1
|
Gao X, He XX, Zhu XR, Wu Y, Lu J, Chen XL, Zhao CS, Li HY, Zhang ZF, Liu SW, Xiao GF, Pan XY. Identification of Licoflavone C as a cap-dependent endonuclease inhibitor against severe fever with thrombocytopenia syndrome virus. Acta Pharmacol Sin 2025:10.1038/s41401-025-01533-7. [PMID: 40169781 DOI: 10.1038/s41401-025-01533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with a high fatality rate. Currently no approved drugs or vaccines are available against it. Sharing a common replication mechanism with negative-stranded, segmented viruses (NSVs), SFTSV utilizes a cap-dependent endonuclease (CEN) domain of the L segment to execute the cap-snatching process upon genome transcription initiation. Given the crucial role of CEN in the life cycle of NSVs, it is considered a promising target for discovery of antiviral agents against SFTSV. In this study, we established a high-throughput FRET-based enzymatic screening system to discover inhibitors of SFTSV CEN from a chemical library containing 3467 natural compounds. Finally, three compounds, i.e., Licoflavone C, 3,4-dicaffeoylquinic acid, and oleanolic acid displayed exceptional antiviral effects and minimal cytotoxicity. Licoflavone C (EC50 = 1.85 μM) was selected for further investigation. Administration of Licoflavone C (20 mg/kg, i.v.) significantly reduced tissue viral loads in SFTSV-challenged mouse model. We demonstrated that Licoflavone C did not directly bind to the active pocket of SFTSV CEN but disrupted its active conformation, resulting in substrate non-competitive inhibition. Licoflavone C also exhibited broad-spectrum inhibition on several NSV CENs (HRTV, GTV, and LCMV) besides SFTSV. Furthermore, 15 analogs of Licoflavone C sharing a typical flavonoid structure were verified for targeting SFTSV CEN and exhibiting antiviral activities. In conclusion, Licoflavone C is a promising inhibitor of SFTSV, offering insights into targeting CEN with flavonoids in drug discovery.
Collapse
Affiliation(s)
- Xiao Gao
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Xiao-Xue He
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
| | - Xue-Rui Zhu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
| | - Yan Wu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
| | - Jia Lu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Xin-Lan Chen
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Chen-Shu Zhao
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
| | - Hao-Yu Li
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhong-Fa Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
| | - Shu-Wen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Geng-Fu Xiao
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Xiao-Yan Pan
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China.
- University of Chinese Academy of Sciences, Beijing, 101400, China.
| |
Collapse
|
2
|
Subbiah J, Royster A, Mir S, Mir M. Development of FRET-based cap-snatching endonuclease assay. Microbiol Spectr 2025; 13:e0328924. [PMID: 40162770 PMCID: PMC12054126 DOI: 10.1128/spectrum.03289-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/02/2025] [Indexed: 04/02/2025] Open
Abstract
The order Bunyavirales consists of over 300 species of segmented, negative-strand RNA viruses. These viruses have a tri-segmented genome (S, M, and L segments) that encodes the nucleocapsid protein (N protein), glycoprotein precursor, and RNA-dependent RNA polymerase (RdRp), respectively. The RdRp is a large protein (~420 kDa) responsible for synthesizing viral mRNA and replicating the viral genome. Bunyaviruses initiate transcription of viral mRNA through a unique cap-snatching mechanism. During this process, the N-terminal endonuclease domain of the RdRp cleaves host cell mRNA at the 5' terminus and uses the resulting capped mRNA fragment as a primer. This endonuclease domain exhibits a highly conserved structural architecture and is essential for establishing viral infection in host cells. Therefore, the N-terminal endonuclease domain represents a promising target for therapeutic intervention against Bunyaviruses, particularly at the early stages of the virus replication cycle. In this study, we developed a highly sensitive fluorescence resonance energy transfer-based in vitro assay to quantitatively examine the activity of the bacterially expressed and purified endonuclease domain of hantavirus RdRp. A 20-nucleotide synthetic RNA, labeled with a 6-FAM fluorophore at the 5' end and an Iowa Black quencher at the 3' end, generated a significant dequenched fluorescence signal upon cleavage by the purified endonuclease domain. Kinetic analysis revealed a half-life (t1/2) of approximately 3 min for the reaction, achieving a signal-to-background ratio of approximately 31. IMPORTANCE Viruses belonging to the order Bunyavirales, including Hantaviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, Severe Fever with Thrombocytopenia Syndrome Virus, and La Crosse encephalitis virus, cause severe human illnesses with mortality rates in certain outbreaks reaching 50%, 10%-40%, 10%-20%, 6%-30%, and 1%, respectively. Currently, there are no Food and Drug Administration-approved vaccines or antiviral therapeutics available for these viruses. The highly efficient and cost-effective fluorescence resonance energy transfer-based in vitro endonuclease assay, having a quantitative fluorescence readout, can be optimized for high-throughput screening of chemical libraries to identify chemical inhibitors for the Bunyavirus cap-snatching endonuclease. The assay will be of critical importance for antiviral drug discovery against numerous negative-strand RNA viruses using cap-snatching mechanism for transcription initiation and replication of the RNA genome.
Collapse
Affiliation(s)
- Jeeva Subbiah
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Austin Royster
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Sheema Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Mohammad Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
3
|
Takáts K, Pankovics P, Balázs B, Boros Á, Mátics R, Reuter G. Novel relatives of Mecsek Mountains mammarenavirus (family Arenaviridae) in hedgehogs living in different sampling areas in Hungary. Sci Rep 2025; 15:2907. [PMID: 39849055 PMCID: PMC11758386 DOI: 10.1038/s41598-025-87108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Mammarenaviruses (genus Mammarenavirus, family Arenaviridae) are rodent-borne zoonotic viruses consisting of 52 viral species, including ten that are pathogenic to humans. Currently, only two endemic mammarenavirus species are known in Europe: the human pathogenic Mammarenavirus choriomeningitidis (LCMV) and the recently discovered hedgehog-origin Mammarenavirus mecsekense (MEMV). In this study, 59 faecal specimens from Northern white-breasted hedgehogs (Erinaceus roumanicus) from different geographic regions in Hungary were investigated for mammarenavirus presence and complete genome characterization using newly designed screening primers by RT-semi-nested PCR and sequencing methods. Five (8.5%) of the 59 samples tested positive for mammarenavirus RNA (ER8, ER15, ER27, ER33, and ER39, GenBank accession numbers PQ441959-PQ441968). The L- and S-segments of these strains showed 66-93% and 73-92% nt identity to the closest known mammarenavirus, MEMV, respectively. The NP protein exhibited 86-97% aa sequence identity compared to the corresponding protein of MEMV. Notably, the S-segment intergenic region (S-IGR) of strains ER8, ER15, ER27 and ER33 exceeded the average nt length among known mammarenaviruses and contained two, highly similar stem-loop structures with conserved self-complementary nucleotide motifs. Based on the sequence- and phylogenetic analysis these strains (ER8, ER15, ER27 and ER33) potentially represent a novel mammarenavirus species, tentatively named Pannonia mammarenavirus (PANV).
Collapse
Affiliation(s)
- Károly Takáts
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Benigna Balázs
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Róbert Mátics
- Hungarian Nature Research Society, Ajka, Hungary
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.
| |
Collapse
|
4
|
Hackbart M, López CB. Characterization of non-standard viral genomes during arenavirus infections identifies prominent S RNA intergenic region deletions. mBio 2024; 15:e0161224. [PMID: 39258905 PMCID: PMC11481572 DOI: 10.1128/mbio.01612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Arenaviruses, a family of negative-sense RNA viruses spread by rodents, are a leading cause of severe hemorrhagic fever in humans. Due to a paucity of antivirals and vaccines for arenaviruses, there is a need to identify new mechanisms for interfering with arenavirus replication. In several negative-sense RNA viruses, natural viral interference results from the production of non-standard viral genomes (nsVGs) that activate the innate immune system and/or compete for essential viral products. Although it is well established that arenaviruses produce strong interfering activities, it is unknown if they produce interfering nsVGs. Here, we show that arenaviruses produce deletions within the intergenic region of their small (S) RNA genome, and these deletions inhibit viral glycoprotein production during minigenome replication. S RNA deletions are more abundant when arenaviruses are grown in high-interfering conditions and are associated with reduced viral replication. Overall, we found that arenaviruses produce internal deletions within the S RNA intergenic region that are capable of decreasing glycoprotein production. These natural arenavirus interfering molecules provide a new target for the generation of therapeutics against arenaviruses.IMPORTANCEArenaviruses are hemorrhagic fever-causing pathogens that infect millions of people a year. There are currently no approved antivirals that target arenaviruses, and understanding natural mechanisms that inhibit arenavirus replication is crucial for the development of effective therapeutics. Here, we identified multiple deletions within arenavirus genomes that remove major replicative elements of the viral genomes. We show that deletions that remove the intergenic region of the viral genome can prevent viral protein production. These deletions were found in all arenaviruses tested in this study representing a mechanism that could be harnessed for the development of antivirals that broadly target the arenavirus family.
