1
|
Yang MC, Huang WL, Chen HY, Lin SH, Chang YS, Tseng KY, Lo HJ, Wang IC, Lin CJ, Lan CY. Deletion of RAP1 affects iron homeostasis, azole resistance, and virulence in Candida albicans. mSphere 2025:e0015525. [PMID: 40265929 DOI: 10.1128/msphere.00155-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
Rap1 is a DNA-binding protein conserved from yeast to mammals for its role in telomeric maintenance. Here, to explore additional functions of Candida albicans Rap1, we performed RNA sequencing analysis. Experimental validations further showed that Rap1 plays a role in iron regulation, especially under low-iron conditions. Moreover, Rap1 was involved in iron acquisition and modulation of iron-related genes. Rap1 was found to be associated with fluconazole resistance in a low-iron condition. Finally, we demonstrated that the deletion of RAP1 leads to reduced C. albicans virulence in a mouse model of infection. Together, this study reveals new functions of C. albicans Rap1, particularly in iron homeostasis, azole resistance, and virulence. IMPORTANCE Candida albicans is an important pathogenic fungus that can cause superficial to life-threatening infections. Iron is essential for almost all organisms, yet it is highly restricted within the human host to defend against pathogens. To grow and survive in the iron-limited host environment, C. albicans has evolved multiple iron acquisition mechanisms. Understanding the regulation of iron homeostasis is, therefore, critical for elucidating C. albicans pathogenesis and virulence. This study explores the novel functions of C. albicans Rap1, with a focus on its contribution to iron acquisition and utilization. Our findings further highlight how iron availability impacts antifungal resistance and virulence through Rap1, providing insight into the complex iron regulatory machinery of C. albicans.
Collapse
Affiliation(s)
- Min-Chi Yang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Luen Huang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsuan-Yu Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shin-Huey Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Shan Chang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Yun Tseng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Taiwan Mycology Reference Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Hsiu-Jung Lo
- Taiwan Mycology Reference Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - I-Ching Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Jan Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Schille TB, Sprague JL, Naglik JR, Brunke S, Hube B. Commensalism and pathogenesis of Candida albicans at the mucosal interface. Nat Rev Microbiol 2025:10.1038/s41579-025-01174-x. [PMID: 40247134 DOI: 10.1038/s41579-025-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Fungi are important and often underestimated human pathogens. Infections with fungi mostly originate from the environment, from soil or airborne spores. By contrast, Candida albicans, one of the most common and clinically important fungal pathogens, permanently exists in the vast majority of healthy individuals as a member of the human mucosal microbiota. Only under certain circumstances will these commensals cause infections. However, although the pathogenic behaviour and disease manifestation of C. albicans have been at the centre of research for many years, its asymptomatic colonization of mucosal surfaces remains surprisingly understudied. In this Review, we discuss the interplay of the fungus, the host and the microbiome on the dualism of commensal and pathogenic life of C. albicans, and how commensal growth is controlled and permitted. We explore hypotheses that could explain how the mucosal environment shapes C. albicans adaptations to its commensal lifestyle, while still maintaining or even increasing its pathogenic potential.
Collapse
Affiliation(s)
- Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
3
|
Amann V, Kissmann AK, Firacative C, Rosenau F. Biofilm-Associated Candidiasis: Pathogenesis, Prevalence, Challenges and Therapeutic Options. Pharmaceuticals (Basel) 2025; 18:460. [PMID: 40283897 PMCID: PMC12030374 DOI: 10.3390/ph18040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The rising prevalence of fungal infections, especially those caused by Candida species, presents a major risk to global health. With approximately 1.5 million deaths annually, the urgency for effective treatment options has never been greater. Candida spp. are the leading cause of invasive infections, significantly impacting immunocompromised patients and those in healthcare settings. C. albicans, C. parapsilosis and the emerging species C. auris are categorized as highly dangerous species because of their pathogenic potential and increasing drug resistance. This review comparatively describes the formation of microbial biofilms of both bacterial and fungal origin, including major pathogens, thereby creating a novel focus. Biofilms can further complicate treatment, as these structures provide enhanced resistance to antifungal therapies. Traditional antifungal agents, including polyenes, azoles and echinocandins, have shown effectiveness, yet resistance development continues to rise, necessitating the exploration of novel therapeutic approaches. Antimicrobial peptides (AMPs) such as the anti-biofilm peptides Pom-1 and Cm-p5 originally isolated from snails represent promising candidates due to their unique mechanisms of action and neglectable cytotoxicity. This review article discusses the challenges posed by Candida infections, the characteristics of important species, the role of biofilms in virulence and the potential of new therapeutic options like AMPs.
Collapse
Affiliation(s)
- Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota 111221, Colombia;
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| |
Collapse
|
4
|
Huang X, Dong Q, Zhou Q, Fang S, Xu Y, Long H, Chen J, Li X, Qin H, Mu D, Cai X. Genomics insights of candidiasis: mechanisms of pathogenicity and drug resistance. Front Microbiol 2025; 16:1531543. [PMID: 40083780 PMCID: PMC11903725 DOI: 10.3389/fmicb.2025.1531543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Candidiasis, a prevalent class of human infections caused by fungi belonging to the Candida genus, is garnering increasing attention due to its pathogenicity and the emergence of drug resistance. The advancement of genomics technologies has offered powerful tools for investigating the pathogenic mechanisms and drug resistance characteristics of Candida. This comprehensive review provides an overview of the applications of genomics in candidiasis research, encompassing genome sequencing, comparative genomics, and functional genomics, along with the pathogenic features and core virulence factors of Candida. Moreover, this review highlights the role of genomic variations in the emergence of drug resistance, further elucidating the evolutionary and adaptive mechanisms of Candida. In conclusion, the review underscores the current state of research and prospective avenues for exploration of candidiasis, providing a theoretical basis for clinical treatments and public health strategies.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qin Dong
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Qi Zhou
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Shitao Fang
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Yiheng Xu
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Hongjie Long
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Jingyi Chen
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xiao Li
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Huaguang Qin
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Dan Mu
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xunchao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Abstract
The microbiota is known to influence several facets of mammalian development, digestion and disease. Most studies of the microbiota have focused on the bacterial component, but the importance of commensal fungi in health and disease is becoming increasingly clear. Although fungi account for a smaller proportion of the microbiota than bacteria by number, they are much larger and therefore account for a substantial proportion of the biomass. Moreover, as fungi are eukaryotes, their metabolic pathways are complex and unique. In this Review, we discuss the evidence for involvement of specific members of the mycobiota in intestinal diseases, including inflammatory bowel disease, colorectal cancer and pancreatic cancer. We also highlight the importance of fungal interactions with intestinal bacteria and with the immune system. Although most studies of commensal fungi have focused on their role in disease, we also consider the beneficial effects of fungal colonies in the gut. The evidence highlights potential opportunities to target fungi and their interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Kyla S Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA.
| | - June L Round
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
7
|
Andrawes N, Weissman Z, Pinsky M, Moshe S, Berman J, Kornitzer D. Regulation of heme utilization and homeostasis in Candida albicans. PLoS Genet 2022; 18:e1010390. [PMID: 36084128 PMCID: PMC9491583 DOI: 10.1371/journal.pgen.1010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/21/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Heme (iron-protoporphyrin IX) is an essential but potentially toxic cellular cofactor. While most organisms are heme prototrophs, many microorganisms can utilize environmental heme as iron source. The pathogenic yeast Candida albicans can utilize host heme in the iron-poor host environment, using an extracellular cascade of soluble and anchored hemophores, and plasma membrane ferric reductase-like proteins. To gain additional insight into the C. albicans heme uptake pathway, we performed an unbiased genetic selection for mutants resistant to the toxic heme analog Ga3+-protoporphyrin IX at neutral pH, and a secondary screen for inability to utilize heme as iron source. Among the mutants isolated were the genes of the pH-responsive RIM pathway, and a zinc finger transcription factor related to S. cerevisiae HAP1. In the presence of hemin in the medium, C. albicans HAP1 is induced, the Hap1 protein is stabilized and Hap1-GFP localizes to the nucleus. In the hap1 mutant, cytoplasmic heme levels are elevated, while influx of extracellular heme is lower. Gene expression analysis indicated that in the presence of extracellular hemin, Hap1 activates the heme oxygenase HMX1, which breaks down excess cytoplasmic heme, while at the same time it also activates all the known heme uptake genes. These results indicate that Hap1 is a heme-responsive transcription factor that plays a role both in cytoplasmic heme homeostasis and in utilization of extracellular heme. The induction of heme uptake genes by C. albicans Hap1 under iron satiety indicates that preferential utilization of host heme can be a dietary strategy in a heme prototroph.
