1
|
Chen S, Hu S, Zhou Y, Cao J, Zhang H, Wang Y, Zhou J. Tick HRF-dependent ferroptosis pathway to promote tick acquisition of Babesia microti. Front Cell Infect Microbiol 2025; 15:1560152. [PMID: 40144593 PMCID: PMC11936993 DOI: 10.3389/fcimb.2025.1560152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
B. microti is a tick-transmitted zoonotic erythrocytic intracellular parasite. Ferroptosis is an iron-dependent form of programmed cell death that affects pathogen replication in the host. Currently, there is limited research concerning the effect of tick ferroptosis on Babesia infection and the underlying mechanism of action. The present study used a B. microti -mouse- Haemaphysalis longicornis infection model in which nymphs fed on the blood of B. microti-infected mice. The midgut divalent iron (p<0.01) and reactive oxygen species (ROS) (p<0.05) levels were significantly elevated in infected ticks, and transmission electron microscopy (TEM) showed that mitochondrial ridges were absent or decreased in size. Downregulation of ferritin 1 and glutathione peroxidase 4 (GPX4) in ticks infected with B. microti suggests that these changes promote ferroptosis. In vivo studies demonstrated that the ferroptosis promoter Erastin increased B. microti load (p<0.05), while the inhibitor Ferrostatin-1 effectively decreased load (p<0.01). Tick histamine-releasing factor (HRF), a protein related to the antioxidant system, was downregulated in infected nymphs compared with uninfected nymphs (p<0.05), and interference with HRF promoted tick acquisition of B. microti (p<0.001). Transcriptomic analyses showed that HRF interference promotes tick ferroptosis by downregulating ferritin 1 and GPX4. Meanwhile, interference with tick HRF molecules showed increased divalent iron and ROS and decreased mitochondrial ridges compared with controls. These findings highlight the critical role of tick HRF molecules in regulating ferroptosis and acquisition of B. microti, thereby providing important insights for a deeper understanding of the tick-Babesia interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinlin Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural
Sciences, Shanghai, China
| |
Collapse
|
2
|
YUAN C, XU Q, NING Y, XIA Q. Potential mechanisms implied in tick infection by arboviruses and their transmission to vertebrate hosts. Integr Zool 2025; 20:315-330. [PMID: 39016029 PMCID: PMC11897945 DOI: 10.1111/1749-4877.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Ticks can transmit many pathogens, including arboviruses, to their vertebrate hosts. Arboviruses must overcome or evade defense mechanisms during their passage from the tick gut to the hemolymph, salivary glands, and the feeding site in the host skin. This review summarizes current knowledge of defense mechanisms in specific tick tissues and at the feeding site in the host skin. We discuss the possible roles of these defense mechanisms in viral infection and transmission. The responses of tick salivary proteins to arbovirus infection are also discussed. This review provides information that may help accelerate research on virus-tick interactions.
Collapse
Affiliation(s)
- Chuanfei YUAN
- NHC Key Laboratory of Tropical Disease Control, School of Tropical MedicineHainan Medical UniversityHaikouChina
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Qiong XU
- NHC Key Laboratory of Tropical Disease Control, School of Tropical MedicineHainan Medical UniversityHaikouChina
| | - Yunjia NING
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
- Hubei Jiangxia LaboratoryWuhanChina
| | - Qianfeng XIA
- NHC Key Laboratory of Tropical Disease Control, School of Tropical MedicineHainan Medical UniversityHaikouChina
| |
Collapse
|
3
|
WIN SY, HORIO F, SATO J, MOTAI Y, SEO H, FUJISAWA S, SATO T, OISHI E, HTUN LL, BAWM S, OKAGAWA T, MAEKAWA N, KONNAI S, OHASHI K, MURATA S. Potential of histamine release factor for the utilization as a universal vaccine antigen against poultry red mites, tropical fowl mites, and northern fowl mites. J Vet Med Sci 2025; 87:1-12. [PMID: 39567007 PMCID: PMC11735211 DOI: 10.1292/jvms.24-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Poultry red mites (PRMs, Dermanyssus gallinae), tropical fowl mites (TFMs, Ornithonyssus bursa), and northern fowl mites (NFMs, Ornithonyssus sylviarum) are hematophagous mites that are distributed worldwide which pose a serious challenge to the poultry industry and negatively impact poultry production and welfare. Vaccines represent a promising approach for controlling avian mites, and the identification of antigens with broad efficacy against multiple avian mite species is advantageous for vaccine control. This study aimed to identify histamine release factor (HRF), which was previously reported as a candidate vaccine antigen against PRMs, from TFMs and NFMs and to analyze its cross-reactivity and acaricidal effects on different avian mite species. The deduced amino acid sequences of the HRFs identified in the TFMs and NFMs were highly homologous to those of the PRMs. We generated recombinant HRF (rHRF) of TFMs, NFMs, and PRMs, and immune plasma against each rHRF was produced by immunization with each antigen. The immune plasma contained antibodies specific to each antigen and showed cross-reactivity with rHRFs from different avian mites. Moreover, PRM nymphs (protonymphs) artificially fed each immune plasma showed higher mortality rates than those fed the control plasma. These results suggest that HRFs can be used as candidate antigens for a universal vaccine with broad efficacy across avian mites.
Collapse
Affiliation(s)
- Shwe Yee WIN
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Fumiya HORIO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Jumpei SATO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Yoshinosuke MOTAI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Hikari SEO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Sotaro FUJISAWA
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | | | | | - Lat Lat HTUN
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
| | - Saw BAWM
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
- Department of Livestock and Aquaculture Research, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Tomohiro OKAGAWA
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Naoya MAEKAWA
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Satoru KONNAI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Institute for Vaccine Research and Development (GU-IVReD), Hokkaido University, Hokkaido, Japan
| | - Kazuhiko OHASHI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Shiro MURATA
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
4
|
Desidério CS, Flávio-Reis VHP, Pessoa-Gonçalves YM, Tiveron RDR, Sales-Campos H, Felice AG, Soares SDC, Guillermo-Ferreira R, Rodrigues WF, Oliveira CJF. Binding Molecules in Tick Saliva for Targeting Host Cytokines, Chemokines, and Beyond. Biomolecules 2024; 14:1647. [PMID: 39766354 PMCID: PMC11674731 DOI: 10.3390/biom14121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Ticks have coevolved with their hosts over millions of years, developing the ability to evade hemostatic, inflammatory, and immunological responses. Salivary molecules from these vectors bind to cytokines, chemokines, antibodies, complement system proteins, vasodilators, and molecules involved in coagulation and platelet aggregation, among others, inhibiting or blocking their activities. Initially studied to understand the complexities of tick-host interactions, these molecules have been more recently recognized for their potential clinical applications. Their ability to bind to soluble molecules and modulate important physiological systems, such as immunity, hemostasis, and coagulation, positions them as promising candidates for future therapeutic development. This review aims to identify the binding molecules present in tick saliva, determine their primary targets, and explore the tick species involved in these processes. By associating the binding molecules, the molecules to which they bind, and the effect caused, the review provides a basis for understanding how these molecules can contribute to possible future advances in clinical applications.
Collapse
Affiliation(s)
- Chamberttan Souza Desidério
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Victor Hugo Palhares Flávio-Reis
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Yago Marcos Pessoa-Gonçalves
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Rafael Destro Rosa Tiveron
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Helioswilton Sales-Campos
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania 74605-050, GO, Brazil;
| | - Andrei Giacchetto Felice
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Siomar de Castro Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Rhainer Guillermo-Ferreira
- LESTES Laboratory, Department of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil;
| | - Wellington Francisco Rodrigues
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| |
Collapse
|
5
|
Trujillo E, Ramos-Vega A, Monreal-Escalante E, Almazán C, Angulo C. Overview of Recombinant Tick Vaccines and Perspectives on the Use of Plant-Made Vaccines to Control Ticks of Veterinary Importance. Vaccines (Basel) 2024; 12:1178. [PMID: 39460344 PMCID: PMC11512348 DOI: 10.3390/vaccines12101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Ticks are obligate hematophagous ectoparasites that affect animals, and some of them transmit a wide range of pathogens including viruses, bacteria, and protozoa to both animals and humans. Several vaccines have shown immunogenicity and protective efficacy against ticks in animal models and definitive hosts. After several decades on anti-tick vaccine research, only a commercial vaccine based on a recombinant antigen is currently available. In this context, plants offer three decades of research and development on recombinant vaccine production to immunize hosts and as a delivery vehicle platform. Despite the experimental advances in plant-made vaccines to control several parasitosis and infectious diseases, no vaccine prototype has been developed against ticks. This review examines a panorama of ticks of veterinary importance, recombinant vaccine experimental developments, plant-made vaccine platforms, and perspectives on using this technology as well as the opportunities and limitations in the field of tick vaccine research.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Abel Ramos-Vega
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología No.1036, Xochitepec 62790, MOR, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Consuelo Almazán
- Immunology and Vaccines Laboratory, College of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76230, QRO, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| |
Collapse
|
6
|
Zafar K, Azuama OC, Parveen N. Current and emerging approaches for eliminating Borrelia burgdorferi and alleviating persistent Lyme disease symptoms. Front Microbiol 2024; 15:1459202. [PMID: 39345262 PMCID: PMC11427371 DOI: 10.3389/fmicb.2024.1459202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Lyme disease is the most prevalent tick-borne infection caused by Borrelia burgdorferi bacteria in North America. Other Borrelia species are predominately the cause of this disease in Eurasia with some distinct and various overlapping manifestations. Consequently, caution must be exercised when comparing the disease and its manifestations and treatment regimens in North America and Europe. Diagnosis of the early Lyme disease remains difficult using the currently FDA approved serological tests in the absence of a reported tick bite or of erythema migrans in many individuals, non-specific initial symptoms, and the absence of detectable anti-Borrelia antibodies in the prepatent period of infection. Furthermore, it is difficult to distinguish persistence of infection and disease versus reinfection in the endemic regions of Lyme disease by serological assays. If early infection remains untreated, spirochetes can disseminate and could affect various organs in the body with a variety of disease manifestations including arthralgias and musculoskeletal pain, neurologic symptoms and anomalies, and acrodermatitis chronicum atrophicans (ACA) in Europe. Although most patients recover after antibiotic treatment, an estimated ∼10-20% patients in the United States show persistence of symptoms known as post-treatment Lyme disease syndrome (PTLDS). The causes and biomarkers of PTLDS are not well-defined; however, several contributing factors with inconsistent degree of supporting evidence have been suggested. These include antigenic debris, dysregulation of immunological response, bacterial persisters, or combination of these features. This review highlights currently employed treatment approaches describing different antimicrobials used, and vaccine candidates tried to prevent B. burgdorferi infection.