Collapse
Affiliation(s)
- Matthew Hackbart
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Liu K, Li L, Liu Y, Wang X, Liu J, Li J, Deng F, Zhang R, Zhou Y, Hu Z, Zhong W, Wang M, Guo C. Discovery of baloxavir sodium as a novel anti-CCHFV inhibitor: Biological evaluation of in vitro and in vivo. Antiviral Res 2024; 227:105890. [PMID: 38657838 DOI: 10.1016/j.antiviral.2024.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic bunyavirus with a fatality rate of up to 40%. Currently, there are no licensed antiviral drugs for the treatment of CCHF; thus, the World Health Organization (WHO) listed the disease as a priority. A unique viral transcription initiation mechanism called "cap-snatching" is shared by influenza viruses and bunyaviruses. Thus, we tested whether baloxavir (an FDA-approved anti-influenza drug that targets the "cap-snatching" mechanism) could inhibit CCHFV infection. In cell culture, baloxavir acid effectively inhibited CCHFV infection and targeted CCHFV RNA transcription/replication. However, it has weak oral bioavailability. Baloxavir marboxil (the oral prodrug of baloxavir) failed to protect mice against a lethal dose challenge of CCHFV. To solve this problem, baloxavir sodium was synthesized owing to its enhanced aqueous solubility and pharmacokinetic properties. It consistently and significantly improved survival rates and decreased tissue viral loads. This study identified baloxavir sodium as a novel scaffold structure and mechanism of anti-CCHF compound, providing a promising new strategy for clinical treatment of CCHF after further optimization.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liushuai Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yajie Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jia Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Runze Zhang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430010, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| | - Chun Guo
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
6
|
Williams HM, Thorkelsson S, Vogel D, Busch C, Milewski M, Cusack S, Grünewald K, Quemin EJ, Rosenthal M. Structural snapshots of phenuivirus cap-snatching and transcription. Nucleic Acids Res 2024; 52:6049-6065. [PMID: 38709882 PMCID: PMC11162785 DOI: 10.1093/nar/gkae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a human pathogen that is now endemic to several East Asian countries. The viral large (L) protein catalyzes viral transcription by stealing host mRNA caps via a process known as cap-snatching. Here, we establish an in vitro cap-snatching assay and present three high-quality electron cryo-microscopy (cryo-EM) structures of the SFTSV L protein in biologically relevant, transcription-specific states. In a priming-state structure, we show capped RNA bound to the L protein cap-binding domain (CBD). The L protein conformation in this priming structure is significantly different from published replication-state structures, in particular the N- and C-terminal domains. The capped-RNA is positioned in a way that it can feed directly into the RNA-dependent RNA polymerase (RdRp) ready for elongation. We also captured the L protein in an early-elongation state following primer-incorporation demonstrating that this priming conformation is retained at least in the very early stages of primer extension. This structural data is complemented by in vitro biochemical and cell-based assays. Together, these insights further our mechanistic understanding of how SFTSV and other bunyaviruses incorporate stolen host mRNA fragments into their viral transcripts thereby allowing the virus to hijack host cell translation machinery.
Collapse
Affiliation(s)
- Harry M Williams
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Sigurdur R Thorkelsson
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Dominik Vogel
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Carola Busch
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Morlin Milewski
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | | | - Kay Grünewald
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Emmanuelle R J Quemin
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Department of Virology, Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS) UMR9198, Gif-sur-Yvette, France
| | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Discovery Research ScreeningPort, Hamburg, Germany
| |
Collapse
|
7
|
Miglioli F, Joel S, Tegoni M, Neira-Pelén P, Günther S, Carcelli M, Fisicaro E, Brancale A, Fernández-García Y, Rogolino D. Inhibitory interactions of the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold with Bunyavirales cap-snatching endonucleases expose relevant drug design features. Eur J Med Chem 2024; 272:116467. [PMID: 38735150 DOI: 10.1016/j.ejmech.2024.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
The World Health Organization (WHO) identifies several bunyaviruses as significant threats to global public health security. Developing effective therapies against these viruses is crucial to combat future outbreaks and mitigate their impact on patient outcomes. Here, we report the synthesis of some isoindol-1-one derivatives and explore their inhibitory properties over an indispensable metal-dependent cap-snatching endonuclease (Cap-ENDO) shared among evolutionary divergent bunyaviruses. The compounds suppressed RNA hydrolysis by Cap-ENDOs, with IC50 values predominantly in the lower μM range. Molecular docking studies revealed the interactions with metal ions to be essential for the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold activity. Calorimetric analysis uncovered Mn2+ ions to have the highest affinity for sites within the targets, irrespective of aminoacidic variations influencing metal cofactor preferences. Interestingly, spectrophotometric findings unveiled sole dinuclear species formation between the scaffold and Mn2+. Moreover, the complexation of two Mn2+ ions within the viral enzymes appears to be favourable, as indicated by the binding of compound 11 to TOSV Cap-ENDO (Kd = 28 ± 3 μM). Additionally, the tendency of compound 11 to stabilize His+ more than His- Cap-ENDOs suggests exploitable differences in their catalytic pockets relevant to improving specificity. Collectively, our results underscore the isoindolinone scaffold's potential as a strategic starting point for the design of pan-antibunyavirus drugs.
Collapse
Affiliation(s)
- Francesca Miglioli
- Department of Chemistry, Life Sciences, Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Shindhuja Joel
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences, Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Pedro Neira-Pelén
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences, Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Emilia Fisicaro
- Department of Food and Drug, University of Parma, Viale delle Scienze 27/A, 43124, Parma, Italy
| | - Andrea Brancale
- Department of Organic Chemistry, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Yaiza Fernández-García
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences, Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.
| |
Collapse
|
8
|
Feracci M, Hernandez S, Garlatti L, Mondielli C, Vincentelli R, Canard B, Reguera J, Ferron F, Alvarez K. Biophysical and structural study of La Crosse virus endonuclease inhibition for the development of new antiviral options. IUCRJ 2024; 11:374-383. [PMID: 38656310 PMCID: PMC11067750 DOI: 10.1107/s205225252400304x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The large Bunyavirales order includes several families of viruses with a segmented ambisense (-) RNA genome and a cytoplasmic life cycle that starts by synthesizing viral mRNA. The initiation of transcription, which is common to all members, relies on an endonuclease activity that is responsible for cap-snatching. In La Crosse virus, an orthobunyavirus, it has previously been shown that the cap-snatching endonuclease resides in the N-terminal domain of the L protein. Orthobunyaviruses are transmitted by arthropods and cause diseases in cattle. However, California encephalitis virus, La Crosse virus and Jamestown Canyon virus are North American species that can cause encephalitis in humans. No vaccines or antiviral drugs are available. In this study, three known Influenza virus endonuclease inhibitors (DPBA, L-742,001 and baloxavir) were repurposed on the La Crosse virus endonuclease. Their inhibition was evaluated by fluorescence resonance energy transfer and their mode of binding was then assessed by differential scanning fluorimetry and microscale thermophoresis. Finally, two crystallographic structures were obtained in complex with L-742,001 and baloxavir, providing access to the structural determinants of inhibition and offering key information for the further development of Bunyavirales endonuclease inhibitors.
Collapse
Affiliation(s)
- Mikael Feracci
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS–Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
| | - Sergio Hernandez
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS–Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
- Université Lille; INSERM, UMR-S 1172, Lille Neuroscience and Cognition Research Centre, 59000 Lille, France
| | - Laura Garlatti
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS–Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
- OmegaChem, Lévis, 480 Rue Perreault, Québec G6W 7V6, Canada
| | - Clemence Mondielli
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS–Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
- Evotec (France) SAS, Campus Curie, 195 Route d’Espagne, 31036 Toulouse, France
| | - Renaud Vincentelli
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS–Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
| | - Bruno Canard
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS–Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Juan Reguera
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS–Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
| | - François Ferron
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS–Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Karine Alvarez
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS–Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
| |
Collapse
|
9
|
Nandy S, Bora NR, Gaurav S, Kumar S. The p30 protein of the African swine fever virus behaves as an RNase. Virology 2024; 590:109967. [PMID: 38086285 DOI: 10.1016/j.virol.2023.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
The African Swine Fever Virus (ASFV) is responsible for causing African Swine Fever (ASF), a severe contagious disease characterized by hemorrhagic symptoms. The p30 protein of ASFV is the most abundantly expressed viral protein. It is reported to be antigenic and has recognized phosphorylation, glycosylation, and membrane attachment sites, which also shows that the C-terminal region of p30 is more active than the N-terminal region. The present study reports the unique RNase activity of recombinant p30. The RNase activity of p30 was stable at an optimum temperature of 37 °C, and the maximum activity was recorded at pH 7-9 in the presence of monovalent salts. The mutant of p30 (p30m), where cysteine was mutated to alanine at position 109, showed a loss of RNase activity. Our understanding of ASFV biology is significantly less; until now, we have little knowledge about the functions of its proteins. The results of the present study will assist in exploring the biology of ASFV and the role of its protein in counteracting the host immune response.
Collapse
Affiliation(s)
- Satyendu Nandy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nilave Ranjan Bora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shubham Gaurav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
10
|
Uribe FR, González VPI, Kalergis AM, Soto JA, Bohmwald K. Understanding the Neurotrophic Virus Mechanisms and Their Potential Effect on Systemic Lupus Erythematosus Development. Brain Sci 2024; 14:59. [PMID: 38248274 PMCID: PMC10813552 DOI: 10.3390/brainsci14010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.
Collapse
Affiliation(s)
- Felipe R. Uribe
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Valentina P. I. González
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Santiago 8910060, Chile
| |
Collapse
|
11
|
Hackbart M, López CB. S RNA Intergenic Deletions Drive Viral Interference during Arenavirus Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564889. [PMID: 37961573 PMCID: PMC10635013 DOI: 10.1101/2023.10.31.564889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Arenaviruses, a family of negative-sense RNA viruses spread by rodents, are a leading cause of severe hemorrhagic fever in humans. Due to a paucity of antivirals and vaccines for arenaviruses, there is a need to identify new mechanisms for interfering with arenavirus replication. In several negative-sense RNA viruses, natural viral interference results from the production of non-standard viral genomes (nsVGs) that activate the innate immune system and/or compete for essential viral products. Although it is well established that arenaviruses produce strong interfering activities, it is unknown if they produce interfering nsVGs. Here we show that arenaviruses produce deletions within the intergenic region of their Small (S) RNA genome, which prevents the production of viral mRNA and protein. These deletions are more abundant when arenaviruses are grown in high-interfering conditions and are associated with inhibited viral replication. Overall, we found that arenaviruses produce internal deletions within the S RNA intergenic region that are produced by arenaviruses and can block viral replication. These natural arenavirus interfering molecules provide a new target for the generation of antivirals as well as an alternative strategy for producing attenuated arenaviruses for vaccines.
Collapse
Affiliation(s)
- Matthew Hackbart
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. MO
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. MO
| |
Collapse
|
12
|
He X, Yang F, Wu Y, Lu J, Gao X, Zhu X, Yang J, Liu S, Xiao G, Pan X. Identification of tanshinone I as cap-dependent endonuclease inhibitor with broad-spectrum antiviral effect. J Virol 2023; 97:e0079623. [PMID: 37732786 PMCID: PMC10617418 DOI: 10.1128/jvi.00796-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/23/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE The spread of avian-borne, tick-borne, and rodent-borne pathogens has the potential to pose a serious threat to human health, and candidate vaccines as well as therapeutics for these pathogens are urgently needed. Tanshinones, especially tanshinone I, were identified as a cap-dependent endonuclease inhibitor with broad-spectrum antiviral effects on negative-stranded, segmented RNA viruses including bandavirus, orthomyxovirus, and arenavirus from natural products, implying an important resource of candidate antivirals from the traditional Chinese medicines. This study supplies novel candidate antivirals for the negative-stranded, segmented RNA virus and highlights the endonuclease involved in the cap-snatching process as a reliable broad-spectrum antiviral target.