Collapse
Affiliation(s)
- Natalie Andrawes
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Ziva Weissman
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Mariel Pinsky
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Shilat Moshe
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Judith Berman
- School of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| |
Collapse
|
8
|
Satala D, Gonzalez-Gonzalez M, Smolarz M, Surowiec M, Kulig K, Wronowska E, Zawrotniak M, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Role of Candida albicans Virulence Factors in the Formation of Multispecies Biofilms With Bacterial Periodontal Pathogens. Front Cell Infect Microbiol 2022; 11:765942. [PMID: 35071033 PMCID: PMC8766842 DOI: 10.3389/fcimb.2021.765942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontal disease depends on the presence of different microorganisms in the oral cavity that during the colonization of periodontal tissues form a multispecies biofilm community, thus allowing them to survive under adverse conditions or facilitate further colonization of host tissues. Not only numerous bacterial species participate in the development of biofilm complex structure but also fungi, especially Candida albicans, that often commensally inhabits the oral cavity. C. albicans employs an extensive armory of various virulence factors supporting its coexistence with bacteria resulting in successful host colonization and propagation of infection. In this article, we highlight various aspects of individual fungal virulence factors that may facilitate the collaboration with the associated bacterial representatives of the early colonizers of the oral cavity, the bridging species, and the late colonizers directly involved in the development of periodontitis, including the “red complex” species. In particular, we discuss the involvement of candidal cell surface proteins—typical fungal adhesins as well as originally cytosolic “moonlighting” proteins that perform a new function on the cell surface and are also present within the biofilm structures. Another group of virulence factors considered includes secreted aspartic proteases (Sap) and other secreted hydrolytic enzymes. The specific structure of the candidal cell wall, dynamically changing during morphological transitions of the fungus that favor the biofilm formation, is equally important and discussed. The non-protein biofilm-composing factors also show dynamic variability upon the contact with bacteria, and their biosynthesis processes could be involved in the stability of mixed biofilms. Biofilm-associated changes in the microbe communication system using different quorum sensing molecules of both fungal and bacterial cells are also emphasized in this review. All discussed virulence factors involved in the formation of mixed biofilm pose new challenges and influence the successful design of new diagnostic methods and the application of appropriate therapies in periodontal diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.,Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Smolarz
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
9
|
Wich M, Greim S, Ferreira-Gomes M, Krüger T, Kniemeyer O, Brakhage AA, Jacobsen ID, Hube B, Jungnickel B. Functionality of the human antibody response to Candida albicans. Virulence 2021; 12:3137-3148. [PMID: 34923920 PMCID: PMC8923069 DOI: 10.1080/21505594.2021.2015116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Candida albicans is a common commensal on human mucosal surfaces, but can become pathogenic, e.g. if the host is immunocompromised. While neutrophils, macrophages and T cells are regarded as major players in the defense against pathogenic C. albicans, the role of B cells and the protective function of their antibodies are less well characterized. In this study, we show that human serum antibodies are able to enhance the association of human THP-1 monocyte-like cells with C. albicans cells. Human serum antibodies are also capable of inhibiting the adherence and damage dealt to epithelial cells. Furthermore, human serum antibodies impair C. albicans invasion of human oral epithelial cells by blocking induced endocytosis and consequently host cell damage. While aspartic proteases secreted by C. albicans are able to cleave human IgG, this process does not appear to affect the protective function of human antibodies. Thus, humans are equipped with a robust antibody response to C. albicans, which can enhance antifungal activities and prevent fungal-mediated epithelial damage.
Collapse
Affiliation(s)
- Melissa Wich
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Stephanie Greim
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Marta Ferreira-Gomes
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Axel A Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Bernhard Hube
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Berit Jungnickel
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
10
|
Mass Spectrometry-Based Proteomic and Immunoproteomic Analyses of the Candida albicans Hyphal Secretome Reveal Diagnostic Biomarker Candidates for Invasive Candidiasis. J Fungi (Basel) 2021; 7:jof7070501. [PMID: 34201883 PMCID: PMC8306665 DOI: 10.3390/jof7070501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
Invasive candidiasis (IC) is associated with high morbidity and mortality in hospitalized patients if not diagnosed early. Long-term use of central venous catheters is a predisposing factor for IC. Hyphal forms of Candida albicans (the major etiological agent of IC) are related to invasion of host tissues. The secreted proteins of hyphae are involved in virulence, host interaction, immune response, and immune evasion. To identify IC diagnostic biomarker candidates, we characterized the C. albicans hyphal secretome by gel-free proteomic analysis, and further assessed the antibody-reactivity patterns to this subproteome in serum pools from 12 patients with non-catheter-associated IC (ncIC), 11 patients with catheter-associated IC (cIC), and 11 non-IC patients. We identified 301 secreted hyphal proteins stratified to stem from the extracellular region, cell wall, cell surface, or intracellular compartments. ncIC and cIC patients had higher antibody levels to the hyphal secretome than non-IC patients. Seven secreted hyphal proteins were identified to be immunogenic (Bgl2, Eno1, Pgk1, Glx3, Sap5, Pra1 and Tdh3). Antibody-reactivity patterns to Bgl2, Eno1, Pgk1 and Glx3 discriminated IC patients from non-IC patients, while those to Sap5, Pra1 and Tdh3 differentiated between cIC and non-IC patients. These proteins may be useful for development of future IC diagnostic tests.
Collapse
|
11
|
Freeman Weiss Z, Leon A, Koo S. The Evolving Landscape of Fungal Diagnostics, Current and Emerging Microbiological Approaches. J Fungi (Basel) 2021; 7:jof7020127. [PMID: 33572400 PMCID: PMC7916227 DOI: 10.3390/jof7020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal infections are increasingly recognized in immunocompromised hosts. Current diagnostic techniques are limited by low sensitivity and prolonged turnaround times. We review emerging diagnostic technologies and platforms for diagnosing the clinically invasive disease caused by Candida, Aspergillus, and Mucorales.
Collapse
Affiliation(s)
- Zoe Freeman Weiss
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
- Massachusetts General Hospital, Division of Infectious Diseases, Boston, MA 02115, USA
- Correspondence:
| | - Armando Leon
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
| | - Sophia Koo
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
| |
Collapse
|
12
|
Syu GD, Dunn J, Zhu H. Developments and Applications of Functional Protein Microarrays. Mol Cell Proteomics 2020; 19:916-927. [PMID: 32303587 PMCID: PMC7261817 DOI: 10.1074/mcp.r120.001936] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Protein microarrays are crucial tools in the study of proteins in an unbiased, high-throughput manner, as they allow for characterization of up to thousands of individually purified proteins in parallel. The adaptability of this technology has enabled its use in a wide variety of applications, including the study of proteome-wide molecular interactions, analysis of post-translational modifications, identification of novel drug targets, and examination of pathogen-host interactions. In addition, the technology has also been shown to be useful in profiling antibody specificity, as well as in the discovery of novel biomarkers, especially for autoimmune diseases and cancers. In this review, we will summarize the developments that have been made in protein microarray technology in both in basic and translational research over the past decade. We will also introduce a novel membrane protein array, the GPCR-VirD array, and discuss the future directions of functional protein microarrays.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C..
| | - Jessica Dunn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231.
| |
Collapse
|
13
|
de Oliveira AS, Palomino-Salcedo DL, Zapp E, Brondani D, Hoppe TD, Brondani PB, Meier L, Johann S, Ferreira LLG, Andricopulo AD. Molecular Docking and Quantum Studies of Lawsone Dimers Derivatives: New Investigation of Antioxidant Behavior and Antifungal Activity. Curr Top Med Chem 2019; 20:182-191. [PMID: 31868147 DOI: 10.2174/1568026620666191223092723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/07/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In general, fungal species are characterized by their opportunistic character and can trigger various infections in immunocompromised hosts. The emergence of infections associated with high mortality rates is due to the resistance mechanisms that these species develop. METHODS This phenomenon of resistance denotes the need for the development of new and effective therapeutic approaches. In this paper, we report the investigation of the antioxidant and antifungal behavior of dimeric naphthoquinones derived from lawsone whose antimicrobial and antioxidant potential has been reported in the literature. RESULTS Seven fungal strains were tested, and the antioxidant potential was tested using the combination of the methodologies: reducing power, total antioxidant capacity and cyclic voltammetry. Molecular docking studies (PDB ID 5V5Z and 1EA1) were conducted which allowed the derivation of structureactivity relationships (SAR). Compound 1-i, derived from 3-methylfuran-2-carbaldehyde showed the highest antifungal potential with an emphasis on the inhibition of Candida albicans species (MIC = 0.5 µg/mL) and the highest antioxidant potential. CONCLUSION A combination of molecular modeling data and in vitro assays can help to find new solutions to this major public health problem.
