeI and sodA genes. PCR and sequencing of S. equi SeM gene were employed for strains typing, and the four superantigens were determined among the allelic variants. Direct-sample PCR confirmed and highly positively correlated (r = .85) with the phenotypic results, and detected S. equi in five samples more than the conventional culture. A combination of multiplex PCR from samples and culture could successfully identify S. equi (92%), S. zooepidemicus (5%) and S. equisimilis (3%). SeM typing demonstrated five SeM alleles, including four previously unidentified alleles that were deposited in the PubMLST-SeM database. SeM-139 and SeM-141 are related to some strains that were recently recovered from donkeys in China. SeM-140 and SeM-199 are related to a group of alleles from horses in Europe. Variation in the presence of seeM, seeH and seeL superantigens was found across the four novel alleles without interference with the severity of strangles and clinical presentation seen in different outbreaks. Horse age was the most important factor in developing strangles, followed by seasonality and the diagnosis of strangles in the previous year. These new findings comprise a significant contribution to the horse industry through the identification of novel S. equi SeM types that may bolster measures for strangles control as the identified SeM alleles will certainly help in the development of SeM-containing vaccine.
Collapse
Affiliation(s)
- Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - El-Sayed Y El-Naenaeey
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Nesreen M Gharieb
- Department of Animal Management and Treatment, Kafr Saqr Veterinary Administration, Sharkia Governorate, Zagazig, Egypt
| | - Wessam S Ali
- Department of Animal Management and Treatment, Diarb Negm Veterinary Administration, Sharkia Governorate, Zagazig, Egypt
| | - Ahmed M Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
36
|
Charbonneau ARL, Taylor E, Mitchell CJ, Robinson C, Cain AK, Leigh JA, Maskell DJ, Waller AS. Identification of genes required for the fitness of Streptococcus equi subsp. equi in whole equine blood and hydrogen peroxide. Microb Genom 2020; 6:e000362. [PMID: 32228801 PMCID: PMC7276704 DOI: 10.1099/mgen.0.000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
The availability of next-generation sequencing techniques provides an unprecedented opportunity for the assignment of gene function. Streptococcus equi subspecies equi is the causative agent of strangles in horses, one of the most prevalent and important diseases of equids worldwide. However, the live attenuated vaccines that are utilized to control this disease cause adverse reactions in some animals. Here, we employ transposon-directed insertion-site sequencing (TraDIS) to identify genes that are required for the fitness of S. equi in whole equine blood or in the presence of H2O2 to model selective pressures exerted by the equine immune response during infection. We report the fitness values of 1503 and 1471 genes, representing 94.5 and 92.5 % of non-essential genes in S. equi, following incubation in whole blood and in the presence of H2O2, respectively. Of these genes, 36 and 15 were identified as being important to the fitness of S. equi in whole blood or H2O2, respectively, with 14 genes being important in both conditions. Allelic replacement mutants were generated to validate the fitness results. Our data identify genes that are important for S. equi to resist aspects of the immune response in vitro, which can be exploited for the development of safer live attenuated vaccines to prevent strangles.
Collapse
Affiliation(s)
- Amelia R. L. Charbonneau
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Emma Taylor
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | | - Carl Robinson
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
| | - Amy K. Cain
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - James A. Leigh
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- University of Melbourne, Victoria, Australia
| | | |
Collapse
|
37
|
Noll LW, Stoy CPA, Wang Y, Porter EG, Lu N, Liu X, Burklund A, Peddireddi L, Hanzlicek G, Henningson J, Chengappa MM, Bai J. Development of a nested PCR assay for detection of Streptococcus equi subspecies equi in clinical equine specimens and comparison with a qPCR assay. J Microbiol Methods 2020; 172:105887. [PMID: 32165161 DOI: 10.1016/j.mimet.2020.105887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
Abstract
