1
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Clauze A, Enose-Akahata Y, Jacobson S. T cell receptor repertoire analysis in HTLV-1-associated diseases. Front Immunol 2022; 13:984274. [PMID: 36189294 PMCID: PMC9520328 DOI: 10.3389/fimmu.2022.984274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Human T lymphotropic virus 1 (HTLV-1) is a human retrovirus identified as the causative agent in adult T-cell leukemia/lymphoma (ATL) and chronic-progressive neuroinflammatory disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 is estimated to infect between 5-20 million people worldwide, although most infected individuals remain asymptomatic. HTLV-1 infected persons carry an estimated lifetime risk of approximately 5% of developing ATL, and between 0.25% and 1.8% of developing HAM/TSP. Most HTLV-1 infection is detected in CD4+ T cells in vivo which causes the aggressive malignancy in ATL. In HAM/TSP, the increase of HTLV-1 provirus induces immune dysregulation to alter inflammatory milieu, such as expansion of HTLV-1-specific CD8+ T cells, in the central nervous system of the infected subjects, which have been suggested to underlie the pathogenesis of HAM/TSP. Factors contributing to the conversion from asymptomatic carrier to disease state remain poorly understood. As such, the identification and tracking of HTLV-1-specific T cell biomarkers that may be used to monitor the progression from primary infection to immune dysfunction and disease are of great interest. T cell receptor (TCR) repertoires have been extensively investigated as a mechanism of monitoring adaptive T cell immune response to viruses and tumors. Breakthrough technologies such as single-cell RNA sequencing have increased the specificity with which T cell clones may be characterized and continue to improve our understanding of TCR signatures in viral infection, cancer, and associated treatments. In HTLV-1-associated disease, sequencing of TCR repertoires has been used to reveal repertoire patterns, diversity, and clonal expansions of HTLV-1-specific T cells capable of immune evasion and dysregulation in ATL as well as in HAM/TSP. Conserved sequence analysis has further been used to identify CDR3 motif sequences and exploit disease- or patient-specificity and commonality in HTLV-1-associated disease. In this article we review current research on TCR repertoires and HTLV-1-specific clonotypes in HTLV-1-associated diseases ATL and HAM/TSP and discuss the implications of TCR clonal expansions on HTLV-1-associated disease course and treatments.
Collapse
|
3
|
Sun L, Gang X, Li Z, Zhao X, Zhou T, Zhang S, Wang G. Advances in Understanding the Roles of CD244 (SLAMF4) in Immune Regulation and Associated Diseases. Front Immunol 2021; 12:648182. [PMID: 33841431 PMCID: PMC8024546 DOI: 10.3389/fimmu.2021.648182] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Proteins in the signaling lymphocytic activating molecule (SLAM) family play crucial roles in regulating the immune system. CD244 (SLAMF4) is a protein in this family, and is also a member of the CD2 subset of the immunoglobulin (Ig) superfamily. CD244 is a cell surface protein expressed by NK cells, T cells, monocytes, eosinophils, myeloid-derived suppressor cells, and dendritic cells. CD244 binds to the ligand CD48 on adjacent cells and transmits stimulatory or inhibitory signals that regulate immune function. In-depth studies reported that CD244 functions in many immune-related diseases, such as autoimmune diseases, infectious diseases, and cancers, and its action is essential for the onset and progression of these diseases. The discovery of these essential roles of CD244 suggests it has potential as a prognostic indicator or therapeutic target. This review describes the molecular structure and function of CD244 and its roles in various immune cells and immune-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Nozuma S, Kubota R, Jacobson S. Human T-lymphotropic virus type 1 (HTLV-1) and cellular immune response in HTLV-1-associated myelopathy/tropical spastic paraparesis. J Neurovirol 2020; 26:652-663. [PMID: 32705480 PMCID: PMC7532128 DOI: 10.1007/s13365-020-00881-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/29/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is associated with adult T cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is an inflammatory disease of the spinal cord and clinically characterized by progressive spastic paraparesis, urinary incontinence, and mild sensory disturbance. The interaction between the host immune response and HTLV-1-infected cells regulates the development of HAM/TSP. HTLV-1 preferentially infects CD4+ T cells and is maintained by proliferation of the infected T cells. HTLV-1-infected cells rarely express viral antigens in vivo; however, they easily express the antigens after short-term culture. Therefore, such virus-expressing cells may lead to activation and expansion of antigen-specific T cell responses. Infected T cells with HTLV-1 and HTLV-1-specific CD8+ cytotoxic T lymphocytes invade the central nervous system and produce various proinflammatory cytokines and chemokines, leading to neuronal damage and degeneration. Therefore, cellular immune responses to HTLV-1 have been considered to play important roles in disease development of HAM/TSP. Recent studies have clarified the viral strategy for persistence in the host through genetic and epigenetic changes by HTLV-1 and host immune responses including T cell function and differentiation. Newly developed animal models could provide the opportunity to uncover the precise pathogenesis and development of clinically effective treatment. Several molecular target drugs are undergoing clinical trials with promising efficacy. In this review, we summarize recent advances in the immunopathogenesis of HAM/TSP and discuss the perspectives of the research on this disease.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Cell Proliferation/drug effects
- Cytokines/biosynthesis
- Cytokines/immunology
- Disease Models, Animal
- Host-Pathogen Interactions/immunology
- Human T-lymphotropic virus 1/drug effects
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/pathogenicity
- Humans
- Immunity, Cellular/drug effects