Collapse
Affiliation(s)
| | | | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
7
|
Sun M, Wu F, Xu Z, Wang Y, Cao J, Zhou Y, Zhou J, Zhang H, Xu Q. The TCTP is essential for ovarian development and oviposition of Rhipicephalus haemaphysaloides. Vet Parasitol 2024; 329:110212. [PMID: 38781831 DOI: 10.1016/j.vetpar.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Tick infestations transmit various infectious agents and result in significant socioeconomic consequences. Currently, the primary focus of tick control efforts is identifying potential targets for immune intervention. In a previous study, we identified a highly conserved protein abundant in tick haemolymph extracellular vesicles (EVs) known as translationally controlled tumour protein (TCTP). We have found that native TCTP is present in various tissues of the Rhipicephalus haemaphysaloides tick, including salivary glands, midgut, ovary, and fat body. Notably, TCTP is particularly abundant in the tick ovary and its levels increase progressively from the blood-feeding stage to engorgement. When the TCTP gene was knocked down by RNAi, there was a noticeable delay in ovarian development, and the reproductive performance, in terms of egg quantity and survival, was also hindered. Our investigations have revealed that the observed effects in ovary and eggs in dsRNA-treated ticks are not attributable to cell death mechanisms like apoptosis and autophagy but rather to the reduction in the expression of vitellogenin (Vg1, Vg2, and Vg3) and ferritin (ferritin 1 and ferritin 2) proteins crucial for ovarian development and embryo survival in ticks. Additionally, phylogenetic analysis and structural comparisons of RhTCTP and its orthologues across various tick species, vertebrate hosts, and humans have shown that TCTP is conserved in ticks but differs significantly between ticks and their hosts, particularly in the TCTP_1 and TCTP_2 domains. Overall, TCTP plays a vital role in tick reproductive development and presents itself as a potential target for tick control in both humans and animals.
Collapse
Affiliation(s)
- Meng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Fei Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Feng T, Tong H, Zhang Q, Ming Z, Song Z, Zhou X, Dai J. Targeting Haemaphysalis longicornis serpin to prevent tick feeding and pathogen transmission. INSECT SCIENCE 2024; 31:694-706. [PMID: 37635449 DOI: 10.1111/1744-7917.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023]
Abstract
Serine proteinase inhibitors (serpins), identified from the hard tick Haemaphysalis longicornis of China, play significant roles in various animal physiological processes. In this study, we showed that H. longicornis serpins (Hlserpin-a and Hlserpin-b) were induced during blood-feeding in nymph ticks and exhibited anticoagulation activity in vitro. Silencing Hlserpins through RNA interference (RNAi) significantly impaired tick feeding. Immunization of mice with recombinant Hlserpins or passive transfer of Hlserpin antiserum significantly curtails the efficacy of tick feeding. Concurrently, the transmission of the Langat virus (LGTV) from ticks to mice witnessed a substantial decrease when Hlserpins were silenced. Our findings suggest that inhibiting Hlserpins can hamper tick engorgement and pathogen transmission, indicating the potential of Hlserpins as a vaccine to counter tick-borne diseases.
Collapse
Affiliation(s)
- Tingting Feng
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| | - Hao Tong
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| | - Qianqian Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhihao Ming
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhenyu Song
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| | - Xia Zhou
- School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
9
|
Wang Y, Xu Z, Zhang H, Zhou Y, Cao J, Zhang Y, Wang Z, Zhou J. Towards modelling tick-virus interactions using the weakly pathogenic Sindbis virus: Evidence that ticks are competent vectors. Front Cell Infect Microbiol 2024; 14:1334351. [PMID: 38567020 PMCID: PMC10985168 DOI: 10.3389/fcimb.2024.1334351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Most tick-borne viruses (TBVs) are highly pathogenic and require high biosecurity, which severely limits their study. We found that Sindbis virus (SINV), predominantly transmitted by mosquitoes, can replicate in ticks and be subsequently transmitted, with the potential to serve as a model for studying tick-virus interactions. We found that both larval and nymphal stages of Rhipicephalus haemaphysaloides can be infected with SINV-wild-type (WT) when feeding on infected mice. SINV replicated in two species of ticks (R. haemaphysaloides and Hyalomma asiaticum) after infecting them by microinjection. Injection of ticks with SINV expressing enhanced Green Fluorescent Protein (eGFP) revealed that SINV-eGFP specifically aggregated in the tick midguts for replication. During blood-feeding, SINV-eGFP migrated from the midguts to the salivary glands and was transmitted to a new host. SINV infection caused changes in expression levels of tick genes related to immune responses, substance transport and metabolism, cell growth and death. SINV mainly induced autophagy during the early stage of infection; with increasing time of infection, the level of autophagy decreased, while the level of apoptosis increased. During the early stages of infection, the transcript levels of immune-related genes were significantly upregulated, and then decreased. In addition, SINV induced changes in the transcription levels of some functional genes that play important roles in the interactions between ticks and tick-borne pathogens. These results confirm that the SINV-based transmission model between ticks, viruses, and mammals can be widely used to unravel the interactions between ticks and viruses.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuqiang Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zedong Wang
- Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
10
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
11
|
Matias J, Cui Y, Lynn GE, DePonte K, Mesquita E, Muramatsu H, Alameh MG, Dwivedi G, Tam YK, Pardi N, Weissman D, Fikrig E. mRNA vaccination of rabbits alters the fecundity, but not the attachment, of adult Ixodes scapularis. Sci Rep 2024; 14:496. [PMID: 38177212 PMCID: PMC10766947 DOI: 10.1038/s41598-023-50389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
19ISP is a nucleoside-modified mRNA-lipid nanoparticle vaccine that targets 19 Ixodes scapularis proteins. We demonstrate that adult I. scapularis have impaired fecundity when allowed to engorge on 19ISP-immunized rabbits. 19ISP, therefore, has the potential to interrupt the tick reproductive cycle, without triggering some of the other effects associated with acquired tick resistance. This may lead to the development of new strategies to reduce I. scapularis populations in endemic areas.
Collapse
Affiliation(s)
- Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06520, USA.
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Geoffrey E Lynn
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Emily Mesquita
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mohamad G Alameh
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Garima Dwivedi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Tang X, Cao Y, Booth CJ, Arora G, Cui Y, Matias J, Fikrig E. Adiponectin in the mammalian host influences ticks' acquisition of the Lyme disease pathogen Borrelia. PLoS Biol 2023; 21:e3002331. [PMID: 37862360 PMCID: PMC10619873 DOI: 10.1371/journal.pbio.3002331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/01/2023] [Accepted: 09/12/2023] [Indexed: 10/22/2023] Open
Abstract
Arthropod-borne pathogens cause some of the most important human and animal infectious diseases. Many vectors acquire or transmit pathogens through the process of blood feeding. Here, we report adiponectin, the most abundant adipocyte-derived hormone circulating in human blood, directly or indirectly inhibits acquisition of the Lyme disease agent, Borrelia burgdorferi, by Ixodes scapularis ticks. Rather than altering tick feeding or spirochete viability, adiponectin or its associated factors induces host histamine release when the tick feeds, which leads to vascular leakage, infiltration of neutrophils and macrophages, and inflammation at the bite site. Consistent with this, adiponectin-deficient mice have diminished pro-inflammatory responses, including interleukin (IL)-12 and IL-1β, following a tick bite, compared with wild-type animals. All these factors mediated by adiponectin or associated factors influence B. burgdorferi survival at the tick bite site. These results suggest a host adipocyte-derived hormone modulates pathogen acquisition by a blood-feeding arthropod.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Carmen J Booth
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
13
|
Matias J, Cui Y, Tang X, Sajid A, Arora G, Wu MJ, DePonte K, Muramatsu H, Tam YK, Narasimhan S, Pardi N, Weissman D, Fikrig E. Specific mRNA lipid nanoparticles and acquired resistance to ticks. Vaccine 2023; 41:4996-5002. [PMID: 37407406 PMCID: PMC10530371 DOI: 10.1016/j.vaccine.2023.06.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Acquired resistance to ticks can develop when animals are repeatedly exposed to ticks. Recently, acquired resistance to Ixodes scapularis was induced in guinea pigs immunized with an mRNA-lipid nanoparticle vaccine (19ISP) encoding 19 I. scapularis proteins. Here, we evaluated specific mRNAs present in 19ISP to identify critical components associated with resistance to ticks. A lipid nanoparticle containing 12 mRNAs which included all the targets within 19ISP that elicited strong humoral responses in guinea pigs, was sufficient to induce robust resistance to ticks. Lipid nanoparticles containing fewer mRNAs or a single mRNA were not able to generate strong resistance to ticks. All lipid nanoparticles containing salp14 mRNA, however, were associated with increased redness at the tick bite site - which is the first manifestation of acquired resistance to ticks. This study demonstrates that more than one I. scapularis target within 19ISP is required for resistance to ticks, and that additional targets may also play a role in this process.
