1
|
Li ZX, Wang YF, Chiang LT, Hsu LJ, Wang SM, Wang JR, Wu HL, Chen SH, Chang CF. Plasminogen deficiency reduces disease severity and immune responses in enterovirus A71-infected mice. Microbiol Spectr 2025:e0331124. [PMID: 40377310 DOI: 10.1128/spectrum.03311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/04/2025] [Indexed: 05/18/2025] Open
Abstract
Enterovirus A71 (EV-A71) is a causative agent of hand, foot, and mouth diseases. EV-A71 infections may result in severe neurological complications in children. Although several receptors or attachment molecules for EV-A71 have been identified, EV-A71 can still infect host cells even after blocking these receptors with antibodies. We have previously identified plasminogen (PLG), a circulating zymogen of plasmin, as a cell membrane-associated EV-A71-interacting glycoprotein. We confirmed that anti-PLG antibodies could reduce the binding of EV-A71 to RD cells as anti-SCARB2 and anti-nucleolin. Knockdown of PLG reduced EV-A71 binding to RD cells, and preincubation of PLG with EV-A71 increased virus binding. Enzyme-linked immunosorbent assay and surface plasmon resonance assays demonstrated the direct binding of PLG to EV-A71. We further evaluated the biological characteristics of EV-A71-infected PLG knockout (heterozygous) and wild-type mice. We found that the clinical scores and mortality of WT mice were higher than those of PLG-knockout mice after EV-A71 infection. The viral loads in the spinal cord of PLG knockout mice were lower than those in WT mice 6 days post-infection. EV-A71-associated cytokines such as IL-1β, IL-6, MCP-1, IL-10, and IFN-γ were investigated. Serum IL-10 and MCP-1 expression were significantly higher in EV-71-infected WT mice than in PLG knockout mice, and MCP-1 may be one of the critical chemokines that induce intense inflammation and chemoattracts leukocytes. Our findings reveal a possible role for PLG in EV-A71 infection/pathogenesis and shed light on developing novel therapeutic approaches and drugs to prevent EV-A71 infection.IMPORTANCEUnderstanding the pathogenesis of enterovirus A71 (EV-A71) for developing novel drugs or therapeutic approaches has always been a significant issue. In this study, we demonstrated the interactions between plasminogen (PLG) and EV-A71, characterized the biological effects of EV-A71-infected PLG knockout mice, and evaluated their immune response. We found that EV-A71 caused more severe tissue damage than PLG knockout mice in skeletal muscle, spinal cord, and brain stem. Higher virus protein was observed in these tissues of WT mice. The reduced clinical scores, mortality, and cytokine expression suggested PLG may be involved in EV-A71 infection-induced cytokine storm. The findings and animal model in the current study provide the new drug target for anti-EV-A71 drug discovery.
Collapse
Affiliation(s)
- Zheng-Xun Li
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan City, Taiwan
| | - Li-Ting Chiang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Shih-Min Wang
- Department of Pediatric, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Hua-Lin Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Shun-Hua Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chuan-Fa Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
2
|
Nishimura Y, Sato K, Koyanagi Y, Wakita T, Muramatsu M, Shimizu H, Bergelson JM, Arita M. Enterovirus A71 does not meet the uncoating receptor SCARB2 at the cell surface. PLoS Pathog 2024; 20:e1012022. [PMID: 38359079 PMCID: PMC10901359 DOI: 10.1371/journal.ppat.1012022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/28/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Enterovirus A71 (EV-A71) infection involves a variety of receptors. Among them, two transmembrane protein receptors have been investigated in detail and shown to be critical for infection: P-selectin glycoprotein ligand-1 (PSGL-1) in lymphocytes (Jurkat cells), and scavenger receptor class B member 2 (SCARB2) in rhabdomyosarcoma (RD) cells. PSGL-1 and SCARB2 have been reported to be expressed on the surface of Jurkat and RD cells, respectively. In the work reported here, we investigated the roles of PSGL-1 and SCARB2 in the process of EV-A71 entry. We first examined the expression of SCARB2 in Jurkat cells, and detected it within the cytoplasm, but not on the cell surface. Further, using PSGL-1 and SCARB2 knockout cells, we found that although both PSGL-1 and SCARB2 are essential for virus infection of Jurkat cells, virus attachment to these cells requires only PSGL-1. These results led us to evaluate the cell surface expression and the roles of SCARB2 in other EV-A71-susceptible cell lines. Surprisingly, in contrast to the results of previous studies, we found that SCARB2 is absent from the surface of RD cells and other susceptible cell lines we examined, and that although SCARB2 is essential for infection of these cells, it is dispensable for virus attachment. These results indicate that a receptor other than SCARB2 is responsible for virus attachment to the cell and probably for internalization of virions, not only in Jurkat cells but also in RD cells and other EV-A71-susceptible cells. SCARB2 is highly concentrated in lysosomes and late endosomes, where it is likely to trigger acid-dependent uncoating of virions, the critical final step of the entry process. Our results suggest that the essential interactions between EV-A71 and SCARB2 occur, not at the cell surface, but within the cell.
Collapse
Affiliation(s)
- Yorihiro Nishimura
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe-shi, Hyogo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Jeffrey M Bergelson
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| |
Collapse
|
3
|
Wang S, Pang Z, Fan H, Tong Y. Advances in anti-EV-A71 drug development research. J Adv Res 2024; 56:137-156. [PMID: 37001813 PMCID: PMC10834817 DOI: 10.1016/j.jare.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
4
|
Nishimura Y. [SCARB2, one of the receptors for enterovirus A71, is not expressed on the cell surface.]. Uirusu 2024; 74:153-158. [PMID: 40024798 DOI: 10.2222/jsv.74.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
|
5
|
Dai D, Zhu Z, Han H, Xu T, Feng S, Zhang W, Ding F, Zhang R, Zhu J. Enhanced tyrosine sulfation is associated with chronic kidney disease-related atherosclerosis. BMC Biol 2023; 21:151. [PMID: 37424015 DOI: 10.1186/s12915-023-01641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) accelerates atherosclerosis, but the mechanisms remain unclear. Tyrosine sulfation has been recognized as a key post-translational modification (PTM) in regulation of various cellular processes, and the sulfated adhesion molecules and chemokine receptors have been shown to participate in the pathogenesis of atherosclerosis via enhancement of monocyte/macrophage function. The levels of inorganic sulfate, the essential substrate for the sulfation reaction, are dramatically increased in patients with CKD, which indicates a change of sulfation status in CKD patients. Thus, in the present study, we detected the sulfation status in CKD patients and probed into the impact of sulfation on CKD-related atherosclerosis by targeting tyrosine sulfation function. RESULTS PBMCs from individuals with CKD showed higher amounts of total sulfotyrosine and tyrosylprotein sulfotransferase (TPST) type 1 and 2 protein levels. The plasma level of O-sulfotyrosine, the metabolic end product of tyrosine sulfation, increased significantly in CKD patients. Statistically, O-sulfotyrosine and the coronary atherosclerosis severity SYNTAX score positively correlated. Mechanically, more sulfate-positive nucleated cells in peripheral blood and more abundant infiltration of sulfated macrophages in deteriorated vascular plaques in CKD ApoE null mice were noted. Knockout of TPST1 and TPST2 decreased atherosclerosis and peritoneal macrophage adherence and migration in CKD condition. The sulfation of the chemokine receptors, CCR2 and CCR5, was increased in PBMCs from CKD patients. CONCLUSIONS CKD is associated with increased sulfation status. Increased sulfation contributes to monocyte/macrophage activation and might be involved in CKD-related atherosclerosis. Inhibition of sulfation may suppress CKD-related atherosclerosis and is worthy of further study.
Collapse
Affiliation(s)
- Daopeng Dai
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbin Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Hui Han
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Tian Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Feng
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenli Zhang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Fenghua Ding
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Ruiyan Zhang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinzhou Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Hu K, Onintsoa Diarimalala R, Yao C, Li H, Wei Y. EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses 2023; 15:785. [PMID: 36992493 PMCID: PMC10051052 DOI: 10.3390/v15030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (K.H.); (R.O.D.); (C.Y.); (H.L.)
| |
Collapse
|
7
|
Chen Z, Bao L, Zhu B, Fu H, Zhu S, Ji T, Xue Y, Liu C, Wang X, Li F, Lv Q, Qi F, Yu P, Deng W, Xu W, Qin C, Liu H, Jin Q. Structural and functional analysis of a potent human neutralizing antibody against enterovirus A71. SCIENCE CHINA LIFE SCIENCES 2022; 65:2517-2526. [PMID: 35696017 PMCID: PMC9189450 DOI: 10.1007/s11427-021-2095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/22/2022] [Indexed: 10/29/2022]
|
8
|
Guo D, Yu X, Wang D, Li Z, Zhou Y, Xu G, Yuan B, Qin Y, Chen M. SLC35B2 Acts in a Dual Role in the Host Sulfation Required for EV71 Infection. J Virol 2022; 96:e0204221. [PMID: 35420441 PMCID: PMC9093107 DOI: 10.1128/jvi.02042-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
As an important neurotropic enterovirus, enterovirus 71 (EV71) is occasionally associated with severe neurological diseases and high mortality rates in infants and young children. Understanding the interaction between host factors and EV71 will play a vital role in developing antivirals and optimizing vaccines. Here, we performed a genome-wide CRISPR-Cas9 knockout screen and revealed that scavenger receptor class B member 2 (SCARB2), solute carrier family 35 member B2 (SLC35B2), and beta-1,3-glucuronyltransferase 3 (B3GAT3) are essential in facilitating EV71 replication. Subsequently, the exploration of molecular mechanisms suggested that the knockout of SLC35B2 or B3GAT3, not SCARB2, led to a remarkable decrease in the binding of EV71 to cells and internalization into cells. Furthermore, we found that the infection efficiency for EV71 was positively correlated with the level of host cell sulfation, not simply with the amount of heparan sulfate, suggesting that an unidentified sulfated protein(s) must contribute to EV71 infection. In support of this idea, we screened possible sulfated proteins among the proteinous receptors for EV71 and confirmed that SCARB2 could uniquely interact with both tyrosyl protein sulfotransferases in humans. We then performed mass spectrometric analysis of SCARB2, identifying five sites with tyrosine sulfation. The function verification test indicated that there were more than five tyrosine-sulfated sites on SCARB2. Finally, we constructed a model for EV71 entry in which both heparan sulfate and SCARB2 are regulated by SLC35B2 and act cooperatively to support viral binding, internalization, and uncoating. Taken together, this is the first time that we performed the pooled CRISPR-Cas9 genetic screening to investigate the interplay of host cells and EV71. Furthermore, we found that a novel host factor, SLC35B2, played a dual role in regulating the overall sulfation comprising heparan sulfate sulfation and protein tyrosine sulfation, which are critical for EV71 entry. IMPORTANCE As the most important nonpolio neurotropic enterovirus lacking specific treatments, EV71 can transmit to the central nervous system, leading to severe and fatal neurological complications in infants and young children. The identification of new factors that facilitate or inhibit EV71 replication is crucial to uncover the mechanisms of viral infection and pathogenesis. To date, only a few host factors involved in EV71 infection have been characterized. Herein, we conducted a genome-wide CRISPR-Cas9 functional knockout (GeCKO) screen for the first time to study EV71 in HeLa cells. The screening results are presented as a ranked list of candidates, including 518 hits in the positive selection that facilitate EV71 replication and 1,044 hits in the negative selection that may be essential for cell growth and survival or for suppressing EV71 infection. We subsequently concentrated on the top three hits in the positive selection: SCARB2, SLC35B2, and B3GAT3. The knockout of any of these three genes confers strong resistance against EV71 infection. We confirmed that EV71 infection is codependent on two receptors, heparan sulfate and SCARB2. We also identified a host entry factor, SLC35B2, indirectly facilitating EV71 infection through regulation of the host cell sulfation, and determined a novel posttranslational modification, protein tyrosine sulfation existing in SCARB2. This study revealed that EV71 infectivity exhibits a significant positive correlation with the level of cellular sulfation regulated by SLC35B2. Due to the sulfation pathway being required for many distinct viruses, including but not limited to EV71 and respiratory syncytial virus (RSV), which were tested in this study, SLC35B2 represents a target of broad-spectrum antiviral therapy.