- Immunologic Factors/therapeutic use
- Leukemia-Lymphoma, Adult T-Cell/drug therapy
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/virology
- Lymphocyte Activation/drug effects
- Neurons/drug effects
- Neurons/immunology
- Neurons/pathology
- Neurons/virology
- Neuroprotective Agents/therapeutic use
- Paraparesis, Tropical Spastic/drug therapy
- Paraparesis, Tropical Spastic/immunology
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/virology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Urinary Incontinence/drug therapy
- Urinary Incontinence/immunology
- Urinary Incontinence/pathology
- Urinary Incontinence/virology
Collapse
Affiliation(s)
- Satoshi Nozuma
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Steven Jacobson
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Rubin LH, Xu Y, Norris PJ, Wang X, Dastgheyb R, Fitzgerald KC, Keating SM, Kaplan RC, Maki PM, Anastos K, Springer G, Benning L, Kassaye S, Gustafson DR, Valcour VG, Williams DW. Early Inflammatory Signatures Predict Subsequent Cognition in Long-Term Virally Suppressed Women With HIV. Front Integr Neurosci 2020; 14:20. [PMID: 32390808 PMCID: PMC7193823 DOI: 10.3389/fnint.2020.00020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Immunologic function is an important determinant of cognition. Here we examined the contribution of early immune signatures to cognitive performance among HIV-infected, virally suppressed women (HIV+VS) and in HIV-uninfected (HIV-) women. Specifically, we measured serum inflammatory markers, developed combinatory immune signatures, and evaluated their associations with cognition. Forty-nine HIV+VS women in the Women’s Interagency HIV Study (WIHS) who achieved viral suppression shortly after effective antiretroviral therapy (ART) initiation, and 56 matched HIV− women were selected. Forty-two serum inflammatory markers were measured within 2 years of effective ART initiation for HIV+VS women, and at an initial timepoint for HIV− women. The same inflammatory markers were also measured approximately 1, 7, and 12 years later for all women. Of the 105 women with complete immune data, 83 (34 HIV+VS, 49 HIV−) also had cognitive data available 12 years later at ≥1 time points (median = 3.1). We searched for combinatory immune signatures by adapting a dynamic matrix factorization analytic method that builds upon Tucker decomposition followed by Ingenuity® Pathway Analysis to facilitate data interpretation. Seven combinatory immune signatures emerged based on the Frobenius residual. Three signatures were common between HIV+VS and HIV− women, while four signatures were unique. These inflammatory signatures predicted subsequent cognitive performance in both groups using mixed-effects modeling, but more domain-specific associations were significant in HIV+VS than HIV− women. Leukocyte influx into brain was a major contributor to cognitive function in HIV+VS women, while T cell exhaustion, inflammatory response indicative of depressive/psychiatric disorders, microglial activity, and cytokine signaling predicted both global and domain-specific performance for HIV− women. Our findings suggest that immune signatures may be useful diagnostic, prognostic, and immunotherapeutic targets predictive of subsequent cognitive performance. Importantly, they also provide insight into common and distinct inflammatory mechanisms underlying cognition in HIV− and HIV+VS women.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States.,Department of Psychiatry, Johns Hopkins University, Baltimore, MD, United States.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States.,Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Philip J Norris
- Department of Laboratory Medicine, Vitalant Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Xuzhi Wang
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | | | - Sheila M Keating
- Department of Laboratory Medicine, Vitalant Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.,Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of General Internal Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Gayle Springer
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lorie Benning
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Seble Kassaye
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Deborah R Gustafson
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Victor G Valcour
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, United States.,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Enose-Akahata Y, Jacobson S. Immunovirological markers in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Retrovirology 2019; 16:35. [PMID: 31783764 PMCID: PMC6884770 DOI: 10.1186/s12977-019-0499-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023] Open
Abstract
Human T cell lymphotropic virus 1 (HTLV-1) is a human retrovirus and infects approximately 10–20 million people worldwide. While the majority of infected people are asymptomatic carriers of HTLV-1, only 4% of infected people develop HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is a chronic, progressive, neurological disease which usually progresses slowly without remission, and is characterized by perivascular inflammatory infiltrates in chronic inflammatory lesions of the central nervous system (CNS), primarily affecting the spinal cord. A high HTLV-1 proviral load, high levels of antibodies against HTLV-1 antigens, and elevated concentration of proteins are detected in cerebrospinal fluid (CSF) of HAM/TSP patients. These chronically activated immune responses against HTLV-1 and infiltration of inflammatory cells including HTLV-1 infected cells into the CNS contribute to clinical disability and underlie the pathogenesis of HAM/TSP. Since the disease development of HAM/TSP mainly occurs in adults, with a mean age at onset of 40–50 years, it is important for HTLV-1-infected carriers and HAM/TSP patients to be monitored throughout the disease process. Recent advances in technologies and findings provide new insights to virological and immunological aspects in both the CNS as well as in peripheral blood. In this review, we focus on understanding the inflammatory milieu in the CNS and discuss the immunopathogenic process in HTLV-1-associated neurologic diseases.