Streptococcus equi subsp. equi is a Gram positive bacterial pathogen commonly associated with strangles in horses, a respiratory disease characterized by abscessation of submandibular and retropharyngeal lymph nodes which can lead to obstruction of the airway. Several real-time PCR (qPCR) assays have been developed for detection of S. equi from horses with many targeting conserved regions of the S. equi cell wall-associated M-protein (SeM), a major virulence factor and immunogen of S. equi. Our objective was to develop a nested PCR (nPCR) targeting SeM and an 18S rRNA internal control gene for detection of S. equi from horses with potential improvement in detection sensitivity compared to a qPCR. Primers and probes from the Kansas State Veterinary Diagnostic Laboratory (KSVDL) S. equi clinical testing assay were utilized for all qPCR testing. Primers flanking the SeM qPCR target region were selected for an initial end-point PCR step of the nested assay; PCR product from the end-point reaction then served as template for the qPCR reaction step of the nested assay. Sample nucleic acid was also tested directly with qPCR to allow for assay comparison. Nucleic acid from clinical specimens (n = 188) submitted to KSVDL were tested in parallel with each assay. The nPCR and qPCR assays identified 22.9% (43/188) and 13.3% (25/188) of samples positive for S. equi, respectively. None of the samples positive by qPCR were negative by nPCR. The PCR products from all positive samples were submitted for DNA sequencing. Each of the 25 samples positive by both assays had a high nucleotide identity match (>96%) to the SeM gene. Among the samples positive by nPCR but negative by qPCR, 17 of 18 were sequence confirmed for SeM at greater than 96% nucleotide identity. Based on the nPCR Ct (37.8) of the one sequence un-confirmed case, it is likely that the S. equi bacterial load in this sample was below the necessary concentration for successful sequencing. Limit of detection (LOD) for the nPCR was established at a Ct of 37, and based both on the LOD of the qPCR assay (Ct of 37), as determined by standard curve data, and on the highest nPCR Cts (~37) of clinical samples able to result in SeM sequence-confirmation. As demonstrated by sequencing confirmation, the nPCR assay targeting the SeM gene is highly specific to S. equi. The increased sensitivity of the nPCR, compared to the qPCR, may reduce the number of false negative sample results in clinical testing and provide a superior detection method during low bacterial shedding periods.
Collapse
Affiliation(s)
- Lance W Noll
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA.
| | - Colin P A Stoy
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | - Yin Wang
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | - Elizabeth G Porter
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA; Bioinformatics Center, Kansas State University, Manhattan, Kansas 66506, USA
| | - Xuming Liu
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | - Amy Burklund
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | - Lalitha Peddireddi
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | - Gregg Hanzlicek
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jamie Henningson
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | - M M Chengappa
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
38
|
Kyei S, Dogbadze E, Tagoh S, Mwanza E. Unorthodox ophthalmic preparations on the Ghanaian market: a potential risk for ocular and enteric infections. Afr Health Sci 2020; 20:515-523. [PMID: 33402940 PMCID: PMC7750071 DOI: 10.4314/ahs.v20i1.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Microbial contamination of orthodox ophthalmic preparations poses a serious threat to the user by causing ocular infections. There is no such information about unorthodox ophthalmic preparations in a medical pluralistic system such as Ghana. The aim of this study was to assess unorthodox ophthalmic medications on the Ghanaian market for possible microbial contaminations. METHODS Unorthodox ophthalmic preparations were collected across different herbal and homeopathic outlets in Ghana. A total of 27 samples were collected from the ten (10) regions in Ghana. The samples were inoculated in different culture media (Plate count Agar, Blood Agar, MacConkey Agar, Saboraud Dextrose Agar). The microorganisms isolated were identified using standard microbiological procedures and antimicrobial susceptibility was done to determine whether they were resistant or susceptible strains. RESULTS All the samples were contaminated with bacteria and the majority were contaminated with fungus. A total of forty-eight bacteria spp. was isolated thus seven different types namely: Staphylococcus aureus, Bacilli spp., Serrati spp., Escherichia coli, Pseudomonas spp., Klebsiella spp. and Shigella spp. with Staphylococcus aureus being the predominant bacteria. For fungi, a total of eleven fungi species thus four different types namely: Cephalosporium spp., Penicillium spp., Cercosporium spp. and Clasdosporium spp. with the predominant fungi being Penicillium spp. Per the class of preparations, 15 contaminants were isolated from ten (10) anti-inflammatory preparations. The fungi were all susceptible to both Ketoconazole and Fluconazole but the bacteria were resistant to all the conventional antibiotics except Ciprofloxacin and Gentamycin. CONCLUSION Unorthodox ophthalmic preparations found on the Ghanaian market are contaminated with bacteria and fungi of clinical importance.