Collapse
Affiliation(s)
- Dong Guo
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinghai Yu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guodong Xu
- Wuhan Canvest Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Bing Yuan
- Wuhan Canvest Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Swain SK, Gadnayak A, Mohanty JN, Sarangi R, Das J. Does enterovirus 71 urge for effective vaccine control strategies? Challenges and current opinion. Rev Med Virol 2022; 32:e2322. [PMID: 34997684 DOI: 10.1002/rmv.2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is an infectious virus affecting all age groups of people around the world. It is one of the major aetiologic agents for HFMD (hand, foot and mouth disease) identified globally. It has led to many outbreaks and epidemics in Asian countries. Infection caused by this virus that can lead to serious psychological problems, heart diseases and respiratory issues in children younger than 10 years of age. Many studies are being carried out on the pathogenesis of the virus, but little is known. The host immune response and other molecular responses against the virus are also not clearly determined. This review deals with the interaction between the host and the EV71 virus. We discuss how the virus makes use of its proteins to affect the host's immunity and how the viral proteins help their replication. Additionally, we describe other useful resources that enable the virus to evade the host's immune responses. The knowledge of the viral structure and its interactions with host cells has led to the discovery of various drug targets for the treatment of the virus. Additionally, this review focusses on the antiviral drugs and vaccines developed by targeting various viral surface molecules during their infectious period. Furthermore, it is asserted that the improvement of prevailing vaccines will be the simplest method to manage EV71 infection swiftly. Therefore, we summarise numerous vaccines candidate for the EV71, such as the use of an inactivated complete virus, recombinant VP1 protein, artificial peptides, VLPs (viral-like particles) and live attenuated vaccines for combating the viral outbreaks promptly.
Collapse
Affiliation(s)
- Subrat Kumar Swain
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Ayushman Gadnayak
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Jatindra Nath Mohanty
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Jayashankar Das
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
10
|
Adaptation and Virulence of Enterovirus-A71. Viruses 2021; 13:v13081661. [PMID: 34452525 PMCID: PMC8402912 DOI: 10.3390/v13081661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Outbreaks of hand, foot, and mouth disease caused by enterovirus-A71 (EV-A71) can result in many deaths, due to central nervous system complications. Outbreaks with many fatalities have occurred sporadically in the Asia-Pacific region and have become a serious public health concern. It is hypothesized that virulent mutations in the EV-A71 genome cause these occasional outbreaks. Analysis of EV-A71 neurovirulence determinants is important, but there are no virulence determinants that are widely accepted among researchers. This is because most studies have been done in artificially infected mouse models and because EV-A71 mutates very quickly to adapt to the artificial host environment. Although EV-A71 uses multiple receptors for infection, it is clear that adaptation-related mutations alter the binding specificity of the receptors and allow the virus to adopt the best entry route for each environment. Such mutations have confused interpretations of virulence in animal models. This article will discuss how environment-adapted mutations in EV-A71 occur, how they affect virulence, and how such mutations can be avoided. We also discuss future perspectives for EV-A71 virulence research.
Collapse
|
11
|
Lawrie J, Waldrop S, Morozov A, Niu W, Guo J. Engineering of a Small Protein Scaffold To Recognize Sulfotyrosine with High Specificity. ACS Chem Biol 2021; 16:1508-1517. [PMID: 34251168 DOI: 10.1021/acschembio.1c00382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein tyrosine O-sulfation is an essential post-translational modification required for effective biological processes such as hemostasis, inflammatory response, and visual phototransduction. Because of its unstable nature under mass spectrometry conditions and residing on low-abundance cell surface proteins, sulfated tyrosine (sulfotyrosine) residues are difficult to detect or analyze. Enrichment of sulfotyrosine-containing proteins (sulfoproteins) from complex biological samples are typically required before analysis. In this work, we seek to engineer the phosphotyrosine binding pocket of a Src Homology 2 (SH2) domain to act as an antisulfotyrosine antibody mimic. Using tailored selection schemes, several SH2 mutants are identified with high affinity and specificity to sulfotyrosine. Further molecular docking simulations highlight potential mechanisms supporting observed characteristics of these SH2 mutants. Utilities of the evolved SH2 mutants were demonstrated by the detection and enrichment of sulfoproteins.
Collapse
Affiliation(s)
- Justin Lawrie
- Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Sean Waldrop
- Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Anya Morozov
- Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
12
|
Liu R, Zhang Y, Kumar A, Huhn S, Hullinger L, Du Z. Modulating tyrosine sulfation of recombinant antibodies in CHO cell culture by host selection and sodium chlorate supplementation. Biotechnol J 2021; 16:e2100142. [PMID: 34081410 DOI: 10.1002/biot.202100142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Tyrosine sulfation is a post-translational modification found on many surface receptors and plays an important role in cell-cell and cell-matrix interactions. However, tyrosine sulfation of therapeutic antibodies has only been reported very recently. Because of potential potency and immunogenicity concerns, tyrosine sulfation needs to be controlled during the manufacturing process. METHODS AND RESULTS In this study, we explored methods to modulate antibody tyrosine sulfation during cell line development and upstream production process. We found that tyrosine sulfation levels were significantly different in various Chinese hamster ovary (CHO) cell lines due to differential expression of genes in the sulfation pathway including tyrosylprotein sulfotransferase 2 (TPST2) and the sulfation substrate transporter SLC35B2. We also screened chemical inhibitors to reduce tyrosine sulfation in CHO culture and found that sodium chlorate could significantly inhibit tyrosine sulfation while having minimal impact on cell growth and antibody production. We further confirmed this finding in a standard fed-batch production assay. Sodium chlorate at 16 mM markedly inhibited tyrosine sulfation by more than 50% and had no significant impact on antibody titer or quality. CONCLUSION These data suggest that we can control tyrosine sulfation by selecting CHO cell lines based on the expression level of TPST2 and SLC35B2 or adding sodium chlorate in upstream production process.
Collapse
Affiliation(s)
- Ren Liu
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Yixiao Zhang
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Amit Kumar
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Steven Huhn
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Laurie Hullinger
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Zhimei Du
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
13
|
Guo XY, Gao XD, Fujita M. Sulfation of a FLAG tag mediated by SLC35B2 and TPST2 affects antibody recognition. PLoS One 2021; 16:e0250805. [PMID: 33951064 PMCID: PMC8099120 DOI: 10.1371/journal.pone.0250805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
A FLAG tag consisting of DYKDDDDK is an epitope tag that is frequently and widely used to detect recombinant proteins of interest. In this study, we performed a CRISPR-based genetic screening to identify factors involved in the detection of a FLAG-tagged misfolded model protein at the cell surface. In the screening, SLC35B2, which encodes 3’-phosphoadenosine-5’-phosphosulfate transporter 1, was identified as the candidate gene. The detection of FLAG-tagged misfolded proteins at the cell surface was significantly increased in SLC35B2-knockout cells. Furthermore, protein tyrosine sulfation mediated by tyrosyl-protein sulfotransferase 2 (TPST2) suppressed FLAG-tagged protein detection. Localization analysis of the FLAG-tagged misfolded proteins confirmed that defects in tyrosine sulfation are only responsible for enhancing anti-FLAG staining on the plasma membrane but not inducing the localization change of misfolded proteins on the plasma membrane. These results suggest that a FLAG tag on the misfolded protein would be sulfated, causing a reduced detection by the M2 anti-FLAG antibody. Attention should be required when quantifying the FLAG-tagged proteins in the secretory pathway.
Collapse
Affiliation(s)
- Xin-Yu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- * E-mail:
| |
Collapse
|
14
|
Su PC, Chen BH, Lee YC, Yang YS. Silicon Nanowire Field-Effect Transistor as Biosensing Platforms for Post-Translational Modification. BIOSENSORS-BASEL 2020; 10:bios10120213. [PMID: 33371301 PMCID: PMC7767353 DOI: 10.3390/bios10120213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Protein tyrosine sulfation (PTS), a vital post-translational modification, facilitates protein–protein interactions and regulates many physiological and pathological responses. Monitoring PTS has been difficult owing to the instability of sulfated proteins and the lack of a suitable method for detecting the protein sulfate ester. In this study, we combined an in situ PTS system with a high-sensitivity polysilicon nanowire field-effect transistor (pSNWFET)-based sensor to directly monitor PTS formation. A peptide containing the tyrosine sulfation site of P-selectin glycoprotein ligand (PSGL)-1 was immobilized onto the surface of the pSNWFET by using 3-aminopropyltriethoxysilane and glutaraldehyde as linker molecules. A coupled enzyme sulfation system consisting of tyrosylprotein sulfotransferase and phenol sulfotransferase was used to catalyze PTS of the immobilized PSGL-1 peptide. Enzyme-catalyzed sulfation of the immobilized peptide was readily observed through the shift of the drain current–gate voltage curves of the pSNWFET before and after PTS. We expect that this approach can be developed as a next generation biochip for biomedical research and industries.