Collapse
Affiliation(s)
- Yoshimi Enose-Akahata
- Viral Immunology Section, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Building 10 Room 5C-103, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Building 10 Room 5C-103, Bethesda, MD, USA.
| |
Collapse
|
7
|
O’Connell P, Amalfitano A, Aldhamen YA. SLAM Family Receptor Signaling in Viral Infections: HIV and Beyond. Vaccines (Basel) 2019; 7:E184. [PMID: 31744090 PMCID: PMC6963180 DOI: 10.3390/vaccines7040184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family of receptors are expressed on the majority of immune cells. These receptors often serve as self-ligands, and play important roles in cellular communication and adhesion, thus modulating immune responses. SLAM family receptor signaling is differentially regulated in various immune cell types, with responses generally being determined by the presence or absence of two SLAM family adaptor proteins-Ewing's sarcoma-associated transcript 2 (EAT-2) and SLAM-associated adaptor protein (SAP). In addition to serving as direct regulators of the immune system, certain SLAM family members have also been identified as direct targets for specific microbes and viruses. Here, we will discuss the known roles for these receptors in the setting of viral infection, with special emphasis placed on HIV infection. Because HIV causes such complex dysregulation of the immune system, studies of the roles for SLAM family receptors in this context are particularly exciting.
Collapse
Affiliation(s)
- Patrick O’Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA, (A.A.)
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA, (A.A.)
- Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA, (A.A.)
| |
Collapse
|
8
|
Enose-Akahata Y, Oh U, Ohayon J, Billioux BJ, Massoud R, Bryant BR, Vellucci A, Ngouth N, Cortese I, Waldmann TA, Jacobson S. Clinical trial of a humanized anti-IL-2/IL-15 receptor β chain in HAM/TSP. Ann Clin Transl Neurol 2019; 6:1383-1394. [PMID: 31402625 PMCID: PMC6689682 DOI: 10.1002/acn3.50820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Human T cell lymphotropic virus 1 (HTLV‐1)‐associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive, neurological disease. Chronic activation of CD8+ T cells, as evidenced by increased spontaneous lymphoproliferation and HTLV‐1‐specific cytotoxic T cells, has been demonstrated in HAM/TSP patients. Since IL‐2 and IL‐15 stimulate memory CD8+ T cell activity, these cytokines have been implicated in the immunopathogenesis of HAM/TSP. In this phase I trial, we evaluated the safety, pharmacokinetics, and ability of Hu‐Mikβ1, a humanized monoclonal antibody directed toward the IL‐2/IL‐15 receptor β‐chain (IL‐2/IL‐15Rβ: CD122), to saturate CD122 and regulate abnormal immune responses in patients with HAM/TSP by inhibition of IL‐15 action. Methods Hu‐Mikβ1 was administered intravenously at doses of 0.5 mg/kg, 1.0 mg/kg, or 1.5 mg/kg in a total of nine HAM/TSP patients. Five doses of Hu‐Mikβ1 were administered at 3‐week intervals. The clinical response was evaluated using standardized scales. Viral and immunologic outcome measures were examined including HTLV‐1 proviral load, T cell phenotypic analysis and spontaneous lymphoproliferation in HAM/TSP patients. Results There was no significant toxicity associated with Hu‐Mikβ1 administration in HAM/TSP patients. Saturation of CD122 by Hu‐Mikβ1 was achieved in five out of nine HAM/TSP patients. Administration of Hu‐Mikβ1 was associated with inhibition of aberrant CD8+ T cell function including spontaneous lymphoproliferation and degranulation and IFN‐γ expression, especially in HAM/TSP patients that achieved CD122 saturation. Interpretation The treatment with Hu‐Mikβ1 had a number of immunological effects on HAM/TSP patients although no clinical efficacy was observed. We also did not see any dose‐related toxicity.
Collapse
Affiliation(s)
- Yoshimi Enose-Akahata
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - Unsong Oh
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - Joan Ohayon
- Neuroimmunology Clinic, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - Bridgette Jeanne Billioux
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - Raya Massoud
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - Bonita R Bryant
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Ashley Vellucci
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - Nyater Ngouth
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - Irene Cortese
- Neuroimmunology Clinic, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Steven Jacobson
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
9
|
Agresta L, Hoebe KHN, Janssen EM. The Emerging Role of CD244 Signaling in Immune Cells of the Tumor Microenvironment. Front Immunol 2018; 9:2809. [PMID: 30546369 PMCID: PMC6279924 DOI: 10.3389/fimmu.2018.02809] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
In cancer, immune exhaustion contributes to the immunosuppressive tumor microenvironment. Exhausted immune cells demonstrate poor effector function and sustained expression of certain immunomodulatory receptors, which can be therapeutically targeted. CD244 is a Signaling Lymphocyte Activation Molecule (SLAM) family immunoregulatory receptor found on many immune cell types—including NK cells, a subset of T cells, DCs, and MDSCs—that represents a potential therapeutic target. Here, we discuss the role of CD244 in tumor-mediated immune cell regulation.