Collapse
Affiliation(s)
- Samuel Kyei
- Department of Optometry and Vision Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Optometry, Faculty of Science and Engineering, Bindura University of Science Education, Bindura, Zimbabwe
| | - Eric Dogbadze
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Selassie Tagoh
- Department of Optometry, Faculty of Science and Engineering, Bindura University of Science Education, Bindura, Zimbabwe
| | - Estele Mwanza
- Department of Health Sciences, Faculty of Science and Engineering, Bindura University of Science Education, P. Bag 1020, Bindura, Zimbabwe
| |
Collapse
|
39
|
Prominent Binding of Human and Equine Fibrinogen to Streptococcus equi subsp. zooepidemicus Is Mediated by Specific SzM Types and Is a Distinct Phenotype of Zoonotic Isolates. Infect Immun 2019; 88:IAI.00559-19. [PMID: 31636136 DOI: 10.1128/iai.00559-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/02/2019] [Indexed: 11/20/2022] Open
Abstract
Streptococcus equi subsp. zooepidemicus is an important pathogen in horses that causes severe diseases such as pneumonia and abortion. Furthermore, it is a zoonotic agent, and contact with horses is a known risk factor. In this study, we investigated the working hypothesis that the zoonotic potential varies among S. equi subsp. zooepidemicus strains in association with differences in M-like protein-mediated binding of host plasma proteins. We demonstrate via in-frame deletion mutagenesis of two different S. equi subsp. zooepidemicus strains that the M-like protein SzM is crucial for the binding of fibrinogen to the bacterial surface and for survival in equine and human blood. S. equi subsp. zooepidemicus isolates of equine and human origins were compared with regard to SzM sequences and binding of equine and human fibrinogens. The N-terminal 216 amino acids of the mature SzM were found to exhibit a high degree of diversity, but the majority of human isolates grouped in three distinct SzM clusters. Plasma protein absorption assays and flow cytometry analysis revealed that pronounced binding of human fibrinogen is a common phenotype of human S. equi subsp. zooepidemicus isolates but much less so in equine S. equi subsp. zooepidemicus isolates. Furthermore, binding of human fibrinogen is associated with specific SzM types. These results suggest that SzM-mediated binding of human fibrinogen is an important virulence mechanism of zoonotic S. equi subsp. zooepidemicus isolates.
Collapse
|
40
|
Turner CE, Bubba L, Efstratiou A. Pathogenicity Factors in Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0020-2018. [PMID: 31111818 PMCID: PMC11026075 DOI: 10.1128/microbiolspec.gpp3-0020-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/20/2022] Open
Abstract
Initially recognized zoonoses, streptococci belonging to Lancefield group C (GCS) and G (GGS) were subsequently recognised as human pathogens causing a diverse range of symptoms, from asymptomatic carriage to life threatening diseases. Their taxonomy has changed during the last decade. Asymptomatic carriage is <4% amongst the human population and invasive infections are often in association with chronic diseases such as diabetes, cardiovascular diseases or chronic skin infections. Other clinical manifestations include acute pharyngitis, pneumonia, endocarditis, bacteraemia and toxic-shock syndrome. Post streptococcal sequalae such as rheumatic fever and acute glomerulonephritis have also been described but mainly in developed countries and amongst specific populations. Putative virulence determinants for these organisms include adhesins, toxins, and other factors that are essential for dissemination in human tissues and for interference with the host immune responses. High nucleotide similarities among virulence genes and their association with mobile genetic elements supports the hypothesis of extensive horizontal gene transfer events between the various pyogenic streptococcal species belonging to Lancefield groups A, C and G. A better understanding of the mechanisms of pathogenesis should be apparent by whole-genome sequencing, and this would result in more effective clinical strategies for the pyogenic group in general.
Collapse
Affiliation(s)
- Claire E Turner
- Department of Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| | - Laura Bubba
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Androulla Efstratiou
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
41
|
McShan WM, McCullor KA, Nguyen SV. The Bacteriophages of Streptococcus pyogenes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0059-2018. [PMID: 31111820 PMCID: PMC11314938 DOI: 10.1128/microbiolspec.gpp3-0059-2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
The bacteriophages of Streptococcus pyogenes (group A streptococcus) play a key role in population shaping, genetic transfer, and virulence of this bacterial pathogen. Lytic phages like A25 can alter population distributions through elimination of susceptible serotypes but also serve as key mediators for genetic transfer of virulence genes and antibiotic resistance via generalized transduction. The sequencing of multiple S. pyogenes genomes has uncovered a large and diverse population of endogenous prophages that are vectors for toxins and other virulence factors and occupy multiple attachment sites in the bacterial genomes. Some of these sites for integration appear to have the potential to alter the bacterial phenotype through gene disruption. Remarkably, the phage-like chromosomal islands (SpyCI), which share many characteristics with endogenous prophages, have evolved to mediate a growth-dependent mutator phenotype while acting as global transcriptional regulators. The diverse population of prophages appears to share a large pool of genetic modules that promotes novel combinations that may help disseminate virulence factors to different subpopulations of S. pyogenes. The study of the bacteriophages of this pathogen, both lytic and lysogenic, will continue to be an important endeavor for our understanding of how S. pyogenes continues to be a significant cause of human disease.