Collapse
Affiliation(s)
- Aldo S de Oliveira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, (UFSC), Blumenau, SC, Brazil.,Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - David L Palomino-Salcedo
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Eduardo Zapp
- Department of Exact Sciences and Education, Federal University of Santa Catarina, (UFSC), Blumenau, SC, Brazil
| | - Daniela Brondani
- Department of Exact Sciences and Education, Federal University of Santa Catarina, (UFSC), Blumenau, SC, Brazil
| | - Thaynara D Hoppe
- Department of Exact Sciences and Education, Federal University of Santa Catarina, (UFSC), Blumenau, SC, Brazil
| | - Patrícia B Brondani
- Department of Exact Sciences and Education, Federal University of Santa Catarina, (UFSC), Blumenau, SC, Brazil
| | - Lidiane Meier
- Department of Exact Sciences and Education, Federal University of Santa Catarina, (UFSC), Blumenau, SC, Brazil
| | - Susana Johann
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo L G Ferreira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil
| |
Collapse
|
14
|
Hameed S, Hans S, Singh S, Fatima Z. Harnessing Metal Homeostasis Offers Novel and Promising Targets Against Candida albicans. Curr Drug Discov Technol 2019; 17:415-429. [PMID: 30827249 DOI: 10.2174/1570163816666190227231437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
Abstract
Fungal infections, particularly of Candida species, which are the commensal organisms of human, are one of the major debilitating diseases in immunocompromised patients. The limited number of antifungal drugs available to treat Candida infections, with the concomitant increasing incidence of multidrug-resistant (MDR) strains, further worsens the therapeutic options. Thus, there is an urgent need for the better understanding of MDR mechanisms, and their reversal, by employing new strategies to increase the efficacy and safety profiles of currently used therapies against the most prevalent human fungal pathogen, Candida albicans. Micronutrient availability during C. albicans infection is regarded as a critical factor that influences the progression and magnitude of the disease. Intracellular pathogens colonize a variety of anatomical locations that are likely to be scarce in micronutrients, as a defense strategy adopted by the host, known as nutritional immunity. Indispensable critical micronutrients are required both by the host and by C. albicans, especially as a cofactor in important metabolic functions. Since these micronutrients are not freely available, C. albicans need to exploit host reservoirs to adapt within the host for survival. The ability of pathogenic organisms, including C. albicans, to sense and adapt to limited micronutrients in the hostile environment is essential for survival and confers the basis of its success as a pathogen. This review describes that micronutrients availability to C. albicans is a key attribute that may be exploited when one considers designing strategies aimed at disrupting MDR in this pathogenic fungi. Here, we discuss recent advances that have been made in our understanding of fungal micronutrient acquisition and explore the probable pathways that may be utilized as targets.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| |
Collapse
|
15
|
Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY. Transcriptomic and Genomic Approaches for Unravelling Candida albicans Biofilm Formation and Drug Resistance-An Update. Genes (Basel) 2018; 9:genes9110540. [PMID: 30405082 PMCID: PMC6266447 DOI: 10.3390/genes9110540] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is an opportunistic fungal pathogen, which causes a plethora of superficial, as well as invasive, infections in humans. The ability of this fungus in switching from commensalism to active infection is attributed to its many virulence traits. Biofilm formation is a key process, which allows the fungus to adhere to and proliferate on medically implanted devices as well as host tissue and cause serious life-threatening infections. Biofilms are complex communities of filamentous and yeast cells surrounded by an extracellular matrix that confers an enhanced degree of resistance to antifungal drugs. Moreover, the extensive plasticity of the C. albicans genome has given this versatile fungus the added advantage of microevolution and adaptation to thrive within the unique environmental niches within the host. To combat these challenges in dealing with C. albicans infections, it is imperative that we target specifically the molecular pathways involved in biofilm formation as well as drug resistance. With the advent of the -omics era and whole genome sequencing platforms, novel pathways and genes involved in the pathogenesis of the fungus have been unraveled. Researchers have used a myriad of strategies including transcriptome analysis for C. albicans cells grown in different environments, whole genome sequencing of different strains, functional genomics approaches to identify critical regulatory genes, as well as comparative genomics analysis between C. albicans and its closely related, much less virulent relative, C. dubliniensis, in the quest to increase our understanding of the mechanisms underlying the success of C. albicans as a major fungal pathogen. This review attempts to summarize the most recent advancements in the field of biofilm and antifungal resistance research and offers suggestions for future directions in therapeutics development.
Collapse
Affiliation(s)
- Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Voon Kin Chin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Won Fen Wong
- Department of Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| |
Collapse
|
16
|
Gil-Bona A, Amador-García A, Gil C, Monteoliva L. The external face of Candida albicans: A proteomic view of the cell surface and the extracellular environment. J Proteomics 2017; 180:70-79. [PMID: 29223801 DOI: 10.1016/j.jprot.2017.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023]
Abstract
The cell surface and secreted proteins are the initial points of contact between Candida albicans and the host. Improvements in protein extraction approaches and mass spectrometers have allowed researchers to obtain a comprehensive knowledge of these external subproteomes. In this paper, we review the published proteomic studies that have examined C. albicans extracellular proteins, including the cell surface proteins or surfome and the secreted proteins or secretome. The use of different approaches to isolate cell wall and cell surface proteins, such as fractionation approaches or cell shaving, have resulted in different outcomes. Proteins with N-terminal signal peptide, known as classically secreted proteins, and those that lack the signal peptide, known as unconventionally secreted proteins, have been consistently identified. Existing studies on C. albicans extracellular vesicles reveal that they are relevant as an unconventional pathway of protein secretion and can help explain the presence of proteins without a signal peptide, including some moonlighting proteins, in the cell wall and the extracellular environment. According to the global view presented in this review, cell wall proteins, virulence factors such as adhesins or hydrolytic enzymes, metabolic enzymes and stress related-proteins are important groups of proteins in C. albicans surfome and secretome. BIOLOGICAL SIGNIFICANCE Candida albicans extracellular proteins are involved in biofilm formation, cell nutrient acquisition and cell wall integrity maintenance. Furthermore, these proteins include virulence factors and immunogenic proteins. This review is of outstanding interest, not only because it extends knowledge of the C. albicans surface and extracellular proteins that could be related with pathogenesis, but also because it presents insights that may facilitate the future development of new antifungal drugs and vaccines and contributes to efforts to identify new biomarkers that can be employed to diagnose candidiasis. Here, we list more than 570 C. albicans proteins that have been identified in extracellular locations to deliver the most extensive catalogue of this type of proteins to date. Moreover, we describe 16 proteins detected at all locations analysed in the works revised. These proteins include the glycophosphatidylinositol (GPI)-anchored proteins Ecm33, Pga4 and Phr2 and unconventional secretory proteins such as Eft2, Eno1, Hsp70, Pdc11, Pgk1 and Tdh3. Furthermore, 13 of these 16 proteins are immunogenic and could represent a set of interesting candidates for biomarker discovery.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Ahinara Amador-García
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain
| | - Concha Gil
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| | - Lucia Monteoliva
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| |
Collapse
|
17
|
Huertas B, Prieto D, Pitarch A, Gil C, Pla J, Díez-Orejas R. Serum Antibody Profile during Colonization of the Mouse Gut by Candida albicans: Relevance for Protection during Systemic Infection. J Proteome Res 2016; 16:335-345. [PMID: 27539120 DOI: 10.1021/acs.jproteome.6b00383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Candida albicans is a commensal microorganism in the oral cavity and gastrointestinal and urogenital tracts of most individuals that acts as an opportunistic pathogen when the host immune response is reduced. Here, we established different immunocompetent murine models to analyze the antibody responses to the C. albicans proteome during commensalism, commensalism followed by infection, and infection (C, C+I, and I models, respectively). Serum anti-C. albicans IgG antibody levels were higher in colonized mice than in infected mice. The antibody responses during gut commensalism (up to 55 days of colonization) mainly focused on C. albicans proteins involved in stress response and metabolism and differed in both models of commensalism. Different serum IgG antibody-reactivity profiles were also found over time among the three murine models. C. albicans gut colonization protected mice from an intravenous lethal fungal challenge, emphasizing the benefits of fungal gut colonization. This work highlights the importance of fungal gut colonization for future immune prophylactic therapies.