Collapse
Affiliation(s)
- Laura Agresta
- Cincinnati Children's Hospital Medical Center, Cancer and Blood Diseases Institute, Cincinnati, OH, United States
| | - Kasper H N Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
10
|
Bellon M, Nicot C. Telomere Dynamics in Immune Senescence and Exhaustion Triggered by Chronic Viral Infection. Viruses 2017; 9:v9100289. [PMID: 28981470 PMCID: PMC5691640 DOI: 10.3390/v9100289] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
The progressive loss of immunological memory during aging correlates with a reduced proliferative capacity and shortened telomeres of T cells. Growing evidence suggests that this phenotype is recapitulated during chronic viral infection. The antigenic volume imposed by persistent and latent viruses exposes the immune system to unique challenges that lead to host T-cell exhaustion, characterized by impaired T-cell functions. These dysfunctional memory T cells lack telomerase, the protein capable of extending and stabilizing chromosome ends, imposing constraints on telomere dynamics. A deleterious consequence of this excessive telomere shortening is the premature induction of replicative senescence of viral-specific CD8+ memory T cells. While senescent cells are unable to expand, they can survive for extended periods of time and are more resistant to apoptotic signals. This review takes a closer look at T-cell exhaustion in chronic viruses known to cause human disease: Epstein–Barr virus (EBV), Hepatitis B/C/D virus (HBV/HCV/HDV), human herpesvirus 8 (HHV-8), human immunodeficiency virus (HIV), human T-cell leukemia virus type I (HTLV-I), human papillomavirus (HPV), herpes simplex virus-1/2 (HSV-1/2), and Varicella–Zoster virus (VZV). Current literature linking T-cell exhaustion with critical telomere lengths and immune senescence are discussed. The concept that enduring antigen stimulation leads to T-cell exhaustion that favors telomere attrition and a cell fate marked by enhanced T-cell senescence appears to be a common endpoint to chronic viral infections.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology, Center for Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Christophe Nicot
- Department of Pathology, Center for Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
11
|
Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal 2017; 15:1. [PMID: 28073373 PMCID: PMC5225559 DOI: 10.1186/s12964-016-0160-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
The immune system is capable of distinguishing between danger- and non-danger signals, thus inducing either an appropriate immune response against pathogens and cancer or inducing self-tolerance to avoid autoimmunity and immunopathology. One of the mechanisms that have evolved to prevent destruction by the immune system, is to functionally silence effector T cells, termed T cell exhaustion, which is also exploited by viruses and cancers for immune escape In this review, we discuss some of the phenotypic markers associated with T cell exhaustion and we summarize current strategies to reinvigorate exhausted T cells by blocking these surface marker using monoclonal antibodies.
Collapse
Affiliation(s)
- Kemal Catakovic
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Eckhard Klieser
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Daniel Neureiter
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Roland Geisberger
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria. .,Salzburg Cancer Research Institute, Salzburg, Austria.
| |
Collapse
|
12
|
Kis-Toth K, Comte D, Karampetsou MP, Kyttaris VC, Kannan L, Terhorst C, Tsokos GC. Selective Loss of Signaling Lymphocytic Activation Molecule Family Member 4-Positive CD8+ T Cells Contributes to the Decreased Cytotoxic Cell Activity in Systemic Lupus Erythematosus. Arthritis Rheumatol 2016; 68:164-73. [PMID: 26314831 DOI: 10.1002/art.39410] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Engagement of signaling lymphocytic activation molecule family member 4 (SLAMF4; CD244, 2B4) by its ligand SLAMF2 (CD48) modulates the function and expansion of both natural killer cells and a subset of cytotoxic CD8+ T cells. Because the cytotoxicity of CD8+ T lymphocytes isolated from patients with systemic lupus erythematosus (SLE) is known to be impaired, the aim of this study was to assess whether the expression and function of the checkpoint regulator SLAMF4 are altered on CD8+ T cells from patients with SLE. METHODS The expression of SLAMF4 by T cells from healthy donors and patients with SLE was determined by quantitative polymerase chain reaction and flow cytometry. T cells were activated with anti-CD3 antibody, and degranulation activity was monitored by the surface expression of lysosome-associated membrane protein 1 (LAMP-1; CD107a). The SLAMF4+ and SLAMF4- CD8+ T cell subpopulations were characterized by LAMP-1, perforin, and granzyme B expression and viral peptide-induced proliferation. RESULTS SLAMF4 gene and surface protein expression was down-regulated in CD8+ T cells from SLE patients compared with that in cells obtained from healthy donors. Importantly, SLE patients had significantly fewer SLAMF4+ CD8+ T cells compared with healthy donors. SLAMF4- CD8+ T cells from SLE patients had a decreased cytotoxic capacity and decreased proliferative responses to viral peptides. The loss of memory SLAMF4+ CD8+ T cells in SLE patients was linked to the fact that these cells have an increased propensity to lose CD8 expression and become double-negative T cells. CONCLUSION A selective loss of SLAMF4+ CD8+ T cells contributes to the compromised ability of T cells from patients with SLE to fight infection.
Collapse
Affiliation(s)
- Katalin Kis-Toth
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Denis Comte
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Maria P Karampetsou
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Vasileios C Kyttaris
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Lakshmi Kannan
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Cox Terhorst
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - George C Tsokos
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
de Aquino MTP, Malhotra A, Mishra MK, Shanker A. Challenges and future perspectives of T cell immunotherapy in cancer. Immunol Lett 2015; 166:117-33. [PMID: 26096822 PMCID: PMC4499494 DOI: 10.1016/j.imlet.2015.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/10/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Abstract
Since the formulation of the tumour immunosurveillance theory, considerable focus has been on enhancing the effectiveness of host antitumour immunity, particularly with respect to T cells. A cancer evades or alters the host immune response by various ways to ensure its development and survival. These include modifications of the immune cell metabolism and T cell signalling. An inhibitory cytokine milieu in the tumour microenvironment also leads to immune suppression and tumour progression within a host. This review traces the development in the field and attempts to summarize the hurdles that the approach of adoptive T cell immunotherapy against cancer faces, and discusses the conditions that must be improved to allow effective eradication of cancer.