Collapse
Affiliation(s)
- W Michael McShan
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| | - Kimberly A McCullor
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| | - Scott V Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| |
Collapse
|
42
|
Xu B, Zhang P, Zhou H, Sun Y, Tang J, Fan H. Identification of novel genes associated with anti-phagocytic functions in Streptococcus equi subsp. zooepidemicus. Vet Microbiol 2019; 233:28-38. [PMID: 31176409 DOI: 10.1016/j.vetmic.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023]
Abstract
The anti-phagocytic abilities of bacteria often affect bacterial pathogenicity. Here, random mutant library of Streptococcus equi subsp. zooepidemicus (SEZ) was constructed using transposon mutagenesis. After careful screening, 30 transposon mutants with different transposon insertion sites were identified by conducting quantitative phagocytosis and insertion-site confirmation assays, whose anti-phagocytic abilities were significantly reduced relative to the wild-type strain. Insertion sites of 19 strains were monocistronic, including genes coding membrane proteins, transporters, and enzymes with unknown pathological function, such as sadM, adhP, purD, guaA, alpha-galactosidase coding gene, ABC transporter permease coding gene, metallo-beta-lactamase coding gene, and three secreted enzyme coding genes spuZ, slaB, and endoS, as well as known virulence factor coding genes, such as hasA and szM. The insertion sites of another 11 strains were polycistronic. We focused on four monocistronic-mutant strains: MhtpZ, MspuZ, MslaB, and MendoS. The anti-phagocytic abilities of not only the mutants that were precoincubated with the recombinant proteins, but also the complement strains were significantly more pronounced than those of all four corresponding mutants. The polyclonal antiserum against SlaB or EndoS also significantly decreased the anti-phagocytic capacity of wild-type SEZ. All four mutants exhibited significantly decreased viability in whole blood and reduced lethality in mice relative to the wild-type strain. Thus, we identified a variety of new anti-phagocytic factors, particularly multiple SEZ secreted enzymes. These factors are instrumental in the phagocytic resistance of SEZ in the absence of opsonin. Our results provide a framework for further studies of SEZ pathogenesis and relevant vaccine development for novel potential targets.
Collapse
Affiliation(s)
- Bin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; National Research Center of Veterinary Biologicals engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ping Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinsheng Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
43
|
Malke H. Genetics and Pathogenicity Factors of Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0002-2017. [PMID: 30873932 PMCID: PMC11590425 DOI: 10.1128/microbiolspec.gpp3-0002-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Of the eight phylogenetic groups comprising the genus Streptococcus, Lancefield group C and G streptococci (GCS and GGS, resp.) occupy four of them, including the Pyogenic, Anginosus, and Mitis groups, and one Unnamed group so far. These organisms thrive as opportunistic commensals in both humans and animals but may also be associated with clinically serious infections, often resembling those due to their closest genetic relatives, the group A streptoccci (GAS). Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 12 species, several of which being subdivided into subspecies. This review summarizes these advances, citing 264 early and recent references. It focuses on the molecular structure and genetic regulation of clinically important proteins associated with the cell wall, cytoplasmic membrane and extracellular environment. The article also addresses the question of how, based on the current knowledge, basic research and translational medicine might proceed to further advance our understanding of these multifaceted organisms. Particular emphasis in this respect is placed on streptokinase as the protein determining the host specificity of infection and the Rsh-mediated stringent response with its potential for supporting bacterial survival under nutritional stress conditions.