Collapse
Affiliation(s)
- Xiaoxue He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fan Yang
- The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Jia Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| | - Xuerui Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Jie Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Bezerra EHS, Melo-Hanchuk TD, Marques RE. Structural and molecular biology of Sabiá virus. Exp Biol Med (Maywood) 2023; 248:1624-1634. [PMID: 37937408 PMCID: PMC10723027 DOI: 10.1177/15353702231199071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Brazilian mammarenavirus, or Sabiá virus (SABV), is a New World (NW) arenavirus associated with fulminant hemorrhagic disease in humans and the sole biosafety level 4 microorganism ever isolated in Brazil. Since the isolation of SABV in the 1990s, studies on viral biology have been scarce, with no available countermeasures against SABV infection or disease. Here we provide a comprehensive review of SABV biology, including key aspects of SABV replication, and comparisons with related Old World and NW arenaviruses. SABV is most likely a rodent-borne virus, transmitted to humans, through exposure to urine and feces in peri-urban areas. Using protein structure prediction methods and alignments, we analyzed shared and unique features of SABV proteins (GPC, NP, Z, and L) that could be explored in search of therapeutic strategies, including repurposing intended application against arenaviruses. Highly conserved catalytic activities present in L protein could be targeted for broad-acting antiviral activity among arenaviruses, while protein-protein interactions, such as those between L and the matrix protein Z, have evolved in NW arenaviruses and should be specific to SABV. The nucleoprotein (NP) also shares targetable interaction interfaces with L and Z and exhibits exonuclease activity in the C-terminal domain, which may be involved in multiple aspects of SABV replication. Envelope glycoproteins GP1 and GP2 have been explored in the development of promising cross-reactive neutralizing antibodies and vaccines, some of which could be repurposed for SABV. GP1 remains a challenging target in SABV as evolutive pressures render it the most variable viral protein in terms of both sequence and structure, while antiviral strategies targeting the Z protein remain to be validated. In conclusion, the prediction and analysis of protein structures should revolutionize research on viruses such as SABV by facilitating the rational design of countermeasures while reducing dependence on sophisticated laboratory infrastructure for experimental validation.
Collapse
Affiliation(s)
| | | | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo 13083-100, Brazil
| |
Collapse
|
14
|
Reuter G, Boros Á, Takáts K, Mátics R, Pankovics P. A novel mammarenavirus (family Arenaviridae) in hedgehogs (Erinaceus roumanicus) in Europe. Arch Virol 2023; 168:174. [PMID: 37291370 DOI: 10.1007/s00705-023-05804-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023]
Abstract
In this study, a novel mammarenavirus (family Arenaviridae) was identified in a hedgehog (family Erinaceidae) in Hungary and genetically characterized. Mecsek Mountains virus (MEMV, OP191655, OP191656) was detected in nine (45%) out of 20 faecal specimens collected from a Northern white-breasted hedgehog (Erinaceus roumanicus). The L-segment proteins (RdRp and Z) and S-segment proteins (NP and GPC) of MEMV had 67.5%/70% and 74.6%/65.6% amino acid sequence identity, respectively, to the corresponding proteins of Alxa virus (species Mammarenavirus alashanense) identified recently in an anal swab from a three-toed jerboa (Dipus sagitta) in China. MEMV is the second known arenavirus endemic in Europe.
Collapse
Affiliation(s)
- Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary.
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| | - Károly Takáts
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| | | | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| |
Collapse
|
15
|
Said TAE, Ibrahim SMMM, Hammad MY, Youssef NE. Identity of tissue culture adapted Rift Valley Fever Virus (ZH501).. [DOI: 10.21203/rs.3.rs-2456880/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Rift Valley Fever (RVF) is still a threatening zoonotic disease with periodic reemergence in several countries. Egypt is endemic with RVF and uses an inactivated vaccine for control of the disease. Routine testing of the tissue culture adapted seed virus (ZH501-TC), to assess the effect of nucleotide mutations, is essential for the purpose of vaccine production. At the present work we have analyzed partial nucleotide and deduced amino acid sequence of amplified 745 bp product of M segment Gn ectodomain and checked virulence in mice. Allocation of ZH501-TC strain at the A designated lineage with the virulent parental RVFV isolated in 1977, ZH501 Egy Sh 77 indicates its genomic stability after passaging in tissue culture cells for vaccine preparation. Here we denoted a new missense nucleotide mutation A1312G corresponding to the amino acid mutation N371S, in current study the ZH501-TC strain (MZ218760) compared to the parental virulent RVFV isolate ZH501 Egy Sh 77 ( previous sequence ). That mutation enhanced ß sheet formation in ZH501-TC 367AQYASAYCS375 motif which might increase virus antigenicity. In addition, we have confirmed the presence of two sites of nucleotides substitutions; C1033T and A1206C, corresponding to two amino acids changes; T287I and S336R. Our study declared the false notion of the presence of one missense nucleotide mutation; A1252G corresponding to the amino acid mutation K351R, and two other silent nucleotide substitutions; T1257A and G1258C at the strain ZH501-VSVRI. Although we found these mutations, the virulence of the ZH501-TC strain was still present as approved by mice pathogenicity test.
Collapse
|
16
|
D'Antuono AL, Gallo GL, Sepulveda C, Fernández J, Brignone J, Gamboa G, Riera L, Saavedra MDC, López N. cis-Acting Element at the 5' Noncoding Region of Tacaribe Virus S RNA Modulates Genome Replication. J Virol 2023; 97:e0012523. [PMID: 36786631 PMCID: PMC10062143 DOI: 10.1128/jvi.00125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
Tacaribe virus (TCRV) is the prototype of New World mammarenaviruses, a group that includes several members that cause hemorrhagic fevers in humans. The TCRV genome comprises two RNA segments, named S (small) and L (large). Both genomic segments contain noncoding regions (NCRs) at their 5' and 3' ends. While the 5'- and 3'-terminal 19-nucleotide sequences are known to be essential for promoter function, the role of their neighboring internal noncoding region (iNCR) sequences remains poorly understood. To analyze the relevance of the 5' and 3' iNCRs in TCRV S RNA synthesis, mutant S-like minigenomes and miniantigenomes were generated. Using a minireplicon assay, Northern blotting, and reverse transcription-quantitative PCR, we demonstrated that the genomic 5' iNCR is specifically engaged in minigenome replication yet is not directly involved in minigenome transcription, and we showed that the S genome 3' iNCR is barely engaged in this process. Analysis of partial deletions and point mutations, as well as total or partial substitution of the 5' iNCR sequence, led us to conclude that the integrity of the whole genomic 5' iNCR is essential and that a local predicted secondary structure or RNA-RNA interactions between the 5' and 3' iNCRs are not strictly required for viral S RNA synthesis. Furthermore, we employed a TCRV reverse genetic approach to ask whether manipulation of the S genomic 5' iNCR sequence may be suitable for viral attenuation. We found that mutagenesis of the 5' promoter-proximal subregion slightly impacted recombinant TCRV virulence in vivo. IMPORTANCE The Mammarenavirus genus of the Arenaviridae family includes several members that cause severe hemorrhagic fevers associated with high morbidity and mortality rates, for which no FDA-approved vaccines and limited therapeutic resources are available. We provide evidence demonstrating the specific involvement of the TCRV S 5' noncoding sequence adjacent to the viral promoter in replication. In addition, we examined the relevance of this region in the context of an in vivo infection. Our findings provide insight into the mechanism through which this 5' viral RNA noncoding region assists the L polymerase for efficient viral S RNA synthesis. Also, these findings expand our understanding of the effect of genetic manipulation of New World mammarenavirus sequences aimed at the rational design of attenuated recombinant virus vaccine platforms.
Collapse
Affiliation(s)
- Alejandra L. D'Antuono
- Centro de Virología Humana y Animal, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad Abierta Interamericana, Buenos Aires, Argentina
| | - Giovanna L. Gallo
- Centro de Virología Humana y Animal, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad Abierta Interamericana, Buenos Aires, Argentina
| | - Claudia Sepulveda
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jonás Fernández
- Centro de Virología Humana y Animal, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad Abierta Interamericana, Buenos Aires, Argentina
| | - Julia Brignone
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, ANLIS-Malbran, Ministerio de Salud de la Nación, Pergamino, Buenos Aires, Argentina
| | - Graciela Gamboa
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, ANLIS-Malbran, Ministerio de Salud de la Nación, Pergamino, Buenos Aires, Argentina
| | - Laura Riera
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, ANLIS-Malbran, Ministerio de Salud de la Nación, Pergamino, Buenos Aires, Argentina
| | - María del Carmen Saavedra
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, ANLIS-Malbran, Ministerio de Salud de la Nación, Pergamino, Buenos Aires, Argentina
| | - Nora López
- Centro de Virología Humana y Animal, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad Abierta Interamericana, Buenos Aires, Argentina
| |
Collapse
|
17
|
Cuypers LN, Gryseels S, Van Houtte N, Baird SJE, Sabuni CA, Katakweba AS, van den Burg SRM, Bryja J, Leirs H, Goüy de Bellocq J. Subspecific rodent taxa as the relevant host taxonomic level for mammarenavirus host specificity. Virology 2023; 581:116-127. [PMID: 36958216 DOI: 10.1016/j.virol.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Mastomys natalensis-borne mammarenaviruses appear specific to subspecific M. natalensis taxa rather than to the whole species. Yet mammarenaviruses carried by M. natalensis are known to spill over and jump hosts in northern sub-Saharan Africa. Phylogeographic studies increasingly show that, like M. natalensis, small mammals in sub-Saharan Africa are often genetically structured into several subspecific taxa. Other mammarenaviruses may thus also form virus-subspecific host taxon associations. To investigate this, and if mammarenaviruses carried by M. natalensis in southern Africa are less prone to spill-over, we screened 1225 non-M. natalensis samples from Tanzania where many small mammal taxa meet. We found mammarenavirus RNA in 6 samples. Genetic/genomic characterisation confirmed they were not spill-over from M. natalensis. We detected host jumps among rodent tribe members and an association between mammarenaviruses and subspecific taxa of Mus minutoides and Grammomys surdaster, indicating host genetic structure may be crucial to understand virus distribution and host specificity.