Collapse
Affiliation(s)
- Maria Teresa P de Aquino
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anshu Malhotra
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Manoj K Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; Tumor-Host Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Ezinne CC, Yoshimitsu M, White Y, Arima N. HTLV-1 specific CD8+ T cell function augmented by blockade of 2B4/CD48 interaction in HTLV-1 infection. PLoS One 2014; 9:e87631. [PMID: 24505299 PMCID: PMC3914814 DOI: 10.1371/journal.pone.0087631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/24/2013] [Indexed: 12/04/2022] Open
Abstract
CD8+ T cell response is important in the response to viral infections; this response though is regulated by inhibitory receptors. Expression of inhibitory receptors has been positively correlated with CD8+ T cell exhaustion; the consequent effect of simultaneous blockade of these inhibitory receptors on CD8+ T cell response in viral infections have been studied, however, the role of individual blockade of receptor-ligand pair is unclear. 2B4/CD48 interaction is involved in CD8+T cell regulation, its signal transducer SAP (signaling lymphocyte activation molecule (SLAM)-associated protein) is required for stimulatory function of 2B4/CD244 on lymphocytes hence, we analyzed 2B4/CD244 (natural killer cell receptor) and SAP (signaling lymphocyte activation molecule(SLAM)-associated protein) on total CD8+ and HTLV-1 specific CD8+T cells in HTLV-1 infection and the effect of blockade of interaction with ligand CD48 on HTLV-1 specific CD8+ T cell function. We observed a high expression of 2B4/CD244 on CD8+ T cells relative to uninfected and further upregulation on HTLV-1 specific CD8+ T cells. 2B4+ CD8+ T cells exhibited more of an effector and terminally differentiated memory phenotype. Blockade of 2B4/CD48 interaction resulted in improvement in function via perforin expression and degranulation as measured by CD107a surface mobilization on HTLV-1 specific CD8+ T cells. In the light of these findings, we thus propose an inhibitory role for 2B4/CD48 interaction on CD8+T cell function.
Collapse
Affiliation(s)
- Chibueze Chioma Ezinne
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
- * E-mail:
| | - Yohann White
- Department of Medicine, University of the West Indies, Mona, Kingston, Jamaica
| | - Naomichi Arima
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| |
Collapse
|
15
|
Pacheco Y, McLean AP, Rohrbach J, Porichis F, Kaufmann DE, Kavanagh DG. Simultaneous TCR and CD244 signals induce dynamic downmodulation of CD244 on human antiviral T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2072-81. [PMID: 23913963 DOI: 10.4049/jimmunol.1300435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Various cosignaling molecules on T cells can contribute to activation, inhibition, or exhaustion, depending on context. The surface receptor signaling lymphocytic activation molecule (SLAM) family receptor CD244 (2B4/SLAMf4) has been shown to be capable of either inhibitory or enhancing effects upon engagement of its ligand CD48 (SLAMf2). We examined phenotypes of CD8 T cells from HIV(+) and HIV(neg) human donors, specific for HIV and/or respiratory syncytial virus. Cultured and ex vivo CD8 T cells expressed PD-1, CD244, and TIM-3. We found that ex vivo CD8 T cells downregulated CD244 in response to superantigen. Furthermore, cognate peptide induced rapid downregulation of both CD244 and TIM-3, but not PD-1, on CD8 T cell clones. CD244 downmodulation required simultaneous signaling via both TCR and CD244 itself. Using a pH-sensitive fluorophore conjugated to avidin-Ab tetramers, we found that CD244 crosslinking in the presence of TCR signaling resulted in rapid transport of CD244 to an acidic intracellular compartment. Downregulation was not induced by PMA-ionomycin, or prevented by PI3K inhibition, implicating a TCR-proximal signaling mechanism. CD244 internalization occurred within hours of TCR stimulation and required less peptide than was required to induce IFN-γ production. The degree of CD244 internalization varied among cultured CD8 T cell lines of different specificities, and correlated with the enhancement of IFN-γ production in response to CD48 blockade in HIV(+), but not HIV(neg), subjects. Our results indicate that rapid CD244 internalization is induced by a two-signal mechanism and plays a role in modulation of antiviral CD8 T cell responses by CD48-CD244 signaling.
Collapse
Affiliation(s)
- Yovana Pacheco
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
16
|
Comprehensive gene expression profiling reveals synergistic functional networks in cerebral vessels after hypertension or hypercholesterolemia. PLoS One 2013; 8:e68335. [PMID: 23874591 PMCID: PMC3712983 DOI: 10.1371/journal.pone.0068335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/28/2013] [Indexed: 01/09/2023] Open
Abstract
Atherosclerotic stenosis of cerebral arteries or intracranial large artery disease (ICLAD) is a major cause of stroke especially in Asians, Hispanics and Africans, but relatively little is known about gene expression changes in vessels at risk. This study compares comprehensive gene expression profiles in the middle cerebral artery (MCA) of New Zealand White rabbits exposed to two stroke risk factors i.e. hypertension and/or hypercholesterolemia, by the 2-Kidney-1-Clip method, or dietary supplementation with cholesterol. Microarray and Ingenuity Pathway Analyses of the MCA of the hypertensive rabbits showed up-regulated genes in networks containing the node molecules: UBC (ubiquitin), P38 MAPK, ERK, NFkB, SERPINB2, MMP1 and APP (amyloid precursor protein); and down-regulated genes related to MAPK, ERK 1/2, Akt, 26 s proteasome, histone H3 and UBC. The MCA of hypercholesterolemic rabbits showed differentially expressed genes that are surprisingly, linked to almost the same node molecules as the hypertensive rabbits, despite a relatively low percentage of ‘common genes’ (21 and 7%) between the two conditions. Up-regulated common genes were related to: UBC, SERPINB2, TNF, HNF4A (hepatocyte nuclear factor 4A) and APP, and down-regulated genes, related to UBC. Increased HNF4A message and protein were verified in the aorta. Together, these findings reveal similar nodal molecules and gene pathways in cerebral vessels affected by hypertension or hypercholesterolemia, which could be a basis for synergistic action of risk factors in the pathogenesis of ICLAD.