Collapse
Affiliation(s)
- Ping-Chia Su
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.S.); (B.-H.C.); (Y.-C.L.)
| | - Bo-Han Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.S.); (B.-H.C.); (Y.-C.L.)
| | - Yi-Chan Lee
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.S.); (B.-H.C.); (Y.-C.L.)
| | - Yuh-Shyong Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.S.); (B.-H.C.); (Y.-C.L.)
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: ; Tel.: +886-3-5731983
| |
Collapse
|
15
|
Mutated Human P-Selectin Glycoprotein Ligand-1 and Viral Protein-1 of Enterovirus 71 Interactions on Au Nanoplasmonic Substrate for Specific Recognition by Surface-Enhanced Raman Spectroscopy. COATINGS 2020. [DOI: 10.3390/coatings10040403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein tyrosine sulfation is a common post-translational modification that stimulates intercellular or extracellular protein-protein interactions and is responsible for various important biological processes, including coagulation, inflammation, and virus infections. Recently, human P-selectin glycoprotein ligand-1 (PSGL-1) has been shown to serve as a functional receptor for enterovirus 71 (EV71). It has been proposed that the capsid viral protein VP1 of EV71 is directly involved in this specific interaction with sulfated or mutated PSGL-1. Surface-enhanced Raman spectroscopy (SERS) is used to distinguish PSGL-1 and VP1 interactions on an Au nanoporous substrate and identify specific VP1 interaction positions of tyrosine residue sites (46, 48, and 51). The three tyrosine sites in PSGL-1 were replaced by phenylalanine (F), as determined using SERS. A strong phenylalanine SERS signal was obtained in three regions of the mutated protein on the nanoporous substrate. The mutated protein positions at (51F) and (48F, 51F) produced a strong SERS peak at 1599–1666 cm−1, which could be related to a binding with the mutated protein and anti-sulfotyrosine interactions on the nanoporous substrate. A strong SERS effect of the mutated protein and VP1 interactions appeared at (48F), (51F), and (46F, 48F). In these positions, there was less interaction with VP1, as indicated by a strong phenylalanine signal from the mutated protein.
Collapse
|
16
|
Abstract
Enterovirus 71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease. EV-A71 infection is sometimes associated with severe neurological diseases such as acute encephalitis, acute flaccid paralysis, and cardiopulmonary failure. Therefore, EV-A71 is a serious public health concern. Scavenger receptor class B, member 2 (SCARB2) is a type III transmembrane protein that belongs to the CD36 family and is a major receptor for EV-A71. SCARB2 supports attachment and internalization of the virus and initiates conformational changes that lead to uncoating of viral RNA in the cytoplasm. The three-dimensional structure of the virus-receptor complex was elucidated by cryo-electron microscopy. Two α-helices in the head domain of SCARB2 bind to the G-H loop of VP1 and the E-F loop of VP2 capsid proteins of EV-A71. Uncoating takes place in a SCARB2- and low pH-dependent manner. In addition to SCARB2, other molecules support cell surface binding of EV-A71. Heparan sulfate proteoglycans, P-selectin glycoprotein ligand-1, sialylated glycan, annexin II, vimentin, fibronectin, and prohibitin enhance viral infection by retaining the virus on the cell surface. These molecules are known as “attachment receptors” because they cannot initiate uncoating. In vivo, SCARB2 expression was observed in EV-A71 antigen-positive neurons and epithelial cells in the crypts of the palatine tonsils in patients that died of EV-A71 infection. Adult mice are not susceptible to infection by EV-A71, but transgenic mice that express human SCARB2 become susceptible to EV-A71 infection and develop neurological diseases similar to those observed in humans. Attachment receptors may also be involved in EV-A71 infection in vivo. Although heparan sulfate proteoglycans are expressed by many cultured cell lines and enhance infection by a subset of EV-A71 strains, they are not expressed by cells that express SCARB2 at high levels in vivo. Thus, heparan sulfate-positive cells merely adsorb the virus and do not contribute to replication or dissemination of the virus in vivo. In addition to these attachment receptors, cyclophilin A and human tryptophanyl aminoacyl-tRNA synthetase act as an uncoating regulator and an entry mediator that can confer susceptibility to non-susceptibile cells in the absence of SCARB2, respectively. The roles of attachment receptors and other molecules in EV-A71 pathogenesis remain to be elucidated.
Collapse
Affiliation(s)
- Kyousuke Kobayashi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
17
|
Sun L, Tijsma A, Mirabelli C, Baggen J, Wahedi M, Franco D, De Palma A, Leyssen P, Verbeken E, van Kuppeveld FJM, Neyts J, Thibaut HJ. Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence. Emerg Microbes Infect 2019; 8:1076-1085. [PMID: 31339457 PMCID: PMC6711088 DOI: 10.1080/22221751.2019.1644142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enterovirus A71 (EV-A71) is one of the main causative agents of hand-foot-and-mouth disease and is occasionally associated with severe neurological complications. EV-A71 pathophysiology is poorly understood due to the lack of small animal models that robustly support viral replication in relevant organs/tissues. Here, we show that adult severe combined immune-deficient (SCID) mice can serve as an EV-A71 infection model to study neurotropic determinants and viral tropism. Mice inoculated intraperitoneally with an EV-A71 clinical isolate had an initial infection of the lung compartment, followed by neuroinvasion and infection of (motor)neurons, resulting in slowly progressing paralysis of the limbs. We identified a substitution (V135I) in the capsid protein VP2 as a key requirement for neurotropism. This substitution was also present in a mouse-adapted variant, obtained by passaging the clinical isolate in the brain of one-day-old mice, and induced exclusive neuropathology and rapid paralysis, confirming its role in neurotropism. Finally, we showed that this residue enhances the capacity of EV-A71 to use mouse PSGL1 for viral entry. Our data reveal that EV-A71 initially disseminates to the lung and identify viral and host determinants that define the neurotropic character of EV-A71, pointing to a hitherto understudied role of PSGL1 in EV-A71 tropism and neuropathology.
Collapse
Affiliation(s)
- Liang Sun
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Aloys Tijsma
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Carmen Mirabelli
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Jim Baggen
- b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| | - Maryam Wahedi
- b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| | - David Franco
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Armando De Palma
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Pieter Leyssen
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Erik Verbeken
- c Department of Imaging & Pathology, KU Leuven , Leuven , Belgium
| | - Frank J M van Kuppeveld
- b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| | - Johan Neyts
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Hendrik Jan Thibaut
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium.,b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| |
Collapse
|
18
|
Huang SW, Cheng D, Wang JR. Enterovirus A71: virulence, antigenicity, and genetic evolution over the years. J Biomed Sci 2019; 26:81. [PMID: 31630680 PMCID: PMC6802317 DOI: 10.1186/s12929-019-0574-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
As a neurotropic virus, enterovirus A71 (EV-A71) emerge and remerge in the Asia-Pacific region since the 1990s, and has continuously been a threat to global public health, especially in children. Annually, EV-A71 results in hand-foot-and-mouth disease (HFMD) and occasionally causes severe neurological disease. Here we reviewed the global epidemiology and genotypic evolution of EV-A71 since 1997. The natural selection, mutation and recombination events observed in the genetic evolution were described. In addition, we have updated the antigenicity and virulence determinants that are known to date. Understanding EV-A71 epidemiology, genetic evolution, antigenicity, and virulence determinants can expand our insights of EV-A71 pathogenesis, which may benefit us in the future.
Collapse
Affiliation(s)
- Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Dayna Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Jen-Ren Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, One, University Road, Tainan, 701, Taiwan. .,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
19
|
In Vitro and In Vivo Inhibition of the Infectivity of Human Enterovirus 71 by a Sulfonated Food Azo Dye, Brilliant Black BN. J Virol 2019; 93:JVI.00061-19. [PMID: 31167919 DOI: 10.1128/jvi.00061-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD), a highly contagious disease in children, is caused by human enteroviruses, including enterovirus 71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus A6 (CVA6). Although HFMD is usually mild and self-limiting, EV71 infection occasionally leads to fatal neurological disorders. Currently, no commercial antiviral drugs for HFMD treatment are available. Here, numerous sulfonated azo dyes, widely used as food additives, were identified as having potent antiviral activities against human enteroviruses. Among them, brilliant black BN (E151) was able to inhibit all EV71, CVA16, and CVA6 strains tested. In rhabdomyosarcoma cells, the 50% inhibitory concentrations of the dye E151 for various strains of EV71 ranged from 2.39 μM to 28.12 μM, whereas its 50% cytotoxic concentration was 1,870 μM. Food azo dyes, including E151, interacted with the vertex of the 5-fold axis of EV71 and prevented viral entry. Their efficacy in viral inhibition was regulated by amino acids at VP1-98, VP1-145, and/or VP1-246. Dye E151 not only prevented EV71 attachment but also eluted attached viruses in a concentration-dependent manner. Moreover, E151 inhibited the interaction between EV71 and its cellular uncoating factor cyclophilin A. In vivo studies demonstrated that E151 at a dose of 200 mg/kg of body weight/day given on the initial 4 days of challenge protected AG129 mice challenged with 10× the 50% lethal dose of wild-type EV71 isolates. Taken together, these data highlight E151 as a promising antiviral agent against EV71 infection.IMPORTANCE Human enterovirus 71 (EV71) is one of the causative agents of hand, foot, and mouth disease in children and is responsible for thousands of deaths in the past 20 years. Food azo dyes have been widely used since the nineteenth century; however, their biological effects on humans and microbes residing in humans are poorly understood. Here, we discovered that one of these dyes, brilliant black BN (E151), was particularly effective in inhibiting the infectivity of EV71 in both cell culture and mouse model studies. Mechanistic studies demonstrated that these sulfonated dyes mainly competed with EV71 attachment factors for viral binding to block viral attachment/entry to host cells. As no commercial antiviral drugs against EV71 are currently available, our findings open an avenue to exploit the development of permitted food dye E151 as a potential anti-EV71 agent.