Collapse
Affiliation(s)
- Laura N Cuypers
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Sophie Gryseels
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium; OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000, Brussels, Belgium
| | - Natalie Van Houtte
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Stuart J E Baird
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Christopher A Sabuni
- Institute of Pest Management, Sokoine University of Agriculture, P.O. Box 3110 Chuo Kikuu, Morogoro, Tanzania
| | - Abdul S Katakweba
- Institute of Pest Management, Sokoine University of Agriculture, P.O. Box 3110 Chuo Kikuu, Morogoro, Tanzania
| | - Sebastiaan R M van den Burg
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic; Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Joëlle Goüy de Bellocq
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| |
Collapse
|
18
|
Structure-activity relationship studies of anti-bunyaviral cap-dependent endonuclease inhibitors. Bioorg Med Chem Lett 2023; 83:129175. [PMID: 36758821 DOI: 10.1016/j.bmcl.2023.129175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Bunyaviruses, including the Lassa virus (LASV), are known to cause hemorrhagic fever and have a high fatality rate among hospitalized patients, as there are few effective treatments. We focused on the fact that bunyaviruses use cap-dependent endonuclease (CEN) for viral replication, which is similar to influenza viruses. This led us to screen carbamoyl pyridone bicycle (CAB) compounds, which compose a series of baloxavir acid (BXA) derivatives, against lymphocytic choriomeningitis virus (LCMV) and Junin virus (JUNV) among the bunyaviruses. This led to the discovery of 1c, which has potent anti-bunyaviral activities. In SAR studies, we found that a large lipophilic side chain is preferred for the 1-position of the CAB scaffold, similar to the influenza CEN inhibitor, and that a small alkyl group for the 3-position shows high activity. Moreover, the 7‑carboxyl group of the scaffold is essential for anti-bunyaviral activities, and the antiviral activity is reduced by conversion to various carboxylic acid bioisosteres. The SAR results are discussed using a binding model of 9d in the active center of the known LCMV CEN crystal structure. These compounds show promise as broad-spectrum anti-bunyavirus therapeutics, given their relatively favorable metabolic stability and PK profiles.
Collapse
|
19
|
Williams HM, Thorkelsson SR, Vogel D, Milewski M, Busch C, Cusack S, Grünewald K, Quemin EJ, Rosenthal M. Structural insights into viral genome replication by the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Res 2023; 51:1424-1442. [PMID: 36651274 PMCID: PMC9943659 DOI: 10.1093/nar/gkac1249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a phenuivirus that has rapidly become endemic in several East Asian countries. The large (L) protein of SFTSV, which includes the RNA-dependent RNA polymerase (RdRp), is responsible for catalysing viral genome replication and transcription. Here, we present 5 cryo-electron microscopy (cryo-EM) structures of the L protein in several states of the genome replication process, from pre-initiation to late-stage elongation, at a resolution of up to 2.6 Å. We identify how the L protein binds the 5' viral RNA in a hook-like conformation and show how the distal 5' and 3' RNA ends form a duplex positioning the 3' RNA terminus in the RdRp active site ready for initiation. We also observe the L protein stalled in the early and late stages of elongation with the RdRp core accommodating a 10-bp product-template duplex. This duplex ultimately splits with the template binding to a designated 3' secondary binding site. The structural data and observations are complemented by in vitro biochemical and cell-based mini-replicon assays. Altogether, our data provide novel key insights into the mechanism of viral genome replication by the SFTSV L protein and will aid drug development against segmented negative-strand RNA viruses.
Collapse
Affiliation(s)
| | | | - Dominik Vogel
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Morlin Milewski
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Carola Busch
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | | | - Kay Grünewald
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany,University of Hamburg, Hamburg, Germany
| | - Emmanuelle R J Quemin
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Maria Rosenthal
- To whom correspondence should be addressed. Tel: +49 40 285380 930;
| |
Collapse
|
20
|
Malet H, Williams HM, Cusack S, Rosenthal M. The mechanism of genome replication and transcription in bunyaviruses. PLoS Pathog 2023; 19:e1011060. [PMID: 36634042 PMCID: PMC9836281 DOI: 10.1371/journal.ppat.1011060] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bunyaviruses are negative sense, single-strand RNA viruses that infect a wide range of vertebrate, invertebrate and plant hosts. WHO lists three bunyavirus diseases as priority diseases requiring urgent development of medical countermeasures highlighting their high epidemic potential. While the viral large (L) protein containing the RNA-dependent RNA polymerase is a key enzyme in the viral replication cycle and therefore a suitable drug target, our knowledge on the structure and activities of this multifunctional protein has, until recently, been very limited. However, in the last few years, facilitated by the technical advances in the field of cryogenic electron microscopy, many structures of bunyavirus L proteins have been solved. These structures significantly enhance our mechanistic understanding of bunyavirus genome replication and transcription processes and highlight differences and commonalities between the L proteins of different bunyavirus families. Here, we provide a review of our current understanding of genome replication and transcription in bunyaviruses with a focus on the viral L protein. Further, we compare within bunyaviruses and with the related influenza virus polymerase complex and highlight open questions.
Collapse
Affiliation(s)
- Hélène Malet
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Harry M. Williams
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Discovery Research ScreeningPort, Hamburg, Germany
| |
Collapse
|
21
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
22
|
Nguyen THV, Yekwa E, Selisko B, Canard B, Alvarez K, Ferron F. Inhibition of Arenaviridae nucleoprotein exonuclease by bisphosphonate. IUCRJ 2022; 9:468-479. [PMID: 35844481 PMCID: PMC9252148 DOI: 10.1107/s2052252522005061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Arenaviruses are emerging enveloped negative-sense RNA viruses that cause neurological and hemorrhagic diseases in humans. Currently, no FDA-approved vaccine or therapeutic agent is available except for ribavirin, which must be administered early during infection for optimum efficacy. A hallmark of arenavirus infection is rapid and efficient immune suppression mediated by the exonuclease domain encoded by the nucleoprotein. This exonuclease is therefore an attractive target for the design of novel antiviral drugs since exonuclease inhibitors might not only have a direct effect on the enzyme but could also boost viral clearance through stimulation of the innate immune system of the host cell. Here, in silico screening and an enzymatic assay were used to identify a novel, specific but weak inhibitor of the arenavirus exonuclease, with IC50 values of 65.9 and 68.6 µM for Mopeia virus and Lymphocytic choriomeningitis virus, respectively. This finding was further characterized using crystallographic and docking approaches. This study serves as a proof of concept and may have assigned a new therapeutic purpose for the bisphosphonate family, therefore paving the way for the development of inhibitors against Arenaviridae.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - Elsie Yekwa
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - Barbara Selisko
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - Bruno Canard
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Karine Alvarez
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - François Ferron
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
23
|
Alamri MA, Mirza MU, Adeel MM, Ashfaq UA, Tahir ul Qamar M, Shahid F, Ahmad S, Alatawi EA, Albalawi GM, Allemailem KS, Almatroudi A. Structural Elucidation of Rift Valley Fever Virus L Protein towards the Discovery of Its Potential Inhibitors. Pharmaceuticals (Basel) 2022; 15:659. [PMID: 35745579 PMCID: PMC9228520 DOI: 10.3390/ph15060659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Rift valley fever virus (RVFV) is the causative agent of a viral zoonosis that causes a significant clinical burden in domestic and wild ruminants. Major outbreaks of the virus occur in livestock, and contaminated animal products or arthropod vectors can transmit the virus to humans. The viral RNA-dependent RNA polymerase (RdRp; L protein) of the RVFV is responsible for viral replication and is thus an appealing drug target because no effective and specific vaccine against this virus is available. The current study reported the structural elucidation of the RVFV-L protein by in-depth homology modeling since no crystal structure is available yet. The inhibitory binding modes of known potent L protein inhibitors were analyzed. Based on the results, further molecular docking-based virtual screening of Selleckchem Nucleoside Analogue Library (156 compounds) was performed to find potential new inhibitors against the RVFV L protein. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analysis of these compounds was also performed. Besides, the binding mechanism and stability of identified compounds were confirmed by a 50 ns molecular dynamic (MD) simulation followed by MM/PBSA binding free energy calculations. Homology modeling determined a stable multi-domain structure of L protein. An analysis of known L protein inhibitors, including Monensin, Mycophenolic acid, and Ribavirin, provide insights into the binding mechanism and reveals key residues of the L protein binding pocket. The screening results revealed that the top three compounds, A-317491, Khasianine, and VER155008, exhibited a high affinity at the L protein binding pocket. ADME analysis revealed good pharmacodynamics and pharmacokinetic profiles of these compounds. Furthermore, MD simulation and binding free energy analysis endorsed the binding stability of potential compounds with L protein. In a nutshell, the present study determined potential compounds that may aid in the rational design of novel inhibitors of the RVFV L protein as anti-RVFV drugs.