Collapse
Affiliation(s)
- Blanca Huertas
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Daniel Prieto
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Concha Gil
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jesús Pla
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Rosalía Díez-Orejas
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
18
|
Structural basis of haem-iron acquisition by fungal pathogens. Nat Microbiol 2016; 1:16156. [PMID: 27617569 DOI: 10.1038/nmicrobiol.2016.156] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/26/2016] [Indexed: 11/08/2022]
Abstract
Pathogenic microorganisms must cope with extremely low free-iron concentrations in the host's tissues. Some fungal pathogens rely on secreted haemophores that belong to the Common in Fungal Extracellular Membrane (CFEM) protein family, to extract haem from haemoglobin and to transfer it to the cell's interior, where it can serve as a source of iron. Here we report the first three-dimensional structure of a CFEM protein, the haemophore Csa2 secreted by Candida albicans. The CFEM domain adopts a novel helical-basket fold that consists of six α-helices, and is uniquely stabilized by four disulfide bonds formed by its eight signature cysteines. The planar haem molecule is bound between a flat hydrophobic platform located on top of the helical basket and a peripheral N-terminal 'handle' extension. Exceptionally, an aspartic residue serves as the CFEM axial ligand, and so confers coordination of Fe3+ haem, but not of Fe2+ haem. Histidine substitution mutants of this conserved Asp acquired Fe2+ haem binding and retained the capacity to extract haem from haemoglobin. However, His-substituted CFEM proteins were not functional in vivo and showed disturbed haem exchange in vitro, which suggests a role for the oxidation-state-specific Asp coordination in haem acquisition by CFEM proteins.
Collapse
|
19
|
Cornillot E, Dassouli A, Pachikara N, Lawres L, Renard I, Francois C, Randazzo S, Brès V, Garg A, Brancato J, Pazzi JE, Pablo J, Hung C, Teng A, Shandling AD, Huynh VT, Krause PJ, Lepore T, Delbecq S, Hermanson G, Liang X, Williams S, Molina DM, Ben Mamoun C. A targeted immunomic approach identifies diagnostic antigens in the human pathogen Babesia microti. Transfusion 2016; 56:2085-99. [PMID: 27184823 PMCID: PMC5644385 DOI: 10.1111/trf.13640] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Babesia microti is a protozoan parasite responsible for the majority of reported cases of human babesiosis and a major risk to the blood supply. Laboratory screening of blood donors may help prevent transfusion-transmitted babesiosis but there is no Food and Drug Administration-approved screening method yet available. Development of a sensitive, specific, and highly automated B. microti antibody assay for diagnosis of acute babesiosis and blood screening could have an important impact on decreasing the health burden of B. microti infection. STUDY DESIGN AND METHODS Herein, we take advantage of recent advances in B. microti genomic analyses, field surveys of the reservoir host, and human studies in endemic areas to apply a targeted immunomic approach to the discovery of B. microti antigens that serve as signatures of active or past babesiosis infections. Of 19 glycosylphosphatidylinositol (GPI)-anchored protein candidates (BmGPI1-19) identified in the B. microti proteome, 17 were successfully expressed, printed on a microarray chip, and used to screen sera from uninfected and B. microti-infected mice and humans to determine immune responses that are associated with active and past infection. RESULTS Antibody responses to various B. microti BmGPI antigens were detected and BmGPI12 was identified as the best biomarker of infection that provided high sensitivity and specificity when used in a microarray antibody assay. CONCLUSION BmGPI12 alone or in combination with other BmGPI proteins is a promising candidate biomarker for detection of B. microti antibodies that might be useful in blood screening to prevent transfusion-transmitted babesiosis.
Collapse
Affiliation(s)
- Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), Institut de Recherche en Cancérologie de Montpellier (IRCM-INSERM U1194), Institut régional du Cancer Montpellier (ICM) and Université de Montpellier, Montpellier, France
| | - Amina Dassouli
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Niseema Pachikara
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Lauren Lawres
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Isaline Renard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Celia Francois
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Sylvie Randazzo
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Virginie Brès
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Aprajita Garg
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Janna Brancato
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | | | | | - Chris Hung
- Antigen Discovery, Inc., Irvine, California
| | - Andy Teng
- Antigen Discovery, Inc., Irvine, California
| | | | | | - Peter J. Krause
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Timothy Lepore
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | | | | | - Scott Williams
- Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | | | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
20
|
Luo T, Krüger T, Knüpfer U, Kasper L, Wielsch N, Hube B, Kortgen A, Bauer M, Giamarellos-Bourboulis EJ, Dimopoulos G, Brakhage AA, Kniemeyer O. Immunoproteomic Analysis of Antibody Responses to Extracellular Proteins of Candida albicans Revealing the Importance of Glycosylation for Antigen Recognition. J Proteome Res 2016; 15:2394-406. [PMID: 27386892 DOI: 10.1021/acs.jproteome.5b01065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During infection, the human pathogenic fungus Candida albicans undergoes a yeast-to-hypha transition, secretes numerous proteins for invasion of host tissues, and modulates the host's immune response. Little is known about the interplay of C. albicans secreted proteins and the host adaptive immune system. Here, we applied a combined 2D gel- and LC-MS/MS-based approach for the characterization of C. albicans extracellular proteins during the yeast-to-hypha transition, which led to a comprehensive C. albicans secretome map. The serological responses to C. albicans extracellular proteins were investigated by a 2D-immunoblotting approach combined with MS for protein identification. On the basis of the screening of sera from candidemia and three groups of noncandidemia patients, a core set of 19 immunodominant antibodies against secreted proteins of C. albicans was identified, seven of which represent potential diagnostic markers for candidemia (Xog1, Lip4, Asc1, Met6, Tsa1, Tpi1, and Prx1). Intriguingly, some secreted, strongly glycosylated protein antigens showed high cross-reactivity with sera from noncandidemia control groups. Enzymatic deglycosylation of proteins secreted from hyphae significantly impaired sera antibody recognition. Furthermore, deglycosylation of the recombinantly produced, secreted aspartyl protease Sap6 confirmed a significant contribution of glycan epitopes to the recognition of Sap6 by antibodies in patient's sera.
Collapse
Affiliation(s)
| | | | | | | | - Natalie Wielsch
- Department of Mass spectrometry/Proteomics, Max-Planck-Institute for Chemical Ecology , 07745 Jena, Germany
| | - Bernhard Hube
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| | | | | | | | | | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| | - Olaf Kniemeyer
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| |
Collapse
|
21
|
Paulovičová E, Paulovičová L, Pilišiová R, Jančinová V, Yashunsky DV, Karelin AA, Tsvetkov YE, Nifantiev NE. The evaluation of β-(1 → 3)-nonaglucoside as an anti-Candida albicans immune response inducer. Cell Microbiol 2016; 18:1294-307. [PMID: 27310441 DOI: 10.1111/cmi.12631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 12/29/2022]
Abstract
Synthetically prepared bovine serum albumin (BSA) conjugate of linear β-(1 → 3)-nonaglucoside ligand (G9) has been applied as a biological response immunomodulator in vivo and ex vivo. Active immunization of Balb/c mice revealed effective induction of specific humoral responses in comparison with Candida β-D-glucan and Candida whole cells. Induced post-vaccination serum exhibited a growth-inhibition effect on the multi-azole-resistant clinical strain Candida albicans CCY 29-3-164 in experimental mucocutaneous infection ex vivo. Evaluation of immune cell proliferation and the cytotoxic potential of the G9-ligand has revealed its bioavailability and an immunostimulative effect in vaccination-sensitized Balb/c mice splenocytes and RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Ema Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ružena Pilišiová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Jančinová
- Department of Cellular Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 84236, Bratislava, Slovakia
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Kniemeyer O, Ebel F, Krüger T, Bacher P, Scheffold A, Luo T, Strassburger M, Brakhage AA. Immunoproteomics of Aspergillus for the development of biomarkers and immunotherapies. Proteomics Clin Appl 2016; 10:910-921. [PMID: 27312145 DOI: 10.1002/prca.201600053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/18/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Filamentous fungi of the genus Aspergillus play significant roles as pathogens causing superficial and invasive infections as well as allergic reactions in humans. Particularly invasive mycoses caused by Aspergillus species are characterized by high mortality rates due to difficult diagnosis and insufficient antifungal therapy. The application of immunoproteomic approaches has a great potential to identify new targets for the diagnosis, therapy, and vaccine development of diseases caused by Aspergillus species. Serological proteome analyses (SERPA) that combine 2D electrophoresis with Western blotting are still one of the most popular techniques for the identification of antigenic proteins. However, recently a growing number of approaches have been developed to identify proteins, which either provoke an antibody response or which represent targets of T-cell immunity in patients with allergy or fungal infections. Here, we review advances in the studies of immune responses against pathogenic Aspergilli as well as the current status of diagnosis and immunotherapy of Aspergillus infections.