Collapse
|
20
|
Enterovirus 71 3C Protease Does Not Disrupt Interferon Type I Signaling Pathway. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.91745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Owino CO, Chu JJH. Recent advances on the role of host factors during non-poliovirus enteroviral infections. J Biomed Sci 2019; 26:47. [PMID: 31215493 PMCID: PMC6582496 DOI: 10.1186/s12929-019-0540-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Non-polio enteroviruses are emerging viruses known to cause outbreaks of polio-like infections in different parts of the world with several cases already reported in Asia Pacific, Europe and in United States of America. These outbreaks normally result in overstretching of health facilities as well as death in children under the age of five. Most of these infections are usually self-limiting except for the neurological complications associated with human enterovirus A 71 (EV-A71). The infection dynamics of these viruses have not been fully understood, with most inferences made from previous studies conducted with poliovirus.Non-poliovirus enteroviral infections are responsible for major outbreaks of hand, foot and mouth disease (HFMD) often associated with neurological complications and severe respiratory diseases. The myriad of disease presentations observed so far in children calls for an urgent need to fully elucidate the replication processes of these viruses. There are concerted efforts from different research groups to fully map out the role of human host factors in the replication cycle of these viral infections. Understanding the interaction between viral proteins and human host factors will unravel important insights on the lifecycle of this groups of viruses.This review provides the latest update on the interplay between human host factors/processes and non-polio enteroviruses (NPEV). We focus on the interactions involved in viral attachment, entry, internalization, uncoating, replication, virion assembly and eventual egress of the NPEV from the infected cells. We emphasize on the virus- human host interplay and highlight existing knowledge gaps that needs further studies. Understanding the NPEV-human host factors interactions will be key in the design and development of vaccines as well as antivirals against enteroviral infections. Dissecting the role of human host factors during NPEV infection cycle will provide a clear picture of how NPEVs usurp the human cellular processes to establish an efficient infection. This will be a boost to the drug and vaccine development against enteroviruses which will be key in control and eventual elimination of the viral infections.
Collapse
Affiliation(s)
- Collins Oduor Owino
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|
22
|
Viral engagement with host receptors blocked by a novel class of tryptophan dendrimers that targets the 5-fold-axis of the enterovirus-A71 capsid. PLoS Pathog 2019; 15:e1007760. [PMID: 31071193 PMCID: PMC6590834 DOI: 10.1371/journal.ppat.1007760] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/24/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a non-polio neurotropic enterovirus with pandemic potential. There are no antiviral agents approved to prevent or treat EV-A71 infections. We here report on the molecular mechanism by which a novel class of tryptophan dendrimers inhibits (at low nanomolar to high picomolar concentration) EV-A71 replication in vitro. A lead compound in the series (MADAL385) prevents binding and internalization of the virus but does not, unlike classical capsid binders, stabilize the particle. By means of resistance selection, reverse genetics and cryo-EM, we map the binding region of MADAL385 to the 5-fold vertex of the viral capsid and demonstrate that a single molecule binds to each vertex. By interacting with this region, MADAL385 prevents the interaction of the virus with its cellular receptors PSGL1 and heparan sulfate, thereby blocking the attachment of EV-A71 to the host cells. Enterovirus A71 (EV-A71) is the virus responsible for most of the severe forms of hand, foot and mouth disease (HFMD) associated with neurological involvement and mortality in young children under the age of 5. Seasonal outbreaks of HFMD -with a 2–3 years epidemic cycle- are recurring around the world, especially in the Asia-Pacific region. To date, no antiviral agent has been approved for the treatment of EV-A71 infections. Here, we report on a recently uncovered class of tryptophan dendrimers with an extraordinary antiviral activity in vitro against circulating EV-A71 clinical isolates. Mode of action studies revealed that this class of compounds targets the 5-fold vertex of EV-A71, in turn blocking receptor binding. Our finding may open an entirely novel line of research and largely aid in anti-enterovirus drug development.
Collapse
|
23
|
Chandra N, Liu Y, Liu JX, Frängsmyr L, Wu N, Silva LM, Lindström M, Chai W, Pedrosa Domellöf F, Feizi T, Arnberg N. Sulfated Glycosaminoglycans as Viral Decoy Receptors for Human Adenovirus Type 37. Viruses 2019; 11:E247. [PMID: 30871026 PMCID: PMC6466042 DOI: 10.3390/v11030247] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/13/2022] Open
Abstract
Glycans on plasma membranes and in secretions play important roles in infection by many viruses. Species D human adenovirus type 37 (HAdV-D37) is a major cause of epidemic keratoconjunctivitis (EKC) and infects target cells by interacting with sialic acid (SA)-containing glycans via the fiber knob domain of the viral fiber protein. HAdV-D37 also interacts with sulfated glycosaminoglycans (GAGs), but the outcome of this interaction remains unknown. Here, we investigated the molecular requirements of HAdV-D37 fiber knob:GAG interactions using a GAG microarray and demonstrated that fiber knob interacts with a broad range of sulfated GAGs. These interactions were corroborated in cell-based assays and by surface plasmon resonance analysis. Removal of heparan sulfate (HS) and sulfate groups from human corneal epithelial (HCE) cells by heparinase III and sodium chlorate treatments, respectively, reduced HAdV-D37 binding to cells. Remarkably, removal of HS by heparinase III enhanced the virus infection. Our results suggest that interaction of HAdV-D37 with sulfated GAGs in secretions and on plasma membranes prevents/delays the virus binding to SA-containing receptors and inhibits subsequent infection. We also found abundant HS in the basement membrane of the human corneal epithelium, which may act as a barrier to sub-epithelial infection. Collectively, our findings provide novel insights into the role of GAGs as viral decoy receptors and highlight the therapeutic potential of GAGs and/or GAG-mimetics in HAdV-D37 infection.
Collapse
Affiliation(s)
- Naresh Chandra
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Yan Liu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Umeå University, SE-90185 Umeå, Sweden.
- Department of Clinical Science, Ophthalmology, Umeå University, SE-90185 Umeå, Sweden.
| | - Lars Frängsmyr
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Nian Wu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Lisete M Silva
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Mona Lindström
- Department of Integrative Medical Biology, Umeå University, SE-90185 Umeå, Sweden.
- Department of Clinical Science, Ophthalmology, Umeå University, SE-90185 Umeå, Sweden.
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Fatima Pedrosa Domellöf
- Department of Integrative Medical Biology, Umeå University, SE-90185 Umeå, Sweden.
- Department of Clinical Science, Ophthalmology, Umeå University, SE-90185 Umeå, Sweden.
| | - Ten Feizi
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Niklas Arnberg
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| |
Collapse
|
24
|
Lawrie J, Niu W, Guo J. Engineering of a sulfotyrosine-recognizing small protein scaffold for the study of protein tyrosine O-sulfation. Methods Enzymol 2019; 622:67-89. [PMID: 31155066 DOI: 10.1016/bs.mie.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein tyrosine O-sulfation is considered as one of the most common types of posttranslational modification of tyrosine in nature. The introduction of a negatively charged sulfate group plays crucial roles in extracellular biomolecular interactions that dictate various cellular processes, including cell adhesion, leukocyte trafficking, hormone activities, and immune responses. Despite substantial advances in our knowledge about protein tyrosine O-sulfation in recent years, our understanding of its biological significance is still in its infancy. This is largely hindered by a chronic lack of suitable biochemical tools. We seek to meet this challenge by engineering a small protein scaffold that can recognize sulfated tyrosine (sulfotyrosine) residues with high affinity. In this chapter, we describe the directed evolution of a Src Homology 2 (SH2) domain to recognize sulfotyrosine. In the first part, the design strategy for the phage display of SH2 variants is discussed. In the second part, the techniques required for phage propagation and selection are described. The evolved SH2 variants are characterized and validated in vitro through fluorescence polarization assays. Finally, the evolved SH2 domain mutants are applied to the visualization of sulfated proteins on the cell surface.
Collapse
Affiliation(s)
- Justin Lawrie
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
25
|
Rasti M, Khanbabaei H, Teimoori A. An update on enterovirus 71 infection and interferon type I response. Rev Med Virol 2019; 29:e2016. [PMID: 30378208 PMCID: PMC7169063 DOI: 10.1002/rmv.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Enteroviruses are members of Pichornaviridae family consisting of human enterovirus group A, B, C, and D as well as nonhuman enteroviruses. Hand, foot, and mouth disease (HFMD) is a serious disease which is usually seen in the Asia-Pacific region in children. Enterovirus 71 and coxsackievirus A16 are two important viruses responsible for HFMD which are members of group A enterovirus. IFN α and β are two cytokines, which have a major activity in the innate immune system against viral infections. Most of the viruses have some weapons against these cytokines. EV71 has two main proteases called 2A and 3C, which are important for polyprotein processing and virus maturation. Several studies have indicated that they have a significant effect on different cellular pathways such as interferon production and signaling pathway. The aim of this study was to investigate the latest findings about the interaction of 2A and 3C protease of EV71 and IFN production/signaling pathway and their inhibitory effects on this pathway.