Collapse
Affiliation(s)
- Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia;
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Muhammad Muzammal Adeel
- 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ghadah M. Albalawi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
- Department of Laboratory and Blood Bank, King Fahd Specialist Hospital, Tabuk 47717, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
| |
Collapse
|
24
|
Structural and Biochemical Basis for Development of Diketo Acid Inhibitors Targeting the Cap-Snatching Endonuclease of the Ebinur Lake Virus (Order: Bunyavirales). J Virol 2022; 96:e0217321. [PMID: 35266805 DOI: 10.1128/jvi.02173-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bunyavirales contain many important human pathogens that lack an antiviral therapy. The cap-snatching endonuclease (EN) of segmented negative-strand RNA viruses is an attractive target for broad-spectrum antivirals due to its essential role in initiating viral transcription. L-742,001, a previously reported diketo acid inhibitor against influenza virus EN, demonstrated potent EN inhibition and antiviral activity on various bunyaviruses. However, the precise inhibitory mechanism of the compound is still poorly understood. We recently characterized a highly active EN from Ebinur Lake virus (EBIV), a newly identified member of the Orthobunyavirus genus, and obtained its high-resolution structures, paving the way for structure-guided inhibitor development. Here, nine L-742,001 derivatives were designed and synthesized de novo, and their structure-activity relationship with EBIV EN was studied. In vitro biochemical data showed that the compounds inhibited the EBIV EN activity with different levels and could be divided into three categories. Five representative compounds were selected for further cell-based antiviral assay, and the results largely agreed with those of the EN assays. Furthermore, the precise binding modes of L-742,001 and its derivatives in EN were revealed by determining the high-resolution crystal structures of EN-inhibitor complexes, which suggested that the p-chlorobenzene is essential for the inhibitory activity and the flexible phenyl has the greatest exploration potential. This study provides an important basis for the structure-based design and optimization of inhibitors targeting EN of segmented negative-strand RNA viruses. IMPORTANCE The Bunyavirales contain many important human pathogens such as Crimean-Congo hemorrhagic fever virus and Lassa virus that pose serious threats to public health; however, currently there are no specific antiviral drugs against these viruses. The diketo acid inhibitor L-742,001 is a potential drug as it inactivates the cap-snatching endonuclease (EN) encoded by bunyaviruses. Here, we designed and synthesized nine L-742,001 derivatives and assessed the structure-activity relationship using EN of the newly identified Ebinur Lake virus (EBIV) as a research model. Our results revealed that the p-chlorobenzene of this broad-spectrum EN inhibitor is crucial for the inhibitory activity and the flexible phenyl "arm" has the best potential for further optimization. As cap-snatching ENs are present not only in bunyaviruses but also in influenza viruses, our data provide important guidelines for the development of novel and more potent diketo acid-based antiviral drugs against those viruses.
Collapse
|
25
|
Insights into two-metal-ion catalytic mechanism of cap-snatching endonuclease of Ebinur Lake virus in Bunyavirales. J Virol 2022; 96:e0208521. [PMID: 35044209 DOI: 10.1128/jvi.02085-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cap-snatching endonuclease (EN) of segmented negative-strand RNA viruses (sNSVs) produces short capped primers for viral transcription by cleaving the host mRNAs. EN requires divalent metals as cofactors for nucleic acid substrates cleavage, however, the detailed mechanism of metal ion-dependent catalysis of ENs remains obscure. In this work, we reported the EN crystal structure of the Ebinur Lake virus (EBIV), an emerging mosquito-borne orthobunyavirus, and investigated its enzymatic properties and metal ion-based catalytic mechanism. In vitro biochemical data showed that EBIV EN is a specific RNA nuclease and prefers to cleave unstructured uridine-rich ssRNA. Structural comparison indicated that the overall structural architecture of EBIV EN is similar to that of other sNSV ENs, while the detailed active site configuration including the binding state of metal ions and the conformation of the LA/LB loop pair is different. Base on sequence conservation analysis, nine active site mutants were constructed, and seven crystal structures of them were determined. Mutations of active site residues associated with the two metal ions (Mn1 and Mn2) coordination abolished EN activity. Crystallographic analyses further revealed that none of these mutants bound two metal ions simultaneously in the active site. Importantly, we found that the perturbation of Mn1-coordination (metal site 1), resulted in the enhancement or elimination of Mn2-coordination (metal site 2). Taken together, our data provide structural evidence to support the two-metal-ion catalytic mechanism of EBIV EN and the correlation of metal binding at the two binding sites, which may be commonly shared by bunyaviruses or other sNSVs. IMPORTANCE The viral endonucleases (ENs) encoded by bunyaviruses and orthomyxoviruses play an essential role in initiating transcription by "snatching" capped primers from the host mRNAs. These ENs are metal-ion-dependent nucleases, however, the details of their catalytic mechanism remain elusive. Here, we reported high-resolution crystal structures of the wild-type and mutant ENs of a novel bunyavirus, the Ebinur Lake virus (EBIV), and revealed the structure and function relationship of EN. The EBIV EN exhibited differences in the details of active site structure compared to its homologues. Our data provided structural evidence to support a two-metal-ion catalytic mechanism of EBIV EN, and found the correlation of metal binding at both binding sites, which might reflect the dynamic structural properties that correlate to EN catalytic function. Taken together, our results revealed the structural characteristics of EBIV EN and made important implications for understanding the catalytic mechanism of cap-snatching ENs.
Collapse
|
26
|
Lan X, Zhang Y, Jia X, Dong S, Liu Y, Zhang M, Guo J, Cao J, Guo Y, Xiao G, Wang W. Screening and identification of Lassa virus endonuclease-targeting inhibitors from a fragment-based drug discovery library. Antiviral Res 2021; 197:105230. [PMID: 34965446 DOI: 10.1016/j.antiviral.2021.105230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/02/2022]
Abstract
Lassa virus (LASV) belongs to the Old World genus Mammarenavirus, family Arenaviridae, and order Bunyavirales. Arenavirus contains a segmented negative-sense RNA genome, which is in line with the bunyavirus and orthomyxoviruses. The segmented negative-sense RNA viruses utilize a cap-snatching strategy to provide primers cleavaged from the host capped mRNA for viral mRNA transcription. As a similar strategy and the conformational conservation shared with these viruses, the endonuclease (EN) would serve as an attractive target for developing broad-spectrum inhibitors. Using the LASV minigenome (MG) system, we screened a fragment-based drug discovery library and found that two hits, F1204 and F1781, inhibited LASV MG activity. Both hits also inhibited the prototype arenavirus Lymphocytic choriomeningitis virus (LCMV) MG activity. Furthermore, both hits effectively inhibited authentic LCMV and severe fever with thrombocytopenia syndrome virus (SFTSV) infections. Similarly, both hits could inhibit the activity of LASV, LCMV, and SFTSV EN. The combination of either compound with an arenavirus entry inhibitor had significant synergistic antiviral effects. Moreover, both hits were found to be capable of binding to LASV EN with a binding affinity at the micromolar level. These findings provide a basis for developing the hits as potential candidates for the treatment of segmented negative-sense RNA virus infections.
Collapse
Affiliation(s)
- Xiaohao Lan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China
| | - Yueli Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Dong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Mengmeng Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China
| | - Jiao Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Guo
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Pyle JD, Whelan SPJ, Bloyet LM. Structure and function of negative-strand RNA virus polymerase complexes. Enzymes 2021; 50:21-78. [PMID: 34861938 DOI: 10.1016/bs.enz.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Viruses with negative-strand RNA genomes (NSVs) include many highly pathogenic and economically devastating disease-causing agents of humans, livestock, and plants-highlighted by recent Ebola and measles virus epidemics, and continuously circulating influenza virus. Because of their protein-coding orientation, NSVs face unique challenges for efficient gene expression and genome replication. To overcome these barriers, NSVs deliver a large and multifunctional RNA-dependent RNA polymerase into infected host cells. NSV-encoded polymerases contain all the enzymatic activities required for transcription and replication of their genome-including RNA synthesis and mRNA capping. Here, we review the structures and functions of NSV polymerases with a focus on key domains responsible for viral replication and gene expression. We highlight shared and unique features among polymerases of NSVs from the Mononegavirales, Bunyavirales, and Articulavirales orders.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States; Ph.D. Program in Virology, Harvard Medical School, Boston, MA, United States
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
28
|
Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity. Nat Commun 2021; 12:7018. [PMID: 34857749 PMCID: PMC8639829 DOI: 10.1038/s41467-021-27305-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Lassa virus is endemic in West Africa and can cause severe hemorrhagic fever. The viral L protein transcribes and replicates the RNA genome via its RNA-dependent RNA polymerase activity. Here, we present nine cryo-EM structures of the L protein in the apo-, promoter-bound pre-initiation and active RNA synthesis states. We characterize distinct binding pockets for the conserved 3' and 5' promoter RNAs and show how full-promoter binding induces a distinct pre-initiation conformation. In the apo- and early elongation states, the endonuclease is inhibited by two distinct L protein peptides, whereas in the pre-initiation state it is uninhibited. In the early elongation state, a template-product duplex is bound in the active site cavity together with an incoming non-hydrolysable nucleotide and the full C-terminal region of the L protein, including the putative cap-binding domain, is well-ordered. These data advance our mechanistic understanding of how this flexible and multifunctional molecular machine is activated.
Collapse
|
29
|
Abstract
Arenaviruses initiate infection by delivering a transcriptionally competent ribonucleoprotein (RNP) complex into the cytosol of host cells. The arenavirus RNP consists of the large (L) RNA-dependent RNA polymerase (RdRP) bound to a nucleoprotein (NP)-encapsidated genomic RNA (viral RNA [vRNA]) template. During transcription and replication, L must transiently displace RNA-bound NP to allow for template access into the RdRP active site. Concomitant with RNA replication, new subunits of NP must be added to the nascent complementary RNAs (cRNA) as they emerge from the product exit channel of L. Interactions between L and NP thus play a central role in arenavirus gene expression. We developed an approach to purify recombinant functional RNPs from mammalian cells in culture using a synthetic vRNA and affinity-tagged L and NP. Negative-stain electron microscopy of purified RNPs revealed they adopt diverse and flexible structures, like RNPs of other Bunyavirales members. Monodispersed L-NP and trimeric ring-like NP complexes were also obtained in excess of flexible RNPs, suggesting that these heterodimeric structures self-assemble in the absence of suitable RNA templates. This work allows for further biochemical analysis of the interaction between arenavirus L and NP proteins and provides a framework for future high-resolution structural analyses of this replication-associated complex. IMPORTANCE Arenaviruses are rodent-borne pathogens that can cause severe disease in humans. All arenaviruses begin the infection cycle with delivery of the virus replication machinery into the cytoplasm of the host cell. This machinery consists of an RNA-dependent RNA polymerase-which copies the viral genome segments and synthesizes all four viral mRNAs-bound to the two nucleoprotein-encapsidated genomic RNAs. How this complex assembles remains a mystery. Our findings provide direct evidence for the formation of diverse intracellular arenavirus replication complexes using purification strategies for the polymerase, nucleoprotein, and genomic RNA of Machupo virus, which causes Bolivian hemorrhagic fever in humans. We demonstrate that the polymerase and nucleoprotein assemble into higher-order structures within cells, providing a model for the molecular events of arenavirus RNA synthesis. These findings provide a framework for probing the architectures and functions of the arenavirus replication machinery and thus advancing antiviral strategies targeting this essential complex.