Collapse
Affiliation(s)
- Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
14
|
Islam MS, Talha AFSM, You MJ. Effects of histamine and antihistamine on the hard tick Haemaphysalis longicornis during blood sucking. PARASITES, HOSTS AND DISEASES 2023; 61:172-182. [PMID: 37258264 DOI: 10.3347/phd.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/05/2023] [Indexed: 06/02/2023]
Abstract
At the time of host attachment, ticks are very sensitive to histamine, but during rapid blood sucking they paradoxically require histamine. Using a rabbit model, we studied the effects of histamine and antihistamine during attachment and fast-feeding in different life stages of Haemaphysalis longicorns. We examined how they responded to histamine and antihistamine by analyzing the detachment rate, histology of feeding lesions, and post-feeding behavior. A significant difference (P<0.01) was found in the detachment rate between experimental and control treatments throughout the observation period. Ticks exhibited a higher detachment rate (30.1%) at 12 h after histamine application during attachment time and on antihistamine-treated skin (25.4%) at 96 h during fast-feeding. After feeding on histamine-treated rabbits, the fully engorged body weights of larvae and nymphs were 0.7±0.36 mg and 3.5±0.65 mg, respectively. An average increase in body weight of 0.6±0.05 mg and 3.2±0.30 mg was observed for larvae and nymphs compared to the respective control weights. Nymphs and adults engorged after antihistamine treatment had an average body weight of 1.3±0.54 mg and 54±0.81 mg, respectively. An average decrease in body weight was observed in antihistamine-treated H. longicornis compared with control nymphs (3.3±0.42 mg) and adults (174±1.78 mg). Skin biopsies were collected after treatment, and differential histopathological characteristics were found between the treatment and control groups. Tick-infested skin collected from rabbits in the antihistamine-treated group lacked erythrocytes in the feeding pool, indicating that antihistamine impaired tick fast-feeding stage.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Center, Jeonbuk National University, Specialized Campus, Iksan 54596, Korea
- Department of Medicine Surgery & Obstetrics, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh
| | - Abul Fatah Shah Muhammad Talha
- Laboratory of Veterinary Pathology, College of Veterinary Medicine and Bio-safety Research Center, Jeonbuk National University, Specialized Campus, Iksan 54596, Korea
| | - Myung-Jo You
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Center, Jeonbuk National University, Specialized Campus, Iksan 54596, Korea
| |
Collapse
|
15
|
The Ixodes ricinus salivary gland proteome during feeding and B. Afzelii infection: New avenues for an anti-tick vaccine. Vaccine 2023; 41:1951-1960. [PMID: 36797101 DOI: 10.1016/j.vaccine.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Borrelia burgdorferi sensu lato, the causative agents of Lyme borreliosis, are transmitted by Ixodes ticks. Tick saliva proteins are instrumental for survival of both the vector and spirochete and have been investigated as targets for vaccine targeting the vector. In Europe, the main vector for Lyme borreliosis is Ixodes ricinus, which predominantly transmits Borrelia afzelii. We here investigated the differential production of I. ricinus tick saliva proteins in response to feeding and B. afzelii infection. METHOD Label-free Quantitative Proteomics and Progenesis QI software was used to identify, compare, and select tick salivary gland proteins differentially produced during tick feeding and in response to B. afzelii infection. Tick saliva proteins were selected for validation, recombinantly expressed and used in both mouse and guinea pig vaccination and tick-challenge studies. RESULTS We identified 870 I. ricinus proteins from which 68 were overrepresented upon 24-hours of feeding and B. afzelii infection. Selected tick proteins were successfully validated by confirming their expression at the RNA and native protein level in independent tick pools. When used in a recombinant vaccine formulation, these tick proteins significantly reduced the post-engorgement weights of I. ricinus nymphs in two experimental animal models. Despite the reduced ability of ticks to feed on vaccinated animals, we observed efficient transmission of B. afzelii to the murine host. CONCLUSION Using quantitative proteomics, we identified differential protein production in I. ricinus salivary glands in response to B. afzelii infection and different feeding conditions. These results provide novel insights into the process of I. ricinus feeding and B. afzelii transmission and revealed novel candidates for an anti-tick vaccine.
Collapse
|
16
|
Chlastáková A, Kaščáková B, Kotál J, Langhansová H, Kotsyfakis M, Kutá Smatanová I, Tirloni L, Chmelař J. Iripin-1, a new anti-inflammatory tick serpin, inhibits leukocyte recruitment in vivo while altering the levels of chemokines and adhesion molecules. Front Immunol 2023; 14:1116324. [PMID: 36756125 PMCID: PMC9901544 DOI: 10.3389/fimmu.2023.1116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Serpins are widely distributed and functionally diverse inhibitors of serine proteases. Ticks secrete serpins with anti-coagulation, anti-inflammatory, and immunomodulatory activities via their saliva into the feeding cavity to modulate host's hemostatic and immune reaction initiated by the insertion of tick's mouthparts into skin. The suppression of the host's immune response not only allows ticks to feed on a host for several days but also creates favorable conditions for the transmission of tick-borne pathogens. Herein we present the functional and structural characterization of Iripin-1 (Ixodes ricinus serpin-1), whose expression was detected in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Of 16 selected serine proteases, Iripin-1 inhibited primarily trypsin and further exhibited weaker inhibitory activity against kallikrein, matriptase, and plasmin. In the mouse model of acute peritonitis, Iripin-1 enhanced the production of the anti-inflammatory cytokine IL-10 and chemokines involved in neutrophil and monocyte recruitment, including MCP-1/CCL2, a potent histamine-releasing factor. Despite increased chemokine levels, the migration of neutrophils and monocytes to inflamed peritoneal cavities was significantly attenuated following Iripin-1 administration. Based on the results of in vitro experiments, immune cell recruitment might be inhibited due to Iripin-1-mediated reduction of the expression of chemokine receptors in neutrophils and adhesion molecules in endothelial cells. Decreased activity of serine proteases in the presence of Iripin-1 could further impede cell migration to the site of inflammation. Finally, we determined the tertiary structure of native Iripin-1 at 2.10 Å resolution by employing the X-ray crystallography technique. In conclusion, our data indicate that Iripin-1 facilitates I. ricinus feeding by attenuating the host's inflammatory response at the tick attachment site.
Collapse
Affiliation(s)
- Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia,Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Barbora Kaščáková
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Ivana Kutá Smatanová
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia,*Correspondence: Jindřich Chmelař,
| |
Collapse
|
17
|
Trentelman JJA, de Vogel FA, Colstrup E, Sima R, Coumou J, Koetsveld J, Klouwens MJ, Nayak A, Ersoz J, Barriales D, Tomás-Cortázar J, Narasimhan S, Hajdusek O, Anguita J, Hovius JW. Identification of novel conserved Ixodes vaccine candidates; a promising role for non-secreted salivary gland proteins. Vaccine 2022; 40:7593-7603. [PMID: 36357287 DOI: 10.1016/j.vaccine.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Ixodes ricinus and Ixodes scapularis are the main vectors for the causative agents of Lyme borreliosis and a wide range of other pathogens. Repeated tick-bites are known to lead to tick rejection; a phenomenon designated as tick immunity. Tick immunity is mainly directed against tick salivary gland proteins (TSGPs) and has been shown to partially protect against experimental Lyme borreliosis. TSGPs recognized by antibodies from tick immune animals could therefore be interesting candidates for an anti-tick vaccine, which might also block pathogen transmission. To identify conserved Ixodes TSGPs that could serve as a universal anti-tick vaccine in both Europe and the US, a Yeast Surface Display containing salivary gland genes of nymphal I. ricinus expressed at 24, 48 and 72 h into tick feeding was probed with either sera from rabbits repeatedly exposed for 24 h to I. ricinus nymphal ticks and/or sera from rabbits immune to I. scapularis. Thus, we identified thirteen TSGP vaccine candidates, of which ten were secreted. For vaccination studies in rabbits, we selected six secreted TSGPs, five full length and one conserved peptide. None of these proteins hampered tick feeding. In contrast, vaccination of guinea pigs with four non-secreted TSGPs - two from the current and two from a previous human immunoscreening - did significantly reduce tick attachment and feeding. Therefore, non-secreted TSGPs appear to be involved in the development of tick immunity and are interesting candidates for an anti-tick vaccine.