Collapse
Affiliation(s)
- Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hashem Khanbabaei
- Medical Physics Department, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ali Teimoori
- Department of Virology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
26
|
Wang CC, Chen BH, Lu LY, Hung KS, Yang YS. Preparation of Tyrosylprotein Sulfotransferases for In Vitro One-Pot Enzymatic Synthesis of Sulfated Proteins/Peptides. ACS OMEGA 2018; 3:11633-11642. [PMID: 30320268 PMCID: PMC6173500 DOI: 10.1021/acsomega.7b01533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Protein tyrosine sulfation (PTS), catalyzed by membrane-anchored tyrosylprotein sulfotransferase (TPST), is one of the most common post-translational modifications of secretory and transmembrane proteins. PTS, a key modulator of extracellular protein-protein interactions, accounts for various important biological activities, namely, virus entry, inflammation, coagulation, and sterility. The preparation and characterization of TPST is fundamental for understanding the synthesis of tyrosine-sulfated proteins and for studying PTS in biology. A sulfated protein was prepared using a TPST-coupled protein sulfation system that involves the generation of the active sulfate 3'-phosphoadenosine-5'-phosphosulfate (PAPS) through either PAPS synthetase (PAPSS) or phenol sulfotransferase. The preparation of sulfated proteins was confirmed through radiometric or immunochemical assays. In this study, enzymatically active Drosophila melanogaster TPST (DmTPST) and human TPSTs (hTPST1 and hTPST2) were expressed in Escherichia coli BL21(DE3) host cells and purified to homogeneity in high yield. Our results revealed that recombinant DmTPST was particularly useful considering its catalytic efficiency and ease of preparation in large quantities. This study provides tools for high-efficiency, one-step synthesis of sulfated proteins and peptides that are useful for further deciphering the mechanisms, functions, and future applications of PTS.
Collapse
Affiliation(s)
- Chen-Chu Wang
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Bo-Han Chen
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Lu-Yi Lu
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Kuo-Sheng Hung
- Department
of Neurosurgery, Center of Excellence for Clinical Trial and Research, Taipei Medical University-Wan Fang Medical Center, No.111, Section 3, Hsing-Long Road, Taipei 11696, Taiwan
| | - Yuh-Shyong Yang
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| |
Collapse
|
27
|
Zhang Y, Li J, Li Q. Immune Evasion of Enteroviruses Under Innate Immune Monitoring. Front Microbiol 2018; 9:1866. [PMID: 30154774 PMCID: PMC6102382 DOI: 10.3389/fmicb.2018.01866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022] Open
Abstract
As a major component of immunological defense against a great variety of pathogens, innate immunity is capable of activating the adaptive immune system. Viruses are a type of pathogen that proliferate parasitically in cells and have multiple strategies to escape from host immune pressure. Here, we review recent studies of the strategies and mechanisms by which enteroviruses evade innate immune monitoring.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jingyan Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qihan Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
28
|
Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP. Immunopathogenesis and Virus-Host Interactions of Enterovirus 71 in Patients with Hand, Foot and Mouth Disease. Front Microbiol 2017; 8:2249. [PMID: 29238324 PMCID: PMC5713468 DOI: 10.3389/fmicb.2017.02249] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Enterovirus 71 (EV71) is a global infectious disease that affects millions of people. The virus is the main etiological agent for hand, foot, and mouth disease with outbreaks and epidemics being reported globally. Infection can cause severe neurological, cardiac, and respiratory problems in children under the age of 5. Despite on-going efforts, little is known about the pathogenesis of EV71, how the host immune system responds to the virus and the molecular mechanisms behind these responses. Moreover, current animal models remain limited, because they do not recapitulate similar disease patterns and symptoms observed in humans. In this review the role of the host-viral interactions of EV71 are discussed together with the various models available to examine: how EV71 utilizes its proteins to cleave host factors and proteins, aiding virus replication; how EV71 uses its own viral proteins to disrupt host immune responses and aid in its immune evasion. These discoveries along with others, such as the EV71 crystal structure, have provided possible targets for treatment and drug interventions.
Collapse
Affiliation(s)
- Jonathan A. Cox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Julian A. Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Mong-How Ooi
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Samarahan, Malaysia
- Department of Paediatrics, Sarawak General Hospital, Kuching, Malaysia
| | - Lisa F. P. Ng
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| |
Collapse
|
29
|
Wang CC, Sivashanmugan K, Chen CK, Hong JR, Sung WI, Liao JD, Yang YS. Specific Unbinding Forces Between Mutated Human P-Selectin Glycoprotein Ligand-1 and Viral Protein-1 Measured Using Force Spectroscopy. J Phys Chem Lett 2017; 8:5290-5295. [PMID: 29016136 DOI: 10.1021/acs.jpclett.7b02373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein tyrosine sulfation (PTS) is a key modulator of extracellular protein-protein interaction (PPI), which regulates principal biological processes. For example, the capsid protein VP1 of enterovirus 71 (EV71) specifically interacts with sulfated P-selectin glycoprotein ligand-1 (PSGL-1) to facilitate virus invasion. Currently available methods cannot be used to directly observe PTS-induced PPI. In this study, atomic force microscopy was used to measure the interaction between sulfated or mutated PSGL-1 and VP1. We found that the binding strength increased by 6.7-fold following PTS treatment on PSGL-1 with a specific antisulfotyrosine antibody. Similar results were obtained when the antisulfotyrosine antibody was replaced with the VP1 protein of EV71; however, the interaction forces of VP1 were only approximately one-third of those of the antisulfotyrosine antibody. We also found that PTS on the tyrosine-51 residue of glutathione S-transferases fusion-PSGL-1 was mainly responsible for the PTS-induced PPI. Our results contribute to the fundamental understanding of PPI regulated through PTS.
Collapse
Affiliation(s)
- Chen-Chu Wang
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu, Taiwan 300
| | - Kundan Sivashanmugan
- Department of Materials Science and Engineering, National Cheng Kung University , Tainan, Taiwan 701
| | - Chung-Ku Chen
- Department of Materials Science and Engineering, National Cheng Kung University , Tainan, Taiwan 701
| | - Jian-Ren Hong
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu, Taiwan 300
| | - Wei-I Sung
- Department of Materials Science and Engineering, National Cheng Kung University , Tainan, Taiwan 701
| | - Jiunn-Der Liao
- Department of Materials Science and Engineering, National Cheng Kung University , Tainan, Taiwan 701
| | - Yuh-Shyong Yang
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu, Taiwan 300
| |
Collapse
|
30
|
Huang BY, Chen PC, Chen BH, Wang CC, Liu HF, Chen YZ, Chen CS, Yang YS. High-Throughput Screening of Sulfated Proteins by Using a Genome-Wide Proteome Microarray and Protein Tyrosine Sulfation System. Anal Chem 2017; 89:3278-3284. [PMID: 28211678 DOI: 10.1021/acs.analchem.6b02853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein tyrosine sulfation (PTS) is a widespread posttranslational modification that induces intercellular and extracellular responses by regulating protein-protein interactions and enzymatic activity. Although PTS affects numerous physiological and pathological processes, only a small fraction of the total predicted sulfated proteins has been identified to date. Here, we localized the potential sulfation sites of Escherichia coli proteins on a proteome microarray by using a 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase-coupled tyrosylprotein sulfotransferase (TPST) catalysis system that involves in situ PAPS generation and TPST catalysis. Among the 4256 E. coli K12 proteins, 875 sulfated proteins were identified using antisulfotyrosine primary and Cy3-labeled antimouse secondary antibodies. Our findings add considerably to the list of potential proteins subjected to tyrosine sulfation. Similar procedures can be applied to identify sulfated proteins in yeast and human proteome microarrays, and we expect such approaches to contribute substantially to the understanding of important human diseases.
Collapse
Affiliation(s)
- Bo-Yu Huang
- Department of Biological Science and Technology, National Chiao Tung University , 75 Boai Street, Hsinchu 300, Taiwan
| | - Po-Chung Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University , 300 Jhongda Road, Jhongli 320, Taiwan
| | - Bo-Han Chen
- Department of Biological Science and Technology, National Chiao Tung University , 75 Boai Street, Hsinchu 300, Taiwan
| | - Chen-Chu Wang
- Department of Biological Science and Technology, National Chiao Tung University , 75 Boai Street, Hsinchu 300, Taiwan
| | - Hsuan-Fu Liu
- Department of Biological Science and Technology, National Chiao Tung University , 75 Boai Street, Hsinchu 300, Taiwan
| | - Yi-Zao Chen
- Department of Biological Science and Technology, National Chiao Tung University , 75 Boai Street, Hsinchu 300, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University , 300 Jhongda Road, Jhongli 320, Taiwan
| | - Yuh-Shyong Yang
- Department of Biological Science and Technology, National Chiao Tung University , 75 Boai Street, Hsinchu 300, Taiwan
| |
Collapse
|
31
|
Suramin interacts with the positively charged region surrounding the 5-fold axis of the EV-A71 capsid and inhibits multiple enterovirus A. Sci Rep 2017; 7:42902. [PMID: 28218309 PMCID: PMC5317167 DOI: 10.1038/srep42902] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 01/17/2017] [Indexed: 11/08/2022] Open
Abstract
Suramin was previously shown to bind to the EV-A71 capsid through its naphthalenetrisulfonic acid groups, thereby reducing virus-cell binding and inhibiting viral replication. Here, we identify VP1-145 as the critical amino acid that accounts for the differential sensitivity of EVA-71 viruses to suramin. A single Q or G to E substitution at VP1-145 results in an approximately 30-fold shift of IC50 or IC90 values reproducing the inhibition profile observed with field isolates expressing either the 145Q or E mutation. Our data support the conclusion that suramin binds to the positively charged region surrounding the 5-fold axis of the capsid and consequently blocks the virus attachment and entry into host cells. In order to assess the antiviral-spectrum of suramin, we analyzed 18 representative enteroviruses: A (n = 7), B (n = 5), C (n = 5) and D (n = 1). We show that suramin potency is restricted to enterovirus A species. Clinical development of suramin is further supported by pharmacokinetic data demonstrating bioactive plasma levels after a single dose intramuscular administration in macaques. Altogether, our findings support the clinical development of suramin as a novel entry inhibitor for the treatment of enterovirus A infections.
Collapse
|
32
|
Tan CW, Sam IC, Lee VS, Wong HV, Chan YF. VP1 residues around the five-fold axis of enterovirus A71 mediate heparan sulfate interaction. Virology 2016; 501:79-87. [PMID: 27875780 DOI: 10.1016/j.virol.2016.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022]
Abstract
Enterovirus A71 (EV-A71) is a neurotropic enterovirus that uses heparan sulfate as an attachment receptor. The molecular determinants of EV-A71-heparan sulfate interaction are unknown. With In silico heparin docking and mutagenesis of all possible lysine residues in VP1, we identified that K162, K242 and K244 are responsible for heparin interaction and inhibition. EV-A71 mutants with K242A and K244A rapidly acquired compensatory mutations, T100K or E98A, and Q145R-T237N respectively, which restored the heparin-binding phenotype. Both VP1-98 and VP1-145 modulates heparin binding. Heparin-binding phenotype was completely abolished with VP1-E98-E145, but was restored by an E98K or E145Q substitution. During cell culture adaptation, EV-A71 rapidly acquired K98 or Q/G145 to restore the heparin-binding phenotype. Together with next-generation sequencing analysis, our results implied that EV-A71 has high genetic plasticity by modulating positively-charged residues at the five-fold axis during in vitro heparin adaptation. Our finding has impact on EV-A71 vaccine production, evolutionary studies and pathogenesis.