Collapse
|
30
|
Cryo-EM structures of Lassa and Machupo virus polymerases complexed with cognate regulatory Z proteins identify targets for antivirals. Nat Microbiol 2021; 6:921-931. [PMID: 34127846 DOI: 10.1038/s41564-021-00916-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/05/2021] [Indexed: 02/05/2023]
Abstract
Zoonotic arenaviruses can lead to life-threating diseases in humans. These viruses encode a large (L) polymerase that transcribes and replicates the viral genome. At the late stage of replication, the multifunctional Z protein interacts with the L polymerase to shut down RNA synthesis and initiate virion assembly. However, the mechanism by which the Z protein regulates the activity of L polymerase is unclear. Here, we used cryo-electron microscopy to resolve the structures of both Lassa and Machupo virus L polymerases in complex with their cognate Z proteins, and viral RNA, to 3.1-3.9 Å resolutions. These structures reveal that Z protein binding induces conformational changes in two catalytic motifs of the L polymerase, and restrains their conformational dynamics to inhibit RNA synthesis, which is supported by hydrogen-deuterium exchange mass spectrometry analysis. Importantly, we show, by in vitro polymerase reactions, that Z proteins of Lassa and Machupo viruses can cross-inhibit their L polymerases, albeit with decreased inhibition efficiencies. This cross-reactivity results from a highly conserved determinant motif at the contacting interface, but is affected by other variable auxiliary motifs due to the divergent evolution of Old World and New World arenaviruses. These findings could provide promising targets for developing broad-spectrum antiviral drugs.
Collapse
|
31
|
Wang Q, Xin Q, Shang W, Wan W, Xiao G, Zhang LK. Activation of the STAT3 Signaling Pathway by the RNA-Dependent RNA Polymerase Protein of Arenavirus. Viruses 2021; 13:v13060976. [PMID: 34070281 PMCID: PMC8225222 DOI: 10.3390/v13060976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Arenaviruses cause chronic and asymptomatic infections in their natural host, rodents, and several arenaviruses cause severe hemorrhagic fever that has a high mortality in infected humans, seriously threatening public health. There are currently no FDA-licensed drugs available against arenaviruses; therefore, it is important to develop novel antiviral strategies to combat them, which would be facilitated by a detailed understanding of the interactions between the viruses and their hosts. To this end, we performed a transcriptomic analysis on cells infected with arenavirus lymphocytic choriomeningitis virus (LCMV), a neglected human pathogen with clinical significance, and found that the signal transducer and activator of transcription 3 (STAT3) signaling pathway was activated. A further investigation indicated that STAT3 could be activated by the RNA-dependent RNA polymerase L protein (Lp) of LCMV. Our functional analysis found that STAT3 cannot affect LCMV multiplication in A549 cells. We also found that STAT3 was activated by the Lp of Mopeia virus and Junin virus, suggesting that this activation may be conserved across certain arenaviruses. Our study explored the interactions between arenaviruses and STAT3, which may help us to better understand the molecular and cell biology of arenaviruses.
Collapse
Affiliation(s)
- Qingxing Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Xin
- UMR754, Viral Infections and Comparative Pathology, 50 Avenue Tony Garnier, CEDEX 07, 69366 Lyon, France;
| | - Weijuan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
| | - Weiwei Wan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (G.X.); (L.-K.Z.)
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (G.X.); (L.-K.Z.)
| |
Collapse
|
32
|
Těšíková J, Krásová J, Goüy de Bellocq J. Multiple Mammarenaviruses Circulating in Angolan Rodents. Viruses 2021; 13:982. [PMID: 34070551 PMCID: PMC8227972 DOI: 10.3390/v13060982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Rodents are a speciose group of mammals with strong zoonotic potential. Some parts of Africa are still underexplored for the occurrence of rodent-borne pathogens, despite this high potential. Angola is at the convergence of three major biogeographical regions of sub-Saharan Africa, each harbouring a specific rodent community. This rodent-rich area is, therefore, strategic for studying the diversity and evolution of rodent-borne viruses. In this study we examined 290 small mammals, almost all rodents, for the presence of mammarenavirus and hantavirus RNA. While no hantavirus was detected, we found three rodent species positive for distinct mammarenaviruses with a particularly high prevalence in Namaqua rock rats (Micaelamys namaquensis). We characterised four complete virus genomes, which showed typical mammarenavirus organisation. Phylogenetic and genetic distance analyses revealed: (i) the presence of a significantly divergent strain of Luna virus in Angolan representatives of the ubiquitous Natal multimammate mouse (Mastomys natalensis), (ii) a novel Okahandja-related virus associated with the Angolan lineage of Micaelamys namaquensis for which we propose the name Bitu virus (BITV) and (iii) the occurrence of a novel Mobala-like mammarenavirus in the grey-bellied pygmy mouse (Mus triton) for which we propose the name Kwanza virus (KWAV). This high virus diversity in a limited host sample size and in a relatively small geographical area supports the idea that Angola is a hotspot for mammarenavirus diversity.
Collapse
Affiliation(s)
- Jana Těšíková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic; (J.K.); (J.G.B.)
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Jarmila Krásová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic; (J.K.); (J.G.B.)
- Department of Zoology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Joëlle Goüy de Bellocq
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic; (J.K.); (J.G.B.)
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| |
Collapse
|
33
|
Fearns R. Negative‐strand RNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Su JM, Wilson MZ, Samuel CE, Ma D. Formation and Function of Liquid-Like Viral Factories in Negative-Sense Single-Stranded RNA Virus Infections. Viruses 2021; 13:126. [PMID: 33477448 PMCID: PMC7835873 DOI: 10.3390/v13010126] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) represents a major physiochemical principle to organize intracellular membrane-less structures. Studies with non-segmented negative-sense (NNS) RNA viruses have uncovered a key role of LLPS in the formation of viral inclusion bodies (IBs), sites of viral protein concentration in the cytoplasm of infected cells. These studies further reveal the structural and functional complexity of viral IB factories and provide a foundation for their future research. Herein, we review the literature leading to the discovery of LLPS-driven formation of IBs in NNS RNA virus-infected cells and the identification of viral scaffold components involved, and then outline important questions and challenges for IB assembly and disassembly. We discuss the functional implications of LLPS in the life cycle of NNS RNA viruses and host responses to infection. Finally, we speculate on the potential mechanisms underlying IB maturation, a phenomenon relevant to many human diseases.
Collapse
Affiliation(s)
| | | | | | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology & Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.M.S.); (M.Z.W.); (C.E.S.)
| |
Collapse
|
35
|
The Polarity of an Amino Acid at Position 1891 of Severe Fever with Thrombocytopenia Syndrome Virus L Protein Is Critical for the Polymerase Activity. Viruses 2020; 13:v13010033. [PMID: 33375489 PMCID: PMC7823514 DOI: 10.3390/v13010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus subclone B7 shows strong plaque formation and cytopathic effect induction compared with other subclones and the parental strain YG1. Compared to YG1 and the other subclones, only B7 possesses a single substitution in the L protein at the amino acid position 1891, in which N is changed to K (N1891K). In this study, we evaluate the effects of this mutation on L protein activity via a cell-based minigenome assay. Substitutions of N with basic amino acids (K or R) enhanced polymerase activity, while substitutions with an acidic amino acid (E) decreased this activity. Mutation to other neutral amino acids showed no significant effect on activity. These results suggest that the characteristic of the amino acid at position 1891 of the L protein are critical for its function, especially with respect to the charge status. Our data indicate that this C-terminal domain of the L protein may be crucial to its functions in genome transcription and viral replication.
Collapse
|
36
|
Hallam SJ, Manning JT, Maruyama J, Seregin A, Huang C, Walker DH, de la Torre JC, Paessler S. A single mutation (V64G) within the RING Domain of Z attenuates Junin virus. PLoS Negl Trop Dis 2020; 14:e0008555. [PMID: 32976538 PMCID: PMC7540883 DOI: 10.1371/journal.pntd.0008555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/07/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Junin virus (JUNV) is a New World arenavirus that is the causative agent of Argentine hemorrhagic fever (AHF). Candid#1 (Can) is a live-attenuated vaccine strain of JUNV that since its introduction has resulted in a marked decrease in AHF incidence within the endemic regions of the Pampas in Argentina. Originally, the viral determinants and mechanisms of Can attenuation were not well understood. Recent work has identified the glycoprotein as the major attenuating factor for Can. The establishment of attenuating strategies based on any of the other viral proteins, however, has not been pursued. Here, we document the role of Can Z resulting in incompatibilities with wild type JUNV that results in decreased growth in vitro. In addition, this incompatibility results in attenuation of the virus in the guinea pig model. Further, we identify a single mutation (V64G) in the Z protein that is able to confer this demonstrated attenuation. By establishing and characterizing a novel attenuation strategy for New World mammarenaviruses, we hope to aid future vaccine development for related emerging pathogens including Machupo virus (MACV), Guanarito virus (GTOV), and Sabia virus (SABV). The continual development of safe, effective vaccines against emerging diseases is one of the greatest challenges facing the scientific community. The New World group of mammarenaviruses contains multiple human pathogens, each capable of causing severe hemorrhagic disease. Among these, only Junin virus has a distributed vaccine. By utilizing this vaccine, we are able to determine vaccine development strategies for related New World viruses that represent an emerging threat. Here we demonstrate that manipulation of the viral Z protein is able to produce an incompatibility that ultimately attenuates the virus. This provides yet another tool for future vaccine development to further global public health.