Collapse
Affiliation(s)
- Jos J A Trentelman
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Fons A de Vogel
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Emil Colstrup
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Biopticka laborator s.r.o., Plzen, Czech Republic
| | - Jeroen Coumou
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris Koetsveld
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michelle J Klouwens
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Abhijeet Nayak
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jasmin Ersoz
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Diego Barriales
- CIC bioGUNE-Basque Research & Technology Alliance, Derio 48160, Spain
| | - Julen Tomás-Cortázar
- CIC bioGUNE-Basque Research & Technology Alliance, Derio 48160, Spain; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Juan Anguita
- CIC bioGUNE-Basque Research & Technology Alliance, Derio 48160, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48012, Spain
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Tang X, Arora G, Matias J, Hart T, Cui Y, Fikrig E. A tick C1q protein alters infectivity of the Lyme disease agent by modulating interferon γ. Cell Rep 2022; 41:111673. [PMID: 36417869 PMCID: PMC9909562 DOI: 10.1016/j.celrep.2022.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
In North America, the Lyme disease agent, Borrelia burgdorferi, is commonly transmitted by the black-legged tick, Ixodes scapularis. Tick saliva facilitates blood feeding and enhances pathogen survival and transmission. Here, we demonstrate that I. scapularis complement C1q-like protein 3 (IsC1ql3), a tick salivary protein, directly interacts with B. burgdorferi and is important during the initial stage of spirochetal infection of mice. Mice fed upon by B. burgdorferi-infected IsC1ql3-silenced ticks, or IsC1ql3-immunized mice fed upon by B. burgdorferi-infected ticks, have a lower spirochete burden during the early phase of infection compared with control animals. Mechanically, IsC1ql3 interacts with the globular C1q receptor present on the surface of CD4+ and CD8+ T cells, resulting in decreased production of interferon γ. IsC1ql3 is a C1q-domain-containing protein identified in arthropod vectors and has an important role in B. burgdorferi infectivity as the spirochete transitions from the tick to vertebrate host.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Thomas Hart
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
20
|
Chen WH, Strych U, Bottazzi ME, Lin YP. Past, present, and future of Lyme disease vaccines: antigen engineering approaches and mechanistic insights. Expert Rev Vaccines 2022; 21:1405-1417. [PMID: 35836340 PMCID: PMC9529901 DOI: 10.1080/14760584.2022.2102484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Transmitted by ticks, Lyme disease is the most common vector-borne disease in the Northern hemisphere. Despite the geographical expansion of human Lyme disease cases, no effective preventive strategies are currently available. Developing an efficacious and safe vaccine is therefore urgently needed. Efforts have previously been taken to identify vaccine targets in the causative pathogen (Borrelia burgdorferi sensu lato) and arthropod vector (Ixodes spp.). However, progress was impeded due to a lack of consumer confidence caused by the myth of undesired off-target responses, low immune responses, a limited breadth of immune reactivity, as well as by the complexities of the vaccine process development. AREA COVERED In this review, we summarize the antigen engineering approaches that have been applied to overcome those challenges and the underlying mechanisms that can be exploited to improve both safety and efficacy of future Lyme disease vaccines. EXPERT OPINION Over the past two decades, several new genetically redesigned Lyme disease vaccine candidates have shown success in both preclinical and clinical settings and built a solid foundation for further development. These studies have greatly informed the protective mechanisms of reducing Lyme disease burdens and ending the endemic of this disease.
Collapse
Affiliation(s)
- Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, United States
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA
| |
Collapse
|
21
|
de la Fuente J, Kocan KM. The Impact of RNA Interference in Tick Research. Pathogens 2022; 11:pathogens11080827. [PMID: 35894050 PMCID: PMC9394339 DOI: 10.3390/pathogens11080827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past two decades, RNA interference (RNAi) in ticks, in combination with omics technologies, have greatly advanced the discovery of tick gene and molecular function. While mechanisms of RNAi were initially elucidated in plants, fungi, and nematodes, the classic 2002 study by Aljamali et al. was the first to demonstrate RNAi gene silencing in ticks. Subsequently, applications of RNAi have led to the discovery of genes that impact tick function and tick-host-pathogen interactions. RNAi will continue to lead to the discovery of an array of tick genes and molecules suitable for the development of vaccines and/or pharmacologic approaches for tick control and the prevention of pathogen transmission.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- The Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
- Correspondence: or
| | - Katherine M. Kocan
- The Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
22
|
Shrivastava G, Valenzuela-Leon PC, Chagas AC, Kern O, Botello K, Zhang Y, Martin-Martin I, Oliveira MB, Tirloni L, Calvo E. Alboserpin, the Main Salivary Anticoagulant from the Disease Vector Aedes albopictus, Displays Anti-FXa-PAR Signaling In Vitro and In Vivo. Immunohorizons 2022; 6:373-383. [PMID: 35738824 PMCID: PMC10753553 DOI: 10.4049/immunohorizons.2200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Blood-feeding arthropods secrete potent salivary molecules, which include platelet aggregation inhibitors, vasodilators, and anticoagulants. Among these molecules, Alboserpin, the major salivary anticoagulant from the mosquito vector Aedes albopictus, is a specific inhibitor of the human coagulation factor Xa (FXa). In this study, we investigated the anti-inflammatory properties of Alboserpin, in vitro and in vivo. In vitro, Alboserpin inhibited FXa-induced protease-activated receptor (PAR)-1, PAR-2, PAR-3, VCAM, ICAM, and NF-κB gene expression in primary dermal microvascular endothelial cells. Alboserpin also prevented FXa-stimulated ERK1/2 gene expression and subsequent inflammatory cytokine release (MCP-1, TNF-α, IL-6, IL-8, IL-1β, IL-18). In vivo, Alboserpin reduced paw edema induced by FXa and subsequent release of inflammatory cytokines (CCL2, MCP-1, IL-1α, IL-6, IL-1β). Alboserpin also reduced FXa-induced endothelial permeability in vitro and in vivo. These findings show that Alboserpin is a potent anti-inflammatory molecule, in vivo and in vitro, and may play a significant role in blood feeding.
Collapse
Affiliation(s)
- Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Andrezza Campos Chagas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Olivia Kern
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Karina Botello
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Yixiang Zhang
- Protein Chemistry Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; and
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Markus Berger Oliveira
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD;
| |
Collapse
|
23
|
Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022; 20:818-853. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Ticks, particularly hard ticks (Ixodidae), which are among the most important vectors of dangerous infectious agents, feed on their hosts for extended periods of time. With this lifestyle, numerous adaptations have evolved in ticks and their hosts, the pharmacological importance of which is increasingly being recognized. Many bioactive substances in tick saliva are being considered as the basis of new drugs. For example, components of tick cement can be developed into tissue adhesives or wound closures. Analgesic and antipruritic salivary components inhibit histamine or bradykinin, while other tick-derived molecules bind opioid or cannabinoid receptors. Tick saliva inhibits the extrinsic, intrinsic, or common pathway of blood coagulation with implications for the treatment of thromboembolic diseases. It contains vasodilating substances and affects wound healing. The broad spectrum of immunomodulatory and immunosuppressive effects of tick saliva, such as inhibition of chemokines or cellular immune responses, allows development of drugs against inflammation in autoimmune diseases and/or infections. Finally, modern vaccines against ticks can curb the spread of serious infections. The medical importance of the complex tick-host interactions is increasingly being recognized and translated into first clinical applications. Using selected examples, an overview of the mutual adaptations of ticks and hosts is given here, focusing on their significance to medical advance.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany
| |
Collapse
|
24
|
Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022; 20:818-855. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Michael P Schön
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
25
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
26
|
Hromníková D, Furka D, Furka S, Santana JAD, Ravingerová T, Klöcklerová V, Žitňan D. Prevention of tick-borne diseases: challenge to recent medicine. Biologia (Bratisl) 2022; 77:1533-1554. [PMID: 35283489 PMCID: PMC8905283 DOI: 10.1007/s11756-021-00966-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Abstract Ticks represent important vectors and reservoirs of pathogens, causing a number of diseases in humans and animals, and significant damage to livestock every year. Modern research into protection against ticks and tick-borne diseases focuses mainly on the feeding stage, i.e. the period when ticks take their blood meal from their hosts during which pathogens are transmitted. Physiological functions in ticks, such as food intake, saliva production, reproduction, development, and others are under control of neuropeptides and peptide hormones which may be involved in pathogen transmission that cause Lyme borreliosis or tick-borne encephalitis. According to current knowledge, ticks are not reservoirs or vectors for the spread of COVID-19 disease. The search for new vaccination methods to protect against ticks and their transmissible pathogens is a challenge for current science in view of global changes, including the increasing migration of the human population. Highlights • Tick-borne diseases have an increasing incidence due to climate change and increased human migration • To date, there is no evidence of transmission of coronavirus COVID-19 by tick as a vector • To date, there are only a few modern, effective, and actively- used vaccines against ticks or tick-borne diseases • Neuropeptides and their receptors expressed in ticks may be potentially used for vaccine design
Collapse
Affiliation(s)
- Dominika Hromníková
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Daniel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Samuel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Julio Ariel Dueñas Santana
- Chemical Engineering Department, University of Matanzas, Km 3 Carretera a Varadero, 44740 Matanzas, CU Cuba
| | - Táňa Ravingerová
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Vanda Klöcklerová
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Dušan Žitňan
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
27
|
Perner J, Kucera M, Frantova H, Urbanova V, Kopacek P, Sima R. Lyme disease transmission by severely impaired ticks. Open Biol 2022; 12:210244. [PMID: 35167765 PMCID: PMC8846998 DOI: 10.1098/rsob.210244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It has been demonstrated that impairing protein synthesis using drugs targeted against tRNA amino acid synthetases presents a promising strategy for the treatment of a wide variety of parasitic diseases, including malaria and toxoplasmosis. This is the first study evaluating tRNA synthetases as potential drug targets in ticks. RNAi knock-down of all tested tRNA synthetases had a strong deleterious phenotype on Ixodes ricinus feeding. Our data indicate that tRNA synthetases represent attractive, anti-tick targets warranting the design of selective inhibitors. Further, we tested whether these severely impaired ticks were capable of transmitting Borrelia afzelii spirochaetes. Interestingly, biologically handicapped I. ricinus nymphs transmitted B. afzelii in a manner quantitatively sufficient to develop a systemic infection in mice. These data suggest that initial blood-feeding, despite the incapability of ticks to fully feed and salivate, is sufficient for activating B. afzelii from a dormant to an infectious mode, enabling transmission and dissemination in host tissues.