Collapse
Affiliation(s)
- Chee Wah Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Computational Simulation Modelling Laboratory (CSML), Department of Chemistry and Center of Excellence for Innovation in Chemistry and Materials Science Research Center, Faculty of Science, Chiang Mai University, Thailand
| | - Hui Vern Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
33
|
Ju T, Niu W, Guo J. Evolution of Src Homology 2 (SH2) Domain to Recognize Sulfotyrosine. ACS Chem Biol 2016; 11:2551-7. [PMID: 27428792 DOI: 10.1021/acschembio.6b00555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein tyrosine O-sulfation is considered as the most common type of post-translational tyrosine modification in nature and plays important roles in extracellular biomolecular interactions. To facilitate the mapping, biological study, and medicinal application of this type of post-translational modification, we seek to evolve a small protein scaffold that recognizes sulfotyrosine with high affinity. We focused our efforts on the engineering of the Src Homology 2 (SH2) domain, which represents the largest class of known phosphotyrosine-recognition domain in nature and has a highly evolvable binding pocket. By using phage display, we successfully engineered the SH2 domain to recognize sulfotyrosine with high affinity. The best mutant, SH2-60.1, displayed more than 1700 fold higher sulfotyrosine-binding affinity than that of the wild-type SH2 domain. We also demonstrated that the evolved SH2 domain mutants could be used to detect sulfoprotein levels on the cell surface. These evolved SH2 domain mutants can be potentially applied to the study of protein tyrosine O-sulfation with proper experimental designs.
Collapse
Affiliation(s)
- Tong Ju
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Jiantao Guo
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
34
|
Singh W, Karabencheva-Christova TG, Sparagano O, Black GW, Petrov PY, Christov CZ. Dimerization and ligand binding in tyrosylprotein sulfotransferase-2 are influenced by molecular motions. RSC Adv 2016. [DOI: 10.1039/c6ra01899h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tyrosylprotein sulfotransferase-2 catalyses important, but a less explored posttranslational modification of proteins.
Collapse
Affiliation(s)
- Warispreet Singh
- Department of Applied Sciences
- Faculty of Health and Life Sciences
- Northumbria University
- Newcastle upon Tyne
- UK
| | | | | | - Gary W. Black
- Department of Applied Sciences
- Faculty of Health and Life Sciences
- Northumbria University
- Newcastle upon Tyne
- UK
| | - Petar Y. Petrov
- Department of Organic Chemistry
- Faculty of Chemistry and Pharmacy
- Sofia University “St Kliment Ohridski”
- Sofia
- Bulgaria
| | - Christo Z. Christov
- Department of Applied Sciences
- Faculty of Health and Life Sciences
- Northumbria University
- Newcastle upon Tyne
- UK
| |
Collapse
|
35
|
Singh W, Karabencheva-Christova TG, Black GW, Sparagano O, Christov CZ. Conformational flexibility influences structure–function relationships in tyrosyl protein sulfotransferase-2. RSC Adv 2016. [DOI: 10.1039/c5ra25365a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conformational flexibility influence the binding of the substrate and the cofactor in TPST-2.
Collapse
Affiliation(s)
- Warispreet Singh
- Department of Applied Sciences
- Faculty of Health and Life Sciences
- Northumbria University
- Newcastle upon Tyne
- UK
| | | | - Gary W. Black
- Department of Applied Sciences
- Faculty of Health and Life Sciences
- Northumbria University
- Newcastle upon Tyne
- UK
| | | | - Christo Z. Christov
- Department of Applied Sciences
- Faculty of Health and Life Sciences
- Northumbria University
- Newcastle upon Tyne
- UK
| |
Collapse
|
36
|
Nishimura Y, McLaughlin NP, Pan J, Goldstein S, Hafenstein S, Shimizu H, Winkler JD, Bergelson JM. The Suramin Derivative NF449 Interacts with the 5-fold Vertex of the Enterovirus A71 Capsid to Prevent Virus Attachment to PSGL-1 and Heparan Sulfate. PLoS Pathog 2015; 11:e1005184. [PMID: 26430888 PMCID: PMC4592248 DOI: 10.1371/journal.ppat.1005184] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022] Open
Abstract
NF449, a sulfated compound derived from the antiparasitic drug suramin, was previously reported to inhibit infection by enterovirus A71 (EV-A71). In the current work, we found that NF449 inhibits virus attachment to target cells, and specifically blocks virus interaction with two identified receptors—the P-selectin ligand, PSGL-1, and heparan sulfate glycosaminoglycan—with no effect on virus binding to a third receptor, the scavenger receptor SCARB2. We also examined a number of commercially available suramin analogues, and newly synthesized derivatives of NF449; among these, NF110 and NM16, like NF449, inhibited virus attachment at submicromolar concentrations. PSGL-1 and heparan sulfate, but not SCARB2, are both sulfated molecules, and their interaction with EV-A71 is thought to involve positively charged capsid residues, including a conserved lysine at VP1-244, near the icosahedral 5-fold vertex. We found that mutation of VP1-244 resulted in resistance to NF449, suggesting that this residue is involved in NF449 interaction with the virus capsid. Consistent with this idea, NF449 and NF110 prevented virus interaction with monoclonal antibody MA28-7, which specifically recognizes an epitope overlapping VP1-244 at the 5-fold vertex. Based on these observations we propose that NF449 and related compounds compete with sulfated receptor molecules for a binding site at the 5-fold vertex of the EV-A71 capsid. Enterovirus A71 is epidemic in the Asia-Pacific region, and has been responsible for thousands of cases of fatal neurological disease in young children. There are no specific therapies available. We previously identified NF449 as a compound with anti-EV-A71 activity, although its mechanism of action was uncertain. In the current work we found that NF449 and related molecules prevent virus attachment both to PSGL-1, a receptor molecule important for virus interaction with white blood cells, and to heparan sulfate, a receptor that may be important for virus interaction with a variety of other cell types. In contrast, we found that NF449 had no effect on virus attachment to another proposed receptor, SCARB2. We also found that NF449 and related compounds interact with a specific site on the viral capsid, remote from the binding site for another major receptor, SCARB2. Our work provides information that may facilitate development of improved antiviral compounds that block the attachment of EV-A71 to cellular receptors.
Collapse
Affiliation(s)
- Yorihiro Nishimura
- Division of Infectious Diseases, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
- * E-mail: (YN); (JDW); (JMB)
| | - Noel P. McLaughlin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jieyan Pan
- Division of Infectious Diseases, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Sara Goldstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Susan Hafenstein
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Jeffrey D. Winkler
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (YN); (JDW); (JMB)
| | - Jeffrey M. Bergelson
- Division of Infectious Diseases, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (YN); (JDW); (JMB)
| |
Collapse
|
37
|
Ren XX, Li C, Xiong SD, Huang Z, Wang JH, Wang HB. Antibodies to P-selectin glycoprotein ligand-1 block dendritic cell-mediated enterovirus 71 transmission and prevent virus-induced cells death. Virulence 2015; 6:802-8. [PMID: 26399965 DOI: 10.1080/21505594.2015.1094605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) has been proved to serve as the functional receptor for enterovirus 71 (EV71). We found the abundant expression of PSGL-1 on monocyte-derived dendritic cells (MDDCs). However, we have previously demonstrated that MDDCs did not support efficient replication of EV71. Dendritic cells (DCs) have been described to be subverted by various viruses including EV71 for viral dissemination, we thus explore the potential contribution of PSGL-1 on DC-mediated EV71 transmission. We found that the cell-surface-expressing PSGL-1 on MDDCs mediated EV71 binding, and intriguingly, these loaded-viruses on MDDCs could be transferred to encountered target cells; Prior-treatment with PSGL-1 antibodies or interference with PSGL-1 expression diminished MDDC-mediated EV71 transfer and rescued virus-induced cell death. Our data uncover a novel role of PSGL-1 in DC-mediated EV71 spread, and provide an insight into blocking primary EV71 infection.
Collapse
Affiliation(s)
- Xiao-Xin Ren
- a Jiangsu Key Laboratory of Infection and Immunity; Institutes of Biology and Medical Sciences; Soochow University ; Suzhou , China.,b Key Laboratory of Molecular Virology and Immunology; Institute Pasteur of Shanghai; Chinese Academy of Sciences ; Shanghai , China
| | - Chuan Li
- b Key Laboratory of Molecular Virology and Immunology; Institute Pasteur of Shanghai; Chinese Academy of Sciences ; Shanghai , China
| | - Si-Dong Xiong
- a Jiangsu Key Laboratory of Infection and Immunity; Institutes of Biology and Medical Sciences; Soochow University ; Suzhou , China
| | - Zhong Huang
- b Key Laboratory of Molecular Virology and Immunology; Institute Pasteur of Shanghai; Chinese Academy of Sciences ; Shanghai , China
| | - Jian-Hua Wang
- b Key Laboratory of Molecular Virology and Immunology; Institute Pasteur of Shanghai; Chinese Academy of Sciences ; Shanghai , China
| | - Hai-Bo Wang
- b Key Laboratory of Molecular Virology and Immunology; Institute Pasteur of Shanghai; Chinese Academy of Sciences ; Shanghai , China
| |
Collapse
|
38
|
Role of tyrosine-sulfated proteins in retinal structure and function. Exp Eye Res 2015; 133:126-31. [PMID: 25819460 DOI: 10.1016/j.exer.2014.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 01/13/2023]
Abstract
The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins' tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases.
Collapse
|
39
|
Yang YS, Wang CC, Chen BH, Hou YH, Hung KS, Mao YC. Tyrosine sulfation as a protein post-translational modification. Molecules 2015; 20:2138-64. [PMID: 25635379 PMCID: PMC6272617 DOI: 10.3390/molecules20022138] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/06/2015] [Accepted: 01/14/2015] [Indexed: 12/17/2022] Open
Abstract
Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS) is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST) through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.