Collapse
|
17
|
Yang B, Wang X, Jiang J, Cheng X. Involvement of CD244 in regulating CD4+ T cell immunity in patients with active tuberculosis. PLoS One 2013; 8:e63261. [PMID: 23638187 PMCID: PMC3640077 DOI: 10.1371/journal.pone.0063261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/31/2013] [Indexed: 01/16/2023] Open
Abstract
CD244 (2B4) is a member of the signaling lymphocyte activation molecule (SLAM) family of immune cell receptors and it plays an important role in modulating NK cell and CD8(+) T cell immunity. In this study, we investigated the expression and function of CD244/2B4 on CD4(+) T cells from active TB patients and latent infection individuals. Active TB patients had significantly elevated CD244/2B4 expression on M. tuberculosis antigen-specific CD4(+) T cells compared with latent infection individuals. The frequencies of CD244/2B4-expressing antigen-specific CD4(+) T cells were significantly higher in retreatment active TB patients than in new active TB patients. Compared with CD244/2B4-dull and -middle CD4(+) T cells, CD244/2B4-bright CD4(+) T cell subset had significantly reduced expression of IFN-γ, suggesting that CD244/2B4 expression may modulate IFN-γ production in M. tuberculosis antigen-responsive CD4(+) T cells. Activation of CD244/2B4 signaling by cross-linking led to significantly decreased production of IFN-γ. Blockage of CD244/2B4 signaling pathway of T cells from patients with active TB resulted in significantly increased production of IFN-γ, compared with isotype antibody control. In conclusion, CD244/2B4 signaling pathway has an inhibitory role on M. tuberculosis antigen-specific CD4(+) T cell function.
Collapse
Affiliation(s)
- Bingfen Yang
- Division of Research, Institute of Tuberculosis, 309 Hospital, Beijing, China
| | - Xinjing Wang
- Division of Research, Institute of Tuberculosis, 309 Hospital, Beijing, China
| | - Jing Jiang
- Division of Research, Institute of Tuberculosis, 309 Hospital, Beijing, China
| | - Xiaoxing Cheng
- Division of Research, Institute of Tuberculosis, 309 Hospital, Beijing, China
| |
Collapse
|
18
|
Waggoner SN, Kumar V. Evolving role of 2B4/CD244 in T and NK cell responses during virus infection. Front Immunol 2012; 3:377. [PMID: 23248626 PMCID: PMC3518765 DOI: 10.3389/fimmu.2012.00377] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/26/2012] [Indexed: 01/22/2023] Open
Abstract
The signaling lymphocyte activation molecule (SLAM) family receptor, 2B4/CD244, was first implicated in anti-viral immunity by the discovery that mutations of the SLAM-associated protein, SAP/SH2D1A, impaired 2B4-dependent stimulation of T and natural killer (NK) cell anti-viral functions in X-linked lymphoproliferative syndrome patients with uncontrolled Epstein-Barr virus infections. Engagement of 2B4 has been variably shown to either activate or inhibit lymphocytes which express this receptor. While SAP expression is required for stimulatory functions of 2B4 on lymphocytes, it remains unclear whether inhibitory signals derived from 2B4 can predominate even in the presence of SAP. Regardless, mounting evidence suggests that 2B4 expression by NK and CD8 T cells is altered by virus infection in mice as well as in humans, and 2B4-mediated signaling may be an important determinant of effective immune control of chronic virus infections. In this review, recent findings regarding the expression and function of 2B4 as well as SAP on T and NK cells during virus infection is discussed, with a focus on the role of 2B4-CD48 interactions in crosstalk between innate and adaptive immunity.
Collapse
Affiliation(s)
- Stephen N Waggoner
- Department of Pathology, University of Massachusetts Medical School Worcester, MA, USA ; Program in Immunology and Virology, University of Massachusetts Medical School Worcester, MA, USA
| | | |
Collapse
|
19
|
Kim JS, Cho BA, Sim JH, Shah K, Woo CM, Lee EB, Lee DS, Kang JS, Lee WJ, Park CG, Craft J, Kang I, Kim HR. IL-7Rαlow memory CD8+ T cells are significantly elevated in patients with systemic lupus erythematosus. Rheumatology (Oxford) 2012; 51:1587-94. [PMID: 22661557 DOI: 10.1093/rheumatology/kes100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Human effector memory (EM) CD8(+) T cells include IL-7Rα(high) and IL-7Rα(low) cells with distinct cellular characteristics, including the expression of cytotoxic molecules. Both NK cells and the NK cell-associated molecule 2B4 that is expressed on CD8(+) T cells promote cytotoxicity. Here we analysed the expression of 2B4 on IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells and its contribution to cytotoxicity. We also analysed the frequency of IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells in patients with SLE or lupus and in healthy individuals given the potential role of cytotoxic CD8(+) T cells in the pathogenesis of lupus. METHODS We used flow cytometry to measure the expression of 2B4 on IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells as well as the frequency of these cell populations in the peripheral blood of healthy individuals and patients with SLE. Also, 2B4-mediated cytotoxicity was quantitated in IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells using target cells with CD48 antigen. RESULTS We found that IL-7Rα(high) EM CD8(+) T cells had higher levels of 2B4 expression compared with IL-7Rα(low) EM CD8(+) T cells. Triggering 2B4 enhanced the cytotoxic function of IL-7Rα(low) EM CD8(+) T cells against target cells. We also noticed that patients with SLE had an increased frequency of IL-7Rα(low) EM CD8(+) T cells that correlated with disease manifestation. CONCLUSION Our findings show that SLE patients have increased IL-7Rα(low) EM CD8(+) T cells, possibly contributing to tissue damage through 2B4-mediated cytotoxicity.