Collapse
Affiliation(s)
- Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Matej Kucera
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Helena Frantova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Veronika Urbanova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Radek Sima
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| |
Collapse
|
28
|
Wechtaisong W, Bonnet SI, Chomel BB, Lien YY, Chuang ST, Tsai YL. Investigation of Transovarial Transmission of Bartonella henselae in Rhipicephalus sanguineus sensu lato Ticks Using Artificial Feeding. Microorganisms 2021; 9:microorganisms9122501. [PMID: 34946103 PMCID: PMC8705908 DOI: 10.3390/microorganisms9122501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Bartonella henselae is a slow-growing, Gram-negative bacterium that causes cat scratch disease in humans. A transstadial transmission of the bacteria from larvae to nymphs of Rhipicephalus sanguineus sensu lato (s.l.) ticks, suspected to be a potential vector of the bacteria, has been previously demonstrated. The present study aims to investigate transovarial transmission of B. henselae from R. sanguineus s.l. adults to their instars. Adult ticks (25 males and 25 females) were fed through an artificial feeding system on B. henselae-infected goat blood for 14 days, and 300 larvae derived from the experimentally B. henselae-infected females were fed on noninfected goat blood for 7 days. Nested PCR and culture were used to detect and isolate B. henselae in ticks and blood samples. Bartonella henselae DNA was detected in midguts, salivary glands, and carcasses of the semi-engorged adults and pooled tick feces (during feeding and post-feeding periods). After the oviposition period, B. henselae DNA was detected in salivary glands of females (33.3%), but not in pooled eggs or larvae derived from the infected females. However, B. henselae DNA was detected by nested PCR from the blood sample during larval feeding, while no viable B. henselae was isolated by culture. According to our findings, following infected blood meal, B. henselae could remain in the tick midguts, move to other tissues including salivary glands, and then be shed through tick feces with limited persistency. The presence of bacterial DNA in the blood during larval feeding shows the possibility of transovarial transmission of B. henselae in R. sanguineus s.l. ticks.
Collapse
Affiliation(s)
- Wittawat Wechtaisong
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (W.W.); (Y.-Y.L.)
| | - Sarah I. Bonnet
- Animal Health Department, INRAE, 37380 Nouzilly, France;
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, CNRS UMR 2000, Université de Paris, 75015 Paris, France
| | - Bruno B. Chomel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Yi-Yang Lien
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (W.W.); (Y.-Y.L.)
| | - Shih-Te Chuang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Yi-Lun Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (W.W.); (Y.-Y.L.)
- Correspondence: ; Tel.: +886-8-774-0226
| |
Collapse
|
29
|
Sajid A, Matias J, Arora G, Kurokawa C, DePonte K, Tang X, Lynn G, Wu MJ, Pal U, Strank NO, Pardi N, Narasimhan S, Weissman D, Fikrig E. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Sci Transl Med 2021; 13:eabj9827. [PMID: 34788080 DOI: 10.1126/scitranslmed.abj9827] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ixodes scapularis ticks transmit many pathogens that cause human disease, including Borrelia burgdorferi. Acquired resistance to I. scapularis due to repeated tick exposure has the potential to prevent tick-borne infectious diseases, and salivary proteins have been postulated to contribute to this process. We examined the ability of lipid nanoparticle–containing nucleoside-modified mRNAs encoding 19 I. scapularis salivary proteins (19ISP) to enhance the recognition of a tick bite and diminish I. scapularis engorgement on a host and thereby prevent B. burgdorferi infection. Guinea pigs were immunized with a 19ISP mRNA vaccine and subsequently challenged with I. scapularis. Animals administered 19ISP developed erythema at the bite site shortly after ticks began to attach, and these ticks fed poorly, marked by early detachment and decreased engorgement weights. 19ISP immunization also impeded B. burgdorferi transmission in the guinea pigs. The effective induction of local redness early after I. scapularis attachment and the inability of the ticks to take a normal blood meal suggest that 19ISP may be used either alone or in conjunction with traditional pathogen-based vaccines for the prevention of Lyme disease, and potentially other tick-borne infections.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cheyne Kurokawa
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Geoffrey Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20472, USA
- Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20472, USA
| | - Norma Olivares Strank
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
30
|
Denisov SS, Dijkgraaf I. Immunomodulatory Proteins in Tick Saliva From a Structural Perspective. Front Cell Infect Microbiol 2021; 11:769574. [PMID: 34722347 PMCID: PMC8548845 DOI: 10.3389/fcimb.2021.769574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
To feed successfully, ticks must bypass or suppress the host’s defense mechanisms, particularly the immune system. To accomplish this, ticks secrete specialized immunomodulatory proteins into their saliva, just like many other blood-sucking parasites. However, the strategy of ticks is rather unique compared to their counterparts. Ticks’ tendency for gene duplication has led to a diverse arsenal of dozens of closely related proteins from several classes to modulate the immune system’s response. Among these are chemokine-binding proteins, complement pathways inhibitors, ion channels modulators, and numerous poorly characterized proteins whose functions are yet to be uncovered. Studying tick immunomodulatory proteins would not only help to elucidate tick-host relationships but would also provide a rich pool of potential candidates for the development of immunomodulatory intervention drugs and potentially new vaccines. In the present review, we will attempt to summarize novel findings on the salivary immunomodulatory proteins of ticks, focusing on biomolecular targets, structure-activity relationships, and the perspective of their development into therapeutics.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| |
Collapse
|
31
|
Trentelman JJA, Tomás-Cortázar J, Knorr S, Barriales D, Hajdusek O, Sima R, Ersoz JI, Narasimhan S, Fikrig E, Nijhof AM, Anguita J, Hovius JW. Probing an Ixodes ricinus salivary gland yeast surface display with tick-exposed human sera to identify novel candidates for an anti-tick vaccine. Sci Rep 2021; 11:15745. [PMID: 34344917 PMCID: PMC8333314 DOI: 10.1038/s41598-021-92538-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/28/2021] [Indexed: 12/04/2022] Open
Abstract
In Europe, Ixodes ricinus is the most important vector of human infectious diseases, most notably Lyme borreliosis and tick-borne encephalitis virus. Multiple non-natural hosts of I. ricinus have shown to develop immunity after repeated tick bites. Tick immunity has also been shown to impair B. burgdorferi transmission. Most interestingly, multiple tick bites reduced the likelihood of contracting Lyme borreliosis in humans. A vaccine that mimics tick immunity could therefore potentially prevent Lyme borreliosis in humans. A yeast surface display library (YSD) of nymphal I. ricinus salivary gland genes expressed at 24, 48 and 72 h into tick feeding was constructed and probed with antibodies from humans repeatedly bitten by ticks, identifying twelve immunoreactive tick salivary gland proteins (TSGPs). From these, three proteins were selected for vaccination studies. An exploratory vaccination study in cattle showed an anti-tick effect when all three antigens were combined. However, immunization of rabbits did not provide equivalent levels of protection. Our results show that YSD is a powerful tool to identify immunodominant antigens in humans exposed to tick bites, yet vaccination with the three selected TSGPs did not provide protection in the present form. Future efforts will focus on exploring the biological functions of these proteins, consider alternative systems for recombinant protein generation and vaccination platforms and assess the potential of the other identified immunogenic TSGPs.
Collapse
Affiliation(s)
- Jos J A Trentelman
- Center for Experimental and Molecular Medicine, Amsterdam Multidisciplinary Lyme Borreliosis Center, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Julen Tomás-Cortázar
- CIC bioGUNE-Basque Research and Technology Alliance, 48160, Derio, Spain.,UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sarah Knorr
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Diego Barriales
- CIC bioGUNE-Basque Research and Technology Alliance, 48160, Derio, Spain
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jasmin I Ersoz
- Center for Experimental and Molecular Medicine, Amsterdam Multidisciplinary Lyme Borreliosis Center, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Ard M Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Juan Anguita
- CIC bioGUNE-Basque Research and Technology Alliance, 48160, Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48012, Bilbao, Spain
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Multidisciplinary Lyme Borreliosis Center, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
van Oosterwijk JG, Wikel SK. Resistance to Ticks and the Path to Anti-Tick and Transmission Blocking Vaccines. Vaccines (Basel) 2021; 9:725. [PMID: 34358142 PMCID: PMC8310300 DOI: 10.3390/vaccines9070725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
The medical and veterinary public health importance of ticks and tick-borne pathogens is increasing due to the expansion of the geographic ranges of both ticks and pathogens, increasing tick populations, growing incidence of tick-borne diseases, emerging tick transmitted pathogens, and continued challenges of achieving effective and sustained tick control. The past decades show an increasing interest in the immune-mediated control of tick infestations and pathogen transmission through the use of vaccines. Bovine tick resistance induced by repeated infestations was reported over a century ago. This review addresses the phenomena and immunological underpinning of resistance to tick infestation by livestock and laboratory animals; the scope of tick countermeasures to host immune defenses; and the impact of genomics, functional genomics, and proteomics on dissecting complex tick-host-pathogen interactions. From early studies utilizing tick tissue extracts to salivary gland derived molecules and components of physiologically important pathways in tick gut and other tissues, an increased understanding of these relationships, over time, impacted the evolution of anti-tick vaccine antigen selection. Novel antigens continue to emerge, including increased interest in the tick microbiome. Anti-tick and transmission blocking vaccines targeting pathogen reservoirs have the potential to disrupt enzootic cycles and reduce human, companion, domestic animal, and wildlife exposure to infected ticks.