Collapse
Affiliation(s)
- Yuh-Shyong Yang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Chen-Chu Wang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Bo-Han Chen
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - You-Hua Hou
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Kuo-Sheng Hung
- Department of Neurosurgery, Center of Excellence for Clinical Trial and Research, Taipei Medical University-Wan Fang Medical Center, Taipei 11696, Taiwan.
| | - Yi-Chih Mao
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| |
Collapse
|
40
|
Jiao XY, Guo L, Huang DY, Chang XL, Qiu QC. Distribution of EV71 receptors SCARB2 and PSGL-1 in human tissues. Virus Res 2014; 190:40-52. [PMID: 24997419 DOI: 10.1016/j.virusres.2014.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 02/05/2023]
Abstract
The aim of this study was to investigate the distribution of Enterovirus 71 (EV71) receptors SCARB2 and PSGL-1 in human tissues. The samples were chosen from archived specimens, and the profiles of two receptors were detected in the gastrointestinal tract, lung, and brain in situ by immunohistochemistry. SCARB2 was detected in all the tissues studied, and strong staining was observed in the gastric fundus gland, mucosal and glandular epithelia of the intestine. Similar expression was found in bronchial epithelia and pneumocytes. In addition, SCARB2 was observed in the esophagus/gastric mucosal epithelia, neuron, glial cells, and blood vessels and the perivascular tissues of the brain. By comparison, PSGL-1 was expressed weakly in the mucosal and glandular epithelia of the small intestine and colon. PSGL-1 was expressed in a few bronchial epithelia, and weak staining was observed in the pneumocytes. However, PSGL-1 was found easily in the lamina propria of all the tissues studied, and strong staining of PSGL-1 was also observed in the neurons and glial cells. The distribution of the SCARB2 and PSGL-1 in human gastrointestinal tract, lung, and brain tissues correlated with the distribution of pathological changes seen in EV71 infection. The widespread prevalence of these receptors may help explain the multiple organ involvement in infection with EV71.
Collapse
Affiliation(s)
- Xiao-Yang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China; Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Changpin Road, Shantou 515041, China.
| | - Li Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Dong-Yang Huang
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Xiao-Lan Chang
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Qian-Cheng Qiu
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Changpin Road, Shantou 515041, China.
| |
Collapse
|
41
|
Kanan Y, Siefert JC, Kinter M, Al-Ubaidi MR. Complement factor H, vitronectin, and opticin are tyrosine-sulfated proteins of the retinal pigment epithelium. PLoS One 2014; 9:e105409. [PMID: 25136834 PMCID: PMC4138151 DOI: 10.1371/journal.pone.0105409] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 01/09/2023] Open
Abstract
Lack of tyrosine sulfation of ocular proteins results in disorganized photoreceptor structure and drastically reduced visual function, demonstrating the importance of this post-translational modification to vision. To understand the role that tyrosine sulfation plays in the function of ocular proteins, we identified some tyrosine-sulfated proteins in the retinal pigment epithelium using two independent methods, immuno-affinity column purification with an anti-sulfotyrosine specific antibody and computer-based sequence analysis of retinal pigment epithelium secretome by means of the prediction program Sulfinator. Radioactive labeling followed by thin layer electrophoresis revealed that three proteins, vitronectin, opticin, and complement factor H (CFH), were post-translationally modified by tyrosine sulfation. The identification of vitronectin and CFH as tyrosine-sulfated proteins is significant, since both are deposited in drusen in the eyes of patients with age-related macular degeneration (AMD). Furthermore, mutations in CFH have been determined to be a major risk factor in the development of AMD. Future studies that seek to understand the role of CFH in the development of AMD should take into account the role that tyrosine sulfation plays in the interaction of this protein with its partners, and examine whether modulating sulfation provides a potential therapeutic target.
Collapse
Affiliation(s)
- Yogita Kanan
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Joseph C. Siefert
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Michael Kinter
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Muayyad R. Al-Ubaidi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
42
|
Yamayoshi S, Fujii K, Koike S. Receptors for enterovirus 71. Emerg Microbes Infect 2014; 3:e53. [PMID: 26038749 PMCID: PMC4126179 DOI: 10.1038/emi.2014.49] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/05/2014] [Accepted: 05/05/2014] [Indexed: 11/10/2022]
Abstract
Enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease (HFMD). Occasionally, EV71 infection is associated with severe neurological diseases, such as acute encephalitis, acute flaccid paralysis and cardiopulmonary failure. Several molecules act as cell surface receptors that stimulate EV71 infection, including scavenger receptor B2 (SCARB2), P-selectin glycoprotein ligand-1 (PSGL-1), sialylated glycan, heparan sulfate and annexin II (Anx2). SCARB2 plays critical roles in attachment, viral entry and uncoating, and it can facilitate efficient EV71 infection. The three-dimensional structures of the mature EV71 virion, procapsid and empty capsid, as well as the exofacial domain of SCARB2, have been elucidated. This structural information has greatly increased our understanding of the early steps of EV71 infection. Furthermore, SCARB2 plays essential roles in the development of EV71 neurological disease in vivo. Adult mice are not susceptible to infection by EV71, but transgenic mice that express human SCARB2 become susceptible to EV71 infection and develop similar neurological diseases to those found in humans. This mouse model facilitates the in vivo investigation of many issues related to EV71. PSGL-1, sialylated glycan, heparan sulfate and Anx2 are attachment receptors, which enhance viral infection by retaining the virus on the cell surface. These molecules also contribute to viral infection in vitro either by interacting with SCARB2 or independently of SCARB2. However, the cooperative effects of these receptors, and their contribution to EV71 pathogenicity in vivo, remain to be elucidated.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo , Tokyo 108-8639, Japan
| | - Ken Fujii
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science , Tokyo 156-8506, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science , Tokyo 156-8506, Japan
| |
Collapse
|
43
|
Du N, Cong H, Tian H, Zhang H, Zhang W, Song L, Tien P. Cell surface vimentin is an attachment receptor for enterovirus 71. J Virol 2014; 88:5816-33. [PMID: 24623428 PMCID: PMC4019121 DOI: 10.1128/jvi.03826-13] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/05/2014] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Enterovirus 71 (EV71) is a highly transmissible pathogenic agent that causes severe central nervous system diseases in infected infants and young children. Here, we reported that EV71 VP1 protein could bind to vimentin intermediate filaments expressed on the host cell surface. Soluble vimentin or an antibody against vimentin could inhibit the binding of EV71 to host cells. Accompanied with the reduction of vimentin expression on the cell surface, the binding of EV71 to cells was remarkably decreased. Further evidence showed that the N terminus of vimentin is responsible for the interaction between EV71 and vimentin. These results indicated that vimentin on the host cell surface may serve as an attachment site that mediated the initial binding and subsequently increased the infectivity of EV71. IMPORTANCE This study delivers important findings on the roles of vimentin filaments in relation to EV71 infection and provides information that not only improves our understanding of EV71 pathogenesis but also presents us with potentially new strategies for the treatment of diseases caused by EV71 infections.
Collapse
Affiliation(s)
- Ning Du
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haolong Cong
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hongchao Tian
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Anhui University, Anhui, People's Republic of China
| | - Hua Zhang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenliang Zhang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lei Song
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Po Tien
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
44
|
Zhang W, Zhang L, Wu Z, Tien P. Differential interferon pathway gene expression patterns in Rhabdomyosarcoma cells during Enterovirus 71 or Coxsackievirus A16 infection. Biochem Biophys Res Commun 2014; 447:550-5. [PMID: 24735544 DOI: 10.1016/j.bbrc.2014.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 01/21/2023]
Abstract
Exposure of cells to type I interferon (IFN) induces an antiviral state that prevents viral infection, but viruses can utilize multiple tactics to antagonize the host immune system. Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two major pathogens that cause hand, foot, and mouth disease (HFMD), which is prevalent among children. We found that both EV71 and CA16 have different reactions to type I IFN pretreatment and induction patterns of type I IFN on Rhabdomyosarcoma (RD) cells. Further, a human-α and β IFN PCR array was employed to analyze the expressions of 84 genes related to the type I IFN pathway. We found significant up-regulation of multiple genes in the presence of type I IFN and differential regulation patterns during EV71 or CA16 infection in RD cells. For instance, EV71 infection repressed the JAK-STAT signaling pathway and interferon-stimulated gene (ISG) expression, whereas CA16 infection normally triggers the JAK-STAT pathway, leading to the expression of ISGs. Taken together, this study provides a comprehensive view of the differential impacts of EV71 and CA16 infection on 84 genes in the IFN pathway, shedding light on the different resistances of these viruses to type I IFN treatment and cytotoxic effects in RD cells.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Lei Zhang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhiyong Wu
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Po Tien
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
45
|
Huang PN, Shih SR. Update on enterovirus 71 infection. Curr Opin Virol 2014; 5:98-104. [PMID: 24727707 DOI: 10.1016/j.coviro.2014.03.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/12/2014] [Accepted: 03/16/2014] [Indexed: 01/01/2023]
Abstract
Human enterovirus type 71 (EV71) has emerged as a major cause of viral encephalitis in children worldwide. The identified EV71 receptors provide useful information for understanding EV71replication and tissue tropism. Host factors interact with the internal ribosome entry site (IRES) of EV71 to regulate viral translation. However, the specific molecular features of the EV71 genome that determine virulence remain unclear. The EV71 capsid protein VP1 region might contribute to virulence and neurotropism. Transgenic mice expressing the EV71 receptor that were infected with the virus exhibited a disease similar to that observed in infected humans. Antiviral drug and vaccine development is urgently required to prevent EV71 epidemics. Delineating viral host interactions and identifying specific mechanisms that might control the neural tropism of EV71 pathogenesis would be substantial advances.