Collapse
Affiliation(s)
- Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, LMU, Munich, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité, University Medicine Berlin, Berlin, Germany
| | - Alexander Scheffold
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité, University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Ting Luo
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Maria Strassburger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany.,Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany. .,Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
23
|
Prieto D, Correia I, Pla J, Román E. Adaptation of Candida albicans to commensalism in the gut. Future Microbiol 2016; 11:567-83. [PMID: 27070839 DOI: 10.2217/fmb.16.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Candida albicans is a common resident of the oral cavity, GI tract and vagina in healthy humans where it establishes a commensal relationship with the host. Colonization of the gut, which is an important niche for the microbe, may lead to systemic dissemination and disease upon alteration of host defences. Understanding the mechanisms responsible for the adaptation of C. albicans to the gut is therefore important for the design of new ways of combating fungal diseases. In this review we discuss the available models to study commensalism of this yeast, the main mechanisms controlling the establishment of the fungus, such as microbiota, mucus layer and antimicrobial peptides, and the gene regulatory circuits that ensure its survival in this niche.
Collapse
Affiliation(s)
- Daniel Prieto
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Inês Correia
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
24
|
A systems biology approach for diagnostic and vaccine antigen discovery in tropical infectious diseases. Curr Opin Infect Dis 2016; 28:438-45. [PMID: 26237545 DOI: 10.1097/qco.0000000000000193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW There is a need for improved diagnosis and for more rapidly assessing the presence, prevalence, and spread of newly emerging or reemerging infectious diseases. An approach to the pathogen-detection strategy is based on analyzing host immune response to the infection. This review focuses on a protein microarray approach for this purpose. RECENT FINDINGS Here we take a protein microarray approach to profile the humoral immune response to numerous infectious agents, and to identify the complete antibody repertoire associated with each disease. The results of these studies lead to the identification of diagnostic markers and potential subunit vaccine candidates. These results from over 30 different organisms can also provide information about common trends in the humoral immune response. SUMMARY This review describes the implications of the findings for clinical practice or research. A systems biology approach to identify the antibody repertoire associated with infectious diseases challenge using protein microarray has become a powerful method in identifying diagnostic markers and potential subunit vaccine candidates, and moreover, in providing information on proteomic feature (functional and physically properties) of seroreactive and serodiagnostic antigens. Combining the detection of the pathogen with a comprehensive assessment of the host immune response will provide a new understanding of the correlations between specific causative agents, the host response, and the clinical manifestations of the disease.
Collapse
|
25
|
Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells. Proteomes 2015; 3:467-495. [PMID: 28248281 PMCID: PMC5217390 DOI: 10.3390/proteomes3040467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
Collapse
|
26
|
Marín E, Parra-Giraldo CM, Hernández-Haro C, Hernáez ML, Nombela C, Monteoliva L, Gil C. Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface. Front Microbiol 2015; 6:1343. [PMID: 26696967 PMCID: PMC4672057 DOI: 10.3389/fmicb.2015.01343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/16/2015] [Indexed: 01/11/2023] Open
Abstract
Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in NS than in HIS, as validated by immunofluorescence.
Collapse
Affiliation(s)
- Elvira Marín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Claudia M Parra-Giraldo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Carolina Hernández-Haro
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - María L Hernáez
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| | - Lucía Monteoliva
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| |
Collapse
|
27
|
Large screen approaches to identify novel malaria vaccine candidates. Vaccine 2015; 33:7496-505. [PMID: 26428458 DOI: 10.1016/j.vaccine.2015.09.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022]
Abstract
Until recently, malaria vaccine development efforts have focused almost exclusively on a handful of well characterized Plasmodium falciparum antigens. Despite dedicated work by many researchers on different continents spanning more than half a century, a successful malaria vaccine remains elusive. Sequencing of the P. falciparum genome has revealed more than five thousand genes, providing the foundation for systematic approaches to discover candidate vaccine antigens. We are taking advantage of this wealth of information to discover new antigens that may be more effective vaccine targets. Herein, we describe different approaches to large-scale screening of the P. falciparum genome to identify targets of either antibody responses or T cell responses using human specimens collected in Controlled Human Malaria Infections (CHMI) or under conditions of natural exposure in the field. These genome, proteome and transcriptome based approaches offer enormous potential for the development of an efficacious malaria vaccine.
Collapse
|
28
|
He ZX, Chen J, Li W, Cheng Y, Zhang HP, Zhang LN, Hou TW. Serological response and diagnostic value of recombinant candida cell wall protein enolase, phosphoglycerate kinase, and β-glucosidase. Front Microbiol 2015; 6:920. [PMID: 26441862 PMCID: PMC4564733 DOI: 10.3389/fmicb.2015.00920] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022] Open
Abstract
There are no specific signs and symtoms for invasive candidiasis (IC), which makes its diagnosis a challenge. Efforts have been made for decades to establish serological assays for rapid diagnosis of IC, but none of them have found widespread clinical use. Using a systemic candiasis murine model, serological response to recombinant proteins of enolase (rEno1), phosphoglycerate kinase (rPgk1), and β-glucosidase (rBgl2) were evaluated and rEno1 was found to possess the strongest immunoreactivity, followed by rPgk1 and rBgl2. Likewise, IgG antibody titers to rEno1, rPgk1, and rBgl2 in the positive sera of proven IC patients were determined by ELISA. Results show anti-rEno1 antibody possesses the highest titer, followed by rPgk1 and rBgl2. Antibodies against rEno1, rPgk1, and rBgl2 were detected by ELISA tests in a group of 52 proven IC patients or 50 healthy subjects, The sensitivity, specificity, positive and negative predictive values were 88.5, 90.0, 90.2, and 88.2% for anti-rEno1 detection, 86.5, 92.0, 91.8, and 86.8% for anti-rPgk1 detection, and 80.8, 90.0, 89.4, and 81.8% for anti-rBgl2 detection, respectively. The data clearly demonstrate that the recombinant proteins of Eno1, Pgk1, and Bgl2 are promising candidates for IC serodiagnosis. There's great possibility that the recombinant Eno1 will be more applicable in serodiagnosis and vaccine research on account of its strong serological response.
Collapse
Affiliation(s)
- Zheng-Xin He
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Jing Chen
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Wei Li
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Yan Cheng
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Hai-Pu Zhang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Li-Na Zhang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Tian-Wen Hou
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| |
Collapse
|
29
|
Neville BA, d'Enfert C, Bougnoux ME. Candida albicanscommensalism in the gastrointestinal tract. FEMS Yeast Res 2015; 15:fov081. [DOI: 10.1093/femsyr/fov081] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 12/19/2022] Open
|
30
|
Systems Level Dissection of Candida Recognition by Dectins: A Matter of Fungal Morphology and Site of Infection. Pathogens 2015; 4:639-61. [PMID: 26308062 PMCID: PMC4584279 DOI: 10.3390/pathogens4030639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is an ubiquitous fungal commensal of human skin and mucosal surfaces, and at the same time a major life-threatening human fungal pathogen in immunocompromised individuals. Host defense mechanisms rely on the capacity of professional phagocytes to recognize Candida cell wall antigens. During the past decade, the host immune response to Candida was dissected in depth, highlighting the essential role of C-type lectin receptors, especially regarding the power of the Dectins’ family in discriminating between the tolerated yeast-like form of Candida and its invading counterpart, the hyphae. This review focuses on the immuno-modulatory properties of the Candida morphologies and their specific interactions with the host innate immune system in different body surfaces.