Collapse
Affiliation(s)
| | - Stephen K. Wikel
- US Biologic Inc., 20 Dudley Street, Memphis, TN 38103, USA;
- Department of Medical Sciences, School of Medicine, Quinnipiac University, Hamden, CT 06518, USA
| |
Collapse
|
33
|
Kitsou C, Fikrig E, Pal U. Tick host immunity: vector immunomodulation and acquired tick resistance. Trends Immunol 2021; 42:554-574. [PMID: 34074602 PMCID: PMC10089699 DOI: 10.1016/j.it.2021.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022]
Abstract
Ticks have an unparalleled ability to parasitize diverse land vertebrates. Their natural persistence and vector competence are supported by the evolution of sophisticated hematophagy and remarkable host immune-evasion activities. We analyze the immunomodulatory roles of tick saliva which facilitates their acquisition of a blood meal from natural hosts and allows pathogen transmission. We also discuss the contrasting immunological events of tick-host associations in non-reservoir or incidental hosts, in which the development of acquired tick resistance can deter tick attachment. A critical appraisal of the intricate immunobiology of tick-host associations can plant new seeds of innovative research and contribute to the development of novel preventive strategies against ticks and tick-transmitted infections.
Collapse
Affiliation(s)
- Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA; Virginia-Maryland College of Veterinary Medicine, College Park, MD, USA.
| |
Collapse
|
34
|
Olajiga O, Holguin-Rocha AF, Rippee-Brooks M, Eppler M, Harris SL, Londono-Renteria B. Vertebrate Responses against Arthropod Salivary Proteins and Their Therapeutic Potential. Vaccines (Basel) 2021; 9:347. [PMID: 33916367 PMCID: PMC8066741 DOI: 10.3390/vaccines9040347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023] Open
Abstract
The saliva of hematophagous arthropods contains a group of active proteins to counteract host responses against injury and to facilitate the success of a bloodmeal. These salivary proteins have significant impacts on modulating pathogen transmission, immunogenicity expression, the establishment of infection, and even disease severity. Recent studies have shown that several salivary proteins are immunogenic and antibodies against them may block infection, thereby suggesting potential vaccine candidates. Here, we discuss the most relevant salivary proteins currently studied for their therapeutic potential as vaccine candidates or to control the transmission of human vector-borne pathogens and immune responses against different arthropod salivary proteins.
Collapse
Affiliation(s)
- Olayinka Olajiga
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Andrés F. Holguin-Rocha
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | | | - Megan Eppler
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Shanice L. Harris
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Berlin Londono-Renteria
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| |
Collapse
|
35
|
Klouwens MJ, Trentelman JJA, Wagemakers A, Ersoz JI, Bins AD, Hovius JW. Tick-Tattoo: DNA Vaccination Against B. burgdorferi or Ixodes scapularis Tick Proteins. Front Immunol 2021; 12:615011. [PMID: 33717102 PMCID: PMC7946838 DOI: 10.3389/fimmu.2021.615011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Borrelia burgdorferi sensu lato (sl) is the causative agent of Lyme borreliosis. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines. DNA tattoo vaccination with B. afzelii strain PKo OspC in mice has proven to be fully protective against B. afzelii syringe challenge and induces a favorable humoral immunity compared to recombinant protein vaccination. Alternatively, several recombinant protein vaccines based on tick proteins have shown promising effect in tick-bite infection models. In this study, we evaluated the efficacy of DNA vaccines against Borrelia OspC or tick antigens in a tick-bite infection model. Method We vaccinated C3H/HeN mice with OspC using a codon-optimized DNA vaccine or with recombinant protein. We challenged these mice with B. burgdorferi sensu stricto (ss)-infected Ixodes scapularis nymphs. Subsequently, we vaccinated C3H/HeN mice with DNA vaccines coding for tick proteins for which recombinant protein vaccines have previously resulted in interference with tick feeding and/or Borrelia transmission: Salp15, tHRF, TSLPI, and Tix-5. These mice were also challenged with B. burgdorferi ss infected Ixodes scapularis nymphs. Results DNA tattoo and recombinant OspC vaccination both induced total IgG responses. Borrelia cultures and DNA loads of skin and bladder remained negative in the mice vaccinated with OspC DNA vaccination, except for one culture. DNA vaccines against tick antigens Salp15 and Tix-5 induced IgG responses, while those against tHRF and TSLPI barely induced any IgG response. In addition, Borrelia cultures, and DNA loads from mice tattooed with DNA vaccines against tick proteins TSLPI, Salp15, tHRF, and Tix-5 were all positive. Conclusion A DNA tattoo vaccine against OspC induced high specific IgG titers and provided near total protection against B. burgdorferi ss infection by tick challenge. In contrast, DNA tattoo vaccines against tick proteins TSLPI, Salp15, tHRF, and Tix-5 induced low to moderate IgG titers and did not provide protection. Therefore, DNA tattoo vaccination does not seem a suitable vaccine strategy to identify, or screen for, tick antigens for anti-tick vaccines. However, DNA tattoo vaccination is a straightforward and effective vaccination platform to assess novel B. burgdorferi sl antigen candidates in a relevant tick challenge model.
Collapse
Affiliation(s)
- Michelle J Klouwens
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Department of Internal Medicine, Academic Medical Center, Amsterdam, Netherlands.,Amsterdam Multidisciplinary Lyme Borreliosis Center, Academic Medical Center, Amsterdam, Netherlands
| | - Jos J A Trentelman
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alex Wagemakers
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jasmin I Ersoz
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Adriaan D Bins
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Department of Internal Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Joppe W Hovius
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Department of Internal Medicine, Academic Medical Center, Amsterdam, Netherlands.,Amsterdam Multidisciplinary Lyme Borreliosis Center, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
36
|
Changing the Recipe: Pathogen Directed Changes in Tick Saliva Components. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041806. [PMID: 33673273 PMCID: PMC7918122 DOI: 10.3390/ijerph18041806] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
Ticks are obligate hematophagous parasites and are important vectors of a wide variety of pathogens. These pathogens include spirochetes in the genus Borrelia that cause Lyme disease, rickettsial pathogens, and tick-borne encephalitis virus, among others. Due to their prolonged feeding period of up to two weeks, hard ticks must counteract vertebrate host defense reactions in order to survive and reproduce. To overcome host defense mechanisms, ticks have evolved a large number of pharmacologically active molecules that are secreted in their saliva, which inhibits or modulates host immune defenses and wound healing responses upon injection into the bite site. These bioactive molecules in tick saliva can create a privileged environment in the host’s skin that tick-borne pathogens take advantage of. In fact, evidence is accumulating that tick-transmitted pathogens manipulate tick saliva composition to enhance their own survival, transmission, and evasion of host defenses. We review what is known about specific and functionally characterized tick saliva molecules in the context of tick infection with the genus Borrelia, the intracellular pathogen Anaplasma phagocytophilum, and tick-borne encephalitis virus. Additionally, we review studies analyzing sialome-level responses to pathogen challenge.
Collapse
|
37
|
Mahmood S, Sima R, Urbanova V, Trentelman JJA, Krezdorn N, Winter P, Kopacek P, Hovius JW, Hajdusek O. Identification of Tick Ixodes ricinus Midgut Genes Differentially Expressed During the Transmission of Borrelia afzelii Spirochetes Using a Transcriptomic Approach. Front Immunol 2021; 11:612412. [PMID: 33613535 PMCID: PMC7890033 DOI: 10.3389/fimmu.2020.612412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
Lyme borreliosis is an emerging tick-borne disease caused by spirochetes Borrelia burgdorferi sensu lato. In Europe, Lyme borreliosis is predominantly caused by Borrelia afzelii and transmitted by Ixodes ricinus. Although Borrelia behavior throughout tick development is quite well documented, specific molecular interactions between Borrelia and the tick have not been satisfactorily examined. Here, we present the first transcriptomic study focused on the expression of tick midgut genes regulated by Borrelia. By using massive analysis of cDNA ends (MACE), we searched for tick transcripts expressed differentially in the midgut of unfed, 24h-fed, and fully fed I. ricinus nymphs infected with B. afzelii. In total, we identified 553 upregulated and 530 downregulated tick genes and demonstrated that B. afzelii interacts intensively with the tick. Technical and biological validations confirmed the accuracy of the transcriptome. The expression of five validated tick genes was silenced by RNA interference. Silencing of the uncharacterized protein (GXP_Contig_30818) delayed the infection progress and decreased infection prevalence in the target mice tissues. Silencing of other genes did not significantly affect tick feeding nor the transmission of B. afzelii, suggesting a possible role of these genes rather in Borrelia acquisition or persistence in ticks. Identification of genes and proteins exploited by Borrelia during transmission and establishment in a tick could help the development of novel preventive strategies for Lyme borreliosis.
Collapse
Affiliation(s)
- Sazzad Mahmood
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Radek Sima
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Veronika Urbanova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Jos J A Trentelman
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolas Krezdorn
- GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Frankfurt am Main, Germany
| | - Peter Winter
- GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Frankfurt am Main, Germany
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
38
|
Paulino P, Vitari G, Rezende A, Couto J, Antunes S, Domingos A, Peckle M, Massard C, Araújo F, Santos H. Characterization of the Rhipicephalus ( Boophilus) microplus Sialotranscriptome Profile in Response to Theileria equi Infection. Pathogens 2021; 10:pathogens10020167. [PMID: 33557100 PMCID: PMC7913801 DOI: 10.3390/pathogens10020167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022] Open
Abstract
This study intends to characterize the sialotranscriptome profile of Rhipicephalus (Boophilus) microplus in response to Theileria equi and identify genes of interest with differential genomic expression, indicating relevant targets in the tick–protozoan interactions. The experimental design consisted of RNA sequencing from uninfected and T. equi-infected R. microplus salivary glands (SGs) to obtain transcriptomic profiles for characterization and comparison. A total of 288,952 transcripts were obtained from both tick profiles, 3456 transcripts (p < 0.05) differentially expressed in response to T. equi infection. The uninfected SGs’ registered 231,179 transcripts, of which 155,359 were annotated. The most transcribed sequences were female-specific histamine binding protein and lipocalins. Regarding the T. equi-infected SGs, from the 238,964 assembled transcripts, 163,564 were annotated. The most transcribed sequences were histone demethylase JARID1 and Y-box-binding protein. Five transcripts (cystatin, arginase, nuclear factor κB kinase inhibitor subunit β (IκB), IκB delta, lysosomal-trafficking regulator, and reeler protein) presented the gene ontology (GO) category “response to protozoan” and were exclusively displayed in the T. equi-infected profile. The transcriptome of T. equi was also analyzed, registering 4728 hits. The study’s genetic and molecular information would be of great value for future studies and biotechnological applications envisaging disease control.