Collapse
Affiliation(s)
- Jung-Sik Kim
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Enose-Akahata Y, Matsuura E, Tanaka Y, Oh U, Jacobson S. Minocycline modulates antigen-specific CTL activity through inactivation of mononuclear phagocytes in patients with HTLV-I associated neurologic disease. Retrovirology 2012; 9:16. [PMID: 22335964 PMCID: PMC3296610 DOI: 10.1186/1742-4690-9-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/15/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The activation of mononuclear phagocytes (MPs), including monocytes, macrophages and dendritic cells, contributes to central nervous system inflammation in various neurological diseases. In HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), MPs are reservoirs of HTLV-I, and induce proinflammatory cytokines and excess T cell responses. The virus-infected or activated MPs may play a role in immuneregulation and disease progression in patients with HTLV-I-associated neurological diseases. RESULTS Phenotypic analysis of CD14⁺ monocytes in HAM/TSP patients demonstrated high expression of CX3CR1 and HLA-DR in CD14lowCD16⁺ monocytes, compared to healthy normal donors (NDs) and asymptomatic carriers (ACs), and the production of TNF-α and IL-1β in cultured CD14⁺ cells of HAM/TSP patients. CD14⁺ cells of HAM/TSP patients also showed acceleration of HTLV-I Tax expression in CD4⁺ T cells. Minocycline, an inhibitor of activated MPs, decreased TNF-α expression in CD14⁺ cells and IL-1β release in PBMCs of HAM/TSP patients. Minocycline significantly inhibited spontaneous lymphoproliferation and degranulation/IFN-γ expression in CD8⁺ T cells of HAM/TSP patients. Treatment of minocycline also inhibited IFN-γ expression in CD8⁺ T cells of HAM/TSP patients after Tax11-19 stimulation and downregulated MHC class I expression in CD14⁺ cells. CONCLUSION These results demonstrate that minocycline directly inhibits the activated MPs and that the downregulation of MP function can modulate CD8⁺ T cells function in HAM/TSP patients. It is suggested that activated MPs may be a therapeutic target for clinical intervention in HAM/TSP.
Collapse
Affiliation(s)
- Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 USA
| | | | | | | | | |
Collapse
|
21
|
West EE, Youngblood B, Tan WG, Jin HT, Araki K, Alexe G, Konieczny BT, Calpe S, Freeman GJ, Terhorst C, Haining WN, Ahmed R. Tight regulation of memory CD8(+) T cells limits their effectiveness during sustained high viral load. Immunity 2011; 35:285-98. [PMID: 21856186 PMCID: PMC3241982 DOI: 10.1016/j.immuni.2011.05.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/08/2011] [Accepted: 05/06/2011] [Indexed: 01/19/2023]
Abstract
To design successful vaccines for chronic diseases, an understanding of memory CD8(+) T cell responses to persistent antigen restimulation is critical. However, most studies comparing memory and naive cell responses have been performed only in rapidly cleared acute infections. Herein, by comparing the responses of memory and naive CD8(+) T cells to acute and chronic lymphocytic choriomeningitis virus infection, we show that memory cells dominated over naive cells and were protective when present in sufficient numbers to quickly reduce infection. In contrast, when infection was not rapidly reduced, because of high antigen load or persistence, memory cells were quickly lost, unlike naive cells. This loss of memory cells was due to a block in sustaining cell proliferation, selective regulation by the inhibitory receptor 2B4, and increased reliance on CD4(+) T cell help. Thus, emphasizing the importance of designing vaccines that elicit effective CD4(+) T cell help and rapidly control infection.