Collapse
|
31
|
Coelho PSR, Im H, Clemons KV, Snyder MP, Stevens DA. Evaluating Common Humoral Responses against Fungal Infections with Yeast Protein Microarrays. J Proteome Res 2015; 14:3924-31. [PMID: 26258609 DOI: 10.1021/acs.jproteome.5b00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We profiled the global immunoglobulin response against fungal infection by using yeast protein microarrays. Groups of CD-1 mice were infected systemically with human fungal pathogens (Coccidioides posadasii, Candida albicans, or Paracoccidioides brasiliensis) or inoculated with PBS as a control. Another group was inoculated with heat-killed yeast (HKY) of Saccharomyces cerevisiae. After 30 days, serum from mice in the groups were collected and used to probe S. cerevisiae protein microarrays containing 4800 full-length glutathione S-transferase (GST)-fusion proteins. Antimouse IgG conjugated with Alexafluor 555 and anti-GST antibody conjugated with Alexafluor 647 were used to detect antibody-antigen interactions and the presence of GST-fusion proteins, respectively. Serum after infection with C. albicans reacted with 121 proteins: C. posadasii, 81; P. brasiliensis, 67; and after HKY, 63 proteins on the yeast protein microarray, respectively. We identified a set of 16 antigenic proteins that were shared across the three fungal pathogens. These include retrotransposon capsid proteins, heat shock proteins, and mitochondrial proteins. Five of these proteins were identified in our previous study of fungal cell wall by mass spectrometry (Ann. N. Y. Acad. Sci. 2012, 1273, 44-51). The results obtained give a comprehensive view of the immunological responses to fungal infections at the proteomic level. They also offer insight into immunoreactive protein commonality among several fungal pathogens and provide a basis for a panfungal vaccine.
Collapse
Affiliation(s)
- Paulo S R Coelho
- Division of Infectious Diseases and Geographic Medicine, Stanford University , 300 Pasteur Drive, Lane L-134, Stanford, California 94305-5107, United States.,California Institute for Medical Research , 2260 Clove Drive, San Jose, California 95128, United States.,Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos Faculdade de Medicina de Ribeirão Preto Avenida dos Bandeirantes, Universidade de São Paulo , Av. Bandeirantes, 3900, Ribeirão Preto, Sao Paulo 14049-900, Brasil
| | - Hogune Im
- Department of Genetics, Stanford University , 300 Pasteur Drive, Stanford, California 94305-5120, United States
| | - Karl V Clemons
- Division of Infectious Diseases and Geographic Medicine, Stanford University , 300 Pasteur Drive, Lane L-134, Stanford, California 94305-5107, United States.,California Institute for Medical Research , 2260 Clove Drive, San Jose, California 95128, United States
| | - Michael P Snyder
- Department of Genetics, Stanford University , 300 Pasteur Drive, Stanford, California 94305-5120, United States
| | - David A Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University , 300 Pasteur Drive, Lane L-134, Stanford, California 94305-5107, United States.,California Institute for Medical Research , 2260 Clove Drive, San Jose, California 95128, United States
| |
Collapse
|
32
|
Crawford A, Wilson D. Essential metals at the host-pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens. FEMS Yeast Res 2015; 15:fov071. [PMID: 26242402 PMCID: PMC4629794 DOI: 10.1093/femsyr/fov071] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
The ability of pathogenic microorganisms to assimilate sufficient nutrients for growth within their hosts is a fundamental requirement for pathogenicity. However, certain trace nutrients, including iron, zinc and manganese, are actively withheld from invading pathogens in a process called nutritional immunity. Therefore, successful pathogenic species must have evolved specialized mechanisms in order to adapt to the nutritionally restrictive environment of the host and cause disease. In this review, we discuss recent advances which have been made in our understanding of fungal iron and zinc acquisition strategies and nutritional immunity against fungal infections, and explore the mechanisms of micronutrient uptake by human pathogenic fungi. The human body tightly sequesters essential micronutrients, restricting their access to invading microorganisms, and pathogenic species must counteract this action of ‘nutritional immunity’.
Collapse
Affiliation(s)
- Aaron Crawford
- Aberdeen Fungal Group, School of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Duncan Wilson
- Aberdeen Fungal Group, School of Medical Sciences, Aberdeen AB25 2ZD, UK
| |
Collapse
|
33
|
Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Obando I, Rodríguez-Ortega MJ. A Pneumococcal Protein Array as a Platform to Discover Serodiagnostic Antigens Against Infection. Mol Cell Proteomics 2015; 14:2591-608. [PMID: 26183717 DOI: 10.1074/mcp.m115.049544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 01/22/2023] Open
Abstract
Pneumonia is one of the most common and severe diseases associated with Streptococcus pneumoniae infections in children and adults. Etiological diagnosis of pneumococcal pneumonia in children is generally challenging because of limitations of diagnostic tests and interference with nasopharyngeal colonizing strains. Serological assays have recently gained interest to overcome some problems found with current diagnostic tests in pediatric pneumococcal pneumonia. To provide insight into this field, we have developed a protein array to screen the antibody response to many antigens simultaneously. Proteins were selected by experimental identification from a collection of 24 highly prevalent pediatric clinical isolates in Spain, using a proteomics approach consisting of "shaving" the cell surface with proteases and further LC/MS/MS analysis. Ninety-five proteins were recombinantly produced and printed on an array. We probed it with a collection of sera from children with pneumococcal pneumonia. From the set of the most seroprevalent antigens, we obtained a clear discriminant response for a group of three proteins (PblB, PulA, and PrtA) in children under 4 years old. We validated the results by ELISA and an immunostrip assay showed the translation to easy-to-use, affordable tests. Thus, the protein array here developed presents a tool for broad use in serodiagnostics.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Jiménez-Munguía
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Gómez-Gascón
- §Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Ignacio Obando
- ¶Sección de Enfermedades Infecciosas Pediátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain
| | - Manuel J Rodríguez-Ortega
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain;
| |
Collapse
|
34
|
Paulovičová E, Bujdáková H, Chupáčová J, Paulovičová L, Kertys P, Hrubiško M. Humoral immune responses to Candida albicans complement receptor 3-related protein in the atopic subjects with vulvovaginal candidiasis. Novel sensitive marker for Candida infection. FEMS Yeast Res 2015; 15:fou001. [DOI: 10.1093/femsyr/fou001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
35
|
Kaba HEJ, Maier N, Schliebe-Ohler N, Mayer Y, Müller PP, van den Heuvel J, Schuchhardt J, Hanack K, Bilitewski U. Identification of whole pathogenic cells by monoclonal antibodies generated against a specific peptide from an immunogenic cell wall protein. J Microbiol Methods 2014; 108:61-9. [PMID: 25451457 DOI: 10.1016/j.mimet.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/28/2014] [Accepted: 11/07/2014] [Indexed: 11/29/2022]
Abstract
We selected the immunogenic cell wall ß-(1,3)-glucosyltransferase Bgl2p from Candida albicans as a target protein for the production of antibodies. We identified a unique peptide sequence in the protein and generated monoclonal anti- C. albicans Bgl2p antibodies, which bound in particular to whole C. albicans cells.
Collapse
Affiliation(s)
- Hani E J Kaba
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Natalia Maier
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Golm, Germany
| | - Nicole Schliebe-Ohler
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Golm, Germany
| | - Yvonne Mayer
- MicroDiscovery GmbH, Marienburger Str., 1, 10405 Berlin, Germany
| | - Peter P Müller
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Joop van den Heuvel
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | | | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Golm, Germany
| | - Ursula Bilitewski
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany.
| |
Collapse
|
36
|
Ardizzoni A, Posteraro B, Baschieri MC, Bugli F, Sáez-Rosòn A, Manca L, Cacaci M, Paroni Sterbini F, De Waure C, Sevilla MJ, Peppoloni S, Sanguinetti M, Moragues MD, Blasi E. An antibody reactivity-based assay for diagnosis of invasive candidiasis using protein array. Int J Immunopathol Pharmacol 2014; 27:403-12. [PMID: 25280031 DOI: 10.1177/039463201402700310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increased incidence of invasive candidiasis and of patients at risk requires early diagnosis and treatment to improve prognosis and survival. The aim of this study was to set up a ten-protein array-based immunoassay to assess the IgG antibody responses against ten well-known immunogenic C. albicans proteins (Bgl2, Eno1, Pgk1, Pdc11, Fba1, Adh1, Als3, Hwp1, Hsp90 and Grp2) in 51 patients with invasive candidiasis (IC) and in 38 culture-negative controls (non-IC). Antibody levels were higher against Bgl2, Eno1, Pgk1, Als3, Hwp1 and Grp2, than against Adh1, Pdc11, Fba1 and Hsp90, irrespectively of the patient group considered. Moreover, the IgG levels against Bgl2, Eno1, Pgk1 and Grp2 were significantly higher in IC than in non-IC patients. Furthermore, the ROC curves generated by the analysis of the antibody responses against Bgl2, Grp2 and Pgk1 displayed AUC values above 0.7, thus discriminating IC and non-IC patients. According to these results, the employment of the microarray immunoassay (a rapid, sensitive and multiparametric system), in parallel with conventional diagnostics, can help to spot IC patients. This ultimately will allow to initiate an early, focused and optimized antifungal therapy.