Collapse
Affiliation(s)
- Horst Malke
- Friedrich Schiller University Jena, Faculty of Biology and Pharmacy, D-07743 Jena, Germany, and University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73190
| |
Collapse
|
44
|
Zhu Y, Zhang Y, Ma J, Dong W, Zhong X, Pan Z, Yao H. ICESsuHN105, a Novel Multiple Antibiotic Resistant ICE in Streptococcus suis Serotype 5 Strain HN105. Front Microbiol 2019; 10:274. [PMID: 30863372 PMCID: PMC6399138 DOI: 10.3389/fmicb.2019.00274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/01/2019] [Indexed: 01/17/2023] Open
Abstract
Streptococcussuis serotype 5, an emerging zoonosis bacterial pathogen, has been isolated from infections in both pigs and humans. In this study, we sequenced the first complete genome of a virulent, multidrug-resistant SS5 strain HN105. The strain HN105 displayed enhanced pathogenicity in zebrafish and BABL/c mouse infection models. Comparative genome analysis identified a novel 80K integrative conjugative element (ICE), ICESsuHN105, as required for the multidrug resistance phenotype. Six corresponding antibiotic resistance genes in this ICE were identified, namely tet (O), tet (M), erm (two copies), aph, and spc. Phylogenetic analysis classified the element as a homolog of the ICESa2603 family, containing the typical family backbone and insertion DNA. DNA hybrids mediated by natural transformation between HN105 and ZY05719 verified the antibiotic resistant genes of ICESsuHN105 that could be transferred successfully, while they were dispersedly inserted with a single gene in different genomic locations of ZY05719(HN105) transformants. To further identify the horizontal transfer of ICESsuHN105 as a whole mobile genetic element, a circular intermediate form of ICESsuHN105 was detected by PCR. However, the effective conjugation using serotype 2 S. suis as recipients was not observed in current assays in vitro. Further studies confirmed the presence of the complete lantibiotic locus encoded in ICESsuHN105 that effectively inhibits the growth of other streptococci. In summary, this study demonstrated the presence of antibiotic resistance genes in ICE that are able to transfer between different clinical isolates and adapt to a broader range of Streptococcus serotype or species.
Collapse
Affiliation(s)
- Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Wenyang Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
45
|
Villa TG, Feijoo-Siota L, Sánchez-Pérez A, Rama JLR, Sieiro C. Horizontal Gene Transfer in Bacteria, an Overview of the Mechanisms Involved. HORIZONTAL GENE TRANSFER 2019:3-76. [DOI: 10.1007/978-3-030-21862-1_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
46
|
Whitlock FM, Newton JR, Waller AS. Metastatic abscessation and other potential complications following strangles. EQUINE VET EDUC 2018. [DOI: 10.1111/eve.13012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Velineni S, Timoney JF. Evidence for involvement of the Fas BCAX regulon in capsule synthesis by Streptococcus equi. Vet Microbiol 2018; 219:113-116. [PMID: 29778182 DOI: 10.1016/j.vetmic.2018.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/17/2022]
Abstract
The constitutively expressed hyaluronic acid capsule is an important virulence factor of Streptococcus equi, the cause of equine strangles. Study of the genomic sequence of CF22caps-, a non-encapsulated mutant of S. equi CF22 generated by gamma (Co60) irradiation revealed a non-sense mutation in fasC (SEQ_0302), a sensor kinase gene in FasBCAX an operon with an important regulatory role in expression of streptococcal secreted virulence and matrix binding proteins. The mutation was associated with a significant (p < .05) decrease in transcription of hasA, the synthase gene essential for hyaluronic acid synthesis and, conversely, with small increases in transcription of skc, covR and seM. The early growth phase of CF22caps- was also delayed compared to the CF22caps+ parent. In contrast to the human pathogen, S. pyogenes, capsule synthesis in S. equi therefore appears to be controlled by FasBCAX and not by CovRS.
Collapse
Affiliation(s)
- Sridhar Velineni
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, 40546, USA
| | - John F Timoney
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
48
|
Minocycline Resistance in Streptococcus equi Subsp. zooepidemicus Isolated From Thoroughbred Racehorses With Respiratory Disease in Japan. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2017.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Affiliation(s)
- Andrew Waller
- Animal Health Trust; Lanwades Park, Kentford, Newmarket CB8 7UU
| |
Collapse
|
50
|
Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29530660 DOI: 10.1016/j.meegid.2018.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Streptococcus pyogenes is a human-specific and globally prominent bacterial pathogen that despite causing numerous human infections, this bacterium is normally found in an asymptomatic carrier state. This review provides an overview of both bacterial and human factors that likely play an important role in nasopharyngeal colonization and pharyngitis, as well as the development of acute rheumatic fever and rheumatic heart disease. Here we highlight a recently described role for bacterial superantigens in promoting acute nasopharyngeal infection, and discuss how these immune system activating toxins could be crucial to initiate the autoimmune process in rheumatic heart disease.
Collapse
|