Collapse
Affiliation(s)
- Steven J. Hallam
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John T. Manning
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexey Seregin
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cheng Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, Scripps University, La Jolla, California, United States of America
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Institute for Human Infections and Immunity, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
De Bellocq JG, Bryjová A, Martynov AA, Lavrenchenko LA. Dhati Welel virus, the missing mammarenavirus of the widespread Mastomys natalensis. JOURNAL OF VERTEBRATE BIOLOGY 2020. [DOI: 10.25225/jvb.20018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Joëlle Goüy De Bellocq
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; e-mail: ,
| | - Anna Bryjová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; e-mail: ,
| | - Aleksey A. Martynov
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia; e-mail: ,
| | - Leonid A. Lavrenchenko
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia; e-mail: ,
| |
Collapse
|
38
|
Jones R, Lessoued S, Meier K, Devignot S, Barata-García S, Mate M, Bragagnolo G, Weber F, Rosenthal M, Reguera J. Structure and function of the Toscana virus cap-snatching endonuclease. Nucleic Acids Res 2020; 47:10914-10930. [PMID: 31584100 PMCID: PMC6847833 DOI: 10.1093/nar/gkz838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 10/01/2019] [Indexed: 12/03/2022] Open
Abstract
Toscana virus (TOSV) is an arthropod-borne human pathogen responsible for seasonal outbreaks of fever and meningoencephalitis in the Mediterranean basin. TOSV is a segmented negative-strand RNA virus (sNSV) that belongs to the genus phlebovirus (family Phenuiviridae, order Bunyavirales), encompassing other important human pathogens such as Rift Valley fever virus (RVFV). Here, we carried out a structural and functional characterization of the TOSV cap-snatching endonuclease, an N terminal domain of the viral polymerase (L protein) that provides capped 3′OH primers for transcription. We report TOSV endonuclease crystal structures in the apo form, in complex with a di-ketoacid inhibitor (DPBA) and in an intermediate state of inhibitor release, showing details on substrate binding and active site dynamics. The structure reveals substantial folding rearrangements absent in previously reported cap-snatching endonucleases. These include the relocation of the N terminus and the appearance of new structural motifs important for transcription and replication. The enzyme shows high activity rates comparable to other His+ cap-snatching endonucleases. Moreover, the activity is dependent on conserved residues involved in metal ion and substrate binding. Altogether, these results bring new light on the structure and function of cap-snatching endonucleases and pave the way for the development of specific and broad-spectrum antivirals.
Collapse
Affiliation(s)
- Rhian Jones
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Sana Lessoued
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Kristina Meier
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, D-20359 Hamburg, Germany
| | - Stéphanie Devignot
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | | | - Maria Mate
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | | | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, D-20359 Hamburg, Germany
| | - Juan Reguera
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France.,INSERM, AFMB UMR7257,13288 Marseille, France
| |
Collapse
|
39
|
Structure of severe fever with thrombocytopenia syndrome virus L protein elucidates the mechanisms of viral transcription initiation. Nat Microbiol 2020; 5:864-871. [PMID: 32341479 DOI: 10.1038/s41564-020-0712-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Segmented negative-sense RNA viruses (sNSRVs) encode a single-polypeptide polymerase (L protein) or a heterotrimeric polymerase complex to cannibalize host messenger RNA cap structures serving as primers of transcription, and catalyse RNA synthesis. Here, we report the full-length structure of the severe fever with thrombocytopaenia syndrome virus (SFTSV) L protein, as determined by cryogenic electron microscopy at 3.4 Å, leading to an atomic model harbouring three functional parts (an endonuclease, an RNA-dependent RNA polymerase and a cap-binding domain) and two structural domains (an arm domain with a blocker motif and a carboxy-terminal lariat domain). The SFTSV L protein has a compact architecture in which its cap-binding pocket is surprisingly occupied by an Arg finger of the blocker motif, and the endonuclease active centre faces back towards the cap-binding pocket, suggesting that domain rearrangements are necessary to acquire the pre-initiation state of the active site. Our results provide insight into the complete architecture of sNSRV-encoded L protein and further the understanding of sNSRV transcription initiation.
Collapse
|
40
|
Iannetta M, Di Caro A, Nicastri E, Vairo F, Masanja H, Kobinger G, Mirazimi A, Ntoumi F, Zumla A, Ippolito G. Viral Hemorrhagic Fevers Other than Ebola and Lassa. Infect Dis Clin North Am 2020; 33:977-1002. [PMID: 31668201 DOI: 10.1016/j.idc.2019.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral hemorrhagic fevers represent a group of diseases caused by enveloped RNA viruses. The epidemiology is broadly variable, ranging from geographically localized to more diffuse infections. Viral hemorrhagic fevers are classified as category A bioweapon agents by the Centers for Disease Control and Prevention. Viral hemorrhagic fevers are severe febrile illnesses with hemorrhagic phenomena. Laboratory diagnosis takes place in highly specialized reference laboratories. Treatment is essentially supportive. In this article, we focus the attention on yellow fever and viral hemorrhagic fevers other than Ebola and Lassa virus diseases that have been described elsewhere in this issue.
Collapse
Affiliation(s)
- Marco Iannetta
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Via Portuense 292, Rome 00149, Italy
| | - Antonino Di Caro
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Via Portuense 292, Rome 00149, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Via Portuense 292, Rome 00149, Italy
| | - Francesco Vairo
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Via Portuense 292, Rome 00149, Italy
| | - Honorati Masanja
- Ifakara Health Institute, Ifakara Health Research and Development Centre, Kiko Avenue, Plot N 463, Mikocheni, Dar es Salaam, Tanzania
| | - Gary Kobinger
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, 2325 Rue de l'Université, Quebec City, Quebec G1V 0A6, Canada
| | - Ali Mirazimi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Alle 8 Plan 7, Stockholm 14183, Sweden
| | - Francine Ntoumi
- Université Marien NGouabi, Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS//AFRO Djoué, Brazzaville, Congo; Institute for Tropical Medicine, University of Tübingen, Germany
| | - Alimuddin Zumla
- Center for Clinical Microbiology, University College London, Royal Free Campus 2nd Floor, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Via Portuense 292, Rome 00149, Italy.
| |
Collapse
|
41
|
Peng R, Xu X, Jing J, Wang M, Peng Q, Liu S, Wu Y, Bao X, Wang P, Qi J, Gao GF, Shi Y. Structural insight into arenavirus replication machinery. Nature 2020; 579:615-619. [PMID: 32214249 DOI: 10.1038/s41586-020-2114-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/14/2020] [Indexed: 01/10/2023]
Abstract
Arenaviruses can cause severe haemorrhagic fever and neurological diseases in humans and other animals, exemplified by Lassa mammarenavirus, Machupo mammarenavirus and lymphocytic choriomeningitis virus, posing great threats to public health1-4. These viruses encode a large multi-domain RNA-dependent RNA polymerase for transcription and replication of the viral genome5. Viral polymerases are one of the leading antiviral therapeutic targets. However, the structure of arenavirus polymerase is not yet known. Here we report the near-atomic resolution structures of Lassa and Machupo virus polymerases in both apo and promoter-bound forms. These structures display a similar overall architecture to influenza virus and bunyavirus polymerases but possess unique local features, including an arenavirus-specific insertion domain that regulates the polymerase activity. Notably, the ordered active site of arenavirus polymerase is inherently switched on, without the requirement for allosteric activation by 5'-viral RNA, which is a necessity for both influenza virus and bunyavirus polymerases6,7. Moreover, dimerization could facilitate the polymerase activity. These findings advance our understanding of the mechanism of arenavirus replication and provide an important basis for developing antiviral therapeutics.
Collapse
Affiliation(s)
- Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Xu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jiamei Jing
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Sheng Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ying Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xichen Bao
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Peiyi Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China.
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China.
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.
- College of Basic Medicine, Jilin University, Changchun, China.
| |
Collapse
|
42
|
Olschewski S, Cusack S, Rosenthal M. The Cap-Snatching Mechanism of Bunyaviruses. Trends Microbiol 2020; 28:293-303. [PMID: 31948728 DOI: 10.1016/j.tim.2019.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022]
Abstract
In common with all segmented negative-sense RNA viruses, bunyavirus transcripts contain heterologous sequences at their 5' termini originating from capped host cell RNAs. These heterologous sequences are acquired by a so-called cap-snatching mechanism. Whereas for nuclear replicating influenza virus the source of capped primers as well as the cap-binding and endonuclease activities of the viral polymerase needed for cap snatching have been functionally and structurally well characterized, our knowledge on the expected counterparts of cytoplasmic replicating bunyaviruses is still limited and controversial. This review focuses on the cap-snatching mechanism of bunyaviruses in the light of recent structural and functional data.
Collapse
Affiliation(s)
- Silke Olschewski
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, Hamburg, Germany
| | | | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, Hamburg, Germany.
| |
Collapse
|
43
|
N-Terminal Acetylation by NatB Is Required for the Shutoff Activity of Influenza A Virus PA-X. Cell Rep 2020; 24:851-860. [PMID: 30044982 DOI: 10.1016/j.celrep.2018.06.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/26/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
N-terminal acetylation is a major posttranslational modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs), NatA through NatF. Although N-terminal acetylation modulates diverse protein functions, little is known about its roles in virus replication. We found that NatB, which comprises NAA20 and NAA25, is involved in the shutoff activity of influenza virus PA-X. The shutoff activity of PA-X was suppressed in NatB-deficient cells, and PA-X mutants that are not acetylated by NatB showed reduced shutoff activities. We also evaluated the importance of N-terminal acetylation of PA, because PA-X shares its N-terminal sequence with PA. Viral polymerase activity was reduced in NatB-deficient cells. Moreover, mutant PAs that are not acetylated by NatB lost their function in the viral polymerase complex. Taken together, our findings demonstrate that N-terminal acetylation is required for the shutoff activity of PA-X and for viral polymerase activity.
Collapse
|
44
|
Lin W, Wu R, Qiu P, Jing Jin, Yang Y, Wang J, Lin Z, Zhang J, Wu Z, Du Z. A convenient in vivo cap donor delivery system to investigate the cap snatching of plant bunyaviruses. Virology 2020; 539:114-120. [PMID: 31710910 DOI: 10.1016/j.virol.2019.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/19/2023]
Abstract
Like their animal-infecting counterparts, plant bunyaviruses use capped RNA leaders cleaved from host cellular mRNAs to prime viral genome transcription in a process called cap-snatching, but in vivo systems to investigate the details of this process are lacking for them. Here, we report that Rice stripe tenuivirus (RSV) and Tomato spotted wilt tospovirus (TSWV) cleave capped RNA leaders from mRNAs transiently expressed by agroinfiltration, which makes it possible to artificially deliver defined cap donors to the two plant bunyaviruses with unprecedented convenience. With this system, some ideas regarding how plant bunyaviruses select and use capped RNA leaders can be tested easily. We were also able to obtain clear evidence that the capped RNA leaders selected by TSWV are generally longer than those by RSV. TSWV frequently uses the prime-and-realign mechanism in transcription primed by capped RNA leaders shorter than a certain length, like that has been demonstrated recently for RSV.