Collapse
Affiliation(s)
- Patrícia Paulino
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), BR 465, Km 7, Seropedica, RJ 23890000, Brazil; (P.P.); (G.V.)
| | - Gabriela Vitari
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), BR 465, Km 7, Seropedica, RJ 23890000, Brazil; (P.P.); (G.V.)
| | - Antonio Rezende
- Department of Microbiology, Institute Aggeu Magalhães—Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE 50670-420, Brazil;
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal; (J.C.); (S.A.); (A.D.)
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal; (J.C.); (S.A.); (A.D.)
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal; (J.C.); (S.A.); (A.D.)
| | - Maristela Peckle
- Department of Animal Parasitology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ 23890000, Brazil; (M.P.); (C.M.)
| | - Carlos Massard
- Department of Animal Parasitology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ 23890000, Brazil; (M.P.); (C.M.)
| | - Flávio Araújo
- Rene Rachou Research Center (CPqRR), FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil;
| | - Huarrisson Santos
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), BR 465, Km 7, Seropedica, RJ 23890000, Brazil; (P.P.); (G.V.)
- Correspondence:
| |
Collapse
|
39
|
Ng YQ, Gupte TP, Krause PJ. Tick hypersensitivity and human tick-borne diseases. Parasite Immunol 2021; 43:e12819. [PMID: 33428244 DOI: 10.1111/pim.12819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Immune-mediated hypersensitivity reactions to ticks and other arthropods are well documented. Hypersensitivity to ixodid (hard bodied) ticks is especially important because they transmit infection to humans throughout the world and are responsible for most vector-borne diseases in the United States. The causative pathogens of these diseases are transmitted in tick saliva that is secreted into the host while taking a blood meal. Tick salivary proteins inhibit blood coagulation, block the local itch response and impair host anti-tick immune responses, which allows completion of the blood meal. Anti-tick host immune responses are heightened upon repeated tick exposure and have the potential to abrogate tick salivary protein function, interfere with the blood meal and prevent pathogen transmission. Although there have been relatively few tick bite hypersensitivity studies in humans compared with those in domestic animals and laboratory animal models, areas of human investigation have included local hypersensitivity reactions at the site of tick attachment and generalized hypersensitivity reactions. Progress in the development of anti-tick vaccines for humans has been slow due to the complexities of such vaccines but has recently accelerated. This approach holds great promise for future prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Yu Quan Ng
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| | - Trisha P Gupte
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
40
|
De novo assembled salivary gland transcriptome and expression pattern analyses for Rhipicephalus evertsi evertsi Neuman, 1897 male and female ticks. Sci Rep 2021; 11:1642. [PMID: 33452281 PMCID: PMC7810686 DOI: 10.1038/s41598-020-80454-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Ticks secrete proteins in their saliva that change over the course of feeding to modulate the host inflammation, immune responses, haemostasis or may cause paralysis. RNA next generation sequencing technologies can reveal the complex dynamics of tick salivary glands as generated from various tick life stages and/or males and females. The current study represents 15,115 Illumina sequenced contigs of the salivary gland transcriptome from male and female Rhipicephalus evertsi evertsi ticks of early, mid and late feeding stages from 1320 separate assemblies using three short read assemblers. The housekeeping functional class contributed to the majority of the composition of the transcriptome (80%) but with lower expression (51%), while the secretory protein functional class represented only 14% of the transcriptome but 46% of the total coverage. Six percent had an unknown status contributing 3% of the overall expression in the salivary glands. Platelet aggregation inhibitors, blood clotting inhibitors and immune-modulators orthologous to the ancestral tick lineages were confirmed in the transcriptome and their differential expression during feeding in both genders observed. This transcriptome contributes data of importance to salivary gland biology and blood feeding physiology of non-model organisms.
Collapse
|
41
|
Helble JD, McCarthy JE, Hu LT. Interactions between Borrelia burgdorferi and its hosts across the enzootic cycle. Parasite Immunol 2021; 43:e12816. [PMID: 33368329 DOI: 10.1111/pim.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
The bacterial pathogen Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to humans through an Ixodes tick vector. B. burgdorferi is able to survive in both mammalian and tick hosts through careful modulation of its gene expression. This allows B. burgdorferi to adapt to the environmental and nutritional changes that occur when it is transmitted between the two hosts. Distinct interactions between the spirochete and its host occur at every step of the enzootic cycle and dictate the ability of the spirochete to survive until the next stage of the cycle. Studying the interface between B. burgdorferi, the Ixodes tick vector and the natural mammalian reservoirs has been made significantly more feasible through the complete genome sequences of the organisms and the advent of high throughput screening technologies. Ultimately, a thorough investigation of the interplay between the two domains (and two phyla within one domain) is necessary in order to completely understand how the pathogen is transmitted.
Collapse
Affiliation(s)
- Jennifer D Helble
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Julie E McCarthy
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| |
Collapse
|
42
|
Abi ME, Ji Z, Jian M, Dai X, Bai R, Ding Z, Luo L, Chen T, Wang F, Wen S, Zhou G, Bao F, Liu A. Molecular Interactions During Borrelia burgdorferi Migration from the Vector to the Mammalian Nervous System. Curr Protein Pept Sci 2021; 21:517-526. [PMID: 31613726 DOI: 10.2174/1389203720666191015145714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 11/22/2022]
Abstract
Lyme disease (LD) is an infectious disease caused by the spirochetes of genus borrelia, which are transmitted by the ticks of the genus ixodes. LD is transmitted by the spirochete B. burgdorferi sensu lato. Once in contact with the host through a tick bite, the pathogen comes into contact with the host defense, and must escape this machinery to establish LD, thus using a large number of mechanisms involving the vector of the pathogen, the pathogen itself and also the host. The initial diagnosis of the disease can be made based on the clinical symptoms of LD and the disease can be treated and cured with antibiotics if the diagnosis is made early in the beginning of the disease. Contrariwise, if LD is left untreated, the pathogen disseminates throughout the tissues and organs of the body, where it establishes different types of disease manifestations. In the nervous system, the inflammation caused by B. burgdorferi is known as Lyme neuroborreliosis (LNB). LNB is one of the principal manifestations of LD. In this review, we systematically describe the different molecular interactions among B. burgdorferi, the vector (tick) and the mammalian host.
Collapse
Affiliation(s)
- Manzama-Esso Abi
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Zhenhua Ji
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Miaomiao Jian
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Xiting Dai
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Ruolan Bai
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Zhe Ding
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Lisha Luo
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Taigui Chen
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Feng Wang
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Shiyuan Wen
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Guozhong Zhou
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Fukai Bao
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China.,Yunnan Province Key Laboratory for Major Children Diseases, Children Hospital of Kunming, Kunming 650300, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming 650500, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming 650500, China
| | - Aihua Liu
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China.,Yunnan Province Key Laboratory for Major Children Diseases, Children Hospital of Kunming, Kunming 650300, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming 650500, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming 650500, China
| |
Collapse
|
43
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
44
|
A combined transcriptomic approach to identify candidates for an anti-tick vaccine blocking B. afzelii transmission. Sci Rep 2020; 10:20061. [PMID: 33208766 PMCID: PMC7674437 DOI: 10.1038/s41598-020-76268-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Ixodes ricinus is the vector for Borrelia afzelii, the predominant cause of Lyme borreliosis in Europe, whereas Ixodes scapularis is the vector for Borrelia burgdorferi in the USA. Transcription of several I. scapularis genes changes in the presence of B. burgdorferi and contributes to successful infection. To what extend B. afzelii influences gene expression in I. ricinus salivary glands is largely unknown. Therefore, we measured expression of uninfected vs. infected tick salivary gland genes during tick feeding using Massive Analysis of cDNA Ends (MACE) and RNAseq, quantifying 26.179 unique transcripts. While tick feeding was the main differentiator, B. afzelii infection significantly affected expression of hundreds of transcripts, including 465 transcripts after 24 h of tick feeding. Validation of the top-20 B. afzelii-upregulated transcripts at 24 h of tick feeding in ten biological genetic distinct replicates showed that expression varied extensively. Three transcripts could be validated, a basic tail protein, a lipocalin and an ixodegrin, and might be involved in B. afzelii transmission. However, vaccination with recombinant forms of these proteins only marginally altered B. afzelii infection in I. ricinus-challenged mice for one of the proteins. Collectively, our data show that identification of tick salivary genes upregulated in the presence of pathogens could serve to identify potential pathogen-blocking vaccine candidates.