Collapse
MESH Headings
- Acute Disease
- Adoptive Transfer
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Arenaviridae Infections/immunology
- Arenaviridae Infections/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/virology
- Cell Proliferation
- Cells, Cultured
- Chronic Disease
- Cytokines/immunology
- Cytokines/metabolism
- Immunologic Memory
- Lymphocytic choriomeningitis virus/pathogenicity
- Lymphocytic choriomeningitis virus/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Paracrine Communication
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signaling Lymphocytic Activation Molecule Family
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocyte Subsets/virology
- Viral Load
- Viral Vaccines
Collapse
Affiliation(s)
- Erin E West
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ndhlovu LC, Leal FE, Hasenkrug AM, Jha AR, Carvalho KI, Eccles-James IG, Bruno FR, Vieira RGS, York VA, Chew GM, Jones RB, Tanaka Y, Neto WK, Sanabani SS, Ostrowski MA, Segurado AC, Nixon DF, Kallas EG. HTLV-1 tax specific CD8+ T cells express low levels of Tim-3 in HTLV-1 infection: implications for progression to neurological complications. PLoS Negl Trop Dis 2011; 5:e1030. [PMID: 21541358 PMCID: PMC3082508 DOI: 10.1371/journal.pntd.0001030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/27/2011] [Indexed: 11/19/2022] Open
Abstract
The T cell immunoglobulin mucin 3 (Tim-3) receptor is highly expressed on HIV-1-specific T cells, rendering them partially "exhausted" and unable to contribute to the effective immune mediated control of viral replication. To elucidate novel mechanisms contributing to the HTLV-1 neurological complex and its classic neurological presentation called HAM/TSP (HTLV-1 associated myelopathy/tropical spastic paraparesis), we investigated the expression of the Tim-3 receptor on CD8(+) T cells from a cohort of HTLV-1 seropositive asymptomatic and symptomatic patients. Patients diagnosed with HAM/TSP down-regulated Tim-3 expression on both CD8(+) and CD4(+) T cells compared to asymptomatic patients and HTLV-1 seronegative controls. HTLV-1 Tax-specific, HLA-A*02 restricted CD8(+) T cells among HAM/TSP individuals expressed markedly lower levels of Tim-3. We observed Tax expressing cells in both Tim-3(+) and Tim-3(-) fractions. Taken together, these data indicate that there is a systematic downregulation of Tim-3 levels on T cells in HTLV-1 infection, sustaining a profoundly highly active population of potentially pathogenic T cells that may allow for the development of HTLV-1 complications.
Collapse
Affiliation(s)
- Lishomwa C Ndhlovu
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Aldy KN, Horton NC, Mathew PA, Mathew SO. 2B4+ CD8+ T cells play an inhibitory role against constrained HIV epitopes. Biochem Biophys Res Commun 2011; 405:503-7. [PMID: 21256826 DOI: 10.1016/j.bbrc.2011.01.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/19/2011] [Indexed: 01/04/2023]
Abstract
Cytotoxic T cells play a critical role in the control of HIV and the progression of infected individuals to AIDS. 2B4 (CD244) is a member of the SLAM family of receptors that regulate lymphocyte development and function. The expression of 2B4 on CD8+ T cells was shown to increase during AIDS disease progression. However, the functional role of 2B4+ CD8+ T cells against HIV infection is not known. Here, we have examined the functional role of 2B4+ CD8+ T cells during and after stimulation with HLA B14 or B27 restricted HIV epitopes. Interestingly, IFN-γ secretion and cytotoxic activity of 2B4+ CD8+ T cells stimulated with HIV peptides were significantly decreased when compared to influenza peptide stimulated 2B4+ CD8+ T cells. The expression of the signaling adaptor molecule SAP was downregulated in 2B4+ CD8+ T cells upon HIV peptide stimulation. These results suggest that 2B4+ CD8+ T cells play an inhibitory role against constrained HIV epitopes underlying the inability to control the virus during disease progression.
Collapse
Affiliation(s)
- Kim N Aldy
- Department of Surgery-Burn/Trauma/Critical care, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
24
|
Raziorrouh B, Schraut W, Gerlach T, Nowack D, Grüner NH, Ulsenheimer A, Zachoval R, Wächtler M, Spannagl M, Haas J, Diepolder HM, Jung MC. The immunoregulatory role of CD244 in chronic hepatitis B infection and its inhibitory potential on virus-specific CD8+ T-cell function. Hepatology 2010; 52:1934-47. [PMID: 21064032 DOI: 10.1002/hep.23936] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 08/15/2010] [Indexed: 12/12/2022]
Abstract
UNLABELLED Multiple inhibitory receptors may play a role in the weak or absent CD8+ T-cell response in chronic hepatitis B virus (HBV) infection. Yet few receptors have been characterized in detail and little is known about their complex regulation. In the present study, we investigated the role of the signaling lymphocyte activation molecule (SLAM)-related receptor CD244 and of programmed death 1 (PD-1) in HBV infection in 15 acutely and 66 chronically infected patients as well as 9 resolvers and 21 healthy controls. The expression of CD244, PD-1, and T-cell immunoglobulin domain and mucin domain 3 (TIM-3) was analyzed in virus-specific CD8+ T-cells derived from peripheral blood or liver using major histocompatibility complex class I pentamers targeting immunodominant epitopes of HBV, Epstein-Barr-virus (EBV), or influenza virus (Flu). In chronic HBV infection, virus-specific CD8+ T-cells expressed higher levels of CD244 both in the peripheral blood and liver in comparison to the acute phase of infection or following resolution. CD244 was expressed at similarly high levels in EBV infection, but was low on Flu-specific CD8+ T-cells. In chronic HBV infection, high-level CD244 expression coincided with an increased expression of PD-1. The inhibition of the CD244 signaling pathway by antibodies directed against either CD244 or its ligand CD48 resulted in an increased virus-specific proliferation and cytotoxicity as measured by the expression of CD107a, interferon-γ, and tumor necrosis factor-α in CD8+ T-cells. CONCLUSION CD244 and PD-1 are highly coexpressed on virus-specific CD8+ T-cells in chronic HBV infection and blocking CD244 or its ligand CD48 may restore T-cell function independent of the PD-1 pathway. CD244 may thus be another potential target for immunotherapy in chronic viral infections.
Collapse
Affiliation(s)
- Bijan Raziorrouh
- Medical Department II and Institute for Immunology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|