Collapse
Affiliation(s)
- Wenzhong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Ran Wu
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Ping Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Jing Jin
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Yunyue Yang
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Jinglin Wang
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Zhonglong Lin
- China Tobacco Corporation Yunnan Company, Kunming, 650001, China
| | - Jie Zhang
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Zujian Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China.
| | - Zhenguo Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
45
|
Panicum Mosaic Virus and Its Satellites Acquire RNA Modifications Associated with Host-Mediated Antiviral Degradation. mBio 2019; 10:mBio.01900-19. [PMID: 31455653 PMCID: PMC6712398 DOI: 10.1128/mbio.01900-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive-sense RNA viruses in the Tombusviridae family have genomes lacking a 5' cap structure and prototypical 3' polyadenylation sequence. Instead, these viruses utilize an extensive network of intramolecular RNA-RNA interactions to direct viral replication and gene expression. Here we demonstrate that the genomic RNAs of Panicum mosaic virus (PMV) and its satellites undergo sequence modifications at their 3' ends upon infection of host cells. Changes to the viral and subviral genomes arise de novo within Brachypodium distachyon (herein called Brachypodium) and proso millet, two alternative hosts of PMV, and exist in the infections of a native host, St. Augustinegrass. These modifications are defined by polyadenylation [poly(A)] events and significant truncations of the helper virus 3' untranslated region-a region containing satellite RNA recombination motifs and conserved viral translational enhancer elements. The genomes of PMV and its satellite virus (SPMV) were reconstructed from multiple poly(A)-selected Brachypodium transcriptome data sets. Moreover, the polyadenylated forms of PMV and SPMV RNAs copurify with their respective mature icosahedral virions. The changes to viral and subviral genomes upon infection are discussed in the context of a previously understudied poly(A)-mediated antiviral RNA degradation pathway and the potential impact on virus evolution.IMPORTANCE The genomes of positive-sense RNA viruses have an intrinsic capacity to serve directly as mRNAs upon viral entry into a host cell. These RNAs often lack a 5' cap structure and 3' polyadenylation sequence, requiring unconventional strategies for cap-independent translation and subversion of the cellular RNA degradation machinery. For tombusviruses, critical translational regulatory elements are encoded within the 3' untranslated region of the viral genomes. Here we describe RNA modifications occurring within the genomes of Panicum mosaic virus (PMV), a prototypical tombusvirus, and its satellite agents (i.e., satellite virus and noncoding satellite RNAs), all of which depend on the PMV-encoded RNA polymerase for replication. The atypical RNAs are defined by terminal polyadenylation and truncation events within the 3' untranslated region of the PMV genome. These modifications are reminiscent of host-mediated RNA degradation strategies and likely represent a previously underappreciated defense mechanism against invasive nucleic acids.
Collapse
|
46
|
Jérôme H, Rudolf M, Lelke M, Pahlmann M, Busch C, Bockholt S, Wurr S, Günther S, Rosenthal M, Kerber R. Rift Valley fever virus minigenome system for investigating the role of L protein residues in viral transcription and replication. J Gen Virol 2019; 100:1093-1098. [DOI: 10.1099/jgv.0.001281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Hanna Jérôme
- 1 Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Martin Rudolf
- 1 Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michaela Lelke
- 1 Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Meike Pahlmann
- 1 Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carola Busch
- 1 Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabrina Bockholt
- 1 Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Wurr
- 1 Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- 2 German Center for Infection Research (DZIF), Partner site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
- 1 Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Maria Rosenthal
- 1 Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Romy Kerber
- 1 Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- 2 German Center for Infection Research (DZIF), Partner site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| |
Collapse
|
47
|
[Arenavirus research and antiviral candidate]. Uirusu 2019; 68:51-62. [PMID: 31105135 DOI: 10.2222/jsv.68.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arenavirus is a genetic term for viruses belonging to the family Arenaviridae and is presented from lymphocytic choriomeningitis virus (LCMV), which shows almost no pathogenicity to humans, to Lassa virus, Junin virus, Machupo virus, Chapare virus, Lujo virus, Sabia virus, and Guanarito virus, which shows high pathogenicity to humans. These viruses except for LCMV are risk group 4 pathogens specified by World Health Organization. Based on this designation, it is designated as Class I pathogens in Japan. Although there have been no reports excluding one imported case of the Lassa fever patient, it is not surprising whenever imported cases occur in our country. Considering the disease severity and mortality rate, it is an urgent matter to develop vaccines and therapeutic drugs in endemic areas, and maintenances of these are also important in countries other than endemic areas. However, basic research on highly pathogenic arenavirus infections and development of therapeutic drugs are not easily progressed, because handling in highly safe research facilities is indispensable. In this article, we will outline the current knowledge from the recent basic research on arenavirus to the development situation of antivirals against arenaviruses.
Collapse
|
48
|
Gogrefe N, Reindl S, Günther S, Rosenthal M. Structure of a functional cap-binding domain in Rift Valley fever virus L protein. PLoS Pathog 2019; 15:e1007829. [PMID: 31136637 PMCID: PMC6555543 DOI: 10.1371/journal.ppat.1007829] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/07/2019] [Accepted: 05/08/2019] [Indexed: 11/25/2022] Open
Abstract
Rift Valley fever virus (RVFV) belongs to the family of Phenuiviridae within the order of Bunyavirales. The virus may cause fatal disease both in livestock and humans, and therefore, is of great economical and public health relevance. In analogy to the influenza virus polymerase complex, the bunyavirus L protein is assumed to bind to and cleave off cap structures of cellular mRNAs to prime viral transcription. However, even though the presence of an endonuclease in the N-terminal domain of the L protein has been demonstrated for several bunyaviruses, there is no evidence for a cap-binding site within the L protein. We solved the structure of a C-terminal 117 amino acid-long domain of the RVFV L protein by X-ray crystallography. The overall fold of the domain shows high similarity to influenza virus PB2 cap-binding domain and the putative non-functional cap-binding domain of reptarenaviruses. Upon co-crystallization with m7GTP, we detected the cap-analogue bound between two aromatic side chains as it has been described for other cap-binding proteins. We observed weak but specific interaction with m7GTP rather than GTP in vitro using isothermal titration calorimetry. The importance of m7GTP-binding residues for viral transcription was validated using a RVFV minigenome system. In summary, we provide structural and functional evidence for a cap-binding site located within the L protein of a virus from the Bunyavirales order. Rift Valley fever virus (RVFV) is endemic to sub-Saharan Africa and the Arabian Peninsula and leads to abortions in and death of ruminants. The virus can also be transmitted to humans causing febrile illness up to hemorrhagic fever with the possibility of fatal outcome. As there is currently no human vaccine or specific treatment available and because of the high epidemic potential, WHO has listed RVFV on its R&D Blueprint for urgent development of medical countermeasures. In order to amplify, the virus needs to transcribe and replicate the viral genome inside the cell cytoplasm. For transcription, the virus uses a process called cap-snatching, which is essentially depending on two functions presumed to reside within the large viral L protein: the ability to bind cap-structures and the activity of cleaving them off from cellular mRNA. Both functions could serve as specific targets for antiviral drug design. We identified and solved the structure of the cap-binding domain of RVFV and provide the first evidence for the presence of a functional cap-binding site in the L protein of bunyaviruses. Comparison with cap-binding proteins of related viruses revealed similarities and important differences critical for the development of potential broad-spectrum antivirals.
Collapse
Affiliation(s)
- Nadja Gogrefe
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sophia Reindl
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Maria Rosenthal
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
49
|
Abstract
Atomic structures of the polymerase–endonuclease complex of the orthomyxovirus influenza and the orthobunyavirus La Crosse—two distinct segmented negative-sense (SNS) RNA viruses—demonstrate that binding of the genomic 5′ RNA rearranges the catalytic residues of the RNA-dependent RNA-polymerase (RdRP). Working with the arenavirus, Machupo, we demonstrate that 5′ RNAs from the genomic and antigenomic copies of both segments activate the RdRP in conjunction with a specific promoter. This study builds upon structural studies with two different SNS RNA viruses to reveal a previously unappreciated mechanism of RNA-guided promoter-specific polymerase regulation in SNS RNA viruses. The conservation of activating RNA elements among the polymerase–endonuclease complexes of SNS RNA viruses suggests new avenues for developing antiviral therapeutics. Segmented negative-sense (SNS) RNA viruses initiate infection by delivering into cells a suite of genomic RNA segments, each sheathed by the viral nucleocapsid protein and bound by the RNA-dependent RNA-polymerase (RdRP). For the orthomyxovirus influenza and the bunyavirus La Crosse, the 5′ end of the genomic RNA binds as a hook-like structure proximal to the active site of the RdRP. Using an in vitro assay for the RNA-dependent RNA-polymerase (RdRP) of the arenavirus Machupo (MACV), we demonstrate that the 5′ genomic and antigenomic RNAs of both small and large genome segments stimulate activity in a promoter-specific manner. Functional probing of the activating RNAs identifies intramolecular base-pairing between positions +1 and +7 and a pseudotemplated 5′ terminal guanine residue as key for activation. Binding of structured 5′ RNAs is a conserved feature of all SNS RNA virus polymerases, implying that promoter-specific RdRP activation extends beyond the arenaviruses. The 5′ RNAs and the RNA binding pocket itself represent targets for therapeutic intervention.
Collapse
|
50
|
Modeling the Tertiary Structure of the Rift Valley Fever Virus L Protein. Molecules 2019; 24:molecules24091768. [PMID: 31067727 PMCID: PMC6539450 DOI: 10.3390/molecules24091768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 01/09/2023] Open
Abstract
A tertiary structure governs, to a great extent, the biological activity of a protein in the living cell and is consequently a central focus of numerous studies aiming to shed light on cellular processes central to human health. Here, we aim to elucidate the structure of the Rift Valley fever virus (RVFV) L protein using a combination of in silico techniques. Due to its large size and multiple domains, elucidation of the tertiary structure of the L protein has so far challenged both dry and wet laboratories. In this work, we leverage complementary perspectives and tools from the computational-molecular-biology and bioinformatics domains for constructing, refining, and evaluating several atomistic structural models of the L protein that are physically realistic. All computed models have very flexible termini of about 200 amino acids each, and a high proportion of helical regions. Properties such as potential energy, radius of gyration, hydrodynamics radius, flexibility coefficient, and solvent-accessible surface are reported. Structural characterization of the L protein enables our laboratories to better understand viral replication and transcription via further studies of L protein-mediated protein-protein interactions. While results presented a focus on the RVFV L protein, the following workflow is a more general modeling protocol for discovering the tertiary structure of multidomain proteins consisting of thousands of amino acids.
Collapse
|