Collapse
Affiliation(s)
- A Ardizzoni
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - B Posteraro
- Institute of Public Health, Catholic University of the Sacred Heart, Rome Italy
| | - M C Baschieri
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - F Bugli
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - A Sáez-Rosòn
- Infirmary I, País Vasco/Euskal Herriko Universiy, Leioa, Spain
| | - L Manca
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - M Cacaci
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - F Paroni Sterbini
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - C De Waure
- Institute of Public Health, Catholic University of the Sacred Heart, Rome Italy
| | - M J Sevilla
- Department of Immunology, Microbiology and Parasitology, País Vasco/Euskal Herriko University, Leioa, Spain
| | - S Peppoloni
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - M Sanguinetti
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - M D Moragues
- Infirmary I, País Vasco/Euskal Herriko Universiy, Leioa, Spain
| | - E Blasi
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
37
|
Rizzetto L, De Filippo C, Cavalieri D. Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur J Immunol 2014; 44:3166-81. [DOI: 10.1002/eji.201344403] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Lisa Rizzetto
- Research and Innovation Centre; Fondazione Edmund Mach; San Michele all'Adige TN Italy
| | - Carlotta De Filippo
- Research and Innovation Centre; Fondazione Edmund Mach; San Michele all'Adige TN Italy
| | - Duccio Cavalieri
- Research and Innovation Centre; Fondazione Edmund Mach; San Michele all'Adige TN Italy
| |
Collapse
|
38
|
Pitarch A, Nombela C, Gil C. Serum antibody signature directed against Candida albicans Hsp90 and enolase detects invasive candidiasis in non-neutropenic patients. J Proteome Res 2014; 13:5165-84. [PMID: 25377742 DOI: 10.1021/pr500681x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Invasive candidiasis (IC) adds significantly to the morbidity and mortality of non-neutropenic patients if not diagnosed and treated early. To uncover serologic biomarkers that alone or in combination could reliably detect IC in this population, IgG antibody-reactivity profiles to the Candida albicans intracellular proteome were examined by serological proteome analysis (SERPA) and data mining procedures in a training set of 24 non-neutropenic patients. Despite the high interindividual molecular heterogeneity, unsupervised clustering analyses revealed that serum 22-IgG antibody-reactivity patterns differentiated IC from non-IC patients. Univariate analyses further highlighted that 15 out of the 22 SERPA-identified IgG antibodies could be useful candidate IC biomarkers. The diagnostic performance of one of these candidates (anti-Hsp90 IgG antibodies) was validated using an ELISA prototype in a test set of 59 non-neutropenic patients. We then formulated an IC discriminator based on the combined immunoproteomic fingerprints of this and another SERPA-detected and previously validated IC biomarker (anti-Eno1 IgG antibodies) in the training set. Its consistency was substantiated using their ELISA prototypes in the test set. Receiver-operating-characteristic curve analyses showed that this two-biomarker signature accurately identified IC in non-neutropenic patients and provided better IC diagnostic accuracy than the individual biomarkers alone. We conclude that this serum IgG antibody signature directed against C. albicans Hsp90 and Eno1, if confirmed prospectively, may be useful for IC diagnosis in non-neutropenic patients.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
39
|
Kuznets G, Vigonsky E, Weissman Z, Lalli D, Gildor T, Kauffman SJ, Turano P, Becker J, Lewinson O, Kornitzer D. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin. PLoS Pathog 2014; 10:e1004407. [PMID: 25275454 PMCID: PMC4183699 DOI: 10.1371/journal.ppat.1004407] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022] Open
Abstract
Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7−/− mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope. Candida albicans, a commensal fungus of human mucosal surfaces in healthy individuals, is a common cause of superficial infections, as well as of life-threatening systemic infections in individuals suffering from a reduced immune function. As a systemic pathogen, it has to cope with a scarcity of specific nutrients in the host environment, chief among them iron. To overcome this iron limitation, C. albicans is able to extract iron from heme and hemoglobin, the largest iron pools in the human body, via a pathway that involves endocytosis into the cell. Here we show that efficient heme uptake relies on a family of extracellularly-anchored proteins that serve as heme receptors, two of which, at least, are required for efficient heme utilization. Our data suggest the existence of a relay system that transfers heme from one protein to the next across the cell envelope, explaining the requirement for multiple heme receptors for efficient heme-iron utilization. This study extends our understanding of the pathway of host heme utilization by fungal pathogens, and provides new insights into the question of how nutrients such as heme cross the fungal cell wall.
Collapse
Affiliation(s)
- Galit Kuznets
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Elena Vigonsky
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Ziva Weissman
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Daniela Lalli
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Tsvia Gildor
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Sarah J. Kauffman
- Microbiology Department, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Paola Turano
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Jeffrey Becker
- Microbiology Department, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Oded Lewinson
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Daniel Kornitzer
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
- * E-mail:
| |
Collapse
|
40
|
Abstract
The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy, which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and adaptive immune defences that ultimately resolve C. albicans infections during health.
Collapse
|
41
|
Hemoglobin uptake by Paracoccidioides spp. is receptor-mediated. PLoS Negl Trop Dis 2014; 8:e2856. [PMID: 24831516 PMCID: PMC4022528 DOI: 10.1371/journal.pntd.0002856] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/31/2014] [Indexed: 12/14/2022] Open
Abstract
Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, host iron sources that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. present hemolytic activity and have the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in addition to the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used to generate mitotically stable Pbrbt5 mutants. The knockdown strain had a lower survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence factor. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms. Fungal infections contribute substantially to human morbidity and mortality. During infectious processes, fungi have evolved mechanisms to obtain iron from high-affinity iron-binding proteins. In the current study, we demonstrated that hemoglobin is the preferential host iron source for the thermodimorphic fungus Paracoccidioides spp. To acquire hemoglobin, the fungus presents hemolytic activity and the ability to internalize protoporphyrin rings. A putative hemoglobin receptor, Rbt5, was demonstrated to be GPI-anchored at the yeast cell surface. Rbt5 was able to bind to hemin, protoporphyrin and hemoglobin in vitro. When rbt5 expression was inhibited, the survival of Paracoccidioides sp. inside macrophages and the fungal burden in mouse spleen diminished, which indicated that Rbt5 could participate in the establishment of the fungus inside the host. Drugs or vaccines could be developed against Paracoccidioides spp. Rbt5 to disturb iron uptake of this micronutrient and, thus, the proliferation of the fungus. Moreover, this protein could be used in routes to introduce antifungal agents into fungal cells.
Collapse
|
42
|
Green JV, Orsborn KI, Zhang M, Tan QKG, Greis KD, Porollo A, Andes DR, Long Lu J, Hostetter MK. Heparin-binding motifs and biofilm formation by Candida albicans. J Infect Dis 2013; 208:1695-704. [PMID: 23904295 PMCID: PMC4038792 DOI: 10.1093/infdis/jit391] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/30/2013] [Indexed: 01/02/2023] Open
Abstract
Candida albicans is a leading pathogen in infections of central venous catheters, which are frequently infused with heparin. Binding of C. albicans to medically relevant concentrations of soluble and plate-bound heparin was demonstrable by confocal microscopy and enzyme-linked immunosorbent assay (ELISA). A sequence-based search identified 34 C. albicans surface proteins containing ≥1 match to linear heparin-binding motifs. The virulence factor Int1 contained the most putative heparin-binding motifs (n = 5); peptides encompassing 2 of 5 motifs bound to heparin-Sepharose. Alanine substitution of lysine residues K805/K806 in 804QKKHQIHK811 (motif 1 of Int1) markedly attenuated biofilm formation in central venous catheters in rats, whereas alanine substitution of K1595/R1596 in 1593FKKRFFKL1600 (motif 4 of Int1) did not impair biofilm formation. Affinity-purified immunoglobulin G (IgG) recognizing motif 1 abolished biofilm formation in central venous catheters; preimmune IgG had no effect. After heparin treatment of C. albicans, soluble peptides from multiple C. albicans surface proteins were detected, such as Eno1, Pgk1, Tdh3, and Ssa1/2 but not Int1, suggesting that heparin changes candidal surface structures and may modify some antigens critical for immune recognition. These studies define a new mechanism of biofilm formation for C. albicans and a novel strategy for inhibiting catheter-associated biofilms.