Collapse
Affiliation(s)
- Peng-Nien Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taiwan, ROC; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taiwan, ROC
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taiwan, ROC; Graduate Institute of Biomedical Science, Chang Gung University, Taiwan, ROC; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taiwan, ROC; Clinical Virology Laboratory, Department of Clinical Pathology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, ROC.
| |
Collapse
|
46
|
Ren XX, Ma L, Liu QW, Li C, Huang Z, Wu L, Xiong SD, Wang JH, Wang HB. The molecule of DC-SIGN captures enterovirus 71 and confers dendritic cell-mediated viral trans-infection. Virol J 2014; 11:47. [PMID: 24620896 PMCID: PMC3995660 DOI: 10.1186/1743-422x-11-47] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/06/2014] [Indexed: 12/12/2022] Open
Abstract
Background Enterovirus 71 (EV71) is the main causative agent of hand, foot and mouth disease that occurs in young children. Neither antiviral agents nor vaccines are available for efficiently combating viral infection. Study of EV71–host interplay is important for understanding viral infection and developing strategies for prevention and therapy. Here the interactions of EV71 with human dendritic cells were analyzed. Methods EV71 capture, endocytosis, infection, and degradation in monocyte-derived dendritic cells (MDDCs) were detected by Flow cytometry or real-time (RT-) PCR, and MDDCs-mediated EV71 trans-infection of RD cells was determined via coculture system. Cell morphology or viability was monitored with microscopy or flow cytometry. SiRNA interference was used to knock down gene expression. Results MDDCs can bind EV71, but these loaded-EV71 particles in MDDCs underwent a rapid degradation in the absence of efficient replication; once the captured EV71 encountered susceptible cells, MDDCs efficiently transferred surface-bound viruses to target cells. The molecule of DC-SIGN (DC-specific intercellular adhesion molecule-3 grabbing nonintegrin) mediated viral binding and transfer, because interference of DC-SIGN expression with specific siRNAs reduced EV71 binding and impaired MDDC-mediated viral trans-infection, and exogenous expression of DC-SIGN molecule on Raji cell initiated viral binding and subsequent transmission. Conclusion MDDCs could bind efficiently EV71 viruses through viral binding to DC-SIGN molecule, and these captured-viruses could be transferred to susceptible cells for robust infection. The novel finding of DC-mediated EV71 dissemination might facilitate elucidation of EV71 primary infection and benefit searching for new clues for preventing viruses from initial infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hai-Bo Wang
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
47
|
Lin JY, Shih SR. Cell and tissue tropism of enterovirus 71 and other enteroviruses infections. J Biomed Sci 2014; 21:18. [PMID: 24602216 PMCID: PMC3995930 DOI: 10.1186/1423-0127-21-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/26/2014] [Indexed: 02/04/2023] Open
Abstract
Enterovirus 71 (EV71) is a member of Picornaviridae that causes mild and self-limiting hand, foot, and mouth disease (HFMD). However, EV71 infections can progress to polio-like paralysis, neurogenic pulmonary edema, and fatal encephalitis in infants and young children. Large EV71 outbreaks have been reported in Taiwan, China, Japan, Malaysia, Singapore, and Australia. This virus is considered a critical emerging public health threat. EV71 is an important crucial neurotropic enterovirus for which there is currently no effective antiviral drug or vaccine. The mechanism by which EV71 causes severe central nervous system complications remains unclear. The interaction between the virus and the host is vital for viral replication, virulence, and pathogenicity. SCARB2 or PSGL-1 receptor binding is the first step in the development of viral infections, and viral factors (e.g., 5' UTR, VP1, 3C, 3D, 3' UTR), host factors and environments (e.g., ITAFs, type I IFN) are also involved in viral infections. The tissue tropism and pathogenesis of viruses are determined by a combination of several factors. This review article provides a summary of host and virus factors affecting cell and tissue tropism and the pathogenesis of enteroviruses.
Collapse
Affiliation(s)
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan.
| |
Collapse
|
48
|
Wang SM, Liu CC. Update of enterovirus 71 infection: epidemiology, pathogenesis and vaccine. Expert Rev Anti Infect Ther 2014; 12:447-56. [PMID: 24579906 DOI: 10.1586/14787210.2014.895666] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enterovirus 71 (EV71) is a neurotropic human pathogen that is the causative agent of hand foot and mouth disease (HFMD), herpangina and brain stem encephalitis. Recurrent EV71 epidemics of various scales have occurred in the Asia-Pacific region. Several specific cell surface molecules serve as the receptors for EV71. Identification of the receptors is an important step to understand EV71 disease. Cytokines, lymphocytes and monocytes contribute significantly to EV71 pathogenesis. The interaction of EV71 and receptors may be associated with the cytokines immunopathogenesis. Some animal models have been established and aim to explore the pathogenesis of EV71 infections. EV71 antibodies can neutralize or enhance infection at subneutralizing levels. These results are important for EV71 vaccine and therapeutics design. Several clinical trials of human inactivated EV71 vaccine have recently been completed. The purpose of this review is to summarize recent discoveries about the epidemiology and pathogenesis of EV71 and provide insights into human vaccine development.
Collapse
Affiliation(s)
- Shih-Min Wang
- Department of Emergency Medicine, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | | |
Collapse
|
49
|
Lin HY, Yang YT, Yu SL, Hsiao KN, Liu CC, Sia C, Chow YH. Caveolar endocytosis is required for human PSGL-1-mediated enterovirus 71 infection. J Virol 2013; 87:9064-76. [PMID: 23760234 PMCID: PMC3754029 DOI: 10.1128/jvi.00573-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/30/2013] [Indexed: 12/18/2022] Open
Abstract
Enterovirus 71 (EV71) causes hand, foot, and mouth disease and severe neurological disorders in children. Human scavenger receptor class B member 2 (hSCARB2) and P-selectin glycoprotein ligand-1 (PSGL-1) are identified as receptors for EV71. The underling mechanism of PSGL-1-mediated EV71 entry remains unclear. The endocytosis required for EV71 entry were investigated in Jurkat T and mouse L929 cells constitutively expressing human PSGL-1 (PSGL-1-L929) or human rhabdomyosarcoma (RD) cells displaying high SCARB2 but no PSGL-1 by treatment of specific inhibitors or siRNA. We found that disruption of clathrin-dependent endocytosis prevented EV71 infection in RD cells, while there was no influence in Jurkat T and PSGL-1-L929 cells. Disturbing caveolar endocytosis by specific inhibitor or caveolin-1 siRNA in Jurkat T and PSGL-1-L929 cells significantly blocked EV71 infection, whereas it had no effect on EV71 infection in RD cells. Confocal immunofluorescence demonstrated caveola, and EV71 was directly colocalized. pH-dependent endosomal acidification and intact membrane cholesterol were important for EV71 infection, as judged by the pretreatment of inhibitors that abrogated the infection. A receptor-dominated endocytosis of EV71 infection was observed: PSGL-1 initiates caveola-dependent endocytosis and hSCARB2 activates clathrin-dependent endocytosis.
Collapse
Affiliation(s)
- Hsiang-Yin Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ya-Ting Yang
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Shu-Ling Yu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Kuang-Nan Hsiao
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Charles Sia
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| |
Collapse
|
50
|
Nishimura Y, Lee H, Hafenstein S, Kataoka C, Wakita T, Bergelson JM, Shimizu H. Enterovirus 71 binding to PSGL-1 on leukocytes: VP1-145 acts as a molecular switch to control receptor interaction. PLoS Pathog 2013; 9:e1003511. [PMID: 23935488 PMCID: PMC3723564 DOI: 10.1371/journal.ppat.1003511] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/05/2013] [Indexed: 11/25/2022] Open
Abstract
Some strains of enterovirus 71 (EV71), but not others, infect leukocytes by binding to a specific receptor molecule: the P-selectin glycoprotein ligand-1 (PSGL-1). We find that a single amino acid residue within the capsid protein VP1 determines whether EV71 binds to PSGL-1. Examination of capsid sequences of representative EV71 strains revealed that the PSGL-1-binding viruses had either a G or a Q at residue 145 within the capsid protein VP1 (VP1-145G or Q), whereas PSGL-1-nonbinding viruses had VP1-145E. Using site-directed mutagenesis we found that PSGL-1-binding strains lost their capacity to bind when VP1-145G/Q was replaced by E; conversely, nonbinding strains gained the capacity to bind PSGL-1 when VP1-145E was replaced with either G or Q. Viruses with G/Q at VP1-145 productively infected a leukocyte cell line, Jurkat T-cells, whereas viruses with E at this position did not. We previously reported that EV71 binds to the N-terminal region of PSGL-1, and that binding depends on sulfated tyrosine residues within this region. We speculated that binding depends on interaction between negatively charged sulfate groups and positively charged basic residues in the virus capsid. VP1-145 on the virus surface is in close proximity to conserved lysine residues at VP1-242 and VP1-244. Comparison of recently published crystal structures of EV71 isolates with either Q or E at VP1-145 revealed that VP1-145 controls the orientation of the lysine side-chain of VP1-244: with VP1-145Q the lysine side chain faces outward, but with VP1-145E, the lysine side chain is turned toward the virus surface. Mutation of VP1-244 abolished virus binding to PSGL-1, and mutation of VP1-242 greatly reduced binding. We propose that conserved lysine residues on the virus surface are responsible for interaction with sulfated tyrosine residues at the PSGL-1 N-terminus, and that VP1-145 acts as a switch, controlling PSGL-1 binding by modulating the exposure of VP1-244K. Enterovirus 71 (EV71) commonly causes mild febrile illness in children (hand, foot, and mouth disease), but some patients suffer severe neurologic disease and death. Recent outbreaks in the Asia-Pacific region have caused thousands of deaths, making EV71 a major public health concern. Some EV71 strains bind to P-selectin glycoprotein ligand-1 (PSGL-1) and infect immune cells, but others do not. We previously found that EV71 binds the PSGL-1 N-terminus, and that binding depends on tyrosine sulfation of the N-terminus, but the viral factors that control interaction with PSGL-1 have not been identified. In our present work we present evidence that a single amino acid, residue 145 of the viral capsid protein (VP1-145), determines whether a virus binds or does not bind PSGL-1, and that it functions by influencing the orientation of a nearby lysine residue (VP1-244) on the virus surface. We propose that VP1-145 controls virus tropism by changing the accessibility of the positively-charged lysine side chain of VP1-244 to the negatively charged, sulfated N-terminus of PSGL-1. Our results shed new light on virus-receptor interaction, and EV71 tropism for PSGL-1-expressing leukocytes.
Collapse
Affiliation(s)
- Yorihiro Nishimura
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|