Collapse
|
45
|
Benelli G. Pathogens Manipulating Tick Behavior-Through a Glass, Darkly. Pathogens 2020; 9:pathogens9080664. [PMID: 32824571 PMCID: PMC7459789 DOI: 10.3390/pathogens9080664] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogens can manipulate the phenotypic traits of their hosts and vectors, maximizing their own fitness. Among the phenotypic traits that can be modified, manipulating vector behavior represents one of the most fascinating facets. How pathogens infection affects behavioral traits of key insect vectors has been extensively investigated. Major examples include Plasmodium, Leishmania and Trypanosoma spp. manipulating the behavior of mosquitoes, sand flies and kissing bugs, respectively. However, research on how pathogens can modify tick behavior is patchy. This review focuses on current knowledge about the behavioral changes triggered by Anaplasma, Borrelia, Babesia, Bartonella, Rickettsia and tick-borne encephalitis virus (TBEV) infection in tick vectors, analyzing their potential adaptive significance. As a general trend, being infected by Borrelia and TBEV boosts tick mobility (both questing and walking activity). Borrelia and Anaplasma infection magnifies Ixodes desiccation resistance, triggering physiological changes (Borrelia: higher fat reserves; Anaplasma: synthesis of heat shock proteins). Anaplasma infection also improves cold resistance in infected ticks through synthesis of an antifreeze glycoprotein. Being infected by Anaplasma, Borrelia and Babesia leads to increased tick survival. Borrelia, Babesia and Bartonella infection facilitates blood engorgement. In the last section, current challenges for future studies are outlined.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
46
|
Kurokawa C, Narasimhan S, Vidyarthi A, Booth CJ, Mehta S, Meister L, Diktas H, Strank N, Lynn GE, DePonte K, Craft J, Fikrig E. Repeat tick exposure elicits distinct immune responses in guinea pigs and mice. Ticks Tick Borne Dis 2020; 11:101529. [PMID: 32993942 DOI: 10.1016/j.ttbdis.2020.101529] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022]
Abstract
Ticks deposit salivary proteins into the skin during a bite to mediate acquisition of a blood meal. Acquired resistance to tick bites has been demonstrated to prevent Borrelia burgdorferi sensu lato (s.l.) transmission. However, the mechanism of resistance, as well as the protective antigens, have remained elusive. To address these unknowns, we utilized a guinea pig model of tick resistance and a mouse model of permissiveness. Guinea pigs developed immunity after multiple Ixodes scapularis tick infestations, characterized by rapid tick detachment and impaired feeding. In comparison, mice tolerated at least 6 infestations with no significant impact on feeding. We analyzed the bite sites by RNA-sequencing and histology, identifying several inflammatory pathways in tick immune animals, such as FcεRI signaling and complement activation, and activation of coagulation pathways that could impair local blood flow. Together, these results identify important pathways altered during tick rejection and potential tick proteins that could serve as vaccine candidates.
Collapse
Affiliation(s)
- Cheyne Kurokawa
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aurobind Vidyarthi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carmen J Booth
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Lea Meister
- Clermont Auvergne University School of Engineering Polytech, Clermont-Ferrand, France
| | - Husrev Diktas
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Norma Strank
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Geoffrey E Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathy DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joseph Craft
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute. Chevy Chase, MD 20815, USA.
| |
Collapse
|
47
|
Garcia GR, Chaves Ribeiro JM, Maruyama SR, Gardinassi LG, Nelson K, Ferreira BR, Andrade TG, de Miranda Santos IKF. A transcriptome and proteome of the tick Rhipicephalus microplus shaped by the genetic composition of its hosts and developmental stage. Sci Rep 2020; 10:12857. [PMID: 32732984 PMCID: PMC7393499 DOI: 10.1038/s41598-020-69793-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022] Open
Abstract
The cattle tick, Rhipicephalus microplus, is a monoxenous tick that co-evolved with indicine cattle on the Indian subcontinent. It causes massive damage to livestock worldwide. Cattle breeds present heritable, contrasting phenotypes of tick loads, taurine breeds carrying higher loads of the parasite than indicine breeds. Thus, a useful model is available to analyze mechanisms that determine outcomes of parasitism. We sought to gain insights on these mechanisms and used RNA sequencing and Multidimensional Protein Identification Technology (MudPIT) to generate a transcriptome from whole larvae and salivary glands from nymphs, males and females feeding on genetically susceptible and resistant bovine hosts and their corresponding proteomes. 931,698 reads were annotated into 11,676 coding sequences (CDS), which were manually curated into 116 different protein families. Male ticks presented the most diverse armamentarium of mediators of parasitism. In addition, levels of expression of many genes encoding mediators of parasitism were significantly associated with the level and stage of host immunity and/or were temporally restricted to developmental stages of the tick. These insights should assist in developing novel, sustainable technologies for tick control.
Collapse
Affiliation(s)
- Gustavo R Garcia
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Superintendence of the São Paulo State Technical and Scientific Police, Ribeirão Preto, SP, Brazil
| | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Regina Maruyama
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Kristina Nelson
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | - Beatriz R Ferreira
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Maternal-Child Nursing and Public Health, Ribeirão Preto School of Nursing, USP, Ribeirão Preto, SP, Brazil
| | - Thales Galdino Andrade
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Maternal-Child Nursing and Public Health, Ribeirão Preto School of Nursing, USP, Ribeirão Preto, SP, Brazil
| | - Isabel K Ferreira de Miranda Santos
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
48
|
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to vertebrate hosts by Ixodes spp. ticks. The spirochaete relies heavily on its arthropod host for basic metabolic functions and has developed complex interactions with ticks to successfully colonize, persist and, at the optimal time, exit the tick. For example, proteins shield spirochaetes from immune factors in the bloodmeal and facilitate the transition between vertebrate and arthropod environments. On infection, B. burgdorferi induces selected tick proteins that modulate the vector gut microbiota towards an environment that favours colonization by the spirochaete. Additionally, the recent sequencing of the Ixodes scapularis genome and characterization of tick immune defence pathways, such as the JAK–STAT, immune deficiency and cross-species interferon-γ pathways, have advanced our understanding of factors that are important for B. burgdorferi persistence in the tick. In this Review, we summarize interactions between B. burgdorferi and I. scapularis during infection, as well as interactions with tick gut and salivary gland proteins important for establishing infection and transmission to the vertebrate host. Borrelia burgdorferi has a complex life cycle with several different hosts, causing Lyme disease when it infects humans. In this Review, Fikrig and colleagues discuss how B. burgdorferi infects and interacts with its tick vector to ensure onward transmission.
Collapse
|
49
|
Bhowmick B, Han Q. Understanding Tick Biology and Its Implications in Anti-tick and Transmission Blocking Vaccines Against Tick-Borne Pathogens. Front Vet Sci 2020; 7:319. [PMID: 32582785 PMCID: PMC7297041 DOI: 10.3389/fvets.2020.00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ticks are obligate blood-feeding ectoparasites that transmit a wide variety of pathogens to animals and humans in many parts of the world. Currently, tick control methods primarily rely on the application of chemical acaricides, which results in the development of resistance among tick populations and environmental contamination. Therefore, an alternative tick control method, such as vaccines have been shown to be a feasible strategy that offers a sustainable, safe, effective, and environment-friendly solution. Nevertheless, novel control methods are hindered by a lack of understanding of tick biology, tick-pathogen-host interface, and identification of effective antigens in the development of vaccines. This review highlights the current knowledge and data on some of the tick-protective antigens that have been identified for the formulation of anti-tick vaccines along with the effects of these vaccines on the control of tick-borne diseases.
Collapse
Affiliation(s)
- Biswajit Bhowmick
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
50
|
Rana VS, Popli S, Saurav GK, Yadav K, Kumar A, Sunil S, Kumar N, Singh OP, Natarajan K, Rajagopal R. Aedes aegypti lachesin protein binds to the domain III of envelop protein of Dengue virus-2 and inhibits viral replication. Cell Microbiol 2020; 22:e13200. [PMID: 32141690 DOI: 10.1111/cmi.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/31/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022]
Abstract
Dengue virus (DENV) comprises of four serotypes (DENV-1 to -4) and is medically one of the most important arboviruses (arthropod-borne virus). DENV infection is a major human health burden and is transmitted between humans by the insect vector, Aedes aegypti. Ae. aegypti ingests DENV while feeding on infected humans, which traverses through its gut, haemolymph and salivary glands of the mosquito before being injected into a healthy human. During this process of transmission, DENV must interact with many proteins of the insect vector, which are important for its successful transmission. Our study focused on the identification and characterisation of interacting protein partners in Ae. aegypti to DENV. Since domain III (DIII) of envelope protein (E) is exposed on the virion surface and is involved in virus entry into various cells, we performed phage display library screening against domain III of the envelope protein (EDIII) of DENV-2. A peptide sequence showing similarity to lachesin protein was found interacting with EDIII. The lachesin protein was cloned, heterologously expressed, purified and used for in vitro interaction studies. Lachesin protein interacted with EDIII and also with DENV. Further, lachesin protein was localised in neuronal cells of different organs of Ae. aegypti by confocal microscopy. Blocking of lachesin protein in Ae. aegypti with anti-lachesin antibody resulted in a significant reduction in DENV replication.
Collapse
Affiliation(s)
- Vipin S Rana
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sonam Popli
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo, Toledo, Ohio, USA
| | - Gunjan K Saurav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Department of Zoology, Munshi Lal Arya College, Purnea University, Purnia, Bihar, India
| | - Karuna Yadav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ankit Kumar
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, Delhi, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, Delhi, India
| | - Narendra Kumar
- Department of Zoology, Shaheed Mangal Pandey Government Girls Post Graduate College, Meerut, Uttar Pradesh, India
| | - Om P Singh
- National Institute of Malaria Research, Delhi, India
| | | | - Raman Rajagopal
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|