Collapse
|
43
|
Kronstad JW, Cadieux B, Jung WH. Pathogenic yeasts deploy cell surface receptors to acquire iron in vertebrate hosts. PLoS Pathog 2013; 9:e1003498. [PMID: 24009498 PMCID: PMC3757031 DOI: 10.1371/journal.ppat.1003498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- James W Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
44
|
Arpaci T, Ugurluer G, Akbas T, Arpaci RB, Serin M. Imaging of the skeletal muscle metastases. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2013. [PMID: 23280019 PMCID: PMC7163697 DOI: 10.1002/ddr.21049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Copyright 2011 Wiley-Liss, Inc., A Wiley CompanyThis article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. Omics technologies include genomics, transcriptomics, proteomics, metabolomics, and immunomics. These technologies have been used in vaccine research, which can be summarized using the term “vaccinomics.” These omics technologies combined with advanced bioinformatics analysis form the core of “systems vaccinology.” Omics technologies provide powerful methods in vaccine target identification. The genomics‐based reverse vaccinology starts with predicting vaccine protein candidates through in silico bioinformatics analysis of genome sequences. The VIOLIN Vaxign vaccine design program (http://www.violinet.org/vaxign) is the first web‐based vaccine target prediction software based on the reverse vaccinology strategy. Systematic transcriptomics and proteomics analyses facilitate rational vaccine target identification by detesting genome‐wide gene expression profiles. Immunomics is the study of the set of antigens recognized by host immune systems and has also been used for efficient vaccine target prediction. With the large amount of omics data available, it is necessary to integrate various vaccine data using ontologies, including the Gene Ontology (GO) and Vaccine Ontology (VO), for more efficient vaccine target prediction and assessment. All these omics technologies combined with advanced bioinformatics analysis methods for a systems biology‐based vaccine target prediction strategy. This article reviews the various omics technologies and how they can be used in vaccine target identification.
Collapse
Affiliation(s)
- T Arpaci
- Department of Radiology, Acibadem Adana Hospital, Adana, Turkey.
| | | | | | | | | |
Collapse
|
45
|
Investigation of the function of Candida albicans Als3 by heterologous expression in Candida glabrata. Infect Immun 2013; 81:2528-35. [PMID: 23630968 DOI: 10.1128/iai.00013-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During hematogenously disseminated infection, blood-borne Candida albicans invades the endothelial cell lining of the vasculature to invade the deep tissues. Although the C. albicans Als3 invasin is critical for invasion and damage of endothelial cells in vitro, a C. albicans als3Δ/Δ mutant has normal virulence in the mouse model of disseminated infection. We hypothesized that the contribution of Als3 to virulence is obscured by the presence of additional C. albicans invasins. To elucidate the in vivo function of Als3, we heterologously expressed C. albicans ALS3 in Candida glabrata, a yeast that lacks a close ALS3 ortholog and has low virulence in mice. We found that following intravenous inoculation into mice, the ALS3-expressing strain preferentially trafficked to the brain, where it induced significantly elevated levels of myeloperoxidase, tumor necrosis factor, monocyte chemoattractant protein 1, and gamma interferon. Also, the ALS3-expressing strain had enhanced adherence to and invasion of human brain microvascular endothelial cells in vitro, demonstrating a potential mechanism for ALS3-mediated neurotropism. In addition, upon initiation of infection, the ALS3-expressing strain had increased trafficking to the cortex of the kidneys. With prolonged infection, this strain persisted in the kidneys at significantly higher levels than the control strain but did not induce an elevated inflammatory response. Finally, the ALS3-expressing strain had increased resistance to neutrophil killing in vitro. These results indicate that during disseminated infection, Als3 mediates initial trafficking to the brain and renal cortex and contributes to fungal persistence in the kidneys.
Collapse
|
46
|
Does Candida albicans Als5p amyloid play a role in commensalism in Caenorhabditis elegans? EUKARYOTIC CELL 2013; 12:703-11. [PMID: 23475704 DOI: 10.1128/ec.00020-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Candida albicans, a dimorphic fungus and an opportunistic pathogen, possesses a myriad of adherence factors, including members of the agglutinin-like sequence (Als) family of mannoproteins. The adhesin Als5p mediates adhesion to many substrates and is upregulated during commensal interactions but is downregulated during active C. albicans infections. An amyloid-forming core sequence at residues 325 to 331 is important for Als5p function, because a single-amino-acid substitution at position 326 (V326N) greatly reduces Als5p-mediated adherence. We evaluated the role of Als5p in host-microbe interactions by using Caenorhabditis elegans nematodes as a host model and feeding them Saccharomyces cerevisiae expressing Als5p on the surface. Als5p-expressing yeast had 8.5- and 3.5-fold-increased intestinal accumulation rates compared to Als5p-nonexpressing S. cerevisiae or yeast expressing amyloid-deficient Als5p(V326N), respectively. Surprisingly, this accumulation delayed S. cerevisiae-induced killing of C. elegans. The median survival time was nearly twice as long as that of nematodes fed nonexpressing or non-amyloid-forming Als5p(V326N)-expressing S. cerevisiae. Treatment with the amyloid-inhibiting dye Congo red or repression of Als5p expression abrogated the protective effect of Als5p. Furthermore, Als5p had no effect on oocyte quantity or quality, since nematodes fed either empty vector (EV)- or Als5p(V326N)-expressing S. cerevisiae had similar egg-laying and egg-hatching rates. This study is the first, to our knowledge, to show that expression of an amyloid-forming protein can attenuate pathogenicity in C. elegans.
Collapse
|
47
|
Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol 2013; 202:183-95. [DOI: 10.1007/s00430-013-0288-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 01/04/2023]
|
48
|
Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B. Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 2012; 10:85-93. [PMID: 22149617 DOI: 10.1586/eri.11.152] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to switch between yeast and hyphal growth forms (dimorphism) is one of the most discussed and best investigated virulence attributes of the human pathogenic fungus Candida albicans. Both morphological forms seem to be important for virulence and have distinct functions during the different stages of disease development, including adhesion, invasion, damage, dissemination, immune evasion and host response. In this review, we will provide an overview of the known and potential roles of C. albicans dimorphism and will discuss the potential benefit of drugs that can inhibit the morphological transition.
Collapse
Affiliation(s)
- Ilse D Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute Jena, Beutenbergstraße 11a, D-07745, Jena, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Liang L, Felgner PL. Predicting antigenicity of proteins in a bacterial proteome; a protein microarray and naïve Bayes classification approach. Chem Biodivers 2012; 9:977-90. [PMID: 22589097 DOI: 10.1002/cbdv.201100360] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discovery of novel antigens associated with infectious diseases is fundamental to the development of serodiagnostic tests and protein subunit vaccines against existing and emerging pathogens. Efforts to predict antigenicity have relied on a few computational algorithms predicting signal peptide sequences (SignalP), transmembrane domains, or subcellular localization (pSort). An empirical protein microarray approach was developed to scan the entire proteome of any infectious microorganism and empirically determine immunoglobulin reactivity against all the antigens from a microorganism in infected individuals. The current database from this activity contains quantitative antibody reactivity data against 35,000 proteins derived from 25 infectious microorganisms and more than 30 million data points derived from 15,000 patient sera. Interrogation of these data sets has revealed ten proteomic features that are associated with antigenicity, allowing an in silico protein sequence and functional annotation based approach to triage the least likely antigenic proteins from those that are more likely to be antigenic. The first iteration of this approach applied to Brucella melitensis predicted 37% of the bacterial proteome containing 91% of the antigens empirically identified by probing proteome microarrays. In this study, we describe a naïve Bayes classification approach that can be used to assign a relative score to the likelihood that an antigen will be immunoreactive and serodiagnostic in a bacterial proteome. This algorithm predicted 20% of the B. melitensis proteome including 91% of the serodiagnostic antigens, a nearly twofold improvement in specificity of the predictor. These results give us confidence that further development of this approach will lead to further improvements in the sensitivity and specificity of this in silico predictive algorithm.
Collapse
Affiliation(s)
- Li Liang
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
50
|
Gow NAR, Hube B. Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 2012; 15:406-12. [DOI: 10.1016/j.mib.2012.04.005] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 01/09/2023]
|